JP2014049178A - Microwave heating device - Google Patents
Microwave heating device Download PDFInfo
- Publication number
- JP2014049178A JP2014049178A JP2012188367A JP2012188367A JP2014049178A JP 2014049178 A JP2014049178 A JP 2014049178A JP 2012188367 A JP2012188367 A JP 2012188367A JP 2012188367 A JP2012188367 A JP 2012188367A JP 2014049178 A JP2014049178 A JP 2014049178A
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- standing wave
- waveguide
- stabilizing means
- openings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/707—Feed lines using waveguides
- H05B6/708—Feed lines using waveguides in particular slotted waveguides
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
Abstract
Description
本発明は、被加熱物にマイクロ波を放射して誘電加熱する電子レンジ等のマイクロ波加熱装置に関するものである。 The present invention relates to a microwave heating apparatus such as a microwave oven that radiates microwaves to an object to be heated and performs dielectric heating.
代表的なマイクロ波加熱装置の電子レンジは、代表的なマイクロ波発生手段であるマグネトロンから放射されたマイクロ波を導波管を介して金属製の加熱室の内部に供給し、加熱室内部に置かれた被加熱物を誘電加熱するものである。よって加熱室内部のマイクロ波の電磁界分布が不均一であると、被加熱物を均一に加熱することができない。 A microwave oven of a typical microwave heating apparatus supplies microwave radiated from a magnetron, which is a typical microwave generation means, to the inside of a metal heating chamber through a waveguide, and into the inside of the heating chamber. The object to be heated is dielectrically heated. Therefore, if the microwave electromagnetic field distribution in the heating chamber is not uniform, the object to be heated cannot be heated uniformly.
そこで、被加熱物を均一に加熱する方法として、テーブルを回転させて被加熱物自体を回転させる構成や、被加熱物は固定したままでマイクロ波を放射するアンテナのほうを回転させる構成など、何らかの駆動部を用いて被加熱物に放射されるマイクロ波の向きを変えながら加熱して均一化をはかる方法が一般的であった。 Therefore, as a method of uniformly heating the object to be heated, a structure that rotates the object itself by rotating the table, a structure that rotates the antenna that emits microwaves while the object to be heated is fixed, etc. A general method has been to use a drive unit to heat and uniformize the direction of the microwave radiated to the object to be heated.
一方、構成を簡単にするために駆動部を持たずに均一加熱する方法が期待されており、時間的に電界の偏波面が回転する円偏波を利用する方法が提案されている。本来、誘電加熱は誘電損失を有する被加熱物をマイクロ波の電界によって加熱する原理に基づくため、電界が回転することは均一化に効果があるものと考えられる。たとえば具体的な円偏波の発生方法としては、特許文献1には図21のように導波管1上で交差するX字型の円偏波開口2を用いる方式が示され、特許文献2には図22のように導波管1上で直交する向きの二つの長方スリット状の開口3、4を対向させつつも離して配置する方法が示され、特許文献3には図23のように導波管1に結合させたパッチアンテナ5の平面形状に切り欠き6を設ける方法が記載されている。 On the other hand, in order to simplify the configuration, a method of uniformly heating without a driving unit is expected, and a method using circularly polarized waves in which the polarization plane of an electric field rotates with time is proposed. Originally, since dielectric heating is based on the principle of heating an object to be heated having dielectric loss with a microwave electric field, rotation of the electric field is considered to have an effect on uniformity. For example, as a specific method of generating circularly polarized waves, Patent Document 1 discloses a method using X-shaped circularly polarized apertures 2 intersecting on the waveguide 1 as shown in FIG. 22 shows a method of disposing two rectangular slit-like openings 3 and 4 that are orthogonal to each other on the waveguide 1 as shown in FIG. Thus, a method is described in which a notch 6 is provided in the planar shape of the patch antenna 5 coupled to the waveguide 1.
また、円偏波とは無関係であるが、特許文献4には図24のように複数の長方スリット140、141、142、143を波長の1/4の間隔で配列し、互いに相違する位相で放射させる例が示されている。 Although not related to circular polarization, Patent Document 4 discloses a plurality of rectangular slits 140, 141, 142, and 143 arranged at intervals of 1/4 of the wavelength as shown in FIG. An example of radiating is shown.
しかしながら、前記従来のマイクロ波加熱装置は、特許文献1〜3のいずれの場合においても、円偏波を利用してはいるものの、駆動部無しにできるほどの均一効果はないという問題があった。いずれの特許文献も、円偏波と駆動部の相乗効果で従来の駆動部のみよりも均一になるということを記載しているに過ぎない。具体的には、特許文献1では図21のように導波管の終端に位相シフター7と呼ばれる回転体を有し、特許文献2では被加熱物を回転させるターンテーブル(図示せず)を有し、特許文献3ではターンテーブル8に加えてパッチアンテナ5をも回転させて攪拌機として利用する構成を記載している。いずれも円偏波を用いれば駆動部無しにできるとは記載されていないのである。これは、もし円偏波で駆動部を無しにすると、一般的な駆動部有りの構成(たとえばテーブルを回転
させるとかアンテナを回転させるなどの構成)に比べて均一性が劣るためである。
However, the conventional microwave heating apparatus has a problem that in any case of Patent Documents 1 to 3, the circularly polarized wave is used, but there is no uniform effect that can be achieved without a driving unit. . Both patent documents only describe that the synergistic effect of the circularly polarized wave and the drive unit is more uniform than the conventional drive unit alone. Specifically, Patent Document 1 has a rotating body called a phase shifter 7 at the end of the waveguide as shown in FIG. 21, and Patent Document 2 has a turntable (not shown) for rotating an object to be heated. Patent Document 3 describes a configuration in which the patch antenna 5 is also rotated in addition to the turntable 8 to be used as a stirrer. In any case, it is not described that a circularly polarized wave can be used without a drive unit. This is because if the drive unit is not provided with circular polarization, the uniformity is inferior to a general configuration with a drive unit (for example, a configuration in which a table is rotated or an antenna is rotated).
本発明は前記課題を解決するものであり、駆動部を用いないで、被加熱物を均一に加熱できるマイクロ波加熱装置を提供することを目的とする。 The present invention solves the above-described problems, and an object thereof is to provide a microwave heating apparatus that can uniformly heat an object to be heated without using a driving unit.
前記従来の課題を解決するために、本発明のマイクロ波加熱装置は、被加熱物を収納する加熱室と、マイクロ波を発生させるマイクロ波発生手段と、マイクロ波を伝送する導波管と、前記導波管から前記加熱室内にマイクロ波を放射する複数のマイクロ波放射部とを有し、前記導波管内には定在波を生じ、前記複数のマイクロ波放射部は、前記導波管の伝送方向に管内波長の1/4を超えて1/2に満たない間隔で配置する構成としている。 In order to solve the above-described conventional problems, a microwave heating apparatus of the present invention includes a heating chamber that accommodates an object to be heated, microwave generation means that generates microwaves, a waveguide that transmits microwaves, A plurality of microwave radiating portions for radiating microwaves from the waveguide into the heating chamber, a standing wave is generated in the waveguide, and the plurality of microwave radiating portions are arranged in the waveguide. In the transmission direction, the pitch is arranged at an interval exceeding 1/4 of the guide wavelength and less than 1/2.
上記構成により、一般に導波管内の定在波は伝送方向に管内波長の1/2毎に腹(最大の振幅を生じる部位)や節(振幅をほとんど生じない部位)を繰り返し、管内波長の1/2だけ離れた二か所を比較すると振幅が同じで逆向きの波が生じる逆位相の関係となるが、本発明では複数のマイクロ波放射部を管内波長の1/4を超えて1/2に満たない間隔で配置することで、隣接するマイクロ波放射部に対向する定在波は逆位相の関係(管内波長の略1/2の奇数倍の間隔)にはならないので、その結果、隣接するマイクロ波放射部から加熱室内に向けて放射されるマイクロ波も逆位相にならず、互いのマイクロ波放射部の間が弱くなるようないわゆる干渉による打消し合いを防ぐことができ、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。 With the above configuration, the standing wave in the waveguide generally repeats antinodes (sites that generate the maximum amplitude) and nodes (sites that generate almost no amplitude) every ½ of the wavelength in the transmission direction. When two places separated by a distance of / 2 are compared, there is an anti-phase relationship in which an opposite wave is generated with the same amplitude. However, in the present invention, a plurality of microwave radiating portions exceed 1/4 of the guide wavelength by 1 / By arranging at intervals less than 2, the standing waves facing the adjacent microwave radiation portions do not have an antiphase relationship (interval of odd multiples of approximately ½ of the guide wavelength). The microwaves radiated from the adjacent microwave radiating unit into the heating chamber are not in reverse phase, so that cancellation between so-called interference that weakens the space between the microwave radiating units can be prevented. Just arrange the microwave radiation parts of the drive unit Without using it can be uniformly heat the object to be heated in the heating chamber.
本発明のマイクロ波加熱装置は、複数のマイクロ波放射部を管内波長の1/4を超えて1/2に満たない間隔で配置することで、隣接するマイクロ波放射部に対向する定在波は逆位相の関係(管内波長の略1/2の奇数倍の間隔)にはならないので、その結果、隣接するマイクロ波放射部から加熱室内に向けて放射されるマイクロ波も逆位相にならず、互いのマイクロ波放射部の間が弱くなるようないわゆる干渉による打消し合いを防ぐことができ、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。 In the microwave heating apparatus of the present invention, a plurality of microwave radiating portions are disposed at intervals that are less than ½ and less than ¼ of the in-tube wavelength, so that standing waves facing the adjacent microwave radiating portions are arranged. Does not have an anti-phase relationship (an odd multiple of the half of the in-tube wavelength), and as a result, the microwave radiated from the adjacent microwave radiating unit into the heating chamber does not have an anti-phase. It is possible to prevent cancellation by so-called interference that weakens between the microwave radiation parts of each other, and it is possible to arrange the objects to be heated in the heating chamber without using a drive unit by arranging a plurality of microwave radiation parts. It can be heated uniformly.
第1の発明のマイクロ波加熱装置は、被加熱物を収納する加熱室と、マイクロ波を発生させるマイクロ波発生手段と、マイクロ波を伝送する導波管と、前記導波管から前記加熱室内にマイクロ波を放射する複数のマイクロ波放射部とを有し、前記導波管内には定在波を生じ、前記複数のマイクロ波放射部は、前記導波管の伝送方向に管内波長の1/4を超えて1/2に満たない間隔で配置する構成としている。 A microwave heating apparatus according to a first aspect of the present invention includes a heating chamber that houses an object to be heated, microwave generation means that generates microwaves, a waveguide that transmits microwaves, and the waveguide to the heating chamber. A plurality of microwave radiating portions for radiating microwaves, and standing waves are generated in the waveguide. The plurality of microwave radiating portions have an in-tube wavelength of 1 in the transmission direction of the waveguide. It is set as the structure arrange | positioned at the space | interval which exceeds / 4 and is less than 1/2.
上記構成により、一般に導波管内の定在波は伝送方向に管内波長の1/2毎に腹(最大の振幅を生じる部位)や節(振幅をほとんど生じない部位)を繰り返し、管内波長の1/2だけ離れた二か所を比較すると振幅が同じで逆向きの波が生じる逆位相の関係となるが、本発明では複数のマイクロ波放射部を管内波長の1/4を超えて1/2に満たない間隔で配置することで、隣接するマイクロ波放射部に対向する定在波は逆位相の関係(管内波長の略1/2の奇数倍の間隔)にはならないので、その結果、隣接するマイクロ波放射部から加熱室内に向けて放射されるマイクロ波も逆位相にならず、互いのマイクロ波放射部の間が弱くなるようないわゆる干渉による打消し合いを防ぐことができ、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。 With the above configuration, the standing wave in the waveguide generally repeats antinodes (sites that generate the maximum amplitude) and nodes (sites that generate almost no amplitude) every ½ of the wavelength in the transmission direction. When two places separated by a distance of / 2 are compared, there is an anti-phase relationship in which an opposite wave is generated with the same amplitude. However, in the present invention, a plurality of microwave radiating portions exceed 1/4 of the guide wavelength by 1 / By arranging at intervals less than 2, the standing waves facing the adjacent microwave radiation portions do not have an antiphase relationship (interval of odd multiples of approximately ½ of the guide wavelength). The microwaves radiated from the adjacent microwave radiating unit into the heating chamber are not in reverse phase, so that cancellation between so-called interference that weakens the space between the microwave radiating units can be prevented. Just arrange the microwave radiation parts of the drive unit Without using it can be uniformly heat the object to be heated in the heating chamber.
