[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014055884A - Solid electrolyte for oxygen sensor, and oxygen sensor - Google Patents

Solid electrolyte for oxygen sensor, and oxygen sensor Download PDF

Info

Publication number
JP2014055884A
JP2014055884A JP2012201473A JP2012201473A JP2014055884A JP 2014055884 A JP2014055884 A JP 2014055884A JP 2012201473 A JP2012201473 A JP 2012201473A JP 2012201473 A JP2012201473 A JP 2012201473A JP 2014055884 A JP2014055884 A JP 2014055884A
Authority
JP
Japan
Prior art keywords
solid electrolyte
oxygen sensor
oxygen
rare earth
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012201473A
Other languages
Japanese (ja)
Inventor
Chihiro Hiraiwa
千尋 平岩
Masatoshi Mashima
正利 真嶋
Tetsuya Uda
哲也 宇田
Donglin Han
東麟 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Kyoto University NUC
Original Assignee
Sumitomo Electric Industries Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Kyoto University NUC filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012201473A priority Critical patent/JP2014055884A/en
Publication of JP2014055884A publication Critical patent/JP2014055884A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte for oxygen sensors, having excellent characteristics of ion conductivity.SOLUTION: A solid electrolyte for oxygen sensors consists of a BaZrO-based perovskite type oxide in which at least one kind of rare earth element MA selected from Dy, Nd, Pr and Tb is doped, and a part of Zr is replaced by the rare earth element MA. Especially, it is preferable that the solid electrolyte has a composition represented by composition formula of BaZrMAO, where 0.05≤x≤0.2 and 0≤δ≤x/2. The solid electrolyte for oxygen sensors exhibits characteristics that ionic conductivity is significantly varied corresponding to an oxygen concentration since at least one kind of rare earth element MA selected from Dy, Nd, Pr and Tb is doped, and a part of Zr in BaZrOis replaced by the rare earth element MA. This is caused by the fact that a valence of the element MA in BaZrOis varied from trivalent exhibiting ionic conduction to tetravalent not exhibiting ionic conduction by oxygen concentration.

Description

本発明は、酸素センサ用固体電解質、及び酸素センサに関する。   The present invention relates to a solid electrolyte for an oxygen sensor and an oxygen sensor.

従来、例えば自動車エンジンなどの空燃比制御に酸素センサが利用されている。酸素センサは、一般に、酸素イオン伝導性を有する固体電解質と、この固体電解質を挟んで配置される検知電極と参照電極とを備える構成である。そして、検知電極と参照電極との間に電圧を印加すると、固体電解質内を酸素イオンが移動することにより、検知電極と参照電極との間に電流が流れる。この電流は、小孔や多孔質などを利用してセンサへ吸入する酸素ガス量を制限することで、周囲の酸素濃度に依存する。そのため、電流値をモニタリングすることで、雰囲気中の酸素濃度を検出することが可能である。(例えば、特許文献1及び2を参照)。   Conventionally, an oxygen sensor is used for air-fuel ratio control of an automobile engine, for example. An oxygen sensor generally includes a solid electrolyte having oxygen ion conductivity, and a detection electrode and a reference electrode that are arranged with the solid electrolyte interposed therebetween. When a voltage is applied between the detection electrode and the reference electrode, the oxygen ions move in the solid electrolyte, so that a current flows between the detection electrode and the reference electrode. This current depends on the surrounding oxygen concentration by limiting the amount of oxygen gas sucked into the sensor using a small hole or a porous material. Therefore, it is possible to detect the oxygen concentration in the atmosphere by monitoring the current value. (See, for example, Patent Documents 1 and 2).

酸素センサ用固体電解質は、一般にジルコニア(ZrO2)系の酸化物で構成されており、構成材料としては、Yをドープした安定化ZrO2(YSZ)が主に用いられている。 A solid electrolyte for an oxygen sensor is generally composed of a zirconia (ZrO 2 ) -based oxide. As a constituent material, stabilized ZrO 2 (YSZ) doped with Y is mainly used.

特開平11−160276号公報JP-A-11-160276 特開2009−210299号公報JP 2009-210299 A

酸素センサは、空燃比制御を高精度に行うために、応答性が高い(酸素濃度の変化を迅速に検出できる)こと、及び感度が高い(酸素濃度の微小な変化を検出できる)ことが要求される。加えて、消費電力の観点からできるだけ低温で作動することが望まれる。   Oxygen sensors require high responsiveness (can detect changes in oxygen concentration quickly) and high sensitivity (can detect minute changes in oxygen concentration) in order to perform air-fuel ratio control with high accuracy. Is done. In addition, it is desirable to operate at the lowest possible temperature from the viewpoint of power consumption.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、イオン伝導性に関する優れた特性を有する酸素センサ用固体電解質を提供することにある。また、本発明の別の目的は、この酸素センサ用固体電解質を用いた酸素センサを提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a solid electrolyte for an oxygen sensor having excellent characteristics relating to ion conductivity. Another object of the present invention is to provide an oxygen sensor using this solid electrolyte for an oxygen sensor.

本発明者らは、酸素センサ用固体電解質として、YSZよりもイオン伝導度の高いジルコン酸バリウム(BaZrO3)系のペロブスカイト型酸化物、特にYをドープしたBaZrO3(BZY)に着目し、そのイオン伝導性を検討した。その結果、特定の希土類元素をドープしたBaZrO3が酸素濃度によって大きくイオン伝導性が変化することを見出し、本発明を完成するに至った。 The present inventors have focused on barium zirconate (BaZrO 3 ) -based perovskite type oxides having a higher ionic conductivity than YSZ, particularly BaZrO 3 (BZY) doped with Y, as a solid electrolyte for oxygen sensors. Ionic conductivity was investigated. As a result, it was found that BaZrO 3 doped with a specific rare earth element greatly changes in ionic conductivity depending on the oxygen concentration, and the present invention has been completed.

