JP2014059022A - Heat insulation support spacer in vacuum heat insulation low temperature equipment - Google Patents
Heat insulation support spacer in vacuum heat insulation low temperature equipment Download PDFInfo
- Publication number
- JP2014059022A JP2014059022A JP2012205149A JP2012205149A JP2014059022A JP 2014059022 A JP2014059022 A JP 2014059022A JP 2012205149 A JP2012205149 A JP 2012205149A JP 2012205149 A JP2012205149 A JP 2012205149A JP 2014059022 A JP2014059022 A JP 2014059022A
- Authority
- JP
- Japan
- Prior art keywords
- spacer
- vacuum
- heat insulation
- low temperature
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermal Insulation (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
本発明は、真空断熱低温機器における断熱支持スペーサに係り、例えばトランスファーチューブ内で被保持体である低温流体流路管を、高温の保持部材から断熱的に保持する等に用いて好適である。 The present invention relates to a heat insulating support spacer in a vacuum heat insulating low-temperature device, and is suitable for use in, for example, holding a low-temperature fluid channel pipe, which is an object to be held in a transfer tube, from a high-temperature holding member in an adiabatic manner.
液体窒素、液体ネオンや液体ヘリウム等の液化ガス温度で超電導を生じるMEG(脳磁計)や、NMR(超電導核磁気共鳴装置)、MRI(磁気共鳴画像法)装置、超電導磁石や超電導ケーブル等の超電導装置では、それぞれの被冷却体を冷却温度に冷却保持する必要があり、冷却冷媒である液化ガスの貯蔵容器や、冷凍機の寒冷を冷却冷媒である例えばヘリウムガスを循環して移送する冷却装置と超電導装置とを連結する、真空断熱低温機器の一種である冷却冷媒移送用断熱移送管のトランスファーチューブが必要である。 Superconductivity such as MEG (magnetoencephalograph), NMR (superconducting nuclear magnetic resonance apparatus), MRI (magnetic resonance imaging) apparatus, superconducting magnet and superconducting cable that generate superconductivity at liquefied gas temperature such as liquid nitrogen, liquid neon and liquid helium In the apparatus, it is necessary to hold each cooled object at a cooling temperature, and a liquefied gas storage container that is a cooling refrigerant, or a cooling device that circulates and transfers the cold of a refrigerator, for example, helium gas that is a cooling refrigerant. There is a need for a transfer tube of a heat transfer pipe for cooling refrigerant transfer, which is a kind of vacuum heat insulation low-temperature equipment that connects the superconducting device and the superconducting device.
低温断熱容器の一つであるトランスファーチューブは、主に室温の真空容器外管と、低温流体が流動する低温の単数もしくは複数の内管との両管を接触させないように、真空空間で伝導伝熱を防止し断熱的におよび物理的に保持するスペーサおよび内管の外周に巻付けて輻射熱の侵入を防止する積層断熱材とで構成され、断熱性能を維持している。 A transfer tube, which is one of the low-temperature insulated containers, is mainly used for conducting conduction in a vacuum space so that both the outer tube at room temperature and one or more inner tubes at which low-temperature fluid flows are not in contact with each other. It is composed of a spacer that prevents heat and adiabatically and physically holds and a laminated heat insulating material that is wound around the outer periphery of the inner tube to prevent intrusion of radiant heat, and maintains heat insulating performance.
従来のトランスファーチューブで用いられ、トランスファーチューブ内の低温の流体流路の内管をより高温の支持部材から保持する断熱保持材のスペーサの構造が、特開2008−8482(特許文献1)に開示されている。 A structure of a spacer of a heat insulating holding material used in a conventional transfer tube and holding an inner pipe of a low temperature fluid flow path in the transfer tube from a higher temperature support member is disclosed in Japanese Patent Application Laid-Open No. 2008-8482 (Patent Document 1). Has been.
トランスファーチューブの断熱性能を上げることにより、被冷却体をより低温に冷却することで、超電導体の機能を向上でき、超電導装置の測定機能の向上や走査型電子顕微鏡機器の画像の画質等を向上できる。また、トランスファーチューブの断熱性能を上げることにより、移送する液化ガスの蒸発量を低減し、液化ガスの移送効率を向上できる。 By improving the heat insulation performance of the transfer tube, the cooled object can be cooled to a lower temperature, thereby improving the superconductor function, improving the superconducting device measurement function, and improving the image quality of scanning electron microscope equipment. it can. Further, by increasing the heat insulation performance of the transfer tube, it is possible to reduce the evaporation amount of the liquefied gas to be transferred and improve the transfer efficiency of the liquefied gas.
しかしながら、特許文献1では、スペーサを構成する保持体が中実部材で構成されており、高温側から低温側の内管側に伝導伝熱で侵入する熱ロスが大きくなるために断熱性能が低下し、内管を流動する低温流体の寒冷量が減少して被冷却体の冷却温度が上昇し、超電導装置内の超電導体の超電導機能が低下する問題があった。 However, in patent document 1, the holding body which comprises a spacer is comprised with the solid member, and since the heat loss which penetrate | invades by the conduction heat transfer from the high temperature side to the inner pipe side of the low temperature side becomes large, heat insulation performance falls. However, the cooling amount of the low-temperature fluid flowing through the inner pipe is reduced, the cooling temperature of the cooled object is increased, and the superconducting function of the superconductor in the superconducting device is lowered.
本発明は上記状況に鑑みてなされたものであり、断熱性に優れ、熱ロスを低減できる真空断熱低温機器内に配置される断熱支持スペーサを提供することを目的とする。 This invention is made | formed in view of the said condition, and it aims at providing the heat insulation support spacer arrange | positioned in the vacuum heat insulation low temperature apparatus which is excellent in heat insulation and can reduce a heat loss.
前記目的を達成するための、本発明の真空断熱低温機器で使用される断熱支持スペーサの構成は、断熱材の一部を海綿状の海綿状体で構成したことを特徴とする。 In order to achieve the above object, the structure of the heat insulating support spacer used in the vacuum heat insulating low temperature apparatus of the present invention is characterized in that a part of the heat insulating material is formed of a spongy spongy body.
すなわち、請求項1に記載の断熱支持スペーサの構成は、断熱材をプラスチック製の円筒状の海綿状体で構成したことを特徴とする。 That is, the structure of the heat insulating support spacer according to claim 1 is characterized in that the heat insulating material is formed of a plastic cylindrical spongy body.
本スペーサ構造によれば、海綿状体の外周部の高温部から、内周部の低温部への伝導伝熱量は、海綿状体を構成する発泡体状の殻構造における殻構成部材の内部の伝導伝熱量の合計であり、殻構成であるため伝導伝熱方向に直角な実質肉厚は、中実円筒体の場合に比べ数十分の一程度に小さく、さらに伝導伝熱方向の伝熱距離も殻構成部材に沿った長さであり、中実円筒体の場合に比べ数倍以上長くなる。 According to this spacer structure, the amount of conduction heat transfer from the high temperature portion of the outer peripheral portion of the spongy body to the low temperature portion of the inner peripheral portion is the inside of the shell constituent member in the foam-like shell structure constituting the spongy body. The total amount of conduction heat transfer, and because of the shell structure, the actual thickness perpendicular to the conduction heat transfer direction is about several tenths smaller than that of a solid cylinder, and the heat transfer in the conduction heat transfer direction is further reduced. The distance is also the length along the shell constituent member, which is several times longer than that of a solid cylindrical body.
スペーサの伝導伝熱量Qc(W)は、次式で示される。
Qc=λSΔT/L ・・・・・・・(1)
ここで、λは伝熱部材の熱伝導率(W/(m・K))、Sは伝導伝熱方向と直角方向の伝熱部材の断面積(m2)、Lは伝熱部材の伝導伝熱方向の長さ(m)、ΔTは伝熱部材両端部の温度差(K)である。
The conduction heat transfer amount Qc (W) of the spacer is expressed by the following equation.
Qc = λSΔT / L (1)
Here, λ is the thermal conductivity (W / (m · K)) of the heat transfer member, S is the cross-sectional area (m 2 ) of the heat transfer member in the direction perpendicular to the conduction heat transfer direction, and L is the conduction of the heat transfer member The length (m) in the heat transfer direction and ΔT are the temperature difference (K) at both ends of the heat transfer member.
したがって、伝導伝熱量Qcを小さくしスペーサの断熱性能を向上させるためには、ΔTを小さくできない場合、Sを小さくするか、Lを長くすることが必要であり、本スペーサ構造によればSを小さくし、Lを長くすることができるので、伝導伝熱量Qcを小さくしたスペーサが提供可能となる。 Therefore, in order to reduce the amount of heat transfer Qc and improve the thermal insulation performance of the spacer, if ΔT cannot be reduced, it is necessary to reduce S or increase L. According to this spacer structure, S is Since the size can be reduced and the length L can be increased, it is possible to provide a spacer having a reduced conduction heat transfer amount Qc.
また、前記目的を達成するための、請求項2に記載の断熱支持スペーサの構成は、前記円筒状の海綿状体の外周部および内周部に熱伝導率の小さな例えばステンレス鋼やプラスチック製のリングを具備し、両リングと海綿状体の接触部を接着剤等で一体化したことを特徴とする。 Moreover, in order to achieve the above object, the structure of the heat insulating support spacer according to claim 2 is made of, for example, stainless steel or plastic having a low thermal conductivity at the outer peripheral portion and the inner peripheral portion of the cylindrical sponge-like body. A ring is provided, and the contact portion between both rings and the spongy body is integrated with an adhesive or the like.