第2の発明のマイクロ波加熱装置は、複数のマイクロ波放射部は、伝送方向に管内波長
の略1/3の間隔で配置する構成としている。これにより、確実に第一の発明の効果が得られる。即ち、本発明では複数のマイクロ波放射部を管内波長の略1/3の間隔で配置することで、隣接するマイクロ波放射部に対向する定在波は逆位相の関係(管内波長の略1/2の奇数倍の間隔)にはならないので、その結果、隣接するマイクロ波放射部から加熱室内に向けて放射されるマイクロ波も逆位相にならず、互いのマイクロ波放射部の間が弱くなるようないわゆる干渉による打消し合いを防ぐことができ、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。さらに第一の発明では隣接しない離れた二つのマイクロ波放射部に着目したときには逆位相の関係になる恐れがあり、それは距離が離れているので可能性は低いとはいうものの打消し合う危険性が残る。一方、第二の発明では、たとえ隣接しないどんなに離れたマイクロ波放射部の間隔を見てもどこにも逆位相の関係は存在せず、絶対に打消し合わないようにできる。なぜならば、マイクロ波放射部が四つ以上ある場合、一つ目と二つ目の間隔はλg/3、一つ目と三つ目の間隔は2λg/3、一つ目と四つ目の間隔はλgとなり丁度一波長分の間隔となって、四つ目は一つ目と完全に同じ位相に戻ることになり、以降は同様の位相関係を繰り返すからである。よってどこにも管内波長の略1/2の奇数倍の間隔は起こらない。
In the microwave heating apparatus according to the second aspect of the invention, the plurality of microwave radiating portions are arranged at an interval of approximately 1/3 of the guide wavelength in the transmission direction. Thereby, the effect of the first invention can be obtained with certainty. That is, in the present invention, a plurality of microwave radiating portions are arranged at an interval of approximately 1/3 of the guide wavelength, so that the standing waves facing the adjacent microwave radiating portions have an antiphase relationship (approximately 1 of the guide wavelength). As a result, the microwaves radiated from the adjacent microwave radiating portions into the heating chamber are not in antiphase, and the space between the microwave radiating portions is weak. The so-called cancellation due to so-called interference can be prevented, and the object to be heated in the heating chamber can be uniformly heated by arranging a plurality of microwave radiation portions without using a drive portion. Furthermore, in the first invention, when attention is paid to two separate microwave radiating portions that are not adjacent to each other, there is a risk of an anti-phase relationship, and although the possibility is low because the distance is far away, there is a risk of canceling each other Remains. On the other hand, in the second invention, even if the distance between the microwave radiating portions that are not adjacent to each other is seen, there is no antiphase relationship anywhere, and it is possible to avoid canceling each other. This is because when there are four or more microwave radiation parts, the first and second intervals are λg / 3, the first and third intervals are 2λg / 3, and the first and fourth intervals. This is because the interval is λg, exactly one wavelength, and the fourth phase returns to the same phase as the first one, and thereafter the same phase relationship is repeated. Therefore, no interval that is an odd multiple of approximately ½ of the guide wavelength occurs anywhere.
第3の発明のマイクロ波加熱装置は、導波管内の定在波位置を安定させるための定在波安定手段を有する構成としている。これにより、一般にマイクロ波放射部が増えると導波管内のマイクロ波が外部へ放射されやすくなり、マイクロ波が次々と放射されることで導波管内の定在波を維持しにくくなり定在波の状態が不安定になっていき、その結果それぞれのマイクロ波放射部に対向するマイクロ波の位相が狙いの位相からシフトしてしまうことが考えられるが、定在波安定手段を有することで定在波の乱れを抑制し、複数のマイクロ波放射部に狙い通りの位相で定在波を対向させることができ、それぞれのマイクロ波放射部から狙い通りの位相のマイクロ波を加熱室内に向けて放射させることができるため、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。 The microwave heating apparatus according to the third aspect of the present invention has a standing wave stabilizing means for stabilizing the standing wave position in the waveguide. As a result, in general, when the number of microwave radiating portions increases, microwaves in the waveguide are easily radiated to the outside, and it is difficult to maintain the standing waves in the waveguide by radiating microwaves one after another. As a result, the phase of the microwaves facing each microwave radiation part may shift from the target phase. The turbulence of the standing wave is suppressed, and the standing wave can be opposed to the plurality of microwave radiating parts with the aimed phase, and the microwaves with the aimed phase are directed from the respective microwave radiating parts to the heating chamber. Since it can radiate | emit, the to-be-heated object in a heating chamber can be heated uniformly, without using a drive part only by arranging a some microwave radiation | emission part.
第4の発明のマイクロ波加熱装置は、定在波安定手段は、導波管内に定在波の節を生じさせる構成とし、導波管の終端部まで伝送方向に管内波長の略1/2の整数倍の距離に配置する構成としている。これにより、元々導波管の終端部は常に電界が0のため定在波の節になるのに加えて、管内定在波が生じるときには終端部から管内波長の1/2の整数倍毎に節を繰り返すはずであるが、定在波安定手段を導波管の終端部から管内波長の略1/2の整数倍の距離に配置することで確実に節を形成させることができ、定在波の乱れを抑制し、複数のマイクロ波放射部に狙い通りの位相で定在波を対向させることができ、それぞれのマイクロ波放射部から狙い通りの位相のマイクロ波を加熱室内に向けて放射させることができるため、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。 In the microwave heating apparatus of the fourth invention, the standing wave stabilizing means is configured to generate a standing wave node in the waveguide, and is approximately ½ of the in-tube wavelength in the transmission direction to the terminal end of the waveguide. It is set as the structure arrange | positioned at the distance of the integral multiple of. As a result, the end portion of the waveguide originally becomes a standing wave node because the electric field is always 0. In addition, when a standing wave in the tube is generated, from the end portion to every integral multiple of 1/2 of the in-tube wavelength. The node should be repeated, but the standing wave stabilizing means can be reliably formed by placing the standing wave stabilizing means at a distance that is an integral multiple of approximately one half of the guide wavelength from the end of the waveguide. Wave turbulence can be suppressed, and standing waves can be opposed to multiple microwave radiating sections with the targeted phase, and microwaves with the intended phase can be radiated from the respective microwave radiating sections toward the heating chamber. Therefore, the object to be heated in the heating chamber can be uniformly heated by arranging a plurality of microwave radiating units without using a driving unit.
第5の発明のマイクロ波加熱装置は、定在波安定手段は複数とし、伝送方向に管内波長の略1/2の間隔で配置する構成としている。これにより、一般に管内定在波が生じるときには管内波長の1/2の整数倍毎に同じ振幅が繰り返されるはずであるが、定在波安定手段を複数として伝送方向に管内波長の略1/2の整数倍の間隔で配置することで確実に管内定在波の周期性を持たせることができ、定在波の乱れを抑制し、複数のマイクロ波放射部に狙い通りの位相で定在波を対向させることができ、それぞれのマイクロ波放射部から狙い通りの位相のマイクロ波を加熱室内に向けて放射させることができるため、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。 The microwave heating apparatus according to the fifth aspect of the present invention has a configuration in which a plurality of standing wave stabilizing means are provided and arranged in the transmission direction at intervals of approximately ½ of the guide wavelength. Thus, in general, when an in-tube standing wave is generated, the same amplitude should be repeated every integral multiple of 1/2 of the in-tube wavelength. However, there are a plurality of standing wave stabilizing means in the transmission direction. By arranging them at intervals of integer multiples, it is possible to ensure the periodicity of the standing wave in the tube, suppress the disturbance of the standing wave, and maintain the standing wave with the desired phase in multiple microwave radiation parts Can be radiated from each microwave radiating unit toward the heating chamber, so it is not necessary to use a drive unit just by arranging a plurality of microwave radiating units. Also, the object to be heated in the heating chamber can be heated uniformly.
第6の発明のマイクロ波加熱装置は、伝送方向に管内波長の略1/2の間隔で配置した
少なくとも二つの定在波安定手段(導波管の終端部側から数えて第一の定在波安定手段、第二の定在波安定手段)と、伝送方向に管内波長の略1/3の間隔で配置した少なくとも四つのマイクロ波放射部(導波管の終端部側から数えて第一のマイクロ波放射部、第二のマイクロ波放射部、第三のマイクロ波放射部、第四のマイクロ波放射部)を有し、第一の定在波安定手段と第二の定在波安定手段の間に第二のマイクロ波放射部と第三のマイクロ波放射部を配置する構成としている。これにより、管内波長の略1/2の間隔でそれぞれ節を生じさせる二つの定在波安定手段(第一の定在波安定手段と第二の定在波安定手段)の丁度中央には一つの腹が生じる。また同じ二つの定在波安定手段(第一の定在波安定手段と第二の定在波安定手段)の間に管内波長の略1/3の間隔の二つのマイクロ波放射部(第二のマイクロ波放射部と第三のマイクロ波放射部)を配置するから、二つのマイクロ波放射部(第二のマイクロ波放射部と第三のマイクロ波放射部)は節でもなく腹でもない位相にそれぞれ配置されることになるが、どちらかと言えば節に近くなる。なぜならば二つのマイクロ波放射部(第二のマイクロ波放射部と第三のマイクロ波放射部)を二つの定在波安定手段(第一の定在波安定手段と第二の定在波安定手段)に対して均等(センター振り分け)に配置したと仮定すると、マイクロ波放射部から節までの距離は((管内波長の略1/2)−(管内波長の略1/3))/2≒管内波長の1/12となり、マイクロ波放射部から腹までの距離は(管内波長の略1/3)/2≒管内波長の1/6となり、腹までの距離よりも節までの距離のほうが半分くらいに近い距離になる。一方、同様に計算すると、第一のマイクロ波放射部と第四のマイクロ波放射部はほぼ同位相の腹になる。なぜならば、たとえば第一の定在波安定手段による節位置を基準に考えると、第二のマイクロ波放射部から基準の節までは管内波長の1/12と先ほど求めた通りであり、第二のマイクロ波放射部から第一のマイクロ波放射部までは管内波長の1/3であることから、基準の節から第一のマイクロ波放射部までは(管内波長の略1/3)−(管内波長の略1/12)≒管内波長の1/4となり、基準の節からみてこれは丁度腹となる位置関係である。また同様に第四のマイクロ波放射部も腹になり、特に第一のマイクロ波放射部と第四のマイクロ波放射部の距離は、管内波長の略1/3×3≒管内波長、であるから両者は同位相になる。以上により、第二のマイクロ波放射部と第三のマイクロ波放射部はいずれも節に近く、第一のマイクロ波放射部と第四のマイクロ波放射部は同位相でいずれも腹に近く、四つのマイクロ波放射部をこれらのセンターから見て、伝送方向に対称な位相関係にでき、その結果伝送方向に均等に放射できる可能性を高めることができる。
The microwave heating apparatus according to the sixth aspect of the present invention includes at least two standing wave stabilizing means (first standing wave counting from the terminal end side of the waveguide) disposed in the transmission direction at an interval of approximately ½ of the guide wavelength. Wave stabilizing means, second standing wave stabilizing means) and at least four microwave radiating portions (first counted from the terminal end side of the waveguide) arranged in the transmission direction at an interval of about 1/3 of the guide wavelength. 1st standing wave stabilizing means and 2nd standing wave stabilizing unit having a microwave radiation part, a second microwave radiation part, a third microwave radiation part, and a fourth microwave radiation part) The second microwave radiating portion and the third microwave radiating portion are arranged between the means. As a result, two standing wave stabilizing means (first standing wave stabilizing means and second standing wave stabilizing means) that generate nodes at intervals of approximately half of the guide wavelength are exactly one in the center. Two bellies occur. Further, two microwave radiating sections (second second) having an interval of about 1/3 of the guide wavelength between the same two standing wave stabilizing means (first standing wave stabilizing means and second standing wave stabilizing means). The two microwave radiating parts (second microwave radiating part and third microwave radiating part) are not nodes and antinodes. It will be placed in each, but if anything, it will be closer to the node. This is because two microwave radiating sections (second microwave radiating section and third microwave radiating section) are replaced with two standing wave stabilizing means (first standing wave stabilizing means and second standing wave stabilizing means). Assuming that they are arranged equally (center distribution) with respect to the means), the distance from the microwave radiation part to the node is ((approximately half of the guide wavelength) − (approximately one third of the guide wavelength)) / 2. ≒ 1/12 of the guide wavelength, and the distance from the microwave radiation part to the antinode is (approximately 1/3 of the guide wavelength) / 2 ≒ 1/6 of the guide wavelength, and the distance to the node is more than the distance to the antinode. Is closer to half the distance. On the other hand, if calculated in the same manner, the first microwave radiating portion and the fourth microwave radiating portion are antinodes having substantially the same phase. This is because, for example, considering the position of the node by the first standing wave stabilizing means as a reference, the distance from the second microwave radiating section to the reference node is 1/12 of the in-tube wavelength, as previously determined. From the microwave radiating part to the first microwave radiating part is 1/3 of the in-tube wavelength, so from the reference node to the first microwave radiating part (approximately 1/3 of the in-tube wavelength) − ( It is approximately 1/12 of the in-tube wavelength.apprxeq.1 / 4 of the in-tube wavelength, and this is a positional relationship that is exactly antinode when viewed from the reference node. Similarly, the fourth microwave radiating portion becomes angry, and in particular, the distance between the first microwave radiating portion and the fourth microwave radiating portion is approximately 1/3 × 3 of the guide wavelength. Therefore, both are in the same phase. As described above, the second microwave radiating part and the third microwave radiating part are both close to the node, and the first microwave radiating part and the fourth microwave radiating part are both in the same phase and close to the belly, When viewed from these centers, the four microwave radiating portions can be in a phase relationship symmetrical to the transmission direction, and as a result, the possibility of being able to radiate evenly in the transmission direction can be increased.