(1)本発明の酸素センサ用固体電解質は、BaZrO3系のペロブスカイト型酸化物からなる。そして、Dy、Nd、Pr及びTbから選択される少なくとも1種の希土類元素MAがドープされ、BaZrO3のうちZrの一部が希土類元素MAで置換されている。 (1) The solid electrolyte for an oxygen sensor of the present invention is made of a BaZrO 3 -based perovskite oxide. Then, at least one rare earth element MA selected from Dy, Nd, Pr and Tb is doped, and a part of Zr in BaZrO 3 is substituted with the rare earth element MA.

本発明の酸素センサ用固体電解質によれば、Dy、Nd、Pr及びTbから選択される少なくとも1種の希土類元素MAがドープされ、BaZrO3のうちZrの一部が希土類元素MAで置換されていることで、酸素濃度に応じてイオン伝導度が大きく変化する特性が発現する。これは、酸素濃度によってBaZrO3中で上記元素MAの価数が、イオン伝導を発現する3価からイオン伝導を発現しない4価へ変化することに起因すると考えられる。 According to the solid electrolyte for an oxygen sensor of the present invention, at least one rare earth element MA selected from Dy, Nd, Pr and Tb is doped, and a part of Zr in BaZrO 3 is substituted with the rare earth element MA. As a result, the characteristic that the ionic conductivity changes greatly according to the oxygen concentration is exhibited. This is considered to be due to the fact that the valence of the element MA in BaZrO 3 changes from trivalent that exhibits ionic conduction to tetravalent that does not exhibit ionic conduction depending on the oxygen concentration.

(2)本発明の酸素センサ用固体電解質の一形態としては、組成式:BaZr1-xMAxO3-δで表される組成を有し、0.05≦x≦0.2、及び0≦δ≦x/2を満たすことが挙げられる。 (2) One embodiment of the solid electrolyte for an oxygen sensor of the present invention has a composition represented by the composition formula: BaZr 1-x MA x O 3-δ , 0.05 ≦ x ≦ 0.2, and 0 ≦ δ ≦. Satisfying x / 2.

この構成によれば、上記元素MAのドープ量xが0.05以上であることで、酸素濃度によるイオン伝導度の変化量を高めることができる。また、上記元素MAのドープ量xが0.2以下であることで、酸素欠陥による結晶構造の安定性の低下を抑制することができる。なお、上記式中の酸素欠陥量δは、一般に0以上で通常x/2以下の範囲である。   According to this configuration, when the doping amount x of the element MA is 0.05 or more, the amount of change in ionic conductivity due to the oxygen concentration can be increased. In addition, since the doping amount x of the element MA is 0.2 or less, it is possible to suppress a decrease in stability of the crystal structure due to oxygen defects. The oxygen defect amount δ in the above formula is generally in the range of 0 or more and usually x / 2 or less.

(3)本発明の酸素センサ用固体電解質の一形態としては、更に、Yがドープされ、BaZrO3のうちZrの一部がYで置換されており、組成式:BaZr1-x-yMAxYyO3-δで表される組成を有し、0.05≦x≦0.15、0.05≦y≦0.15、0.1≦x+y≦0.2、及び0≦δ≦(x+y)/2を満たすことが挙げられる。 (3) As one form of the solid electrolyte for an oxygen sensor of the present invention, Y is further doped, and Zr in BaZrO 3 is partially substituted with Y, and the composition formula: BaZr 1-xy MA x Y and having a composition represented by y O 3−δ and satisfying 0.05 ≦ x ≦ 0.15, 0.05 ≦ y ≦ 0.15, 0.1 ≦ x + y ≦ 0.2, and 0 ≦ δ ≦ (x + y) / 2.

この構成によれば、上記元素MAの他に、更にYがドープされ、上記元素MA及びYのドープ量x及びyが0.05以上0.15以下であることで、酸素濃度に関わらず、イオン伝導度をより高めることができる。また、上記元素MA及びYの総ドープ量x+yが0.2以下であることで、酸素欠陥による結晶構造の安定性の低下を抑制することができる。より好ましくは、xが0.1以下、yが0.1以上である。なお、上記式中の酸素欠陥量δは、一般に0以上で通常(x+y)/2以下の範囲である。   According to this configuration, in addition to the element MA, Y is further doped, and the doping amounts x and y of the element MA and Y are 0.05 or more and 0.15 or less, so that the ionic conductivity is increased regardless of the oxygen concentration. Can be increased. Further, since the total doping amount x + y of the elements MA and Y is 0.2 or less, it is possible to suppress a decrease in the stability of the crystal structure due to oxygen defects. More preferably, x is 0.1 or less and y is 0.1 or more. The oxygen defect amount δ in the above formula is generally in the range of 0 or more and usually (x + y) / 2 or less.

(4)本発明の酸素センサ用固体電解質の一形態としては、上記希土類元素MAがDyであることが挙げられる。   (4) As one form of the solid electrolyte for oxygen sensors of this invention, it is mentioned that the said rare earth element MA is Dy.

この構成によれば、上記希土類元素MAとしてDyを選択することで、酸素濃度に依存したイオン伝導性が発現する。   According to this configuration, by selecting Dy as the rare earth element MA, ion conductivity depending on the oxygen concentration is exhibited.