本スペーサの構造によれば、内管の重量等のスペーサに作用する荷重が増加する場合、その荷重が内管の接触面で集中的に直接強度が弱い海綿状体に作用せず、内周リングで一旦受け、その荷重を内周リングと接合されたリング外周の海綿状体全面で受けるため、海綿状体の破壊を防止でき内管の位置を保持でき前記Lの長さを維持できるので、伝導伝熱量Qcを小さくしたスペーサが提供可能となる。外周に具備したリングの効果も同様である。 According to the structure of this spacer, when the load acting on the spacer such as the weight of the inner pipe increases, the load does not act intensively on the contact surface of the inner pipe directly on the spongy body having low strength, and the inner circumference Since it is received once by the ring and the load is received by the entire surface of the spongy body on the outer periphery of the ring joined to the inner ring, the spongy body can be prevented from being destroyed and the position of the inner tube can be maintained, and the length of L can be maintained. In addition, it is possible to provide a spacer with a reduced conduction heat transfer amount Qc. The effect of the ring provided on the outer periphery is also the same.
また、前記目的を達成するための、請求項3に記載の断熱支持スペーサの構成は、前記海綿状体の外周部および内周部の間に輻射率の小さい例えば純アルミニュウム製の金属のリングや、アルミニュウムや金を蒸着した例えばポリエステルやポリイミド製のフィルムを貼付した金属もしくは非金属製の筒体を同心状に1個もしくは複数個具備し、前記リングもしくは筒体と海綿状体の接触部を接着剤等で一体化したことを特徴とする。 In order to achieve the above object, the structure of the heat insulating support spacer according to claim 3 is characterized in that a metal ring made of, for example, pure aluminum having a low emissivity is provided between the outer peripheral portion and the inner peripheral portion of the spongy body. 1 or a plurality of metal or non-metal cylinders, for example, with a film of polyester or polyimide deposited with aluminum or gold, and a contact portion between the ring or cylinder and the spongy body. It is characterized by being integrated with an adhesive or the like.
本スペーサの構造によれば、海綿体内の空洞空間部内を輻射熱で侵入する熱侵入量を低減させるために、輻射熱の侵入経路空間に輻射率の小さな筒体を配置することで輻射熱の侵入を防止できる。これにより、熱ロスを小さくしたスペーサが提供可能となる。 According to the structure of this spacer, in order to reduce the amount of heat intruding into the hollow space inside the cancellous body by radiant heat, a radiant heat intrusion path space prevents the intrusion of radiant heat by placing a cylinder with a low emissivity. it can. Thereby, the spacer which made heat loss small can be provided.
また、前記目的を達成するための、請求項4に記載の断熱支持スペーサの構成は、スペーサ形状を海綿状多角筒体としたことを特徴とする。 Moreover, the structure of the heat insulation support spacer of Claim 4 for achieving the said objective is characterized by making the spacer shape into the sponge-like polygonal cylinder.
本スペーサの構造によれば、外管との接触点面積が海綿状体の場合に比べ小さくなり、かつ接触点から内管までの伝導距離も長くなるので、熱ロスを小さくしたスペーサが提供可能となる。 According to the structure of this spacer, the contact point area with the outer tube is smaller than in the case of a spongy body, and the conduction distance from the contact point to the inner tube is also longer, so a spacer with reduced heat loss can be provided. It becomes.
また、前記目的を達成するための、請求項5に記載の断熱支持スペーサの構成は、海綿状体と外周、内周リングとの接触面を一体化せずに組合せたことを特徴とする。 In order to achieve the above object, the structure of the heat insulating support spacer according to claim 5 is characterized in that the contact surfaces of the spongy body, the outer periphery, and the inner peripheral ring are combined without being integrated.
本スペーサの構造によれば、内管の重量等の荷重を少ない接触面で保持することができるので、熱が移動する箇所の接触面積がさらに小さくなり、かつ外管との接触点から内管までの伝導伝熱距離も長くなるので、熱ロスを小さくしたスペーサが提供可能となる。 According to the structure of this spacer, the load such as the weight of the inner tube can be held with a small contact surface, so that the contact area of the place where the heat moves is further reduced, and the inner tube from the contact point with the outer tube. Since the conduction heat transfer distance becomes longer, a spacer with reduced heat loss can be provided.
また、前記目的を達成するための、請求項6に記載の断熱支持スペーサの構成は、海綿状体の側面にアルミニュウムや金を蒸着した例えばポリイミド製のフィルムを輻射熱侵入側にアルミニュウムや金を蒸着した面が対向するように配置した構造としたことを特徴とする。 Further, in order to achieve the above object, the structure of the heat insulating support spacer according to claim 6 is formed by depositing aluminum or gold on the side surface of the spongy body, for example, a polyimide film, and depositing aluminum or gold on the radiant heat intrusion side. It is characterized by having a structure arranged so that the opposite surfaces face each other.
本スペーサの構造によれば、海綿筒体の側面に侵入する輻射熱量を低減できるので、熱ロスを小さくしたスペーサが提供可能となる。 According to the structure of this spacer, since the amount of radiant heat entering the side surface of the sponge cylinder can be reduced, a spacer with reduced heat loss can be provided.
また、前記目的を達成するための、請求項7に記載の断熱支持スペーサの構成は、スペーサ形状を径方向に半割着脱可能構造としたことを特徴とする。 Moreover, the structure of the heat insulation support spacer of Claim 7 for achieving the said objective WHEREIN: The spacer shape was made into the structure which can be halved and attached to a radial direction.
本スペーサの構造によれば、スペーサ設置外に積層断熱材を巻付施工した後からも積層断熱材を損傷することなくスペーサの施工が可能となるので、積層断熱材の輻射率を小さいままに保持でき、輻射熱による熱侵入を防止した熱ロスの小さいスペーサの提供が可能となる。 According to the structure of this spacer, since it is possible to install the spacer without damaging the laminated heat insulating material even after the laminated heat insulating material is wound outside the spacer installation, the radiation rate of the laminated heat insulating material is kept small. It is possible to provide a spacer that can be held and has a small heat loss that prevents heat penetration due to radiant heat.
また、前記目的を達成するための、請求項8に記載の断熱支持スペーサの構成は、複数の内管を断熱保持可能な構造としたことを特徴とする。 In order to achieve the above object, the structure of the heat insulating support spacer according to claim 8 is characterized in that a plurality of inner pipes can be insulated and held.
本スペーサの構造によれば、1本の外管内に往復路を構成する2流路の内管の施工が可能となるので、往復両流路のトータルの熱ロスを小さくしたスペーサが提供可能となる。 According to the structure of this spacer, it is possible to construct an inner pipe of two flow paths that constitute a reciprocating path in one outer pipe, and therefore it is possible to provide a spacer that reduces the total heat loss of both reciprocating flow paths. Become.
また、前記目的を達成するための、請求項9に記載の断熱支持スペーサの構成は、真空断熱低温機器がトランスファーチューブである場合に限定したもので、被保持体を冷却冷媒移送配管で構成したことを特徴とする。 Moreover, the structure of the heat insulation support spacer of Claim 9 for achieving the said objective was limited to the case where a vacuum heat insulation low temperature apparatus is a transfer tube, and comprised the to-be-supported body with the cooling refrigerant transfer piping. It is characterized by that.
トランスファーチューブ内に設置された本スペーサの構造によれば、冷却冷媒移送配管内を流動する流体の振動や、冷媒を冷却するための冷凍機の機械振動が生じる場合、振動を海綿状体が有する弾性機能で吸収し、冷却冷媒移送配管外に巻きつけた積層断熱材がスペーサとの摩擦で破損することを防止できるので、積層断熱材の輻射率を小さいままに保持でき、輻射熱による熱侵入を防止した熱ロスの小さいスペーサの提供が可能となる。 According to the structure of this spacer installed in the transfer tube, when the vibration of the fluid flowing in the cooling refrigerant transfer pipe or the mechanical vibration of the refrigerator for cooling the refrigerant occurs, the sponge-like body has the vibration. The laminated insulation that is absorbed by the elastic function and wound around the cooling refrigerant transfer pipe can be prevented from being damaged by friction with the spacer, so that the radiation rate of the laminated insulation can be kept small, and heat penetration due to radiant heat is prevented. It is possible to provide a spacer with a small heat loss that is prevented.
また、前記目的を達成するための、請求項10に記載の断熱支持スペーサの構成は、活性炭粒子の積層接着体で構成したことを特徴とする。 Moreover, the structure of the heat insulation support spacer of Claim 10 for achieving the said objective was comprised with the laminated adhesive body of the activated carbon particle, It is characterized by the above-mentioned.
本スペーサの構造によれば、積層接着体の低温部でスペーサを配置した真空空間の残留ガスを活性炭で吸着できるので、さらに真空圧力が低下し真空断熱性能が向上し、さらに熱ロスの小さいスペーサが提供可能となる。 According to the structure of this spacer, the residual gas in the vacuum space where the spacer is arranged at the low temperature part of the laminated adhesive can be adsorbed by activated carbon, so that the vacuum pressure is further reduced, the vacuum heat insulation performance is improved, and the heat loss is further reduced. Can be provided.
本発明によれば、熱ロスを小さくして断熱性能に優れた真空断熱低温機器のトランスファーチューブ内に配置するに好適な断熱支持スペーサを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the heat insulation support spacer suitable for arrange | positioning in the transfer tube of the vacuum heat insulation low temperature apparatus which made heat loss small and excellent in heat insulation performance can be provided.