第7の発明のマイクロ波加熱装置は、第二の定在波安定手段から伝送方向に管内波長の略1/2の間隔で配置した第三の定在波安定手段を有し、導波管の終端部と第一の定在波安定手段との間に第一のマイクロ波放射部を配置し、第二の定在波安定手段と第三の定在波安定手段の間に第四のマイクロ波放射部を配置する構成としている。これにより、いずれも節となる導波管の終端部と第一の定在波安定手段との間に第一のマイクロ波放射部を配置することで、第一のマイクロ波放射部をより確実に腹にできるとともに、伝送方向に管内波長の略1/2の間隔で配置した第二の定在波安定手段と第三の定在波安定手段の間に第四のマイクロ波放射部を配置することで、第四のマイクロ波放射部もより確実に腹にできるので、確実に第6の発明の効果が得られる。 A microwave heating apparatus according to a seventh aspect of the present invention includes third standing wave stabilizing means arranged at an interval of about ½ of the guide wavelength in the transmission direction from the second standing wave stabilizing means. A first microwave radiating portion is disposed between the terminal portion of the first standing wave stabilizing means and the first standing wave stabilizing means, and a fourth microwave is disposed between the second standing wave stabilizing means and the third standing wave stabilizing means. The microwave radiation unit is arranged. Thus, the first microwave radiating portion is more reliably disposed by arranging the first microwave radiating portion between the terminal end portion of the waveguide, which is a node, and the first standing wave stabilizing means. And a fourth microwave radiating section is arranged between the second standing wave stabilizing means and the third standing wave stabilizing means arranged at an interval of about ½ of the guide wavelength in the transmission direction. By doing so, the fourth microwave radiating portion can be made more reliably antinode, so that the effect of the sixth invention can be obtained with certainty.
第8の発明のマイクロ波加熱装置は、第一のマイクロ波放射部と第四のマイクロ波放射部を管内定在波の略腹の位置に配置し、第二のマイクロ波放射部と第三のマイクロ波放射部を管内定在波の腹にも節にもならない位置に配置する構成としている。これにより、四つのマイクロ波放射部の位相をある程度特定できるので、より確実に第6の発明、第7の発明の効果を得ることができる。 In the microwave heating apparatus according to the eighth aspect of the invention, the first microwave radiation part and the fourth microwave radiation part are arranged at a position substantially antinode of the standing wave in the tube, and the second microwave radiation part and the third microwave radiation part are arranged. The microwave radiating part is arranged at a position where neither the antinode nor the node of the standing wave in the tube is located. As a result, the phases of the four microwave radiation portions can be specified to some extent, so that the effects of the sixth invention and the seventh invention can be obtained more reliably.
第9の発明のマイクロ波加熱装置は、複数のマイクロ波放射部は、導波管の幅方向の中央(管軸)にかからない開口で構成し、管軸の少なくとも片側に配置する構成としている。これにより、導波管の幅方向については、最も一般的なTE10モードの導波管におい
て、導波管の幅方向の中央(管軸)で電界が最大、かつ両端で電界が0となり、もし開口が管軸を横切ると電界の最大のポイントを横切ることになり、一つの開口から大量のマイクロ波を放射してしまい、他の開口で均等に分け合うはずの分が残らない危険性があるが、本発明では開口が管軸にかからないので、一つの開口からの放射量を抑え、複数の開口でバランスよく均等に放射できる。よって本発明の構成により、加熱室内に向けて複数の開口から広範囲に同等量のマイクロ波を放射させることができるため、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。
In the microwave heating apparatus according to the ninth aspect of the invention, the plurality of microwave radiating portions are configured with openings that do not extend to the center (tube axis) in the width direction of the waveguide, and are arranged on at least one side of the tube axis. Thus, in the width direction of the waveguide, in the most common TE10 mode waveguide, the electric field is maximum at the center (tube axis) in the width direction of the waveguide, and the electric field is zero at both ends. If the opening crosses the tube axis, it will cross the maximum point of the electric field, and there is a risk that a large amount of microwaves will be emitted from one opening, and there will be no remaining portion that should be shared equally by the other opening. In the present invention, since the opening does not reach the tube axis, the amount of radiation from one opening is suppressed, and a plurality of openings can radiate evenly in a balanced manner. Therefore, according to the configuration of the present invention, the same amount of microwaves can be radiated from a plurality of openings to a wide range toward the heating chamber. The object to be heated can be heated uniformly.
第10の発明のマイクロ波加熱装置は、複数のマイクロ波放射部は、管軸の両側に対称に配置する構成としている。これにより、幅方向にも複数の配置として、より多数の開口を構成することができる。導波管の幅方向については、最も一般的なTE10モードの導波管において、導波管の幅方向の中央(管軸)で電界が最大、かつ両端で電界が0となり、管軸に対して対称な特性を持つので、開口を管軸の両側に配置すると互いに同等量のマイクロ波を放射しやすい関係にある。よって本発明の構成により、伝送方向にも幅方向にも多数の同等量を放射できるマイクロ波放射部を有することになり、加熱室内に向けて広範囲に同等量のマイクロ波を放射させることができるため、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。 In the microwave heating apparatus according to the tenth invention, the plurality of microwave radiating portions are arranged symmetrically on both sides of the tube axis. Thereby, more openings can be formed as a plurality of arrangements in the width direction. With respect to the width direction of the waveguide, in the most common TE10 mode waveguide, the electric field is maximum at the center (tube axis) in the width direction of the waveguide, and the electric field is zero at both ends. Therefore, if the openings are arranged on both sides of the tube axis, it is easy to radiate the same amount of microwaves. Therefore, according to the configuration of the present invention, a microwave radiating portion that can radiate a large number of equivalent amounts in both the transmission direction and the width direction is provided, and the same amount of microwaves can be radiated in a wide range toward the heating chamber. For this reason, the object to be heated in the heating chamber can be uniformly heated without using a drive unit by arranging a plurality of microwave radiation units.
第11の発明のマイクロ波加熱装置は、マイクロ波放射部は、円偏波を放射する構成としている。これにより、マイクロ波放射部を中心として円偏波特有の360度全方向に回転する電界を発生させ、中心から渦を巻くようにマイクロ波が放射され、円周方向を均一に加熱することができる。よって、複数のマイクロ波放射部から円偏波を放射することで加熱室全体に対しても均一にマイクロ波を放射でき、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。 In the microwave heating apparatus according to the eleventh aspect, the microwave radiating unit radiates circularly polarized waves. As a result, an electric field that rotates in a 360-degree omnidirectional characteristic of circularly polarized waves is generated around the microwave radiation part, and microwaves are radiated from the center so as to vortex, thereby heating the circumferential direction uniformly. Can do. Therefore, by radiating circularly polarized waves from a plurality of microwave radiating sections, microwaves can be radiated evenly to the entire heating chamber, and heating can be performed without using a drive section by simply arranging a plurality of microwave radiating sections. The object to be heated in the room can be heated uniformly.
第12の発明のマイクロ波加熱装置は、円偏波を放射するマイクロ波放射部は、二つの長孔が交差する略X字状の構成としている。これにより、簡単な構成で確実に導波管から円偏波を放射することができる。 In the microwave heating apparatus of the twelfth aspect of the invention, the microwave radiating portion that radiates circularly polarized waves has a substantially X-shaped configuration in which two long holes intersect. Thereby, circularly polarized waves can be reliably radiated from the waveguide with a simple configuration.
以下、本発明に係るマイクロ波加熱装置の好適な実施の形態について、添付の図面を参照しながら説明する。なお、以下の実施の形態のマイクロ波加熱装置においては電子レンジについて説明するが、電子レンジは例示であり、本発明のマイクロ波加熱装置は電子レンジに限定されるものではなく、誘電加熱を利用した加熱装置、生ゴミ処理機、あるいは半導体製造装置などのマイクロ波加熱装置を含むものである。また、本発明は、以下の実施の形態の具体的な構成に限定されるものではなく、同様の技術的思想に基づく構成が本発明に含まれる。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of a microwave heating apparatus according to the invention will be described with reference to the accompanying drawings. In the microwave heating apparatus of the following embodiment, a microwave oven will be described. However, the microwave oven is an example, and the microwave heating apparatus of the present invention is not limited to the microwave oven, and uses dielectric heating. And a microwave heating device such as a garbage processing machine or a semiconductor manufacturing device. Further, the present invention is not limited to the specific configurations of the following embodiments, and configurations based on similar technical ideas are included in the present invention.
(実施の形態1)
図1、図2は、本発明の実施の形態1におけるマイクロ波加熱装置の説明図である。図1は全体構成を示す斜視図、図2(a)は上から見た断面図、図2(b)は正面から見た断面図である。
(Embodiment 1)
1 and 2 are explanatory diagrams of the microwave heating apparatus according to Embodiment 1 of the present invention. FIG. 1 is a perspective view showing the overall configuration, FIG. 2A is a sectional view seen from above, and FIG. 2B is a sectional view seen from the front.
代表的なマイクロ波加熱装置である電子レンジ101は、代表的な被加熱物である食品(図示せず)を収納可能な加熱室102と、マイクロ波を発生させる代表的なマイクロ波発生手段であるマグネトロン103と、マグネトロン103から放射されたマイクロ波を加熱室102に導く導波管104と、導波管104内のマイクロ波を加熱室102内に放射するマイクロ波放射部として導波管104の上面に設けた八つの開口105a,105b,105c,105dと、食品(図示せず)を載置する載置台107とを有している。加熱室102は横長の直方体で、載置台107は加熱室102の底面全体を覆う構成で、
開口105a,105b,105c,105dが庫内に露出しないように塞ぎつつ、上面をフラットにして使用者が食品(図示せず)の出し入れがしやすいとか、汚れがついたときにふき取りやすくしている。ここで載置台107は、開口105からのマイクロ波を加熱室102内に放射させるため、ガラスやセラミックなどマイクロ波が透過しやすい材料で構成する。導波管104と加熱室102の接続は、導波管104のマイクロ波の伝送方向を加熱室102の幅方向に向けて接続する。開口105は、長孔を交差させたX字状の形状により円偏波を放射できる開口とし、導波管104の幅方向の中央(管軸)108にはかからないように幅方向に対称に配置している。また管軸108は加熱室102の底面109の前後方向の中心と一致させ、八つの開口105a,105b,105c,105dは加熱室102の底面109の左右方向の中心110に対して対称に配置し、以上により加熱室102の底面109に対して、開口105a,105b,105c,105dは前後・左右とも対称に配置される。また開口105a,105b,105c,105dは、導波管104の伝送方向に管内波長λgの略1/3の間隔で配置している。また導波管104内には管内定在波が生じるが、これはマグネトロン103の発振周波数と導波管104の形状によって決まる管内波長λgの1/2ごとに腹と節を繰り返すもので、導波管104の終端部111は必ず節となる。ここで図2(b)には導波管104内に管内定在波のイメージを図示している。定在波安定手段112a,112b,112cは導波管104内に突出する導電性材料からなり、いわゆる整合素子として知られるスタブチューナーなどとよく似た構成であり、管内定在波の節の位置、即ち終端部111から管内波長λgの略1/2ずつの間隔で合計3個配置され、終端部111側から数えて第一の定在波安定手段112a,第二の定在波安定手段112b,第三の定在波安定手段112cとする。また、開口105a,105b,105c,105dも、同様に終端部111側から数えて第一の開口105a,第二の開口105b,第三の開口105c,第四の開口105dとする。このとき加熱室102の底面109の左右方向の中心110に対して、第一の定在波安定手段112aと第二の定在波安定手段112bが対称になるように導波管104を構成しており、その結果、図2(b)のように管内定在波の腹が中心110に位置することになる。また第一の開口105aは終端部111と第一の定在波安定手段112aの間の管内定在波の腹に位置し、第四の開口105dは第二の定在波安定手段112bと第三の定在波安定手段112cの間の管内定在波の腹に位置し、第二の開口105bと第三の開口105cは管内定在波の腹にも節にもならない位置に位置することになる。また図1のように、開閉可能なドア116を有し、ドア116を閉めることで、マイクロ波は導波管104と加熱室102で閉空間を形成し、閉じ込められたマイクロ波は必ず何らかの定在波を生じるものである。
A microwave oven 101, which is a typical microwave heating apparatus, includes a heating chamber 102 that can store food (not shown) that is a typical object to be heated, and a typical microwave generation means that generates microwaves. A certain magnetron 103, a waveguide 104 that guides the microwave radiated from the magnetron 103 to the heating chamber 102, and the waveguide 104 as a microwave radiating unit that radiates the microwave in the waveguide 104 into the heating chamber 102. There are eight openings 105a, 105b, 105c, 105d provided on the upper surface of the slab, and a mounting table 107 on which food (not shown) is mounted. The heating chamber 102 is a horizontally long rectangular parallelepiped, and the mounting table 107 is configured to cover the entire bottom surface of the heating chamber 102.