(5)本発明の酸素センサは、イオン伝導性を有する固体電解質と、前記固体電解質を挟んで配置される検知電極と参照電極とを備える。そして、固体電解質が、上記した本発明の酸素センサ用固体電解質である。   (5) The oxygen sensor of the present invention includes a solid electrolyte having ion conductivity, a detection electrode and a reference electrode arranged with the solid electrolyte interposed therebetween. The solid electrolyte is the above-described solid electrolyte for an oxygen sensor of the present invention.

本発明の酸素センサによれば、固体電解質が上記した本発明の酸素センサ用固体電解質であり、固体電解質が酸素濃度に応じてイオン伝導度が大きく変化する特性を有することから、応答性が高く、感度が高い。   According to the oxygen sensor of the present invention, the solid electrolyte is the above-described solid electrolyte for an oxygen sensor of the present invention, and the solid electrolyte has a characteristic that the ionic conductivity varies greatly depending on the oxygen concentration, so that the responsiveness is high. High sensitivity.

(6)本発明の酸素センサの一形態としては、固体電解質の厚さが、100μm以下であることが挙げられる。   (6) As one form of the oxygen sensor of this invention, it is mentioned that the thickness of a solid electrolyte is 100 micrometers or less.

この構成によれば、固体電解質の厚さが100μm以下であることで、固体電解質の低抵抗化を図り、固体電解質内をイオンが移動するのに時間がかかることを抑制でき、酸素濃度の変化を迅速に検出できる。即ち、酸素センサの応答性が向上する。固体電解質の厚さの下限は1μmである。   According to this configuration, since the thickness of the solid electrolyte is 100 μm or less, the resistance of the solid electrolyte can be reduced, and it can be suppressed that it takes time for ions to move through the solid electrolyte, and the change in oxygen concentration Can be detected quickly. That is, the responsiveness of the oxygen sensor is improved. The lower limit of the thickness of the solid electrolyte is 1 μm.

本発明の酸素センサ用固体電解質は、3価から4価に変化する希土類元素(特に、Dy、Nd、Pr又はTb)をBaZrO3にドープしたことで、酸素濃度によってイオン伝導度が大きく変化する特性を有する。また、本発明の酸素センサは、上記した本発明の酸素センサ用固体電解質を用いたことで、応答性が高く、感度が高い。 In the solid electrolyte for an oxygen sensor of the present invention, ion conductivity changes greatly depending on the oxygen concentration by doping BaZrO 3 with a rare earth element (particularly Dy, Nd, Pr or Tb) changing from trivalent to tetravalent. Has characteristics. In addition, the oxygen sensor of the present invention uses the above-described solid electrolyte for an oxygen sensor of the present invention, and thus has high responsiveness and high sensitivity.

実施例1における乾燥酸素雰囲気から乾燥アルゴン雰囲気に置換した後の酸素センサ用固体電解質の重量変化率を示すグラフである。4 is a graph showing a weight change rate of a solid electrolyte for an oxygen sensor after substitution from a dry oxygen atmosphere in Example 1 to a dry argon atmosphere. 実施例1における乾燥酸素雰囲気から乾燥アルゴン雰囲気に置換後の短時間での酸素センサ用固体電解質の重量変化率を示すグラフである。It is a graph which shows the weight change rate of the solid electrolyte for oxygen sensors in the short time after substitution from the dry oxygen atmosphere in Example 1 to a dry argon atmosphere. 本発明に係る酸素センサの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the oxygen sensor which concerns on this invention.

{酸素センサ用固体電解質}
本発明の酸素センサ用固体電解質は、従来の固相反応法により製造することができる。例えば、出発原料としてBaCO3、ZrO2、MA2O3(MAは、Dy、Nd、Pr及びTbから選択される少なくとも1種の希土類元素)の各原料粉末を用意する。各原料粉末を所定の比率で混合し、ボールミルで混合する。得られた混合物を加圧成形して、仮焼する。次いで、得られた仮焼物をボールミルで粉砕し、再度加圧成形した後、焼成する。その後、得られた焼成物に有機バインダ溶液を添加して、ボールミルにより粉砕・混合する。次に、得られた混合物を所定形状に加圧成形した後、熱処理を施してバインダ溶液を除去する。最後に、これを焼結し、室温まで冷却する。以上により、希土類元素MAをドープしたペロブスカイト型酸化物BaZrO3が得られる。元素MAのドープ量(x)は、原料粉末におけるMA2O3の混合比を変更することで調整できる。
{Solid electrolyte for oxygen sensor}
The solid electrolyte for an oxygen sensor of the present invention can be produced by a conventional solid phase reaction method. For example, each raw material powder of BaCO 3 , ZrO 2 , MA 2 O 3 (MA is at least one rare earth element selected from Dy, Nd, Pr and Tb) is prepared as a starting material. Each raw material powder is mixed in a predetermined ratio and mixed by a ball mill. The obtained mixture is pressure-molded and calcined. Next, the calcined product obtained is pulverized with a ball mill, pressure-molded again, and then fired. Thereafter, an organic binder solution is added to the obtained fired product, and pulverized and mixed by a ball mill. Next, after press-molding the obtained mixture into a predetermined shape, heat treatment is performed to remove the binder solution. Finally, it is sintered and cooled to room temperature. Thus, the perovskite oxide BaZrO 3 doped with the rare earth element MA is obtained. The doping amount (x) of the element MA can be adjusted by changing the mixing ratio of MA 2 O 3 in the raw material powder.