以下、本発明の複数の実施例について図を用いて説明する。各実施例の図における同一符号は同一物または相当物を示す。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.
[実施例1] [Example 1]
本発明の第1実施例の真空断熱低温機器である低温流体用のトランスファーチューブを用いた低温冷却装置について、図1、図2、図3を参照しながら、さらに具体的に説明する。図1は本発明の第1実施例のトランスファーチューブを用いた低温冷却装置を示す構成図、図2は真空断熱低温機器における断熱支持スペーサ配置部のトランスファーチューブの断面図、図3は図2中のX-X矢視の断熱支持スペーサ配置部のトランスファーチューブの長手方向断面図である。また、図中矢印は、冷媒の流動方向を示す。 The low-temperature cooling device using the transfer tube for low-temperature fluid, which is the vacuum heat insulating low-temperature equipment of the first embodiment of the present invention, will be described more specifically with reference to FIG. 1, FIG. 2, and FIG. FIG. 1 is a block diagram showing a low-temperature cooling apparatus using a transfer tube according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a transfer tube in a heat insulating support spacer arrangement portion in a vacuum heat insulating low temperature apparatus, and FIG. It is longitudinal direction sectional drawing of the transfer tube of the heat insulation support spacer arrangement | positioning part of XX arrow. Moreover, the arrow in a figure shows the flow direction of a refrigerant | coolant.
本実施例の真空断熱低温機器であるトランスファーチューブおよび冷却装置は、超電導磁石の一種である超電導バルク磁石1の冷却装置として用いられるものである。往復路用のトランスファーチューブは、従来技術の問題点の解決を図りつつ、装置の性能向上を図ったものであり、第1真空断熱容器である細身の断熱真空容器2内に磁場発生手段となる高温超伝導バルク体3を内蔵し、これを低温に冷却する冷媒を移送するため、前記直径が小さくて、曲げ半径が小さく曲げ易い真空ベロー管で構成した真空配管4v、5v内に、金属ベロー管で構成した被保持体である低温冷媒の往復路管4f,5fをそれぞれ内蔵した可撓性のあるトランスファーチューブ6g、6hを有するもので、細長い空間へ超電導磁石を挿入し、脱離する等の移動操作性を有している。 The transfer tube and the cooling device, which are vacuum adiabatic low-temperature devices of the present embodiment, are used as a cooling device for the superconducting bulk magnet 1 which is a kind of superconducting magnet. The transfer tube for the reciprocating path is intended to improve the performance of the apparatus while solving the problems of the prior art, and becomes a magnetic field generating means in the thin heat insulating vacuum container 2 which is the first vacuum heat insulating container. A metal bellows is contained in vacuum pipes 4v and 5v, each of which is composed of a vacuum bellows pipe having a small diameter and a small bend radius in order to transfer a refrigerant that cools the superconducting bulk material 3 to a low temperature. It has flexible transfer tubes 6g and 6h each incorporating a reciprocating pipe 4f and 5f of a low-temperature refrigerant, which is a holding body composed of tubes, and a superconducting magnet is inserted into and removed from a slender space. It has a moving operability.
さらに、本実施例のトランスファーチューブおよび冷却装置は、移送する冷媒の温度を40K以下の低温にし、被冷却体として例えばイットリウムーバリウムー銅―酸素系の高温超電導バルク体3の冷却温度を77K以下(換言すれば、被冷却体の超伝導温度以下)にして、着磁用外部磁石7の磁場により、磁束密度の捕捉性能を向上させるようにしている。 Further, in the transfer tube and the cooling device of the present embodiment, the temperature of the refrigerant to be transferred is lowered to 40K or lower, and the cooling temperature of the high temperature superconducting bulk body 3 of, for example, yttrium-barium-copper-oxygen system is 77K or lower. In other words, the magnetic flux density capturing performance is improved by the magnetic field of the magnetizing external magnet 7 at a temperature lower than the superconducting temperature of the object to be cooled.
超電導バルク体3とその冷却ステージ8を細身の真空容器2内へ設置でき、冷媒を移送するトランスファーチューブを曲げ易い可撓性を有するものにすることで超電導バルク磁石1を細長い空洞内に設置できる。真空容器2内は、真空排気弁30を通じ外部の真空ポンプ100を使用して真空排気される。 The superconducting bulk body 3 and its cooling stage 8 can be installed in a thin vacuum vessel 2, and the superconducting bulk magnet 1 can be installed in an elongated cavity by making the transfer tube for transferring the refrigerant flexible enough to bend. . The inside of the vacuum vessel 2 is evacuated using an external vacuum pump 100 through a vacuum exhaust valve 30.
高温超電導バルク体3を備えた超電導バルク磁石1において、超電導バルク体3は断熱のために大気と真空隔離した細身の真空容器2に配置され、熱伝導率が小さいステンレス製のスリーブ9の先端に気密性を有し冶金的に一体化した、熱伝導率が大きい銅製の冷却ステージ8上に、例えばアルミニウム合金製保護リング10とともに熱的、機械的に一体化されている。 In a superconducting bulk magnet 1 having a high-temperature superconducting bulk body 3, the superconducting bulk body 3 is disposed in a thin vacuum vessel 2 that is vacuum-isolated from the atmosphere for heat insulation, and is attached to the tip of a sleeve 9 made of stainless steel having a low thermal conductivity. For example, an aluminum alloy protective ring 10 is thermally and mechanically integrated on an airtight and metallurgically integrated copper cooling stage 8 having a large thermal conductivity.
第2の真空容器11を有する冷却装置99は、螺管式熱交換器12を有する冷凍機の冷却ステージ13を有するヘリウム低温冷凍機14を備えている。冷却装置99は、さらに、冷媒の循環手段である圧縮機15、向流式熱交換器16を備える。向流式熱交換器16では、移送往復路直管4s,5s内を流動する冷媒、例えばヘリウムガスの循環冷媒間で熱交換する。 The cooling device 99 having the second vacuum vessel 11 includes a helium low-temperature refrigerator 14 having a refrigerator cooling stage 13 having a screw-type heat exchanger 12. The cooling device 99 further includes a compressor 15 and a countercurrent heat exchanger 16 which are refrigerant circulation means. In the counterflow heat exchanger 16, heat is exchanged between refrigerant flowing in the transfer reciprocating straight pipes 4s and 5s, for example, helium gas circulating refrigerant.
圧縮機15で加圧された、圧力約1MPaのヘリウムガスの高圧循環冷媒は、常温300Kで冷却装置99に流入し、向流式熱交換器16の往路で向流式熱交換器16の復路内の低温の循環冷媒と熱交換して温度約50Kとなり、次に冷凍機の寒冷発生部である冷却ステージ13で冷却された螺管式熱交換器12で熱交換し、温度約35Kとなる。往路直管4sから金属ベロー管の往路管4fに流入した低温高圧循環冷媒は、トランスファーチューブ6gの出口から超電導バルク磁石1に流入し、スリーブ9を有するバイオネット継手を構成する循環冷媒供給直管17に流入し、先端出口18からスリーブ9先端の冷却ステージ8底面に吹きつけられ、冷却ステージ8を温度約40Kに冷却し、超電導バルク体を約40Kに冷却する。 The high-pressure circulating refrigerant of helium gas having a pressure of about 1 MPa, which is pressurized by the compressor 15, flows into the cooling device 99 at a room temperature of 300 K, and the return path of the countercurrent heat exchanger 16 in the forward path of the countercurrent heat exchanger 16. Heat is exchanged with the low-temperature circulating refrigerant in the inside to reach a temperature of about 50K, and then heat exchange is performed with the screw-type heat exchanger 12 cooled by the cooling stage 13 which is a cold generation part of the refrigerator, resulting in a temperature of about 35K. . The low-temperature and high-pressure circulating refrigerant that has flowed from the forward straight pipe 4 s into the forward pipe 4 f of the metal bellows pipe flows into the superconducting bulk magnet 1 from the outlet of the transfer tube 6 g and constitutes a bionet joint having a sleeve 9. 17 flows into the bottom surface of the cooling stage 8 at the tip of the sleeve 9 from the tip outlet 18, cools the cooling stage 8 to a temperature of about 40K, and cools the superconducting bulk body to about 40K.
ここで、循環冷媒による寒冷輸送性能は、循環冷媒の比熱を大きくすることにより、少ない流量の循環冷媒で大きな寒冷量を輸送できるので有利であり、循環冷媒がヘリウムガスである場合は、圧力を高めて冷媒の比熱を高めることが有効である。 Here, the cold transport performance by the circulating refrigerant is advantageous because a large amount of cold can be transported with a small amount of circulating refrigerant by increasing the specific heat of the circulating refrigerant. If the circulating refrigerant is helium gas, the pressure is reduced. It is effective to increase the specific heat of the refrigerant.