The openings 105a, 105b, 105c, and 105d are closed so that they are not exposed in the cabinet, and the upper surface is flattened so that the user can easily take in and out food (not shown), or can be wiped off when dirty. Yes. Here, the mounting table 107 is made of a material that easily transmits microwaves, such as glass or ceramic, in order to radiate microwaves from the openings 105 into the heating chamber 102. The waveguide 104 and the heating chamber 102 are connected with the microwave transmission direction of the waveguide 104 directed in the width direction of the heating chamber 102. The opening 105 is an opening that can emit circularly polarized waves due to an X-shaped shape that intersects the long holes, and is arranged symmetrically in the width direction so as not to reach the center (tube axis) 108 in the width direction of the waveguide 104. doing. The tube axis 108 is aligned with the center in the front-rear direction of the bottom surface 109 of the heating chamber 102, and the eight openings 105 a, 105 b, 105 c, 105 d are arranged symmetrically with respect to the center 110 in the left-right direction of the bottom surface 109 of the heating chamber 102. As described above, the openings 105a, 105b, 105c, and 105d are arranged symmetrically with respect to the bottom surface 109 of the heating chamber 102 in the front-rear and left-right directions. The openings 105a, 105b, 105c, and 105d are arranged in the transmission direction of the waveguide 104 at an interval of about 1/3 of the guide wavelength λg. An in-tube standing wave is generated in the waveguide 104, which repeats the belly and node every 1/2 of the in-tube wavelength λg determined by the oscillation frequency of the magnetron 103 and the shape of the waveguide 104. The terminal portion 111 of the wave tube 104 is always a node. Here, FIG. 2B shows an image of the standing wave in the waveguide 104. The standing wave stabilizing means 112a, 112b, and 112c are made of a conductive material protruding into the waveguide 104, and have a configuration similar to a stub tuner or the like known as a so-called matching element. That is, a total of three are arranged at intervals of approximately ½ each of the in-tube wavelength λg from the terminal end 111, and counted from the terminal end 111 side, the first standing wave stabilizing means 112a and the second standing wave stabilizing means 112b. , Third standing wave stabilizing means 112c. Similarly, the openings 105a, 105b, 105c, and 105d are counted as the first opening 105a, the second opening 105b, the third opening 105c, and the fourth opening 105d from the terminal end 111 side. At this time, the waveguide 104 is configured so that the first standing wave stabilizing means 112a and the second standing wave stabilizing means 112b are symmetrical with respect to the center 110 in the left-right direction of the bottom surface 109 of the heating chamber 102. As a result, the antinode of the standing wave in the tube is positioned at the center 110 as shown in FIG. The first opening 105a is located at the antinode of the standing wave in the tube between the terminal end portion 111 and the first standing wave stabilizing means 112a, and the fourth opening 105d is the second standing wave stabilizing means 112b and the first standing wave stabilizing means 112b. The second standing wave 105b and the third opening 105c are located at a position where neither the antinode nor the node of the standing wave is located between the third standing wave stabilizing means 112c. become. In addition, as shown in FIG. 1, a door 116 that can be opened and closed is provided, and by closing the door 116, a microwave forms a closed space between the waveguide 104 and the heating chamber 102, and the confined microwave is always defined. It will cause standing waves.
以上の構成をもとに動作を説明する。マグネトロン103から放射されたマイクロ波は、導波管104内を伝送されて一部は開口105a,105b,105c,105dから加熱室102内に放射されるが、残りは終端部111で反射される。また加熱室は閉空間のため加熱室102内のマイクロ波の一部が逆に開口105a,105b,105c,105dから導波管104内に戻ることも少なからずあると考えられる。その結果、導波管104と加熱室102内に何らかの定在波が発生する。特に導波管104については、終端部111での反射が優位であれば管内波長λgによる定在波を生じやすいと考えられる。特に被加熱物が大量とかマイクロ波を吸収しやすい条件では、加熱室から開口105a,105b,105c,105dを通じて導波管104内に戻るマイクロ波の量が少ないので定在波が安定する。逆に被加熱物が少量とかマイクロ波を吸収しにくいなどの条件で、さらに本実施例のように開口の数が多いなどの場合は、開口105a,105b,105c,105dと加熱室102の連通により管内定在波が乱されることになり、ちょっとした被加熱物の分量や材質や置き方などの違いによっても変化するから、開口位置での管内定在波の振幅や位相が固定できず、よって各開口からの放射量が勝手に増減してコントロールできなくなる可能性がある。そのため加熱室102内に全体に均一に放射することができなくなる可能性がある。しかし本実施の形態では、導波管104内に定在波安定手
段112a,112b,112cを配置しているので、管内定在波の節位置を固定させることができ、その結果それぞれの開口位置での振幅や位相も固定できる。また開口105a,105b,105c,105dの構成により、マイクロ波は加熱室102内に円偏波として放射される。円偏波は、開口105a,105b,105c,105dを中心として周方向に電界を回転させながら放射されるもので、図2(a)に示す通り開口105a,105b,105c,105dは加熱室102の底面109に対して前後方向にも左右方向にも対称に配されているので、前後にも左右にも均等にマイクロ波が放射され、周囲に均一に放射される。
The operation will be described based on the above configuration. The microwave radiated from the magnetron 103 is transmitted through the waveguide 104, and a part thereof is radiated into the heating chamber 102 from the openings 105a, 105b, 105c, and 105d, but the rest is reflected by the terminal end 111. . In addition, since the heating chamber is a closed space, it is considered that a part of the microwave in the heating chamber 102 returns to the waveguide 104 through the openings 105a, 105b, 105c, and 105d. As a result, some standing wave is generated in the waveguide 104 and the heating chamber 102. In particular, with respect to the waveguide 104, it is considered that a standing wave with an in-tube wavelength λg is likely to occur if the reflection at the terminal end 111 is dominant. In particular, under the condition that the object to be heated is easy to absorb a large amount of microwaves, the standing wave is stabilized because the amount of microwaves returning from the heating chamber into the waveguide 104 through the openings 105a, 105b, 105c, and 105d is small. On the other hand, if the number of openings is large as in this embodiment under the condition that the object to be heated is small or difficult to absorb microwaves, the communication between the openings 105a, 105b, 105c, 105d and the heating chamber 102 is established. Will cause the standing wave in the pipe to be disturbed, and it will change depending on the amount of the heated object, the material, and the way it is placed, so the amplitude and phase of the standing wave in the pipe at the opening position cannot be fixed. Therefore, there is a possibility that the amount of radiation from each opening may increase or decrease without control. Therefore, there is a possibility that the entire heating chamber 102 cannot be radiated uniformly. However, in the present embodiment, the standing wave stabilizing means 112a, 112b, and 112c are arranged in the waveguide 104, so that the node position of the in-tube standing wave can be fixed, and as a result, the respective opening positions. The amplitude and phase at can also be fixed. In addition, the microwave is radiated into the heating chamber 102 as a circularly polarized wave by the configuration of the openings 105a, 105b, 105c, and 105d. Circularly polarized waves are radiated while rotating an electric field in the circumferential direction around the openings 105a, 105b, 105c, and 105d, and the openings 105a, 105b, 105c, and 105d are formed in the heating chamber 102 as shown in FIG. Is arranged symmetrically with respect to the bottom surface 109 in both the front-rear direction and the left-right direction, so that the microwaves are radiated equally both in the front-rear direction and in the left-right direction, and are uniformly radiated around.
ここで円偏波について説明する。円偏波は、移動通信および衛星通信の分野で広く用いられている技術であり、身近な使用例としては、ETC(Electronic Toll Collection System)「ノンストップ自動料金収受システム」などが挙げられる。円偏波は、電界の偏波面が進行方向に対して時間に応じて回転するマイクロ波であり、円偏波を形成すると電界の方向が時間に応じて変化し続けて、電界強度の大きさは変化しないという特徴を有している。この円偏波をマイクロ波加熱装置に適用すれば、従来の直線偏波によるマイクロ波加熱と比較して、被加熱物を特に円偏波の周方向に対して均一に加熱することが期待される。なお、円偏波は回転方向から右旋偏波(CW:clockwise)と左旋偏波(CCW:counter clockwise)の2種類に分類されるが、加熱の分野では特に性能に違いはない。 Here, circular polarization will be described. Circular polarization is a technology widely used in the fields of mobile communication and satellite communication. Examples of familiar use include an ETC (Electronic Toll Collection System) “non-stop automatic toll collection system” and the like. Circular polarization is a microwave in which the polarization plane of the electric field rotates with respect to the traveling direction, and when the circular polarization is formed, the direction of the electric field continues to change with time, and the magnitude of the electric field strength Has the characteristic of not changing. If this circularly polarized wave is applied to a microwave heating device, it is expected that the object to be heated will be heated evenly, particularly in the circumferential direction of the circularly polarized wave, as compared with the conventional microwave heating by linearly polarized wave. The Note that circularly polarized waves are classified into two types, ie, right-handed polarization (CW: clockwise) and left-handed polarization (CCW: counterclockwise) from the direction of rotation, but there is no particular difference in performance in the field of heating.
円偏波としては特許文献1や特許文献2のように導波管壁面の開口で構成するものや、特許文献3に示されたようなパッチアンテナで構成するものがあるが、本実施の形態の開口105a,105b,105c,105dは、特許文献1に示されたものと同様に導波管104の上面(H面)に形成して円偏波を放射するものである。 As circularly polarized waves, there are those constituted by the opening of the waveguide wall surface as in Patent Literature 1 and Patent Literature 2, and those constituted by the patch antenna as shown in Patent Literature 3, but this embodiment The openings 105a, 105b, 105c, and 105d are formed on the upper surface (H surface) of the waveguide 104 and emit circularly polarized waves in the same manner as disclosed in Patent Document 1.
円偏波はもともと通信の分野での利用が主なので、開放空間への放射を対象としていることから、反射波が戻ってこないいわゆる進行波で論じられるのが一般的である。一方、本実施の形態のマイクロ波加熱装置は、導波管104と加熱室102によって外部とは遮蔽された閉空間への放射となり、反射波が戻ってきて合成される導波管内の定在波を論じているが、開口からマイクロ波が放射される瞬間には定在波のバランスがくずれ、再び安定した定在波に戻るまでの間は進行波が発生していると考えられる。したがって、開口を円偏波放射形状とすることで、前述の円偏波の特長を利用することが可能となり、加熱室102内の加熱分布をより均一化することができる。 Since circularly polarized waves are primarily used in the field of communications, they are generally discussed in terms of so-called traveling waves that do not return reflected waves because they are intended for radiation into open spaces. On the other hand, the microwave heating apparatus according to the present embodiment emits radiation into a closed space shielded from the outside by the waveguide 104 and the heating chamber 102, and the reflected wave returns and is synthesized in the waveguide. Although the wave is discussed, it is considered that the standing wave is out of balance at the moment when the microwave is radiated from the aperture, and the traveling wave is generated until it returns to the stable standing wave again. Therefore, by making the opening have a circularly polarized radiation shape, it is possible to utilize the above-described features of circularly polarized waves, and the heating distribution in the heating chamber 102 can be made more uniform.
なお、方形の導波管104に設けた開口から円偏波を出力するためには、図2に示す例のように、幅を持ったスリット2本を中央で交差させ、マイクロ波伝送方向に対し45度傾けた形状を、導波管104のマイクロ波伝送方向の管軸108を通らない位置に配置する構成が望ましい。 In order to output circularly polarized waves from the opening provided in the rectangular waveguide 104, two slits having a width are intersected at the center as shown in the example of FIG. A configuration in which a shape inclined by 45 degrees with respect to the waveguide 104 in the microwave transmission direction of the waveguide 104 is desirably disposed at a position that does not pass through the tube axis 108 is desirable.
ここで図3を用いて導波管について説明する。図3は、本発明の実施の形態1におけるマイクロ波加熱装置に適用される導波管を説明する斜視図である。最も単純で一般的な導波管は、図3のように一定の長方形の断面(幅a、高さb)を伝送方向に伸ばした直方体からなる方形導波管で、マイクロ波の自由空間での波長をλ0としたときに、導波管の幅a(マイクロ波の波長λ0>a>λ0/2)、高さb(<λ0/2)の範囲に選ぶことにより、TE10モードでマイクロ波を伝送することが知られている。 Here, the waveguide will be described with reference to FIG. FIG. 3 is a perspective view illustrating a waveguide applied to the microwave heating apparatus according to Embodiment 1 of the present invention. The simplest and most common waveguide is a rectangular waveguide made of a rectangular parallelepiped having a certain rectangular cross section (width a, height b) extended in the transmission direction as shown in FIG. Is selected in the range of the waveguide width a (microwave wavelength λ0> a> λ0 / 2) and height b (<λ0 / 2). Is known to transmit.
TE10モードとは、導波管104内において導波管の伝送方向には磁界成分のみが存在して電界成分のない、H波(TE波;電気的横波伝送 Transverse Electric Wave)における伝送モードのことを指す。なお、TE10モード以外の伝送モードがマイクロ波加熱装置101の導波管104に適用されることは殆どない。 The TE10 mode refers to a transmission mode in an H wave (TE wave; electrical transverse wave) that has only a magnetic field component in the waveguide transmission direction in the waveguide 104 and no electric field component. Point to. Note that transmission modes other than the TE10 mode are rarely applied to the waveguide 104 of the microwave heating apparatus 101.
ここで導波管内の管内波長λgの説明に先立って、自由空間の波長λ0について説明する。自由空間の波長λ0は、一般的な電子レンジのマイクロ波の場合は約120mmとして知られている。しかし正確には自由空間の波長λ0は、λ0 = c/fで求まり、cは速度で光の速度3.0*10^8[m/s]で一定であるものの、fは周波数で2.4〜2.5[GHz](ISMバンド)の幅がある。マグネトロンは、ばらつきや負荷条件によって発振周波数fが変化するので、結局は自由空間の波長λ0も変化し、最小120[mm](2.5GHz時)から最大125[mm](2.4GHz時)まで変化する。 Prior to the description of the guide wavelength λg in the waveguide, the free space wavelength λ0 will be described. The wavelength λ0 in free space is known as about 120 mm in the case of a microwave in a general microwave oven. However, to be precise, the wavelength λ0 of the free space is obtained by λ0 = c / f, and c is a speed and constant at the speed of light 3.0 * 10 ^ 8 [m / s], but f is a frequency of 2. There is a width of 4 to 2.5 [GHz] (ISM band). Since the oscillation frequency f of the magnetron changes depending on variations and load conditions, the wavelength λ0 of the free space also changes eventually, from a minimum of 120 [mm] (at 2.5 GHz) to a maximum of 125 [mm] (at 2.4 GHz). Change to.