なお、固体電解質の形状は、酸素センサの形状に応じて、例えばペレット状、円板状、平板状とすることが挙げられる。また、固体電解質は、固体電解質の粉末に適当な有機バインダ、溶剤などを添加混合してスラリーを作製し、このスラリーを用いてドクターブレード法などによりグリーンシートを作製して、このグリーンシートから所定形状に切り出したものでもよい。固体電解質の形態は、焼結体(バルク)に限らず、膜であってもよく、この場合、スパッタリング法やパルスレーザデポジション法(レーザアブレーション法とも呼ばれる)といったPVD法により成膜することが挙げられる。   The shape of the solid electrolyte may be, for example, a pellet shape, a disk shape, or a flat plate shape according to the shape of the oxygen sensor. The solid electrolyte is prepared by adding a suitable organic binder, solvent, etc. to the solid electrolyte powder to prepare a slurry, and using this slurry to prepare a green sheet by the doctor blade method or the like. It may be cut into a shape. The form of the solid electrolyte is not limited to a sintered body (bulk) but may be a film. In this case, the solid electrolyte may be formed by a PVD method such as a sputtering method or a pulsed laser deposition method (also called a laser ablation method). Can be mentioned.

更に、本発明の酸素センサ用固体電解質において、例えばY、Scなどの希土類元素MB(但し、Dy、Nd、Pr、Tb及びCeを除く)をドープし、BaZrO3のうちZrの一部を希土類元素MBで置換してもよい。つまり、組成式:BaZr1-x-yMAxMByO3-δで表される組成を有するものでもよい。この場合、元素MA及びMBの総ドープ量x+yが0.2以下であることが好ましい。また、元素MA及び元素MBをBaZrO3に混合ドープする場合は、出発原料としてMB2O3の原料粉末を添加し、各原料粉末を所定の比率で混合すればよい。元素MBのドープ量yは、原料粉末におけるMB2O3の混合比を変更することで調整できる。 Furthermore, in the solid electrolyte for an oxygen sensor of the present invention, for example, rare earth elements MB such as Y and Sc (except for Dy, Nd, Pr, Tb and Ce) are doped, and a part of Zr in BaZrO 3 is rare earth. The element MB may be substituted. That is, it may have a composition represented by the composition formula: BaZr 1-xy MA x MB y O 3-δ . In this case, the total doping amount x + y of the elements MA and MB is preferably 0.2 or less. When element MA and element MB are mixed and doped into BaZrO 3 , MB 2 O 3 raw material powder may be added as a starting raw material, and the raw material powders may be mixed at a predetermined ratio. The doping amount y of the element MB can be adjusted by changing the mixing ratio of MB 2 O 3 in the raw material powder.

〈実施例1〉
本発明の酸素センサ用固体電解質を製造し、そのイオン伝導性について評価した。
<Example 1>
The solid electrolyte for an oxygen sensor of the present invention was manufactured and its ion conductivity was evaluated.

(試料No.1-1〜No.1-4)
酸素センサ用固体電解質の試料を固相反応法により合成した。具体的には、BaCO3、ZrO2、Dy2O3及びY2O3の各原料粉末を所定の比率で混合後、24時間ボールミルした。得られた混合物を9.8MPaの圧力でペレット状に一軸加圧成形した後、空気中で1000℃、10時間仮焼した。次いで、得られた仮焼物を10時間ボールミル粉砕し、9.8MPaの圧力で再度ペレット状に一軸加圧成形した後、空気中で1300℃、10時間焼成した。その後、得られた焼成物に、水、ポリビニルアルコール、グリセリン及びエタノールを混合した有機バインダ溶液を添加して、24時間ボールミルにより粉砕・混合した。次に、得られた混合物を392MPaでペレット状に一軸加圧成形した後、空気中で600℃、8時間の熱処理を施して有機バインダ溶液を除去した。最後に、このペレットを、酸素ガスを導入した酸素雰囲気中で、4℃/minの昇温速度で1600℃まで昇温し、24時間保持して焼結した後、室温まで炉冷した。
(Sample No.1-1 to No.1-4)
A sample of solid electrolyte for oxygen sensor was synthesized by solid phase reaction method. Specifically, BaCO 3 , ZrO 2 , Dy 2 O 3 and Y 2 O 3 raw material powders were mixed at a predetermined ratio, and then ball milled for 24 hours. The obtained mixture was uniaxially pressed into a pellet at a pressure of 9.8 MPa, and then calcined in air at 1000 ° C. for 10 hours. Next, the obtained calcined product was ball milled for 10 hours, uniaxially pressed into pellets again at a pressure of 9.8 MPa, and then fired in air at 1300 ° C. for 10 hours. Thereafter, an organic binder solution in which water, polyvinyl alcohol, glycerin and ethanol were mixed was added to the obtained fired product, and pulverized and mixed with a ball mill for 24 hours. Next, the obtained mixture was uniaxially pressed into pellets at 392 MPa, and then heat-treated in air at 600 ° C. for 8 hours to remove the organic binder solution. Finally, the pellets were heated to 1600 ° C. at a temperature increase rate of 4 ° C./min in an oxygen atmosphere into which oxygen gas was introduced, held for 24 hours, sintered, and then cooled to room temperature.

そして、原料粉末におけるDy2O3及びY2O3の混合比を変更して、Dy及びYのドープ量x及びyが異なるBaZrO3(組成式:BaZr1-x-yMAxYyO3-δ)を製造し、以下の組成式で表される試料No.1-1〜No.1-4を用意した。ただし、試料No.1-4については、出発原料としてY2O3を用いておらず(即ち、Yのドープ量yが0)、Dyのみをドープした。また、いずれの試料も、Dy及びYの総ドープ量x+yが0.2となるように調整した。 Then, by changing the mixing ratio of Dy 2 O 3 and Y 2 O 3 in the raw material powder, BaZrO 3 (composition formula: BaZr 1-xy MA x Y y O 3- (delta )) was manufactured and sample No.1-1-No.1-4 represented by the following compositional | equation formulas were prepared. However, for sample No. 1-4, Y 2 O 3 was not used as the starting material (that is, the Y doping amount y was 0), and only Dy was doped. In addition, all samples were adjusted so that the total doping amount x + y of Dy and Y was 0.2.