冷却後の加温された高圧循環冷媒は、循環冷媒供給直管17の外周部に真空空間19aを確保する底付き円筒状隔壁20の先端部20aの外周部に取り付けたプラスチック製の筒状の支持体21とスリーブ9の内壁との隙間22を流動しながらスリーブ9を冷却してスリーブ9の常温フランジ23部から低温部に熱伝導で侵入する熱侵入や、常温の真空容器2の内壁からスリーブ9に輻射熱で侵入する熱侵入で加温されるスリーブ9を冷却しながら流動し、通気孔24から循環冷媒回収管25に流入し、バイオネット継手の出口でトランスファーチューブ6hの金属ベロー管の復路管5fに流入し、冷却装置99に回収される。 The heated high-pressure circulating refrigerant after cooling is in the form of a plastic cylinder attached to the outer peripheral portion of the tip portion 20a of the bottomed cylindrical partition wall 20 that secures the vacuum space 19a on the outer peripheral portion of the circulating refrigerant supply straight pipe 17. While the sleeve 9 is cooled while flowing through the gap 22 between the support 21 and the inner wall of the sleeve 9, heat intrusion enters the low temperature portion from the normal temperature flange 23 portion of the sleeve 9 by heat conduction, or from the inner wall of the normal temperature vacuum vessel 2. The sleeve 9 heated by radiant heat entering the sleeve 9 flows while cooling, flows into the circulating refrigerant recovery pipe 25 through the vent hole 24, and the metal bellows pipe of the transfer tube 6h at the outlet of the bayonet joint. It flows into the return pipe 5f and is recovered by the cooling device 99.
循環冷媒回収管25の外周部は真空層19bを隔壁26で構成し、隔壁26の長手方向長さを長くとることにより、バイオネットの常温フランジ27から低温の循環冷媒回収管に熱伝導により侵入する侵入熱を低減している。 The outer periphery of the circulating refrigerant recovery pipe 25 is composed of a vacuum layer 19b with a partition wall 26, and by extending the length of the partition wall 26 in the longitudinal direction, it penetrates from the ordinary temperature flange 27 of the bayonet into the low-temperature circulating refrigerant recovery pipe by heat conduction. Reduces intrusion heat.
次に循環冷媒は、冷却装置99内の向流式熱交換器16の復路に流入し、向流式熱交換器16内の往路の循環冷媒を冷却して向流式熱交換器16を出て常温となり、流量調整弁29を介して圧縮機15に流入し、再度加圧されて常温の高圧循環冷媒となり、冷却装置99内を循環する。 Next, the circulating refrigerant flows into the return path of the countercurrent heat exchanger 16 in the cooling device 99, cools the circulating refrigerant in the forward path in the countercurrent heat exchanger 16, and exits the countercurrent heat exchanger 16. The refrigerant reaches normal temperature and flows into the compressor 15 through the flow rate adjusting valve 29, and is pressurized again to become high-pressure circulating refrigerant at normal temperature and circulates in the cooling device 99.
図2のトランスファーチューブ6g(トランスファーチューブ6hも同様な構造)の横断面図と、図2中のX-X矢視の断面図である図3のトランスファーチューブ6gの長手方向断面図に示すように、往路管4f(復路管5fも同様)は例えばステンレス製の金属ベロー管で構成され、それぞれの外周部は細いステンレス線を円筒状に編み込んだ金属製のブレード4b(ブレード5bも同様)で覆われており、ブレード4bの端部は、往路管4fの端部で冶金的に固定(図2、図3中に図示せず)されており、往路管4f内を流動する高圧の循環冷媒の圧力で往路管4fを構成する低温の金属ベロー管が、真空配管4v(トランスファーチューブ6hでは真空配管5v)内の真空空間19内で伸びて、常温の真空配管4vの内壁に強く接触し、大きな熱侵入が生じ循環冷媒の温度が上昇し、被冷却体が所定の温度に冷却できなくなることを、ブレード4bが防止する。 As shown in the cross-sectional view of the transfer tube 6g in FIG. 2 (the transfer tube 6h has the same structure) and the longitudinal cross-sectional view of the transfer tube 6g in FIG. 3, which is a cross-sectional view taken along the line XX in FIG. The pipe 4f (same for the return pipe 5f) is composed of, for example, a stainless steel metal bellows, and each outer peripheral portion is covered with a metal blade 4b knitted with a thin stainless steel wire in a cylindrical shape (the same applies to the blade 5b). The end of the blade 4b is metallurgically fixed at the end of the forward pipe 4f (not shown in FIGS. 2 and 3), and the pressure of the high-pressure circulating refrigerant flowing in the forward pipe 4f is The low-temperature metal bellows pipe constituting the forward pipe 4f extends in the vacuum space 19 in the vacuum pipe 4v (or the vacuum pipe 5v in the transfer tube 6h), and comes into strong contact with the inner wall of the room-temperature vacuum pipe 4v. Circulate The temperature of the coolant rises, that the object to be cooled can not be cooled to a predetermined temperature, the blade 4b is prevented.
図1の往路管4f、復路管5fとブレード4b、5b(図1中には図示せず)のそれぞれ間の空間の排気はブレード4b、5b網目の隙間から行われ、排気抵抗は大きいが、時間をかければ真空排気され、真空断熱の機能を生じる。 The space between each of the forward pipe 4f and the backward pipe 5f and the blades 4b and 5b (not shown in FIG. 1) in FIG. If time is taken, it will be evacuated and the function of vacuum insulation will be produced.
ブレード4b、5bの外周部は、輻射熱を防止するため複層数の積層断熱材4c、5c(図1中には図示せず)が巻き付けられている。 The outer peripheral portions of the blades 4b and 5b are wound with multiple layers of laminated heat insulating materials 4c and 5c (not shown in FIG. 1) to prevent radiant heat.
真空配管4v、5vの外周にも細いステンレス線を編み込んだブレード4vb、5vb(図1中には図示せず)が設けられ、その両端部はそれぞれの真空配管4v、5vの両端部と冶金的に一体化(図示せず)され、真空配管4v、5vの内部を真空排気した際に縮もうとするベロー管の収縮をブレード4vb、5vbで防止している。 Blades 4vb and 5vb (not shown in FIG. 1) braided with a thin stainless steel wire are also provided on the outer periphery of the vacuum pipes 4v and 5v, and both ends thereof are metallurgical with both ends of the respective vacuum pipes 4v and 5v. The blades 4vb and 5vb prevent the bellows from contracting when the inside of the vacuum pipes 4v and 5v is evacuated.
冷凍機14の低温部は真空容器11に気密的に固定され、冷凍機内を循環するヘリウムガスの作動流体は、圧縮機32から供給され、高圧ヘリウムガスは高圧配管33で冷凍機14に供給され、冷凍機内で断熱膨張して寒冷を発生し、膨張後の低圧ヘリウムガスは配管34で圧縮機に回収され、再度圧縮される。 The low temperature part of the refrigerator 14 is hermetically fixed to the vacuum vessel 11, the working fluid of helium gas circulating in the refrigerator is supplied from the compressor 32, and the high pressure helium gas is supplied to the refrigerator 14 through the high pressure pipe 33. Then, adiabatic expansion occurs in the refrigerator to generate cold, and the expanded low-pressure helium gas is collected by the compressor through the pipe 34 and compressed again.
真空容器2のフランジ35は、フランジ23、27とともにOリング(図示せず)を介して、ボルト(図示せず)等で締結され、それぞれの内部と大気を気密隔離している。フランジ27は、他の2つのフランジと別に着脱ができるボルトピッチ構成となっており、このフランジは高圧の循環冷媒と大気間を気密隔離している。 The flange 35 of the vacuum vessel 2 is fastened with bolts (not shown) or the like through O-rings (not shown) together with the flanges 23 and 27, so that the inside and the atmosphere are hermetically isolated. The flange 27 has a bolt pitch configuration that can be attached and detached separately from the other two flanges. The flange 27 hermetically isolates the high-pressure circulating refrigerant from the atmosphere.
また、トランスファーチューブ6g、6hは真空容器11と大気と気密的に連結されており真空空間19を共有している。 The transfer tubes 6g and 6h are airtightly connected to the vacuum vessel 11 and the atmosphere, and share the vacuum space 19.
高温超電導バルク体3の着磁手順を説明する。着磁用外部磁石7は例えばソレノイド超電導磁石で大気空間37内に数テスラの磁場を励磁し、室温の超電導バルク体を図1中の位置に挿入する。その後、冷却装置99内および冷却装置内と連通した循環冷媒の往復路用のトランスファーチューブ6g、6hの真空空間19を外部の真空ポンプ100により真空配管101を通じて十分に真空排気し、断熱機能を確保する。 The magnetization procedure of the high temperature superconducting bulk body 3 will be described. The magnetizing external magnet 7 is a solenoid superconducting magnet, for example, which excites a magnetic field of several Tesla in the atmospheric space 37 and inserts a room temperature superconducting bulk body at the position shown in FIG. Thereafter, the vacuum space 19 of the transfer tube 6g, 6h for the reciprocating path of the circulating refrigerant communicating with the inside of the cooling device 99 and the cooling device is sufficiently evacuated through the vacuum pipe 101 by the external vacuum pump 100 to ensure the heat insulating function. To do.
その後、冷却装置99で高圧ヘリウムガスの循環冷媒を冷凍機14で冷却された螺管式熱交換器12、向流式熱交換器16で冷却され、トランスファーチューブ6gを移送された低温冷媒で、冷却ステージ8が温度約40Kに冷却され、冷却ステージ8に熱的に一体化された高温超電導バルク体3は超電導臨界温度以下の温度約40Kに冷却され、冷却後の循環冷媒はトランスファーチューブ6hを通り冷却装置99に回収される。 Thereafter, the circulating refrigerant of high-pressure helium gas is cooled by the cooling device 99 by the screw heat exchanger 12 and the countercurrent heat exchanger 16 cooled by the refrigerator 14, and is transferred by the transfer tube 6g. The cooling stage 8 is cooled to a temperature of about 40 K, and the high-temperature superconducting bulk body 3 thermally integrated with the cooling stage 8 is cooled to a temperature of about 40 K below the superconducting critical temperature, and the circulating refrigerant after cooling passes through the transfer tube 6 h. It is collected in the cooling device 99.