導波管の話に戻ると、自由空間の波長λ0の範囲も考慮して、一般的には導波管の幅aを80〜100mm、高さbを15〜40mm程度に選ぶことが多い。このとき図4の上下の幅広面を磁界が平行に渦巻く面という意味でH面126と呼び、左右の幅狭面を電界に平行な面という意味でE面127と呼ぶ。ちなみにマイクロ波が導波管内を伝送されるときの波長は、管内波長λgとしてあらわされ、λg=λ0/√(1−(λ0/(2×a))^2)となり、導波管の幅a寸法によって変化するが、高さb寸法には無関係に決まる。ちなみにTE10モードでは、導波管の幅方向の両端(E面)127で電界が0、幅方向の中央で電界が最大となる。よってマグネトロン103は電界が最大となる導波管の幅方向の中央(図2で示した管軸108上)に結合させる構成となる。 Returning to the description of the waveguide, in consideration of the range of the wavelength λ0 in free space, the width a of the waveguide is generally selected to be 80 to 100 mm and the height b is often set to about 15 to 40 mm. At this time, the upper and lower wide surfaces in FIG. 4 are referred to as the H surface 126 in the sense that the magnetic field vortexes in parallel, and the left and right narrow surfaces are referred to as the E surface 127 in the sense that they are parallel to the electric field. Incidentally, the wavelength when the microwave is transmitted through the waveguide is expressed as the waveguide wavelength λg and becomes λg = λ0 / √ (1- (λ0 / (2 × a)) ^ 2), and the width of the waveguide It varies depending on the dimension a, but is determined regardless of the height b. Incidentally, in the TE10 mode, the electric field is zero at both ends (E plane) 127 in the width direction of the waveguide, and the electric field is maximum at the center in the width direction. Therefore, the magnetron 103 is coupled to the center in the width direction of the waveguide (on the tube axis 108 shown in FIG. 2) where the electric field is maximum.
ちなみに本実施の形態の開口105a,105b,105c,105dは、図2(a)のように、長孔を直交させてX字状を為す開口で、導波管104のH面の中央(管軸)108から片側に偏らせて配置することで円偏波を発生できる形状であり、H面のどちらに寄せるかで電界の回転方向が異なり、右旋偏波か左旋偏波に分かれることになる。 Incidentally, the openings 105a, 105b, 105c, and 105d in the present embodiment are X-shaped openings with the long holes orthogonal to each other as shown in FIG. It is a shape that can generate circularly polarized waves by being offset from one axis) to one side, and the direction of rotation of the electric field differs depending on which of the H planes is approached, and is divided into right-handed polarized waves or left-handed polarized waves Become.
以下、円偏波を放射するX字状の開口の特徴について説明する。図4はシミュレーション結果である。シミュレーションなので実際とは異なり、加熱室128の壁面をすべて放射境界(マイクロ波が反射しない境界条件)とし、開口129が1つだけの簡単な構成で、導波管130の終端部131も放射境界(マイクロ波が反射しない境界条件)としたものである。図4(a)は上から見たモデル形状、図4(b)は解析結果であり上から見た加熱室内の電界強度のコンタ図である。図4(b)を見ると、円偏波らしく電界が渦を巻いており、開口129を中心として導波管130の伝送方向132(紙面の左右方向)、導波管の幅方向133(紙面の上下方向)とも均等な電界分布を発生すると思われる。 Hereinafter, characteristics of the X-shaped opening that radiates circularly polarized waves will be described. FIG. 4 shows the simulation result. Since it is a simulation, unlike the actual case, the wall surface of the heating chamber 128 is all set as a radiation boundary (boundary condition in which microwaves are not reflected), and the end portion 131 of the waveguide 130 is also a radiation boundary with a simple configuration having only one opening 129. (Boundary conditions where microwaves are not reflected). FIG. 4A is a model shape seen from above, and FIG. 4B is a contour diagram of the electric field strength in the heating chamber seen from above, showing the analysis result. As shown in FIG. 4B, the electric field is swirled like circularly polarized waves, and the transmission direction 132 (left and right direction of the paper) of the waveguide 130 around the opening 129 and the width direction 133 of the waveguide (paper surface). It seems that a uniform electric field distribution is generated in the vertical direction).
ここで、開放空間の通信分野と閉空間の加熱の分野では、いくつか異なる点があるので説明を加える。通信分野では、他のマイクロ波との混在を避けて必要な情報のみを送受信したいから、送信側は右旋偏波か左旋偏波のどちらかに限定して送信し、受信側もそれに合わせた最適な受信アンテナを選ぶことになる。一方、加熱の分野では、指向性を有する受信アンテナの代わりに特に指向性のない食品などの被加熱物がマイクロ波を受けるので、マイクロ波が被加熱物全体に均等に当たることのみが重要となる。よって加熱の分野では右旋偏波と左旋偏波が混在しても問題はないが、逆に被加熱物の置き位置や形状によって不均等な分布になるのをできるだけ防ぐ必要がある。たとえば図4のように単一の開口129だけしかない場合、被加熱物を開口129の真上に置くと良いが、前後あるいは左右にずらして置くと、どうしても開口129に近い部位が加熱されやすく、遠い部位は加熱されにくく、結果として加熱ムラが生じてしまう。よって円偏波開口を複数にするほうが望ましい。本実施の形態では、図2のように、八つの開口105a,105b,105c,105dを加熱室に対称にバランスよく配置しているのは前述の通りである。 Here, there are some differences between the open space communication field and the closed space heating field, so a description will be added. In the communication field, we want to send and receive only the necessary information while avoiding mixing with other microwaves, so the transmitting side is limited to either right-handed polarization or left-handed polarization, and the receiving side also adjusts accordingly. The optimum receiving antenna will be selected. On the other hand, in the field of heating, an object to be heated such as food with no directivity is subjected to microwaves instead of a receiving antenna having directivity, so that it is only important that the microwaves uniformly strike the entire object to be heated. . Therefore, in the field of heating, there is no problem even if right-handed polarization and left-handed polarization are mixed, but conversely, it is necessary to prevent uneven distribution as much as possible depending on the position and shape of the object to be heated. For example, when there is only a single opening 129 as shown in FIG. 4, it is better to place the object to be heated directly above the opening 129. However, if the object to be heated is shifted back and forth or left and right, the part close to the opening 129 is easily heated. , Distant parts are difficult to be heated, resulting in uneven heating. Therefore, it is desirable to have a plurality of circularly polarized apertures. In the present embodiment, as shown in FIG. 2, the eight openings 105a, 105b, 105c, and 105d are arranged symmetrically and in a balanced manner in the heating chamber as described above.
ここで図5、図6を用いて定在波安定手段について説明する。 Here, the standing wave stabilizing means will be described with reference to FIGS.
図5は図3で説明した導波管104に、定在波安定手段134,135を配置したもの
である。定在波安定手段134,135は円筒形状でアルミやステンレスなどの導電性材料からなり、導波管104のH面126の幅方向の中央に溶接あるいはビス留め等により接続固定されるものである。このような構成の定在波安定手段134,135は、導波管104内の突出部としてマイクロ波の伝送を一部妨げるものと思われるが、結果として、定在波安定手段134,135の位置で定在波の節になりやすいとわかってきた。よって逆に、定在波の節にしたい位置に定在波安定手段134,135のような突出部を設けることで、定在波の位置を変化させず安定させる効果がある。この定在波安定手段134,135の構成は、いわゆる整合素子として知られるスタブチューナーなどとよく似た構成であり、形(特に高さ)と位置を微調整することで、定在波の節を確定させつつ整合もできるというような、二つの機能を併せ持つことも可能と思われる。図5では定在波安定手段134のほうが定在波安定手段135よりも高さが高い例を示しているが、特に限定されるものではなく形状については適宜最適化すればよい。また図5では、定在波安定手段134,135の距離を、管内波長λgを用いて(λg/2)×nとし、nは整数とすることで、二か所に節を作ることができ、特に定在波安定手段134,135の間にはきれいな定在波が存在する。たとえばn=1では、定在波安定手段134,135が節で両者の中央が腹となり、n=2では、定在波安定手段134,135が節で両者の中央も節となる。よってnを整数とすれば定在波安定手段134,135の間にきれいな定在波をたてることができる。
FIG. 5 shows a structure in which standing wave stabilizing means 134 and 135 are arranged in the waveguide 104 described with reference to FIG. The standing wave stabilizing means 134 and 135 are cylindrical and made of a conductive material such as aluminum or stainless steel, and are connected and fixed to the center in the width direction of the H surface 126 of the waveguide 104 by welding or screwing. . The standing wave stabilizing means 134 and 135 having such a configuration is considered to partially prevent transmission of microwaves as a protruding portion in the waveguide 104, but as a result, the standing wave stabilizing means 134 and 135. It has been found that it is easy to become a standing wave node at a position. Therefore, conversely, by providing the protruding portions such as the standing wave stabilizing means 134 and 135 at the position where the standing wave is desired, there is an effect of stabilizing the standing wave without changing the position. The structures of the standing wave stabilizing means 134 and 135 are similar to those of a stub tuner known as a so-called matching element, and by adjusting the shape (particularly the height) and the position, the node of the standing wave can be adjusted. It seems that it is possible to have two functions that can be matched while confirming. FIG. 5 shows an example in which the standing wave stabilizing means 134 is higher in height than the standing wave stabilizing means 135, but there is no particular limitation and the shape may be optimized as appropriate. In FIG. 5, the distance between the standing wave stabilizing means 134 and 135 is (λg / 2) × n using the in-tube wavelength λg, and n is an integer, so that nodes can be created in two places. In particular, a clean standing wave exists between the standing wave stabilizing means 134 and 135. For example, when n = 1, the standing wave stabilizing means 134 and 135 are nodes and the center of both is antinode, and when n = 2, the standing wave stabilizing means 134 and 135 is a node and the center of both is also a node. Therefore, if n is an integer, a beautiful standing wave can be created between the standing wave stabilizing means 134 and 135.
図6は他の定在波安定手段の例で、別部品ではなく導波管104のH面をプレス等によりしぼって導波管104の内部に突出させた半球状の定在波安定手段136の構成例である。この場合は定在波安定手段を導波管材料そのもので形成できるので、図5の例と比べて定在波安定用の別部品を不要とできる効果がある。 FIG. 6 shows an example of another standing wave stabilizing means, not a separate component, but a hemispherical standing wave stabilizing means 136 in which the H surface of the waveguide 104 is squeezed by a press or the like and protruded into the waveguide 104. This is an example of the configuration. In this case, since the standing wave stabilizing means can be formed of the waveguide material itself, there is an effect that a separate component for stabilizing the standing wave is not required as compared with the example of FIG.
ここで図7〜図9を用いて、本発明の構成により、隣接するマイクロ波放射部の間が弱くなるようないわゆる干渉による打消し合いを防ぐ効果について説明する。 Here, with reference to FIGS. 7 to 9, the effect of preventing cancellation by so-called interference that weakens between adjacent microwave radiation portions by the configuration of the present invention will be described.
図7は本発明と比較するための別の形態のマイクロ波加熱装置(六つの開口、λg/2ピッチで配置)の断面図であり、(a)平面断面図、(b)正面断面図である。本実施の形態(図2、八つの開口、λg/3ピッチで配置)と大きく異なるのは、六つの開口137a,137b,137cを導波管の伝送方向に管内波長λgの1/2の距離で配置していることである。当初の思惑として、管内波長λgの1/2の距離で配置するとすべての開口が管内定在波の同じ大きさの位置(向きはλg/2ごとに反転)に位置するので同じ量のマイクロ波を放射できるだろうから、もっとも均一に加熱できると思っていたが、実際はそうではなかった。 FIG. 7 is a cross-sectional view of another form of microwave heating apparatus (six openings, arranged at λg / 2 pitch) for comparison with the present invention, (a) a plan cross-sectional view, and (b) a front cross-sectional view. is there. The main difference from the present embodiment (FIG. 2, eight openings, arranged at λg / 3 pitch) is that the six openings 137a, 137b, 137c are ½ the guide wavelength λg in the transmission direction of the waveguide. It is that it is arranged in. As an initial speculation, if the apertures are arranged at a distance of ½ of the guide wavelength λg, all the apertures are located at the same position of the standing wave in the guide (the direction is inverted every λg / 2), so the same amount of microwaves I thought it would be able to heat the most evenly, but that was not the case.