試料No.1-1:BaZr0.8Dy0.05Y0.15O3-δ
試料No.1-2:BaZr0.8Dy0.1Y0.1O3-δ
試料No.1-3:BaZr0.8Dy0.15Y0.05O3-δ
試料No.1-4:BaZr0.8Dy0.2O3-δ
Sample No.1-1: BaZr 0.8 Dy 0.05 Y 0.15 O 3-δ
Sample No.1-2: BaZr 0.8 Dy 0.1 Y 0.1 O 3-δ
Sample No. 1-3: BaZr 0.8 Dy 0.15 Y 0.05 O 3-δ
Sample No. 1-4: BaZr 0.8 Dy 0.2 O 3-δ

比較として、出発原料としてDy2O3を用いない以外は同様にして、YのみをドープしたBaZrO3(組成式:BaZr0.8Y0.2O3-δ)を製造し、これを試料No.11とした。また、Y2O3に代えてSc2O3を用いて、ScのみをドープしたBaZrO3(組成式:BaZr0.8Sc0.2O3-δ)を製造し、これを試料No.12とした。 For comparison, BaZrO 3 doped with only Y (composition formula: BaZr 0.8 Y 0.2 O 3-δ ) was produced in the same manner except that Dy 2 O 3 was not used as a starting material. did. Moreover, using Sc 2 O 3 instead of Y 2 O 3 , BaZrO 3 doped with Sc alone (composition formula: BaZr 0.8 Sc 0.2 O 3-δ ) was produced, and this was designated as Sample No. 12.

試料No.1-1〜No.1-4及び試料No.11について、酸素の吸収量を調べた。具体的には、各試料を炉に入れ、炉内を温度600℃に維持しながら、水蒸気濃度が1体積%以下の乾燥酸素ガス(Dry O2)を導入して、各試料を600℃の乾燥酸素雰囲気中で保持した。その後、乾燥酸素ガスを排気しながら、水蒸気濃度が1体積%以下の乾燥アルゴンガス(Dry Ar)を導入して、炉内を600℃の乾燥アルゴン雰囲気に置換し、各試料を600℃の乾燥アルゴン雰囲気中で保持した。そして、各試料について、乾燥酸素雰囲気中での重量を測定すると共に、乾燥アルゴンガス導入後における乾燥アルゴン雰囲気中での重量を測定し、乾燥酸素雰囲気から乾燥アルゴン雰囲気に置換した後の重量変化率を求めた。その結果を図1及び図2に示す。なお、重量変化率(%)は、乾燥アルゴンガス導入前の乾燥酸素雰囲気中での重量をA、乾燥アルゴンガス導入後の乾燥アルゴン雰囲気中での重量をBとしたとき、[(B−A)/A]×100%で示される。 Samples No. 1-1 to 1-4 and sample No. 11 were examined for oxygen absorption. Specifically, each sample was put into a furnace, and while maintaining the temperature inside the furnace at 600 ° C., dry oxygen gas (Dry O 2 ) having a water vapor concentration of 1% by volume or less was introduced, and each sample was kept at 600 ° C. Maintained in a dry oxygen atmosphere. After that, while exhausting the dry oxygen gas, dry argon gas (Dry Ar) with a water vapor concentration of 1% by volume or less was introduced, and the inside of the furnace was replaced with a 600 ° C dry argon atmosphere, and each sample was dried at 600 ° C. Hold in an argon atmosphere. For each sample, the weight in a dry oxygen atmosphere was measured, the weight in the dry argon atmosphere after the introduction of the dry argon gas was measured, and the weight change rate after replacing the dry oxygen atmosphere with the dry argon atmosphere Asked. The results are shown in FIGS. The weight change rate (%) is [(B−A), where A is the weight in the dry oxygen atmosphere before the introduction of the dry argon gas, and B is the weight in the dry argon atmosphere after the introduction of the dry argon gas. ) / A] × 100%.

図1及び図2から、Dyがドープされ、Dyのドープ量xが0.05〜0.2の試料No.1-1〜No.1-4は、Dyがドープされていない試料No.11に比較して、アルゴン雰囲気から酸素雰囲気に置換されたときの重量変化率が大きいことが分かる。つまり、試料No.1-1〜No.1-4は、酸素濃度に依存した酸素の吸収量が多いことから、酸素濃度に対するイオン伝導度の変化が大きいことが予想され、酸素センサの固体電解質に用いることで、酸素センサの感度を高めることができる。また、Dyのドープ量が多いほど重量変化率が大きく、酸素の吸収量が増えることが分かる。更に、試料No.1-1〜No.1-4は、図2に示すように、短時間(2分以内、特に1分以内)で重量が変化しており、応答性も高いことが分かる。より具体的には、秒オーダーで変化が現れている。   1 and 2, sample Nos. 1-1 to 1-4 in which Dy is doped and Dy doping amount x is 0.05 to 0.2 are compared with sample No. 11 in which Dy is not doped. It can be seen that the weight change rate is large when the argon atmosphere is replaced with the oxygen atmosphere. In other words, samples No.1-1 to No.1-4 have a large amount of oxygen absorption depending on the oxygen concentration, so it is expected that there will be a large change in ionic conductivity with respect to the oxygen concentration. By using this, the sensitivity of the oxygen sensor can be increased. It can also be seen that the greater the amount of Dy doped, the greater the rate of weight change and the greater the amount of oxygen absorbed. Further, as shown in FIG. 2, samples No.1-1 to No.1-4 change in weight in a short time (within 2 minutes, particularly within 1 minute), and it is understood that the response is high. . More specifically, changes appear on the order of seconds.