その後、着磁用外部磁石7の磁場を消磁すると、高温超電導バルク体3内の磁場変化に伴ってバルク体内に誘導電流が生じ、その電流は冷却されている限り電気抵抗がゼロのバルク体内に流れ続き、ほぼ励磁された着磁用外部磁石7の数テスラとほぼ同じ磁場を捕捉し、強力な超電導バルク磁石1となる。その後、着磁用外部磁石7を取り除く。 Thereafter, when the magnetic field of the magnetizing external magnet 7 is demagnetized, an induced current is generated in the bulk body in accordance with the magnetic field change in the high-temperature superconducting bulk body 3, and the current is in the bulk body having zero electric resistance as long as it is cooled. It continues to flow and captures the magnetic field almost the same as several Tesla of the magnetized external magnet 7 which is almost excited, and the strong superconducting bulk magnet 1 is obtained. Thereafter, the magnetizing external magnet 7 is removed.
ここで、図2、図3において、トランスファーチューブ6gの円筒状のスペーサは、材質が例えばポリイミド製のプラスチックの海綿状体38で構成され、発泡体内に残留ガスを有する気泡部は存在せず全発泡体内で通気性が確保されている。海綿状体38の内部空洞内に冷却冷媒の被保持体である往路管4fおよびそのブレード4bを貫通させ、重力方向が紙面下方向である場合、その重量を内周面との接点部A点で支持している。海綿状体38の外周部と真空配管4v内周面の接点部Bで冷却冷媒の往路管4f、ブレード4bおよび海綿状体38の重量を支持している。海綿状体38に負荷される重量は、海綿状体38の配置ピッチで定まる。 2 and 3, the cylindrical spacer of the transfer tube 6g is composed of, for example, a plastic spongy body 38 made of polyimide, and there is no bubble portion having residual gas in the foam. Breathability is ensured in the foam. When the forward pipe 4f and the blade 4b, which are the cooling refrigerant support, are passed through the internal cavity of the sponge-like body 38 and the gravity direction is the lower side of the page, the weight is the point of contact A with the inner peripheral surface. I support it. The outer peripheral part of the spongy body 38 and the contact part B of the inner peripheral surface of the vacuum pipe 4v support the weight of the cooling refrigerant forward pipe 4f, the blade 4b and the spongy body 38. The weight applied to the spongy body 38 is determined by the arrangement pitch of the spongy body 38.
海綿状体38を介して常温の真空配管4vから低温の往路管4fおよびそのブレード4bへの伝導伝熱による熱進入路は主に接点部A点から接点部Bへの直線距離の経路である。 The heat entrance path by conduction heat transfer from the normal temperature vacuum pipe 4v to the low temperature forward pipe 4f and its blade 4b through the sponge 38 is mainly a linear distance path from the contact point A to the contact point B. .
したがって、本実施例におけるトランスファーチューブで使用される断熱支持スペーサによれば、海綿状体38の外周部の高温部から、内周部の低温部への伝導伝熱量は、海綿状体38を構成する発泡体状の殻構造における殻構成部材の内部の伝導伝熱量の合計であり、発泡体を構成するポリイミド製の殻の伝導伝熱方向に直角な実質肉厚は非常の薄く、中実円筒体の場合に比べ数十分の一程度に小さく、さらに伝導伝熱方向の伝熱距離も殻構成部材に沿ったくの字状の連続の伝導長さであり、中実円筒体の場合に比べ数倍以上長くなる。これにより、伝導伝熱量Qcは従来技術よりも数十分の一まで小さくしたスペーサが提供可能となる。したがって、本スペーサ構造を有することで熱ロスが小さい真空断熱低温機器であるトランスファーチューブを提供できる効果がある。 Therefore, according to the heat insulating support spacer used in the transfer tube in the present embodiment, the amount of conduction heat transfer from the high temperature portion of the outer peripheral portion of the spongy member 38 to the low temperature portion of the inner peripheral portion constitutes the spongy member 38. This is the total amount of heat conduction inside the shell component in the foam-like shell structure, and the real thickness perpendicular to the conduction heat transfer direction of the polyimide shell constituting the foam is very thin, solid cylinder Compared to the case of a solid cylindrical body, the heat transfer distance in the direction of conduction heat transfer is a continuous conduction length in the shape of a dogleg along the shell component. It is several times longer. As a result, it is possible to provide a spacer whose conduction heat transfer amount Qc is reduced to several tenths that of the prior art. Therefore, by having this spacer structure, there is an effect that a transfer tube which is a vacuum heat insulating low temperature apparatus with a small heat loss can be provided.
[実施例2] [Example 2]
次に、本発明の第2実施例について図4を用いて説明する。図4は本発明のスペーサ配置部のトランスファーチューブ6gの断面図を示す。 Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a cross-sectional view of the transfer tube 6g of the spacer arrangement portion of the present invention.
この第2実施例のスペーサでは、プラスチック製の海綿状体39の内周部と外周部に、海綿状体39の密度よりも大きい密度で、かつ熱伝導率が小さな例えばステンレス製や、エポキシ樹脂等のプラスチック製の保護リング40、41を設け、保護リング40と海綿状体39の接触曲面および保護リング40と海綿状体39の接触曲面を接着剤等で一体化した点が第1実施例と相違するものであり、その他の点については第1実施例と基本的には同一である。 In the spacer of the second embodiment, the plastic sponge-like body 39 has an inner peripheral portion and an outer peripheral portion that are larger in density than the sponge-like body 39 and have a low thermal conductivity, such as stainless steel or epoxy resin. The first embodiment is that a protective ring 40, 41 made of plastic or the like is provided, and the contact curved surface of the protective ring 40 and the spongy body 39 and the contact curved surface of the protective ring 40 and the spongy body 39 are integrated with an adhesive or the like. The other points are basically the same as the first embodiment.
この第2実施例では、保護リング40の内周部で、冷却冷媒の往路管4fおよびそのブレード4b、海綿状体39と保護リング40,41と冷却冷媒の往路管4f、ブレード4bの重量を支持している。また、さらに往路管4f、ブレード4bが冷却されることによる熱収縮や、往路管4f内で移送される冷却冷媒の圧力による往路管4fの伸び等が原因で生じる往路管4fの変形をスペーサによって拘束する際に作用する荷重が加算される場合が生じる。 In this second embodiment, the weight of the cooling refrigerant forward pipe 4f and its blade 4b, the spongy body 39 and the protective rings 40 and 41, the cooling refrigerant forward pipe 4f and the blade 4b are measured at the inner periphery of the protective ring 40. I support it. Furthermore, the deformation of the forward pipe 4f caused by the thermal contraction due to the cooling of the forward pipe 4f and the blade 4b and the extension of the forward pipe 4f due to the pressure of the cooling refrigerant transferred in the forward pipe 4f is caused by the spacer. There is a case where a load acting when restraining is added.
スペーサで支持する荷重は、まず保護リング40で受け、その荷重を保護リング40全周に一体化した海綿状体39全体で受け、次に海綿状体39と一体化した保護リング41で受け、最終的に真空配管4vで支持される。 The load supported by the spacer is first received by the protective ring 40, and the load is received by the entire spongy body 39 integrated with the entire circumference of the protective ring 40, and then received by the protective ring 41 integrated with the spongy body 39, Finally, it is supported by the vacuum pipe 4v.
本スペーサの構造によれば、保護リング40の内周部で支持する荷重を海綿状体39全体で支えることができるため、荷重による海綿状体39の変形をさらに小さくできるので往路管4f、ブレード4bが高温側の真空配管4v側に移動して接触することを防止できる。 According to the structure of this spacer, the load supported by the inner peripheral portion of the protective ring 40 can be supported by the entire spongy body 39, so that the deformation of the spongy body 39 due to the load can be further reduced. It can prevent that 4b moves to the high temperature side vacuum piping 4v side, and contacts.
したがって、本実施例におけるトランスファーチューブで使用される断熱支持スペーサによれば、保護リング40の内周部に作用する荷重が増加した場合においても、海綿状体39の変形を低減できるスペーサが提供可能となる。したがって、本スペーサ構造を有することで熱ロスが小さいトランスファーチューブを提供できる効果がある。 Therefore, according to the heat insulating support spacer used in the transfer tube in this embodiment, it is possible to provide a spacer that can reduce the deformation of the spongy body 39 even when the load acting on the inner peripheral portion of the protective ring 40 increases. It becomes. Therefore, the present spacer structure has an effect of providing a transfer tube with a small heat loss.
[実施例3] [Example 3]
次に、本発明の第3実施例について図5を用いて説明する。図5は本発明のスペーサ配置部のランスファーチューブ6gの長手方向断面図を示す。 Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a longitudinal sectional view of the lance tube 6g of the spacer arrangement portion of the present invention.