図8は本発明の実施の形態(八つの開口、λg/3ピッチで配置)と別の形態(六つの開口、λg/2ピッチで配置)の特性の違いを説明する図である。(a)本発明とは別の形態(六つの開口、λg/2ピッチで配置)で食品(冷凍ピラフ)を加熱したときの温度分布図、(b)同、加熱むらの模式図、(c)本発明の実施の形態(八つの開口、λg/3ピッチで配置)で食品(冷凍ピラフ)を加熱したときの温度分布図、(d)同、加熱むらの模式図である。(a)(c)はそれぞれの構成で冷凍ピラフを一定時間加熱したあとにサーモビュアで上から表面温度を測定したもので、(a)別の形態(六つの開口、λg/2ピッチで配置)の方が紙面の上下方向(ピラフの前後方向)に未加熱の領域138が多く残っているが、(c)本発明の実施の形態(八つの開口、λg/3ピッチで配置)ではさほどではなくかなり均一化されている。これを模式的に表すと(b)(d)のように見えるし、明らかに本発明の実施の形態(八つの開口、λg/3ピッチで配置)の方が別の形態(六つの開口、λg/2ピッチで配置)よりも分布が良いと言える。 FIG. 8 is a diagram for explaining the difference in characteristics between the embodiment of the present invention (eight openings, arranged at λg / 3 pitch) and another form (six openings, arranged at λg / 2 pitch). (A) Temperature distribution diagram when food (frozen pilaf) is heated in a form different from the present invention (six openings, arranged at λg / 2 pitch), (b) Schematic diagram of uneven heating, (c) ) Temperature distribution when food (frozen pilaf) is heated in the embodiment of the present invention (eight openings, arranged at λg / 3 pitch), (d) is a schematic diagram of uneven heating. (A) (c) is a measurement of the surface temperature from the top with a thermoviewer after heating the frozen pilaf for a certain time in each configuration. (A) Another form (six openings, arranged at λg / 2 pitch) However, in the embodiment of the present invention (arranged at eight openings, λg / 3 pitch), the area 138 is more unheated in the vertical direction of the paper (the front-back direction of the pilaf). It is fairly uniform. This is schematically represented as (b) and (d), and clearly the embodiment of the present invention (eight openings, arranged at λg / 3 pitch) is another form (six openings, It can be said that the distribution is better than that at the λg / 2 pitch.
この原因を調べるため、電磁界解析を行った。図9は隣接する開口139a,139b
間のピッチPによる特性の違いを説明するものであり、(a)電磁界解析のモデルイメージ図、(b)P=λg/2での解析結果のコンタ図(図8の別の形態に相当)、(c)P=λg/3での解析結果のコンタ図(図8の本発明の実施の形態に相当)である。(b)ではやはり開口139a,139bの間が弱いらしく、特に開口から紙面の上下方向に離れるにしたがって互いに反対方向に拡散していくように見える。一方(c)では開口139a,139bのピッチがλg/3と狭いにも関わらず、(b)ほどの干渉は見られないどころか一体化(図9(c)で開口間が繋がっているように見える)して放射されているようである。よって単に距離が近いから干渉するのではなく、管内定在波の位相との関係で干渉していると考えられる。この理由を考察すると、ピッチがλg/2では、開口139a,139bが管内定在波の同じ大きさの位置ではあるものの向きが逆向きの位置であるために、間が弱くなるような干渉(打ち消しあい)が起こっていると考えられる。一方ピッチがλg/3では、開口139a,139bが逆向きの位置ではないために、間が弱くなるような干渉(打ち消しあい)が起こらないと考えられる。
In order to investigate this cause, an electromagnetic field analysis was performed. FIG. 9 shows adjacent openings 139a and 139b.
The difference in the characteristics due to the pitch P between the two is described. (A) Model image diagram of electromagnetic field analysis, (b) Contour diagram of the analysis result at P = λg / 2 (corresponding to another form of FIG. 8) (C) is a contour diagram of the analysis result at P = λg / 3 (corresponding to the embodiment of the present invention in FIG. 8). In (b), it seems that the space between the openings 139a and 139b is weak, and in particular, it seems to diffuse in opposite directions as the distance from the opening increases in the vertical direction of the drawing. On the other hand, in (c), although the pitch of the openings 139a and 139b is as narrow as λg / 3, the interference is not seen as much as in (b), but integrated (as shown in FIG. 9 (c), the openings are connected). It seems to be emitted. Therefore, it is considered that the interference does not occur simply because the distance is short, but is related to the phase of the standing wave in the tube. Considering this reason, when the pitch is λg / 2, the apertures 139a and 139b are positions of the same magnitude of the standing wave in the tube, but the direction is the opposite direction, so that the interference (such as weakening) It is thought that cancellations have occurred. On the other hand, when the pitch is λg / 3, since the openings 139a and 139b are not in opposite positions, it is considered that interference (cancellation) that weakens the gap does not occur.
以下に、本実施の形態における作用、効果を説明する。 Below, the operation and effect of the present embodiment will be described.
本実施の形態の電子レンジ101は、被加熱物を収納する加熱室102と、マイクロ波を発生させるマイクロ波発生手段としてのマグネトロン103と、マイクロ波を伝送する導波管104と、導波管104から加熱室102内にマイクロ波を放射する複数のマイクロ波放射部としての開口105a,105b,105c,105dを有し、導波管104内には定在波を生じ、複数の開口105a,105b,105c,105dは、導波管104の伝送方向に管内波長の1/4を超えて1/2に満たない間隔で配置する構成としている。これにより、一般に導波管内の定在波は伝送方向に管内波長の1/2毎に腹(最大の振幅を生じる部位)や節(振幅をほとんど生じない部位)を繰り返し、管内波長の1/2だけ離れた二か所を比較すると振幅が同じで逆向きの波が生じる逆位相の関係となるが、本発明では複数の開口105a,105b,105c,105dを管内波長の1/4を超えて1/2に満たない間隔で配置することで、隣接する開口に対向する定在波は逆位相の関係(管内波長の略1/2の奇数倍の間隔)にはならないので、その結果、隣接する開口から加熱室102内に向けて放射されるマイクロ波も逆位相にならず、互いの開口の間が弱くなるようないわゆる干渉による打消し合いを防ぐことができ、複数の開口105a,105b,105c,105dを並べるだけで駆動部を用いなくても加熱室102内の被加熱物を均一に加熱することができる。 A microwave oven 101 according to this embodiment includes a heating chamber 102 that stores an object to be heated, a magnetron 103 that serves as a microwave generation unit that generates microwaves, a waveguide 104 that transmits microwaves, and a waveguide 104 has openings 105a, 105b, 105c, and 105d as microwave radiating portions that radiate microwaves into the heating chamber 102. A standing wave is generated in the waveguide 104, and a plurality of openings 105a, 105b, 105c and 105d are arranged in the transmission direction of the waveguide 104 at intervals exceeding 1/4 of the in-tube wavelength and less than 1/2. As a result, in general, the standing wave in the waveguide repeats antinodes (sites that generate the maximum amplitude) and nodes (sites that generate little amplitude) every 1/2 of the guide wavelength in the transmission direction. Comparing two places separated by 2 gives the opposite phase relationship in which the amplitude is the same and a reverse wave is generated. However, in the present invention, the plurality of apertures 105a, 105b, 105c, and 105d exceed 1/4 of the guide wavelength. Therefore, the standing wave facing the adjacent aperture does not have an antiphase relationship (an interval that is an odd multiple of approximately ½ of the guide wavelength). The microwaves radiated from the adjacent openings into the heating chamber 102 are not out of phase, so that canceling by so-called interference that weakens between the openings can be prevented. 105b, 105c, 105d Bell can also uniformly heat the object to be heated in the heating chamber 102 without using only the drive unit.
また、本実施の形態の電子レンジ101は、複数の開口105a,105b,105c,105dは、伝送方向に管内波長の略1/3の間隔で配置する構成としている。これにより、確実に第一の発明の効果が得られる。即ち、本発明では複数の開口105a,105b,105c,105dを管内波長の略1/3の間隔で配置することで、隣接する開口に対向する定在波は逆位相の関係(管内波長の略1/2の奇数倍の間隔)にはならないので、その結果、隣接する開口から加熱室102内に向けて放射されるマイクロ波も逆位相にならず、互いの開口の間が弱くなるようないわゆる干渉による打消し合いを防ぐことができ、複数の開口105a,105b,105c,105dを並べるだけで駆動部を用いなくても加熱室102内の被加熱物を均一に加熱することができる。さらに第一の発明では隣接しない離れた二つの開口に着目したときには逆位相の関係になる恐れがあり、それは距離が離れているので可能性は低いとはいうものの打消し合う危険性が残る。一方、第二の発明では、たとえ隣接しないどんなに離れた開口間の間隔を見てもどこにも逆位相の関係は存在せず、絶対に打消し合わないようにできる。なぜならば、開口が四つ以上ある場合、一つ目と二つ目の間隔はλg/3、一つ目と三つ目の間隔は2λg/3、一つ目と四つ目の間隔はλgとなり丁度一波長分の間隔となって、四つ目は一つ目と完全に同じ位相に戻ることになり、以降は同様の位相関係を繰り返すからである。よってどこにも管内波長の略1/2の奇数倍の間隔は起こらない。 In addition, the microwave oven 101 according to the present embodiment is configured such that the plurality of openings 105a, 105b, 105c, and 105d are arranged at intervals of about 1/3 of the guide wavelength in the transmission direction. Thereby, the effect of the first invention can be obtained with certainty. That is, in the present invention, the plurality of openings 105a, 105b, 105c, and 105d are arranged at an interval of approximately 1/3 of the guide wavelength, so that the standing wave that faces the adjacent openings has an antiphase relationship (approximate guide wavelength). As a result, the microwaves radiated from the adjacent openings into the heating chamber 102 are not out of phase, and the space between the openings becomes weak. Cancellation due to so-called interference can be prevented, and the object to be heated in the heating chamber 102 can be heated uniformly without using a driving unit by arranging a plurality of openings 105a, 105b, 105c, and 105d. Furthermore, in the first invention, when attention is paid to two distant openings that are not adjacent to each other, there is a risk of an antiphase relationship, and although there is a possibility that the possibility is low because the distance is far away, there remains a risk of canceling each other. On the other hand, in the second invention, no matter what the distance between the openings that are not adjacent to each other is seen, there is no anti-phase relationship anywhere, and it is possible to absolutely cancel each other. This is because when there are four or more openings, the first and second intervals are λg / 3, the first and third intervals are 2λg / 3, and the first and fourth intervals are λg. This is because the interval is exactly one wavelength, and the fourth phase returns to the same phase as the first one, and thereafter the same phase relationship is repeated. Therefore, no interval that is an odd multiple of approximately ½ of the guide wavelength occurs anywhere.
また、本実施の形態の電子レンジ101は、導波管104内の定在波位置を安定させるための定在波安定手段112a,112b,112cを有する構成としている。これにより、一般に開口が増えると導波管104内のマイクロ波が外部へ放射されやすくなり、マイクロ波が次々と放射されることで導波管104内の定在波を維持しにくくなり定在波の状態が不安定になっていき、その結果それぞれの開口に対向するマイクロ波の位相が狙いの位相からシフトしてしまうことが考えられるが、定在波安定手段112a,112b,112cを有することで定在波の乱れを抑制し、複数の開口105a,105b,105c,105dに狙い通りの位相で定在波を対向させることができ、それぞれの開口105a,105b,105c,105dから狙い通りの位相のマイクロ波を加熱室102内に向けて放射させることができるため、複数の開口105a,105b,105c,105dを並べるだけで駆動部を用いなくても加熱室102内の被加熱物を均一に加熱することができる。 Further, the microwave oven 101 of the present embodiment is configured to have standing wave stabilizing means 112a, 112b, and 112c for stabilizing the standing wave position in the waveguide 104. As a result, generally, when the number of openings increases, the microwave in the waveguide 104 is easily radiated to the outside, and the standing waves in the waveguide 104 are difficult to maintain due to the microwaves being radiated one after another. The state of the wave becomes unstable, and as a result, the phase of the microwaves facing the respective openings may shift from the target phase. However, the standing wave stabilizing means 112a, 112b, and 112c are provided. Thus, the disturbance of the standing wave can be suppressed, and the standing wave can be opposed to the plurality of openings 105a, 105b, 105c, and 105d with the aimed phase, and each opening 105a, 105b, 105c, and 105d is aimed as intended. Can be radiated toward the inside of the heating chamber 102, so that the plurality of openings 105a, 105b, 105c, and 105d can be simply arranged. Part of it is also possible to uniformly heat an object to be heated in the heating chamber 102 without using.
また、本実施の形態の電子レンジ101は、定在波安定手段112a,112b,112cは、導波管104内に定在波の節を生じさせる構成とし、導波管104の終端部111まで伝送方向に管内波長λgの略1/2の整数倍の距離に配置する構成としている。これにより、元々導波管104の終端部111は常に電界が0のため定在波の節になるのに加えて、管内定在波が生じるときには終端部111から管内波長の1/2の整数倍毎に節を繰り返すはずであるが、定在波安定手段112a,112b,112cを導波管104の終端部111から管内波長λgの略1/2の整数倍の距離に配置することで確実に節を形成させることができ、定在波の乱れを抑制し、複数の開口105a,105b,105c,105dに狙い通りの位相で定在波を対向させることができ、それぞれの開口105a,105b,105c,105dから狙い通りの位相のマイクロ波を加熱室102内に向けて放射させることができるため、複数の開口105a,105b,105c,105dを並べるだけで駆動部を用いなくても加熱室102内の被加熱物を均一に加熱することができる。 Further, in the microwave oven 101 of the present embodiment, the standing wave stabilizing means 112 a, 112 b, and 112 c are configured to generate a standing wave node in the waveguide 104, up to the terminal end 111 of the waveguide 104. It is configured to be arranged at a distance that is an integral multiple of approximately ½ of the guide wavelength λg in the transmission direction. As a result, the end portion 111 of the waveguide 104 originally becomes a node of a standing wave because the electric field is always 0, and in addition, when an in-tube standing wave is generated, an integer of 1/2 of the in-tube wavelength from the end portion 111 is generated. The node should be repeated every time, but the standing wave stabilizing means 112a, 112b, and 112c are reliably disposed at a distance that is an integral multiple of approximately ½ of the guide wavelength λg from the terminal end 111 of the waveguide 104. Knots can be formed, the disturbance of the standing wave can be suppressed, and the standing waves can be opposed to the plurality of openings 105a, 105b, 105c, and 105d in the intended phase. , 105c, 105d can radiate microwaves of the intended phase toward the inside of the heating chamber 102, so that the drive unit can be moved only by arranging a plurality of openings 105a, 105b, 105c, 105d. Or without it can be uniformly heat the object to be heated in the heating chamber 102.