次に、試料No.1-1〜No.1-4及び試料No.11、No.12について、実際にイオン伝導度を調べた。具体的には、5体積%の濃度の水蒸気を含む酸素雰囲気(O2‐5%H2O)中、及び5体積%の濃度の水蒸気を含むアルゴン雰囲気(Ar‐5%H2O)中での195℃〜205℃の温度範囲における各試料の粒内伝導度(S/cm)を測定した。その結果を表1に示す。ただし、試料No.11については、当該試料の粒内伝導度が分離できる温度の上限が、O2‐5%H2O雰囲気中では178℃、Ar‐5%H2O雰囲気中では175℃であったため、それぞれ178℃、175℃での粒内伝導度を測定した。表1中、[]内の温度は粒内伝導度を測定したときの温度である。 Next, the ionic conductivity was actually examined for Sample Nos. 1-1 to 1-4 and Samples No. 11 and No. 12. Specifically, in an oxygen atmosphere (O 2 -5% H 2 O) containing 5% by volume of water vapor and in an argon atmosphere (Ar-5% H 2 O) containing 5% by volume of water vapor. The intragranular conductivity (S / cm) of each sample in the temperature range of 195 ° C. to 205 ° C. was measured. The results are shown in Table 1. However, for sample No. 11, the upper limit of the temperature at which the intragranular conductivity of the sample can be separated is 178 ° C in an O 2 -5% H 2 O atmosphere and 175 ° C in an Ar-5% H 2 O atmosphere. Therefore, the intragranular conductivities at 178 ° C. and 175 ° C. were measured, respectively. In Table 1, the temperature in [] is the temperature when the intragranular conductivity is measured.

Figure 2014055884
Figure 2014055884

表1から、Dyがドープされ、Dyのドープ量xが0.05〜0.2の試料No.1-1〜No.1-4は、O2‐5%H2O雰囲気中で1×10-5以上の粒内伝導度を有しており、且つ酸素雰囲気中とアルゴン雰囲気中とでイオン伝導度の変化が大きい。そのため、酸素センサの固体電解質に必要な特性を十分に確保できる。一方、Yのドープ量が増えるに従って、イオン伝導度が高くなるものの、酸素濃度に対するイオン伝導度の変化が小さくなる。ここで、酸素センサ用固体電解質は、消費電力の観点からイオン伝導度がある程度必要である。表1に示す実験結果は、Dy及びYを混合ドープすることによって、酸素雰囲気中にも関わらずある程度のイオン伝導度を確保できることを示しており、このことから、Yとの同時ドープが有利であることが分かる。 From Table 1, samples No.1-1 to No.1-4 doped with Dy and having a Dy doping amount x of 0.05 to 0.2 are 1 × 10 −5 or more in an O 2 -5% H 2 O atmosphere. And has a large change in ionic conductivity between the oxygen atmosphere and the argon atmosphere. Therefore, sufficient characteristics required for the solid electrolyte of the oxygen sensor can be secured. On the other hand, as the doping amount of Y increases, the ionic conductivity increases, but the change in ionic conductivity with respect to the oxygen concentration decreases. Here, the solid electrolyte for an oxygen sensor needs a certain degree of ionic conductivity from the viewpoint of power consumption. The experimental results shown in Table 1 indicate that by mixing and doping Dy and Y, a certain degree of ionic conductivity can be ensured even in an oxygen atmosphere, and from this, simultaneous doping with Y is advantageous. I understand that there is.

〈実施例2〉
出発原料としてDy2O3に代えてNd2O3を用いた以外は実施例1と同様にして、NdのみをドープしたBaZrO3(組成式:BaZr0.8Nd0.2O3-δ)を製造し、これを試料No.2-1とした。
<Example 2>
In the same manner as in Example 1 except that Nd 2 O 3 was used instead of Dy 2 O 3 as a starting material, BaZrO 3 doped with only Nd (composition formula: BaZr 0.8 Nd 0.2 O 3-δ ) was produced. This was designated as Sample No. 2-1.

この試料No.2-1について、実施例1と同様にして、乾燥酸素雰囲気から乾燥アルゴン雰囲気に置換後、乾燥アルゴン雰囲気中の保持時間と重量変化率との関係を求め、酸素の吸収量を調べた。その結果を表2に示す。   For this sample No. 2-1, in the same manner as in Example 1, after replacing the dry oxygen atmosphere with the dry argon atmosphere, the relationship between the retention time in the dry argon atmosphere and the weight change rate was determined, and the oxygen absorption amount was determined. Examined. The results are shown in Table 2.

Figure 2014055884
Figure 2014055884

表2から、Ndをドープした場合であっても、重量変化率が大きく、酸素の吸収量が多いことが分かる。したがって、酸素センサの固体電解質に用いることで、酸素センサの感度を高めることができる。なお、Ndをドープした試料No.2-1よりもDyをドープした例えば試料No.1-4の方が短時間での重量変化率が大きく、応答性が高かった。   Table 2 shows that even when Nd is doped, the rate of weight change is large and the amount of oxygen absorbed is large. Therefore, the sensitivity of the oxygen sensor can be increased by using it as the solid electrolyte of the oxygen sensor. For example, Sample No. 1-4 doped with Dy had a larger weight change rate in a short time and higher responsiveness than Sample No. 2-1 doped with Nd.