この第3実施例のスペーサでは、プラスチック製の海綿状体39の内周部の熱伝導率が小さな例えばステンレス製やエポキシ樹脂等のプラスチック製の保護リング42の内周部に雌ねじ43を設け、それに嵌合する雄ねじ44を設けた例えばステンレス製の連結リング45を具備し、前記保護リング42と海綿状体39の接触曲面は接着剤等で一体化する。連結リング45の両端は冷却冷媒の往路管4fの端部で気密、冶金的に一体化された接続リング46と気密、冶金的に一体化されている。また、冷却冷媒のブレード4bの端部も連結リング45と気密、冶金的に一体化されている。これらの点が第2実施例と相違するものであり、その他の点については第2実施例と基本的には同一である。 In the spacer of the third embodiment, a female screw 43 is provided on the inner peripheral portion of a plastic protective ring 42 made of, for example, stainless steel or epoxy resin, which has a low thermal conductivity in the inner peripheral portion of the plastic spongy body 39. For example, a connecting ring 45 made of stainless steel provided with a male screw 44 fitted thereto is provided, and the contact curved surface of the protective ring 42 and the spongy body 39 are integrated with an adhesive or the like. Both ends of the connecting ring 45 are airtight and metallurgically integrated with a connection ring 46 that is airtight and metallurgically integrated at the end of the cooling refrigerant forward passage 4f. Further, the end of the cooling refrigerant blade 4b is also airtight and metallurgically integrated with the connecting ring 45. These points are different from the second embodiment, and the other points are basically the same as those of the second embodiment.
この第3実施例では、保護リング42の内周部と連結リング45は、真空空間19内において雌ねじ43と雄ねじ44との接触部で断熱的に固定支持されるが、雌ねじ43と雄ねじ44どの接触箇所はねじ面での線的接触で接触面積は狭く、接触面での熱移動量はさらに小さくなり熱ロスを小さくしたスペーサが提供可能となる。したがって、本スペーサ構造を有することで熱ロスが小さいトランスファーチューブを提供できる効果がある。また、ねじ固定によりスペーサと往路管4fの相対位置を安定的に確保でき、往路管4f、ブレード4bが高温側の真空配管4v側に移動して接触することを防止できる効果がある。 In this third embodiment, the inner peripheral portion of the protective ring 42 and the connection ring 45 are fixed and supported in a heat insulating manner in the contact portion between the female screw 43 and the male screw 44 in the vacuum space 19. The contact location is a linear contact on the screw surface, the contact area is narrow, the amount of heat transfer on the contact surface is further reduced, and a spacer with reduced heat loss can be provided. Therefore, the present spacer structure has an effect of providing a transfer tube with a small heat loss. Further, the relative positions of the spacer and the forward tube 4f can be stably secured by screw fixing, and it is possible to prevent the forward tube 4f and the blade 4b from moving and contacting the high temperature side vacuum pipe 4v.
[実施例4] [Example 4]
次に、本発明の第4実施例について図6を用いて説明する。図6は本発明のスペーサ配置部のトランスファーチューブ6gの断面図を示す。 Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 shows a cross-sectional view of the transfer tube 6g of the spacer arrangement portion of the present invention.
この第4実施例のスペーサでは、プラスチック製の海綿状体39の内部の円周方向に、輻射率が小さな例えばアルミニュウム製の輝面円筒体や輻射率が小さい例えばアルミニュウムや金を蒸着した例えばポリエステルフィルムやポリイミドフィルムを表裏面に接着したステンレス鋼製やエポキシ樹脂等のプラスチック製の輝面円筒体47を挿入配置した点が第2実施例と相違するものであり、その他の点については第2実施例と基本的には同一である。輝面円筒体47と海綿状体39は少なくとも挿入側面端部において、接着剤等で一体化されている。 In the spacer of the fourth embodiment, a bright surface cylindrical body made of, for example, aluminum having a low emissivity or a low emissivity of, for example, aluminum or gold is vapor-deposited in the circumferential direction inside the plastic spongy body 39, for example, polyester. This is different from the second embodiment in that a bright surface cylindrical body 47 made of plastic such as stainless steel or epoxy resin with a film or a polyimide film bonded to the front and back surfaces is inserted and arranged. This is basically the same as the embodiment. The bright surface cylindrical body 47 and the spongy body 39 are integrated with an adhesive or the like at least at the end of the insertion side surface.
この第4実施例では、海綿状体39内の空洞空間部内を侵入する輻射熱を、挿入した輝面円筒体47で反射させ、より低温側に侵入することを防止できるため、熱侵入量を低減し、熱ロスを小さくしたスペーサが提供可能となる。したがって、本スペーサ構造を有することで熱ロスが小さいトランスファーチューブを提供できる効果がある。また、本実施例では輝面円筒体47を単数挿入する場合について説明したが、同心状に多重複数挿入すればさらに熱ロスを小さくしたスペーサが提供可能となる。 In the fourth embodiment, the amount of heat penetration can be reduced because the radiant heat entering the hollow space in the spongy body 39 can be reflected by the inserted bright cylindrical body 47 and prevented from entering the lower temperature side. Thus, a spacer with reduced heat loss can be provided. Therefore, the present spacer structure has an effect of providing a transfer tube with a small heat loss. Further, in the present embodiment, the case where a single bright surface cylindrical body 47 is inserted has been described. However, if a plurality of concentric multiple insertions are inserted, a spacer with further reduced heat loss can be provided.
[実施例5] [Example 5]
次に、本発明の第5実施例について図7を用いて説明する。図7は本発明のスペーサ配置部のトランスファーチューブ6gの断面図を示す。 Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 7 shows a cross-sectional view of the transfer tube 6g of the spacer arrangement portion of the present invention.
この第5実施例のスペーサでは、プラスチック製の海綿状体39の外周部に具備した保護リング48を多角形である五角形の円筒体にした点が第2の実施例と相違するものであり、その他の点については第2実施例と基本的には同一である。 The spacer of the fifth embodiment is different from the second embodiment in that the protective ring 48 provided on the outer periphery of the plastic spongy body 39 is a polygonal pentagonal cylinder. The other points are basically the same as in the second embodiment.
本実施例によるスペーサの構造によれば、保護リング48と真空配管4v内周面の接点部Cから接点部A点への熱進入路となる海綿状体39内の伝導伝熱距離が、実施例2の場合に比べさらに長くなるので、前記伝熱経路での熱移動量はさらに小さくなり、熱ロスを小さくしたスペーサが提供可能となる。したがって、本スペーサ構造を有することで熱ロスが小さいトランスファーチューブを提供できる効果がある According to the structure of the spacer according to the present embodiment, the conduction heat transfer distance in the spongy body 39 serving as a heat entrance path from the contact portion C to the contact portion A point on the inner peripheral surface of the protective ring 48 and the vacuum pipe 4v is implemented. Since the length is longer than that in the case of Example 2, the amount of heat transfer in the heat transfer path is further reduced, and a spacer with reduced heat loss can be provided. Therefore, the present spacer structure has an effect of providing a transfer tube with a small heat loss.
[実施例6] [Example 6]
次に、本発明の第6実施例について図8を用いて説明する。図は本発明のスペーサ配置部のトランスファーチューブ6gの長手方向断面図を示す。 Next, a sixth embodiment of the present invention will be described with reference to FIG. The figure shows a longitudinal sectional view of the transfer tube 6g of the spacer arrangement portion of the present invention.
この第6実施例のスペーサでは、プラスチック製の海綿状体38の側面側に、輻射率が小さい例えばアルミニュウムや金を片面もしくは両面に蒸着した例えばポリエステルフィルムやポリイミド製の円盤状のプラスチックフィルムの輝面反射膜49を配置し、海綿状体38との接触面の少なくとも一部を、接着剤等で固着して支持した点が第1の実施例と相違するものであり、その他の点については第1実施例と基本的には同一である。 In the spacer of the sixth embodiment, the brightness of a plastic film 38 such as a polyester film or polyimide disk-shaped plastic film in which aluminum or gold having a low emissivity is vapor-deposited on one side or both sides is formed on the side surface of the plastic sponge-like body 38. The point that the surface reflecting film 49 is disposed and at least a part of the contact surface with the spongy body 38 is fixed and supported with an adhesive or the like is different from the first embodiment. This is basically the same as the first embodiment.
本実施例によるスペーサの構造によれば、海綿状体38側面から侵入する輻射熱を、配置した輝面反射膜49で反射して熱侵入量を低減し、熱ロスを小さくしたスペーサが提供可能となる。したがって、本スペーサ構造を有することで熱ロスが小さいトランスファーチューブを提供できる効果がある。 According to the structure of the spacer according to the present embodiment, it is possible to provide a spacer that reduces the amount of heat penetration by reflecting the radiant heat entering from the side surface of the spongy body 38 with the arranged bright surface reflecting film 49 and reducing the heat loss. Become. Therefore, the present spacer structure has an effect of providing a transfer tube with a small heat loss.
[実施例7] [Example 7]
次に、本発明の第7実施例について図9および図10を用いて説明する。図9は本発明のスペーサ配置部のトランスファーチューブ6gの長手方向断面図を、図10に図9中のY-Y矢視断面図を示す。ただし、真空ベロー管は図示せず。 Next, a seventh embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a longitudinal sectional view of the transfer tube 6g of the spacer arrangement portion of the present invention, and FIG. 10 is a sectional view taken along arrow YY in FIG. However, the vacuum bellows tube is not shown.
この第7実施例のスペーサでは、紙面上下方向に2分割して、往路管4fとブレード4bを挟み込むようにして配置できる構造とした点が、前記実施例のスペーサと相違するものであり、その他の点については第2実施例と基本的には同一である。 The spacer of the seventh embodiment is different from the spacer of the above embodiment in that the spacer can be divided into two in the vertical direction on the paper surface so as to sandwich the forward tube 4f and the blade 4b. This point is basically the same as in the second embodiment.