また、本実施の形態の電子レンジ101は、定在波安定手段112a,112b,112cは複数とし、伝送方向に管内波長λgの略1/2の間隔で配置する構成としている。これにより、一般に管内定在波が生じるときには管内波長λgの1/2の整数倍毎に同じ振幅が繰り返されるはずであるが、定在波安定手段112a,112b,112cを複数として伝送方向に管内波長の略1/2の整数倍の間隔で配置することで確実に管内定在波の周期性を持たせることができ、定在波の乱れを抑制し、複数の開口105a,105b,105c,105dに狙い通りの位相で定在波を対向させることができ、それぞれの開口105a,105b,105c,105dから狙い通りの位相のマイクロ波を加熱室102内に向けて放射させることができるため、複数の開口105a,105b,105c,105dを並べるだけで駆動部を用いなくても加熱室102内の被加熱物を均一に加熱することができる。 In addition, the microwave oven 101 according to the present embodiment has a configuration in which a plurality of standing wave stabilizing means 112a, 112b, and 112c are provided and arranged in the transmission direction at intervals of approximately ½ of the guide wavelength λg. As a result, in general, when a standing wave in the tube is generated, the same amplitude should be repeated every integral multiple of ½ of the wavelength λg in the tube. However, a plurality of standing wave stabilizing means 112a, 112b, and 112c are used in the transmission direction. Arranging at intervals of an integer multiple of approximately half of the wavelength can ensure the periodicity of the standing wave in the tube, suppress the disturbance of the standing wave, and provide a plurality of openings 105a, 105b, 105c, Since the standing wave can be opposed to the target phase at 105d, and the microwave with the target phase can be radiated from the respective openings 105a, 105b, 105c, and 105d toward the heating chamber 102, By simply arranging a plurality of openings 105a, 105b, 105c, and 105d, the object to be heated in the heating chamber 102 can be uniformly heated without using a driving unit.
また、本実施の形態の電子レンジ101は、伝送方向に管内波長λgの略1/2の間隔で配置した少なくとも二つの定在波安定手段(導波管の終端部側から数えて第一の定在波安定手段112a、第二の定在波安定手段112b)と、伝送方向に管内波長の略1/3の間隔で配置した少なくとも四つのマイクロ波放射部(導波管の終端部側から数えて第一の開口105a、第二の開口105b、第三の開口105c、第四の開口105d)を有し、第一の定在波安定手段112aと第二の定在波安定手段112bの間に第二の開口105b、第三の開口105cを配置する構成としている。これにより、管内波長λgの略1/2の間隔でそれぞれ節を生じさせる二つの定在波安定手段(第一の定在波安定手段112a、第二の定在波安定手段112b)の丁度中央には一つの腹が生じる。また同じ二つの定在波安定手段(第一の定在波安定手段112a、第二の定在波安定手段112b)
の間に管内波長の略1/3の間隔の二つのマイクロ波放射部(第二の開口105b、第三の開口105c)を配置するから、二つのマイクロ波放射部(第二の開口105b、第三の開口105c)は節でもなく腹でもない位相にそれぞれ配置されることになるが、どちらかと言えば節に近くなる。なぜならば二つのマイクロ波放射部(第二の開口105b、第三の開口105c)を二つの定在波安定手段(第一の定在波安定手段112a、第二の定在波安定手段112b)に対して均等(センター振り分け)に配置したと仮定すると、開口から節までの距離は((管内波長の略1/2)−(管内波長の略1/3))/2≒管内波長の1/12となり、開口から腹までの距離は(管内波長の略1/3)/2≒管内波長の1/6となり、腹までの距離よりも節までの距離のほうが半分くらいに近い距離になる。一方、同様に計算すると、第一の開口105aと第四の開口105dはほぼ同位相の腹になる。なぜならば、たとえば第一の定在波安定手段112aによる節位置を基準に考えると、第二の開口105bから基準の節までは管内波長の1/12と先ほど求めた通りであり、第二の開口105bから第一の開口105aまでは管内波長の1/3であることから、基準の節から第一の開口105aまでは(管内波長の略1/3)−(管内波長の略1/12)≒管内波長の1/4となり、基準の節からみてこれは丁度腹となる位置関係である。また同様に第四の開口105dも腹になり、特に第一の開口105aと第四の開口105dの距離は、管内波長の略1/3×3≒管内波長、であるから両者は同位相になる。以上により、第二の開口105bと第三の開口105cはいずれも節に近く、第一の開口105aと第四の開口105dは同位相でいずれも腹に近く、四つの開口105a,105b,105c,105dをこれらのセンターから見て、伝送方向に対称な位相関係にでき、その結果伝送方向に均等に放射できる可能性を高めることができる。
In addition, the microwave oven 101 of the present embodiment has at least two standing wave stabilizing means (first counting from the terminal end side of the waveguide) arranged in the transmission direction at an interval of about ½ of the guide wavelength λg. The standing wave stabilizing means 112a and the second standing wave stabilizing means 112b) and at least four microwave radiating portions (from the end of the waveguide) arranged in the transmission direction at an interval of about 1/3 of the guide wavelength. 1st opening 105a, 2nd opening 105b, 3rd opening 105c, and 4th opening 105d), and it has 1st standing wave stabilization means 112a and 2nd standing wave stabilization means 112b. The second opening 105b and the third opening 105c are arranged between them. As a result, the center of the two standing wave stabilizing means (the first standing wave stabilizing means 112a and the second standing wave stabilizing means 112b) that respectively generate nodes at intervals of approximately ½ of the guide wavelength λg. Produces one belly. The same two standing wave stabilizing means (first standing wave stabilizing means 112a, second standing wave stabilizing means 112b)
Since two microwave radiating portions (second opening 105b, third opening 105c) having an interval of approximately 1/3 of the guide wavelength are disposed between the two microwave radiating portions (second opening 105b, The third openings 105c) are arranged in phases that are neither nodes nor antinodes, but are rather close to nodes. This is because two microwave radiating portions (second opening 105b and third opening 105c) are replaced with two standing wave stabilizing means (first standing wave stabilizing means 112a and second standing wave stabilizing means 112b). As a result, the distance from the opening to the node is ((approximately half of the guide wavelength) − (approximately one third of the guide wavelength)) / 2≈1 of the guide wavelength. / 12, the distance from the opening to the belly is (approximately 1/3 of the wavelength in the tube) / 2≈ 1/6 of the wavelength in the tube, and the distance to the node is closer to half the distance than the distance to the belly . On the other hand, when calculated in the same manner, the first opening 105a and the fourth opening 105d are antinodes having substantially the same phase. This is because, for example, considering the position of the node by the first standing wave stabilizing means 112a as a reference, the distance from the second opening 105b to the reference node is 1/12 of the guide wavelength, as previously determined. Since the aperture 105b to the first aperture 105a is 1/3 of the guide wavelength, the reference node to the first aperture 105a is (approximately 1/3 of the guide wavelength)-(approximately 1/12 of the guide wavelength). ) ≈¼ of the in-tube wavelength, and this is a positional relationship that is exactly antinode when viewed from the reference node. Similarly, the fourth opening 105d becomes antinode, and in particular, the distance between the first opening 105a and the fourth opening 105d is approximately 1/3 × 3 of the in-tube wavelength, so that they are in phase. Become. As described above, the second opening 105b and the third opening 105c are both close to a node, the first opening 105a and the fourth opening 105d are both in the same phase and close to a belly, and the four openings 105a, 105b, and 105c. , 105d viewed from these centers, the phase relationship can be symmetric in the transmission direction, and as a result, the possibility of even radiation in the transmission direction can be increased.
また、本実施の形態の電子レンジ101は、第二の定在波安定手段112bから伝送方向に管内波長λgの略1/2の間隔で配置した第三の定在波安定手段112cを有し、導波管104の終端部111と第一の定在波安定手段112aとの間に第一の開口105aを配置し、第二の定在波安定手段112bと第三の定在波安定手段112cの間に第四の開口105dを配置する構成としている。これにより、いずれも節となる導波管104の終端部111と第一の定在波安定手段112aとの間に第一の開口105aを配置することで、第一の開口105aをより確実に腹にできるとともに、伝送方向に管内波長λgの略1/2の間隔で配置した第二の定在波安定手段112bと第三の定在波安定手段112cの間に第四の開口105dを配置することで、第四の開口105dもより確実に腹にできるので、確実に第6の発明の効果が得られる。 In addition, the microwave oven 101 of the present embodiment includes third standing wave stabilizing means 112c arranged at intervals of about ½ of the guide wavelength λg in the transmission direction from the second standing wave stabilizing means 112b. The first opening 105a is disposed between the terminal end 111 of the waveguide 104 and the first standing wave stabilizing means 112a, and the second standing wave stabilizing means 112b and the third standing wave stabilizing means are arranged. The fourth opening 105d is arranged between the 112c. As a result, the first opening 105a is more reliably arranged by disposing the first opening 105a between the terminal portion 111 of the waveguide 104, which is a node, and the first standing wave stabilizing means 112a. A fourth opening 105d is arranged between the second standing wave stabilizing means 112b and the third standing wave stabilizing means 112c arranged in the transmission direction at intervals of about ½ of the guide wavelength λg. By doing so, the fourth opening 105d can also be made more reliably, so that the effect of the sixth invention can be obtained with certainty.
また、本実施の形態の電子レンジ101は、第一の開口105aと第四の開口105dを管内定在波の略腹の位置に配置し、第二の開口105bと第三の開口105cを管内定在波の腹にも節にもならない位置に配置する構成としている。これにより、四つの開口105a,105b,105c,105dの位相をある程度特定できるので、より確実に第6の発明、第7の発明の効果を得ることができる。 Further, in the microwave oven 101 of the present embodiment, the first opening 105a and the fourth opening 105d are arranged at substantially the antinode position of the standing wave in the pipe, and the second opening 105b and the third opening 105c are arranged in the tube. The arrangement is such that it does not become an antinode or node of the standing wave. As a result, the phases of the four openings 105a, 105b, 105c, and 105d can be specified to some extent, so that the effects of the sixth invention and the seventh invention can be obtained more reliably.
また、本実施の形態の電子レンジ101は、複数の開口105a,105b,105c,105dは、導波管104の幅方向の中央(管軸108)にかからない開口で構成し、管軸の少なくとも片側に配置する構成としている。これにより、導波管104の幅方向については、最も一般的なTE10モードの導波管104において、導波管104の幅方向の中央(管軸108)で電界が最大、かつ両端で電界が0となり、もし開口が管軸108を横切ると電界の最大のポイントを横切ることになり、一つの開口から大量のマイクロ波を放射してしまい、他の開口で均等に分け合うはずの分が残らない危険性があるが、本発明では開口105a,105b,105c,105dが管軸108にかからないので、一つの開口からの放射量を抑え、複数の開口105a,105b,105c,105dでバランスよく均等に放射できる。よって本発明の構成により、加熱室内に向けて複数の開口105a,105b,105c,105dから広範囲に同等量のマイクロ波を放射させる
ことができるため、複数の開口105a,105b,105c,105dを並べるだけで駆動部を用いなくても加熱室102内の被加熱物を均一に加熱することができる。
In the microwave oven 101 of the present embodiment, the plurality of openings 105a, 105b, 105c, and 105d are configured with openings that do not cover the center in the width direction of the waveguide 104 (tube axis 108), and at least one side of the tube axis It is set as the structure arrange | positioned in. Thus, in the width direction of the waveguide 104, in the most common TE10 mode waveguide 104, the electric field is maximum at the center (tube axis 108) in the width direction of the waveguide 104, and the electric field is at both ends. 0, and if the aperture crosses the tube axis 108, it will cross the maximum point of the electric field, radiating a large amount of microwaves from one aperture, leaving no portion that would otherwise be shared equally. Although there is a risk, in the present invention, since the openings 105a, 105b, 105c, and 105d do not cover the tube shaft 108, the amount of radiation from one opening is suppressed, and the plurality of openings 105a, 105b, 105c, and 105d are evenly balanced. Can radiate. Therefore, according to the configuration of the present invention, a plurality of openings 105a, 105b, 105c, and 105d can be radiated over a wide range from the openings 105a, 105b, 105c, and 105d toward the heating chamber. The object to be heated in the heating chamber 102 can be uniformly heated without using a driving unit.