{酸素センサ}
本発明に係る酸素センサの構成の一例について、図3を用いて説明する。酸素センサ10は、イオン伝導性を有する固体電解質11と、固体電解質11を挟んで配置される検知電極12と参照電極13とを備える。固体電解質11は、上記した本発明の酸素センサ用固体電解質である。固体電解質11の厚さ(検知電極12と参照電極13間の距離)は、酸素センサの応答性を高める観点から、100μm以下であることが好ましい。また、検知電極12の形成材料としては、AuやAuを主成分とする合金が好適に使用でき、Auと合金化する金属としては、Pt、Rh、Pd、Agなどが挙げられる。参照電極13の形成材料としては、PtやPtを主成分とする合金が好適に使用でき、Ptと合金化する金属としては、Rh、Pdなどが挙げられる。
{Oxygen sensor}
An example of the configuration of the oxygen sensor according to the present invention will be described with reference to FIG. The oxygen sensor 10 includes a solid electrolyte 11 having ion conductivity, a detection electrode 12 and a reference electrode 13 arranged with the solid electrolyte 11 interposed therebetween. The solid electrolyte 11 is the above-described solid electrolyte for an oxygen sensor of the present invention. The thickness of the solid electrolyte 11 (distance between the detection electrode 12 and the reference electrode 13) is preferably 100 μm or less from the viewpoint of improving the responsiveness of the oxygen sensor. Further, Au or an alloy containing Au as a main component can be suitably used as a material for forming the detection electrode 12, and examples of metals that can be alloyed with Au include Pt, Rh, Pd, and Ag. As a material for forming the reference electrode 13, Pt or an alloy containing Pt as a main component can be preferably used, and examples of the metal alloyed with Pt include Rh and Pd.

この例では、固体電解質11は、平板状の焼結体であり、検知電極12及び参照電極13は、固体電解質11の表面にスパッタリング法などのPVD法により成膜することで形成している。検知電極12及び参照電極13を形成する際、厚みを薄く形成することによって多孔質性を確保することが可能である。また、酸素センサ10には、検知電極12と参照電極13との間に電圧を印加する電源21や電流計22を備える制御部20が取り付けられている。また、酸素センサ10には、酸素センサを一定温度に保持するなど温度制御のためのヒータ(図示せず)を配置してもよい。   In this example, the solid electrolyte 11 is a flat sintered body, and the detection electrode 12 and the reference electrode 13 are formed on the surface of the solid electrolyte 11 by a PVD method such as a sputtering method. When the detection electrode 12 and the reference electrode 13 are formed, it is possible to ensure the porous property by forming the thickness thin. Further, the oxygen sensor 10 is provided with a control unit 20 including a power source 21 and an ammeter 22 that apply a voltage between the detection electrode 12 and the reference electrode 13. Further, the oxygen sensor 10 may be provided with a heater (not shown) for temperature control such as maintaining the oxygen sensor at a constant temperature.

この酸素センサ10では、検知電極12と参照電極13との間に電源21により所定の電圧を印加すると、雰囲気中の酸素濃度に応じた固体電解質11のイオン伝導性により、種々の電流が流れ、その電流値を電流計22により測定することによって、雰囲気中の酸素濃度を検出する。   In this oxygen sensor 10, when a predetermined voltage is applied between the detection electrode 12 and the reference electrode 13 by the power source 21, various currents flow due to the ionic conductivity of the solid electrolyte 11 according to the oxygen concentration in the atmosphere. By measuring the current value with an ammeter 22, the oxygen concentration in the atmosphere is detected.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention.

本発明の酸素センサ用固体電解質は、酸素センサに好適に利用することが可能である。また、本発明の酸素センサは、例えば自動車エンジンなどの空燃比制御に好適に利用することが可能である。   The solid electrolyte for an oxygen sensor of the present invention can be suitably used for an oxygen sensor. The oxygen sensor of the present invention can be suitably used for air-fuel ratio control of, for example, an automobile engine.

10 酸素センサ
11 固体電解質 12 検知電極 13 参照電極
20 制御部
21 電源 22 電流計
10 Oxygen sensor
11 Solid electrolyte 12 Sensing electrode 13 Reference electrode
20 Control unit
21 Power supply 22 Ammeter

Claims (5)

BaZrO3系のペロブスカイト型酸化物からなる酸素センサ用固体電解質であって、
Dy、Nd、Pr及びTbから選択される少なくとも1種の希土類元素MAがドープされ、BaZrO3のうちZrの一部が前記希土類元素MAで置換されている酸素センサ用固体電解質。
A solid electrolyte for an oxygen sensor comprising a BaZrO 3 based perovskite oxide,
A solid electrolyte for an oxygen sensor in which at least one rare earth element MA selected from Dy, Nd, Pr and Tb is doped, and a part of Zr in BaZrO 3 is substituted with the rare earth element MA.
組成式:BaZr1-xMAxO3-δで表される組成を有し、0.05≦x≦0.2、及び0≦δ≦x/2を満たす請求項1に記載の酸素センサ用固体電解質。 2. The solid electrolyte for an oxygen sensor according to claim 1, having a composition represented by a composition formula: BaZr 1-x MA x O 3−δ and satisfying 0.05 ≦ x ≦ 0.2 and 0 ≦ δ ≦ x / 2. 更に、Yがドープされ、BaZrO3のうちZrの一部がYで置換されており、
組成式:BaZr1-x-yMAxYyO3-δで表される組成を有し、0.05≦x≦0.15、0.05≦y≦0.15、0.1≦x+y≦0.2、及び0≦δ≦(x+y)/2を満たす請求項1又は2に記載の酸素センサ用固体電解質。
Furthermore, Y is doped, and part of Zr in BaZrO 3 is replaced with Y,
Composition formula: BaZr 1-xy MA x Y y O 3-δ , 0.05 ≦ x ≦ 0.15, 0.05 ≦ y ≦ 0.15, 0.1 ≦ x + y ≦ 0.2, and 0 ≦ δ ≦ (x + y) The solid electrolyte for an oxygen sensor according to claim 1 or 2, satisfying / 2.
前記希土類元素MAがDyである請求項1〜3のいずれか一項に記載の酸素センサ用固体電解質。   The solid electrolyte for an oxygen sensor according to any one of claims 1 to 3, wherein the rare earth element MA is Dy. イオン伝導性を有する固体電解質と、前記固体電解質を挟んで配置される検知電極と参照電極とを備える酸素センサであって、
前記固体電解質が、請求項1〜4のいずれか一項に記載の酸素センサ用固体電解質である酸素センサ。
An oxygen sensor comprising a solid electrolyte having ion conductivity, a detection electrode and a reference electrode arranged with the solid electrolyte interposed therebetween,
The oxygen sensor which is the solid electrolyte for oxygen sensors according to any one of claims 1 to 4 in which said solid electrolyte is.
JP2012201473A 2012-09-13 2012-09-13 Solid electrolyte for oxygen sensor, and oxygen sensor Pending JP2014055884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012201473A JP2014055884A (en) 2012-09-13 2012-09-13 Solid electrolyte for oxygen sensor, and oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012201473A JP2014055884A (en) 2012-09-13 2012-09-13 Solid electrolyte for oxygen sensor, and oxygen sensor