紙面上下に2分割されたプラスチック製の海綿状体50u,50dは、紙面上下に2分割された例えばステンレス鋼製、アルミニウム製やプラスチック製の内周保護リング51u,51dおよび紙面上下に2分割されたステンレス鋼製、アルミニウム製やプラスチック製外周保護リング52u,52dの間に挟まれ、スペーサを構成している。海綿状体50u,50dの側面側は、図9に示すように内周保護リング51u,51d両端部の鍔53u,53dおよび外周保護リング51u,51d両端部の鍔54u,54dで支持され、長手方向に移動することを防止している。 The plastic spongy bodies 50u and 50d divided into two on the top and bottom of the paper are divided into two on the top and bottom of the inner peripheral protection rings 51u and 51d made of, for example, stainless steel, aluminum or plastic, which are divided into two on the top and bottom of the paper. It is sandwiched between outer peripheral protective rings 52u and 52d made of stainless steel, aluminum or plastic to constitute a spacer. As shown in FIG. 9, the side surfaces of the spongy bodies 50u, 50d are supported by the flanges 53u, 53d at both ends of the inner periphery protection rings 51u, 51d and the flanges 54u, 54d at both ends of the outer periphery protection rings 51u, 51d. Prevents moving in the direction.
スペーサの組立方法は、まず、輻射熱侵入防止のために輻射率が小さい例えばアルミニュウムや金を片面もしくは両面に蒸着した例えばポリエステルフィルムやポリイミド製のプラスチックフィルムの輝面フィルム57を、一枚もしくは数枚巻きつけた往路管4fのブレード4bを、挟むように内周保護リング51u,51dをセットし、その両端部をステンレス製の細線55で縛り付けて内周保護リング51u,51dを固定する。この際、合わせ目を接着剤や部分溶接で一体化しても良い。その後、海綿状体50u,50dを配置し、その外周部に外周保護リング51u,51dをセットし、その両端部をステンレス製の細線56で縛り付けて内周保護リング51u,51dを固定する。この際、合わせ目を接着剤や部分溶接で一体化しても良い。また、細線の代わりに、ホースバンドのようにねじ締め付け構造付きのバンドで固定しても良い。また、細線の代わりに、合わせ目においてボルト通し孔(図示せず)のついたタブを上下の保護リングに一体化し、保護リングをボルトで締結しても良い。 As for the method of assembling the spacer, first, one or several bright surface films 57 made of, for example, a polyester film or a polyimide plastic film obtained by evaporating aluminum or gold on one side or both sides with a low emissivity to prevent radiant heat intrusion. Inner peripheral protection rings 51u, 51d are set so as to sandwich the wound blade 4b of the wound forward pipe 4f, and both ends thereof are tied with a stainless steel thin wire 55 to fix the inner peripheral protection rings 51u, 51d. At this time, the joint may be integrated by an adhesive or partial welding. Thereafter, the spongy bodies 50u, 50d are arranged, the outer peripheral protection rings 51u, 51d are set on the outer peripheral portions thereof, and both end portions thereof are bound by the thin stainless steel wires 56 to fix the inner peripheral protective rings 51u, 51d. At this time, the joint may be integrated by an adhesive or partial welding. Moreover, you may fix with a band with a screw fastening structure like a hose band instead of a thin wire | line. Further, instead of thin wires, tabs with bolt through holes (not shown) at the joint may be integrated with the upper and lower protective rings, and the protective rings may be fastened with bolts.
本実施例によるスペーサの構造によれば、スペーサを分割して装着できるので、円筒体状のスペーサを挿入する場合に比べ輝面フィルム57の蒸着膜を傷つけることなく装着できるので、往路管4fのブレード4bへの輻射熱の侵入を防止でき、熱ロスを小さくしたスペーサが提供可能となる。したがって、本スペーサ構造を有することで熱ロスが小さいトランスファーチューブを提供できる効果がある。 According to the structure of the spacer according to the present embodiment, since the spacer can be mounted in a divided manner, it can be mounted without damaging the vapor deposition film of the bright surface film 57 as compared with the case where a cylindrical spacer is inserted. It is possible to provide a spacer that can prevent intrusion of radiant heat into the blade 4b and reduce heat loss. Therefore, the present spacer structure has an effect of providing a transfer tube with a small heat loss.
[実施例8] [Example 8]
次に、本発明の第8実施例について図11を用いて説明する。図11は本発明のスペーサ配置部のトランスファーチューブ58の断面図を示す。 Next, an eighth embodiment of the present invention will be described with reference to FIG. FIG. 11 shows a cross-sectional view of the transfer tube 58 of the spacer arrangement portion of the present invention.
この第8実施例のスペーサでは、トランスファーチューブ58内に往路管4fおよびそのブレード4bと復路管5fおよびそのブレード5bをプラスチック製の海綿状体60の内周孔61内で支持し、海綿状体60を金属ベロー管の真空配管59vに配置する点が前記実施例のスペーサと相違するものであり、その他の点については第2実施例と基本的には同一である。真空配管59vの外周部にはブレード59vbを具備している。 In the spacer of the eighth embodiment, the forward tube 4f, its blade 4b, the return tube 5f, and its blade 5b are supported in the transfer tube 58 in the inner peripheral hole 61 of the plastic spongy body 60, and the spongy body. The point 60 is arranged in the vacuum pipe 59v of the metal bellows pipe is different from the spacer of the above embodiment, and the other points are basically the same as those of the second embodiment. A blade 59vb is provided on the outer periphery of the vacuum pipe 59v.
本実施例によるスペーサの構造によれば、往復路管を一つのトランスファーチューブに配置できるので、往路、復路別々にトランスファーチューブを設ける場合よりも、スペーサの配置総数を約半分に減少できるため、トータルの熱ロスを小さくしたスペーサが提供可能となる。したがって、本スペーサ構造を有することで熱ロスが小さいトランスファーチューブを提供できる効果がある。本実施例では内周孔61は四角形の形状である場合について説明したが、往復路管を包含する三角形や円形とし、トランスファーチューブが曲げられた場合、両流路が内周孔内を拘束なく移動できるようにした場合においても、同様な効果が生じる。 According to the structure of the spacer according to the present embodiment, since the round trip tube can be arranged in one transfer tube, the total number of arranged spacers can be reduced to about half compared to the case where the transfer tube is provided separately for the forward path and the return path. A spacer with reduced heat loss can be provided. Therefore, the present spacer structure has an effect of providing a transfer tube with a small heat loss. In the present embodiment, the case where the inner peripheral hole 61 has a quadrangular shape has been described. However, when the transfer tube is bent with a triangular shape or a circular shape including a round-trip pipe, both flow paths are not restricted in the inner peripheral hole. The same effect is produced even when the movement is enabled.
以上の実施例では、本発明のスペーサをトランスファーチューブに適用した例で説明しており、真空断熱低温機器がトランスファーチューブである場合で被保持体が冷却冷媒移送配管である場合、さらに本スペーサの構造によれば、冷却冷媒移送配管内を流動する流体の振動や、冷媒を冷却するための冷凍機の機械振動が生じる場合、振動を海綿状体が有する弾性機能で吸収し、冷却冷媒移送配管外に巻きつけた積層断熱材がスペーサ内周部との摩擦で、蒸着膜等が破損し、輻射率が上昇して輻射熱侵入量が増加することを防止できるので、積層断熱材の輻射率を小さいままに保持し輻射熱による熱侵入を防止した熱ロスの小さい断熱支持スペーサの提供が可能となる。 In the above embodiment, the spacer of the present invention is described as an example applied to a transfer tube. When the vacuum heat insulating low-temperature device is a transfer tube and the object to be held is a cooling refrigerant transfer pipe, the spacer According to the structure, when vibration of the fluid flowing in the cooling refrigerant transfer pipe or mechanical vibration of the refrigerator for cooling the refrigerant occurs, the vibration is absorbed by the elastic function of the spongy body, and the cooling refrigerant transfer pipe It is possible to prevent the laminated heat insulating material wrapped around the spacer from rubbing against the inner periphery of the spacer, damage the deposited film, etc., increasing the radiation rate and increasing the amount of radiant heat penetration. It is possible to provide a heat insulating support spacer with a small heat loss that is kept small and prevents heat penetration due to radiant heat.
以上の実施例では、低温冷却装置の被冷却体が超電導磁石を構成する超電導バルク体である場合について説明したが、被冷却体が超電導磁石を構成する超電導コイル巻線体、超電導送電装置を構成し、断熱冷媒トランスファーチューブ中に長尺に渡って配置された超電導線、磁気計測装置のSQUID素子、コンピュータの電子素子、NMR受信・照射用のコイルの真空断熱低温機器であっても同様の作用、効果を生じる。 In the above embodiment, the case where the object to be cooled of the low-temperature cooling device is a superconducting bulk body constituting a superconducting magnet has been described. However, the body to be cooled constitutes a superconducting coil winding body and a superconducting power transmission device constituting the superconducting magnet. However, the same effect can be obtained even in a vacuum insulated low-temperature device such as a superconducting wire arranged in a long length in a heat insulating refrigerant transfer tube, a SQUID element of a magnetic measuring device, an electronic element of a computer, or a coil for NMR reception / irradiation. Produce an effect.
また、以上の実施例では、冷媒が高圧のヘリウムガスである場合について説明したが、移送する冷媒が低温状態の液体窒素等の液化ガスであっても、断熱支持スペーサを配置した真空断熱低温機器である低温流体用トランスファーチューブにおいて、同様の作用、効果を生じる。 In the above embodiments, the case where the refrigerant is high-pressure helium gas has been described. However, even if the refrigerant to be transferred is a liquefied gas such as liquid nitrogen in a low temperature state, a vacuum heat insulating low temperature apparatus in which a heat insulating support spacer is arranged. In the low-temperature fluid transfer tube, the same action and effect are produced.
また、以上の実施例では、トランスファーチューブに配置するスペーサについて説明したが、超電導体を内蔵する真空断熱低温機器内で例えば超電導磁石の高温超電導電流リード線やSQUID素子等を保持する断熱支持材に本発明の断熱支持スペーサを使用しても、熱ロスの小さいスペーサの断熱機能を有した真空断熱低温機器において同様の作用、効果を生じる。 In the above embodiment, the spacer disposed on the transfer tube has been described. However, for example, in a heat insulating support material for holding a high-temperature superconducting current lead wire of a superconducting magnet or a SQUID element in a vacuum heat insulating low-temperature device incorporating a superconductor. Even when the heat insulating support spacer of the present invention is used, the same action and effect are produced in a vacuum heat insulating low temperature apparatus having a heat insulating function of a spacer having a small heat loss.
また、以上の実施例では、プラスチック製の海綿状体として、ポリイミド製の発泡体状の殻構造における殻構成部材を使用した場合について説明したが、発泡体状の殻構造の代わりに、ポリイミド等のプラスチック製の3次元の繊維状の網構造や外観がサッカーボール積層体構造で構成した場合であっても、熱ロスの小さい断熱機能を有し、断熱支持スペーサにおいて同様の作用、効果を生じる。 In the above embodiment, the case where the shell constituent member in the foam-like shell structure made of polyimide is used as the plastic sponge-like body, but polyimide, etc., instead of the foam-like shell structure is described. Even if the plastic three-dimensional fibrous net structure and appearance are composed of a soccer ball laminate structure, it has a heat insulating function with a small heat loss and produces the same action and effect in the heat insulating support spacer. .
また、以上の実施例では、プラスチック製の海綿状体として、ポリイミド製の発泡体状の殻構造における殻構成部材を使用した場合について説明したが、代わりに活性炭粒子やゼオライト粒子等の微細通気空洞を有するガス吸着材の積層接着体で構成した場合、同様な作用、効果で熱ロスの小さいスペーサを提供でき、さらに前記積層接着体の低温部でスペーサを配置した真空空間の残留ガスを活性炭が吸着し、さらに真空圧力が低下し真空断熱性能が向上し、さらに熱ロスの小さい断熱支持スペーサを提供できる効果を生じる。 Further, in the above embodiment, the case where the shell constituent member in the foam-like shell structure made of polyimide is used as the plastic sponge-like body, but instead, fine ventilation cavities such as activated carbon particles and zeolite particles are used. In the case of a laminated adhesive body of gas adsorbents having the same, it is possible to provide a spacer having a small heat loss with the same action and effect, and the activated carbon is used as the residual gas in the vacuum space where the spacer is arranged at the low temperature portion of the laminated adhesive body. Adsorption, further lowering the vacuum pressure, improving the vacuum heat insulating performance, and further providing an effect of providing a heat insulating support spacer with a small heat loss.
以上、本発明になる真空断熱低温機器における断熱支持スペーサによれば、断熱材の一部を海綿状の海綿状体で構成することにより、断熱性に優れ、熱ロスを低減する真空断熱低温機器における断熱支持スペーサを提供できる効果がある。 As mentioned above, according to the heat insulation support spacer in the vacuum heat insulation low temperature apparatus which becomes this invention, it is excellent in heat insulation by comprising a part of heat insulating material with a spongy spongy body, and the vacuum heat insulation low temperature equipment which reduces heat loss There is an effect that a heat insulating support spacer can be provided.
1…超電導バルク磁石、2…断熱真空容器、3…高温超伝導バルク体、4b…ブレード、4f…往路管、4v…真空配管、5b、5f…復路管、5v…真空配管、6g…トランスファーチューブ、6b…ブレード、6h…トランスファーチューブ、7…着磁用外部磁石、8…冷却ステージ、9…スリーブ、11…真空容器、12…螺管式熱交換器、13…冷却ステージ、14…ヘリウム低温冷凍機、15…圧縮機、16…向流式熱交換器、19…真空空間、38…スペーサ、39…海綿状体、40…保護リング、41…保護リング、42…保護リング、45…連結リング、46…接続リング、47…輝面円筒体、48…保護リング、50u、50d…海綿状体、51u,51d…内周保護リング、52u,52d…外周保護リング、57…輝面フィルム、58…トランスファーチューブ雄フランジ、59v…真空配管、60…海綿状体、61…内周孔。 DESCRIPTION OF SYMBOLS 1 ... Superconducting bulk magnet, 2 ... Adiabatic vacuum container, 3 ... High temperature superconducting bulk body, 4b ... Blade, 4f ... Outward pipe, 4v ... Vacuum pipe, 5b, 5f ... Return pipe, 5v ... Vacuum pipe, 6g ... Transfer tube 6b ... Blade, 6h ... Transfer tube, 7 ... External magnet for magnetization, 8 ... Cooling stage, 9 ... Sleeve, 11 ... Vacuum vessel, 12 ... Screw heat exchanger, 13 ... Cooling stage, 14 ... Helium low temperature Refrigerator 15 ... Compressor 16 ... Countercurrent heat exchanger 19 ... Vacuum space 38 ... Spacer 39 ... Spongy body 40 ... Protective ring 41 ... Protective ring 42 ... Protective ring 45 ... Link Ring, 46 ... Connection ring, 47 ... Bright surface cylindrical body, 48 ... Protection ring, 50u, 50d ... Spongy body, 51u, 51d ... Inner periphery protection ring, 52u, 52d ... Outer periphery protection ring, 57 ... Bright surface film, 58 ... Tiger Scan fur tube male flange, 59V ... vacuum pipe, 60 ... spongy body, 61 ... inner peripheral hole.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012205149A JP2014059022A (en) | 2012-09-19 | 2012-09-19 | Heat insulation support spacer in vacuum heat insulation low temperature equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012205149A JP2014059022A (en) | 2012-09-19 | 2012-09-19 | Heat insulation support spacer in vacuum heat insulation low temperature equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014059022A true JP2014059022A (en) | 2014-04-03 |
Family
ID=50615667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012205149A Pending JP2014059022A (en) | 2012-09-19 | 2012-09-19 | Heat insulation support spacer in vacuum heat insulation low temperature equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014059022A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104121424A (en) * | 2014-07-15 | 2014-10-29 | 常州市武进武南管道设备有限公司 | Thermal insulation hoop and pipe support thereof |
CN108072171A (en) * | 2016-11-16 | 2018-05-25 | 北京北方华创微电子装备有限公司 | The heating unit and semiconductor processing equipment of gas piping |
RU193768U1 (en) * | 2019-08-02 | 2019-11-14 | федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) | Composite Vacuum Shell Heat Storage Tank |
CN111780916A (en) * | 2020-06-24 | 2020-10-16 | 安徽塑茂管道科技有限公司 | HDPE hollow metal corrugated pipe structure and manufacturing process thereof |
-
2012
- 2012-09-19 JP JP2012205149A patent/JP2014059022A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104121424A (en) * | 2014-07-15 | 2014-10-29 | 常州市武进武南管道设备有限公司 | Thermal insulation hoop and pipe support thereof |
CN108072171A (en) * | 2016-11-16 | 2018-05-25 | 北京北方华创微电子装备有限公司 | The heating unit and semiconductor processing equipment of gas piping |
RU193768U1 (en) * | 2019-08-02 | 2019-11-14 | федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) | Composite Vacuum Shell Heat Storage Tank |
CN111780916A (en) * | 2020-06-24 | 2020-10-16 | 安徽塑茂管道科技有限公司 | HDPE hollow metal corrugated pipe structure and manufacturing process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4468388B2 (en) | Magnetic field generator | |
US9212782B2 (en) | Cryostat radiation shield with joining conduit supplied with vented cryogen gas | |
GB2422654A (en) | Cooling a superconducting magnet | |
US20100242502A1 (en) | Apparatus and method of superconducting magnet cooling | |
CN106298152A (en) | Superconducting magnet cooling system | |
US6923009B2 (en) | Pre-cooler for reducing cryogen consumption | |
US7131276B2 (en) | Pulse tube refrigerator | |
JP2014059022A (en) | Heat insulation support spacer in vacuum heat insulation low temperature equipment | |
US20160163439A1 (en) | Structural support for conduction-cooled superconducting magnets | |
JP4763656B2 (en) | Cryogenic containment cooling system and operation method thereof | |
US11573279B2 (en) | Displacer in magnetic resonance imaging system | |
JP5907519B2 (en) | Superconducting power transmission system and cooling method | |
JP2014052133A (en) | Bayonet coupler for cryogenic fluid | |
US20160180996A1 (en) | Superconducting magnet system | |
US20060252650A1 (en) | Superconducting permanent magnet | |
JP2014081016A (en) | Heat insulation film spacer and vacuum heat insulation low temperature apparatus | |
JPH0429376B2 (en) | ||
JP4275640B2 (en) | Cryogenic cooling device | |
JP2014037932A (en) | Flexible heat insulation transfer pipe and flexible low temperature cooling device | |
JP3858269B2 (en) | Cooling tube and cryogenic cryostat using the same | |
JP2014202457A (en) | Cooling means and cooling system each provided with heat medium circulating function | |
JP2008116171A (en) | Gas heat transfer device and superconductive device using the same | |
JP2014211194A (en) | Flexible transfer tube having heat insulation spacer | |
JP7208914B2 (en) | Thermal bath heat exchanger for superconducting magnets | |
JP2009267183A (en) | Superconductive magnet |