Publications (1)

Publication Number Publication Date
JP2014055884A true JP2014055884A (en) 2014-03-27

Family

ID=50613324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012201473A Pending JP2014055884A (en) 2012-09-13 2012-09-13 Solid electrolyte for oxygen sensor, and oxygen sensor

Country Status (1)

Country Link
JP (1) JP2014055884A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302550A (en) * 1999-02-17 2000-10-31 Matsushita Electric Ind Co Ltd Mixed ion conductor and device using the same
JP2001307546A (en) * 2000-02-14 2001-11-02 Matsushita Electric Ind Co Ltd Ionic conductor
JP2009231075A (en) * 2008-03-24 2009-10-08 Toyota Central R&D Labs Inc Perovskite type composite oxide thin film
JP2012069380A (en) * 2010-09-24 2012-04-05 National Institute For Materials Science Electrolyte material for solid fuel cell and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302550A (en) * 1999-02-17 2000-10-31 Matsushita Electric Ind Co Ltd Mixed ion conductor and device using the same
JP2001307546A (en) * 2000-02-14 2001-11-02 Matsushita Electric Ind Co Ltd Ionic conductor
JP2009231075A (en) * 2008-03-24 2009-10-08 Toyota Central R&D Labs Inc Perovskite type composite oxide thin film
JP2012069380A (en) * 2010-09-24 2012-04-05 National Institute For Materials Science Electrolyte material for solid fuel cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Li et al. Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors
Esposito et al. Enhanced mass diffusion phenomena in highly defective doped ceria
Yamazaki et al. Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity
Muccillo et al. Densification and enhancement of the grain boundary conductivity of gadolinium-doped barium cerate by ultra fast flash grain welding
JP4608047B2 (en) Mixed ionic conductor and device using the same
Guo et al. Effect of alumina on the properties of ceria and scandia co-doped zirconia for electrolyte-supported SOFC
Setevich et al. Characterization of the La1− xBaxCoO3− δ (0≤ x≤ 1) System as Cathode Material for IT-SOFC
Chockalingam et al. Praseodymium and gadolinium doped ceria as a cathode material for low temperature solid oxide fuel cells
Hung et al. The proton conduction and hydrogen permeation characteristic of Sr (Ce0. 6Zr0. 4) 0.85 Y0. 15O3− δ ceramic separation membrane
Medvedev et al. Structural, thermomechanical and electrical properties of new (1− x) Ce0. 8Nd0. 2O2− δ–xBaCe0. 8Nd0. 2O3− δ composites
JP2014510014A5 (en)
Zhao et al. Processing and characterization of Bi2O3 and Sm2O3 codoped CeO2 electrolyte for intermediate‐temperature solid oxide fuel cell
JP2008305804A (en) High ion-conductivity solid electrolyte material and its manufacturing method, sintered body, and solid electrolyte fuel cell
Preis et al. Electrical properties of bulk and grain boundaries of scandia-stabilized zirconia co-doped with yttria and ceria
CN107226681B (en) Low-resistivity anti-aging NTC thermal sensitive ceramic material and preparation method thereof
Khorkounov et al. Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity
Jung et al. Terbium and tungsten co-doped bismuth oxide electrolytes for low temperature solid oxide fuel cells
Arabacı Conductivity properties of lanthanide-co-doped ceria-based solid oxide electrolytes
JP7113326B2 (en) Proton conductor and membrane electrode assembly
JP2014055884A (en) Solid electrolyte for oxygen sensor, and oxygen sensor
Wang et al. Synthesis, microstructure and electrical properties of BaZr0. 9Y0. 1O3− δ: BaCe0. 86Y0. 1Zn0. 04O3− δ proton conductors
Zhou et al. Particle sizes effects on electrical properties and densification of laminated Ba1. 002La0. 003TiO3 ceramics
Jo et al. Electrical conductivity studies on the LSGM–CGO composite electrolytes
JPH0437646A (en) Production of zirconia ceramics film and its calcination method as well as zirconia conductive ceramics produced by this method and solid electrolyte fuel battery utilizing this ceramics
Lis et al. Physicochemical properties of ceramic tape involving Ca 0.05 Ba 0.95 Ce 0.9 Y 0.1 O 3 as an electrolyte designed for electrolyte-supported solid oxide fuel cells (IT-SOFCs)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161202