また、本実施の形態の電子レンジ101は、複数の開口105a,105b,105c,105dは、管軸108の両側に対称に配置する構成としている。これにより、幅方向にも複数の配置として、より多数の開口を構成することができる。導波管104の幅方向については、最も一般的なTE10モードの導波管において、導波管104の幅方向の中央(管軸108)で電界が最大、かつ両端で電界が0となり、管軸108に対して対称な特性を持つので、開口を管軸の両側に配置すると互いに同等量のマイクロ波を放射しやすい関係にある。よって本発明の構成により、伝送方向にも幅方向にも多数の同等量を放射できる開口105a,105b,105c,105dを有することになり、加熱室102内に向けて広範囲に同等量のマイクロ波を放射させることができるため、複数の開口105a,105b,105c,105dを並べるだけで駆動部を用いなくても加熱室102内の被加熱物を均一に加熱することができる。 In addition, the microwave oven 101 of the present embodiment is configured such that the plurality of openings 105 a, 105 b, 105 c, and 105 d are arranged symmetrically on both sides of the tube axis 108. Thereby, more openings can be formed as a plurality of arrangements in the width direction. Regarding the width direction of the waveguide 104, in the most common TE10 mode waveguide, the electric field is maximum at the center (tube axis 108) in the width direction of the waveguide 104, and the electric field is zero at both ends. Since it has a symmetrical characteristic with respect to the axis 108, it is easy to radiate an equal amount of microwaves when the openings are arranged on both sides of the tube axis. Therefore, according to the configuration of the present invention, the openings 105 a, 105 b, 105 c, and 105 d that can radiate a large number of the same amount in the transmission direction and the width direction are provided. Therefore, the object to be heated in the heating chamber 102 can be uniformly heated without using a driving unit by arranging a plurality of openings 105a, 105b, 105c, and 105d.
また、本実施の形態の電子レンジ101は、開口105a,105b,105c,105dは、円偏波を放射する構成としている。これにより、開口105a,105b,105c,105dを中心として円偏波特有の360度全方向に回転する電界を発生させ、中心から渦を巻くようにマイクロ波が放射され、円周方向を均一に加熱することができる。よって、複数の開口105a,105b,105c,105dから円偏波を放射することで加熱室102全体に対しても均一にマイクロ波を放射でき、複数の開口105a,105b,105c,105dを並べるだけで駆動部を用いなくても加熱室102内の被加熱物を均一に加熱することができる。 In the microwave oven 101 of this embodiment, the openings 105a, 105b, 105c, and 105d are configured to radiate circularly polarized waves. This generates an electric field that rotates 360 degrees in all directions unique to circularly polarized waves around the openings 105a, 105b, 105c, and 105d, and microwaves are radiated from the center in a vortex, making the circumferential direction uniform. Can be heated. Therefore, by radiating circularly polarized waves from the plurality of openings 105a, 105b, 105c, and 105d, microwaves can be radiated uniformly to the entire heating chamber 102, and only the plurality of openings 105a, 105b, 105c, and 105d are arranged. Thus, the object to be heated in the heating chamber 102 can be heated uniformly without using a driving unit.
さらに、本実施の形態の電子レンジ101は、円偏波を放射する開口105a,105b,105c,105dは、二つの長孔が交差する略X字状の構成としている。これにより、簡単な構成で確実に導波管104から円偏波を放射することができる。 Furthermore, in the microwave oven 101 of the present embodiment, the openings 105a, 105b, 105c, and 105d that radiate circularly polarized waves have a substantially X-shaped configuration in which two long holes intersect. Thereby, circularly polarized waves can be reliably radiated from the waveguide 104 with a simple configuration.
なお、従来の特許文献4には図24のように複数の長方スリットを波長の1/4の間隔で配列し、互いに相違する位相で放射させる例が示されている。図24によれば、まず隣接する開口140と開口141はそれぞれ正弦波のピーク(腹)と正弦波の0(節)の関係であり、また隣接する開口142と開口143もそれぞれ正弦波のピーク(腹)と正弦波の0(節)の関係であり、さらに開口141と開口142を見ても正弦波の0(節)と正弦波のピーク(腹)の関係であり、つまり隣接する開口がすべて振幅の異なる腹と節の関係にある。よって隣接する開口間での干渉は起こらないが、注目すべき点が一つある。それは開口140と開口142であり、互いに腹同士で位相が逆向きである。つまり隣接はしないが少し離れた開口間で逆位相が生じる構成になる。加えて特許文献4では図24からも明らかなように開口140,141,142,143は長方スリットで構成されており、もしも本実施の形態のように円偏波を放射させようとして長方スリットを二つの長孔が交差する略X字状の構成に置き換えるとすると、隣接する開口の端部(X字の端部)が接してしまい、実際には構成できないと思われる。以上により、従来の特許文献4に基づく構成では、やはり干渉が起こりうるということと、円偏波構成にはできないということもあり、本発明のように管内波長の1/4を超えて1/2に満たない間隔で配置するほうが優れている。 Conventional Patent Document 4 shows an example in which a plurality of rectangular slits are arranged at intervals of 1/4 of the wavelength as shown in FIG. According to FIG. 24, the opening 140 and the opening 141 adjacent to each other have a sine wave peak (antinode) and the sine wave 0 (node), respectively, and the opening 142 and the opening 143 adjacent to each other also have a sine wave peak. (Node) and 0 (node) of the sine wave, and even if the opening 141 and the opening 142 are viewed, it is the relationship between 0 (node) of the sine wave and the peak (antinode) of the sine wave, that is, adjacent openings. Are all related to the belly and nodes with different amplitudes. Therefore, interference between adjacent openings does not occur, but there is one point to be noted. It is the opening 140 and the opening 142, and the phases are opposite to each other. In other words, an opposite phase is generated between openings that are not adjacent but are slightly apart. In addition, as is clear from FIG. 24 in Patent Document 4, the openings 140, 141, 142, and 143 are formed of rectangular slits. If the circular polarization is radiated as in the present embodiment, the openings 140, 141, 142, and 143 are rectangular. If the slit is replaced with a substantially X-shaped configuration in which two long holes intersect, the end portions (X-shaped end portions) of the adjacent openings are in contact with each other, so that it cannot be actually configured. As described above, in the configuration based on the conventional patent document 4, interference may still occur and the circular polarization configuration may not be possible. As in the present invention, the frequency exceeds 1/4 of the guide wavelength. It is better to arrange them at intervals less than 2.
なお、本実施の形態において、開口あるいは定在波安定手段の間隔を論じる場合、導波管104の伝送方向に管内波長λgの略1/2などという表現を用いているが、管内波長λgの略1/2というのは、ある程度の範囲を許容できるはずである。導波管内のマイクロ波は管内波長λgになっているので、管内波長λgの1/8程度のずれなら大きな変化のない許容範囲と考える。なぜならば、正弦波で考えた時に、波長の1/4ずれると、最
大あるいは最小が0に、0が最大あるいは最小にまで変化することになり、大きな変化と考えられる。しかしその半分に相当する、波長の1/8程度なら大小関係の入れ替わりはほとんど無く、同じ傾向が維持されると考えられるからである。管内波長λgはλg=λ0/√(1−(λ0/(2×a))^2)であり、自由空間の波長λ0は前述の通り120〜125mm、本実施の形態の導波管の幅a=100mmとした場合、管内波長λgは150mm(2.5GHz)から160mm(2.4GHz)となり、その1/8は、18.75〜20mmである。よって伝送方向に管内波長λgの略1/2というのは、丁度管内波長λgの1/2(≒75〜80mm)を基準として、管内波長λgの1/8のさらに1/2のずれまでを許容範囲とする。具体的には、ずれの許容範囲は9.375〜10mmである。よってずれの許容範囲を考慮すると、管内波長λgの1/2は、最小65mm〜最大90mmとなる。
In this embodiment, when discussing the interval between the apertures or the standing wave stabilizing means, the expression of approximately half of the guide wavelength λg is used in the transmission direction of the waveguide 104. About 1/2 should be able to tolerate a certain range. Since the microwave in the waveguide has an in-tube wavelength λg, a deviation of about 1/8 of the in-tube wavelength λg is considered to be an allowable range without significant change. This is because when considering a sine wave, if the wavelength is shifted by ¼, the maximum or minimum changes to 0, and 0 changes to the maximum or minimum, which is considered to be a large change. However, if the wavelength is about 8, which corresponds to half of that, there is almost no change in the magnitude relationship, and the same tendency can be maintained. The guide wavelength λg is λg = λ0 / √ (1− (λ0 / (2 × a)) ^ 2), and the free space wavelength λ0 is 120 to 125 mm as described above, and the width of the waveguide of the present embodiment. When a = 100 mm, the guide wavelength λg is changed from 150 mm (2.5 GHz) to 160 mm (2.4 GHz), and 1/8 thereof is 18.75 to 20 mm. Therefore, approximately ½ of the guide wavelength λg in the transmission direction is just up to 1/2 of the guide wavelength λg and ½ of the guide wavelength λg with reference to ½ of the guide wavelength λg (≈75 to 80 mm). Allowable range. Specifically, the allowable range of deviation is 9.375 to 10 mm. Therefore, considering the allowable range of deviation, ½ of the guide wavelength λg is 65 mm to 90 mm.
なお、本実施の形態のように導波管の伝送方向に関する開口間の距離を論じる場合、特に断りが無い場合はそれぞれの開口のセンターを導波管壁面に沿って結ぶ直線距離のうちの伝送方向成分のみを考えるものとし、センターの位置は開口の重心位置とする。 In addition, when discussing the distance between the openings in the transmission direction of the waveguide as in the present embodiment, unless otherwise specified, the transmission within the linear distance connecting the centers of the openings along the waveguide wall surface. Only the direction component is considered, and the center position is the center of gravity of the opening.
なお、本実施の形態では、図2のように両端の開口105a,105dを管内定在波の腹位置として説明したが、それに限定されるものではない。ただし、腹位置とするほうがより多くのマイクロ波を放射しやすい傾向があるので、開口が密集する中央と比較して外側にある両端の開口105a,105dを腹位置としてマイクロ波を出やすくしておく方が庫内全体の分布は均一になりやすい効果がある。 In the present embodiment, the openings 105a and 105d at both ends are described as the antinode positions of the in-tube standing wave as shown in FIG. 2, but the present invention is not limited to this. However, since there is a tendency that more microwaves are radiated in the abdominal position, it is easier to emit microwaves with the openings 105a and 105d at the outer ends as compared to the center where the openings are dense. The effect is that the distribution in the entire cabinet tends to be uniform.
(実施の形態2)
図10は、本発明の実施の形態2におけるマイクロ波加熱装置の説明図である。図10(a)は上から見た断面図、図10(b)は正面から見た断面図である。前述の実施の形態と同等の構成や機能については、発明のポイントでないものは説明を省略する。
(Embodiment 2)
FIG. 10 is an explanatory diagram of the microwave heating apparatus according to Embodiment 2 of the present invention. FIG. 10A is a sectional view seen from above, and FIG. 10B is a sectional view seen from the front. Descriptions of configurations and functions equivalent to those of the above-described embodiment are omitted for those that are not the points of the invention.
マグネトロン201から放射されたマイクロ波を加熱室202に導くL字状に曲げられた導波管203と、導波管203内のマイクロ波を加熱室202内に放射するマイクロ波放射部として導波管203の上面に設けた開口204,205,206,207と、食品(図示せず)を載置する載置台208とを有している。空間209は、開口204と載置台208との間に一定の距離を確保するために加熱室202の底面210の中央部分を下方に突出させ、載置台208を空間209の上部にパテやパッキン等を使って固着することにより、開口204,205,206,207が露出しないように塞いでいる。このとき、載置台208は底面210より幾分小さい。開口204,205,206,207は導波管203の幅方向の中央(管軸)211にかからず、管軸211からみて片側にのみ配置する構成である。これにより開口204,205,206,207は、加熱室202の底面210および載置台208の前後方向に対して対称な配置となる。また開口204,205,206,207は伝送方向には少しずつピッチが異なる構成とし、P1とP3は管内波長λg/3より少し大きくし、P2は管内波長λg/3より少し小さくしている。このピッチの微調整の効果については、別の実施の形態の説明の中で後述する。また管内定在波を安定させるため、導波管の終端部212から管内波長の略3/2だけ離れた位置に定在波安定手段213を有することで管内定在波の節を固定する構成であり、開口204,205,206,207の中央と、導波管の終端部212と定在波安定手段213の中央が、それぞれ加熱室202の底面210および載置台208の左右方向の中心線214に一致するように接続している。これにより開口204,205,206,207は、加熱室202の底面210および載置台208の左右方向に対しても対称な配置となる。 A waveguide 203 bent in an L shape that guides the microwave radiated from the magnetron 201 to the heating chamber 202, and a microwave radiating portion that radiates the microwave in the waveguide 203 into the heating chamber 202 is guided. It has openings 204, 205, 206, and 207 provided on the upper surface of the tube 203, and a mounting table 208 on which food (not shown) is placed. The space 209 has a central portion of the bottom surface 210 of the heating chamber 202 protruding downward in order to ensure a certain distance between the opening 204 and the mounting table 208, and the mounting table 208 is put on the upper portion of the space 209 with putty, packing, etc. The openings 204, 205, 206, and 207 are closed so as not to be exposed. At this time, the mounting table 208 is somewhat smaller than the bottom surface 210. The openings 204, 205, 206, and 207 do not extend from the center (tube axis) 211 in the width direction of the waveguide 203 but are arranged only on one side as viewed from the tube axis 211. Accordingly, the openings 204, 205, 206, and 207 are symmetrically arranged with respect to the bottom surface 210 of the heating chamber 202 and the front-rear direction of the mounting table 208. The openings 204, 205, 206, and 207 are configured so that the pitches are slightly different in the transmission direction, P1 and P3 are slightly larger than the guide wavelength λg / 3, and P2 is slightly less than the guide wavelength λg / 3. The effect of fine pitch adjustment will be described later in the description of another embodiment. Further, in order to stabilize the standing wave in the tube, the standing wave stabilizing means 213 is provided at a position separated from the terminal end portion 212 of the waveguide by about 3/2 of the wavelength in the tube, thereby fixing the node of the standing wave in the tube. The center of the openings 204, 205, 206, and 207 and the center of the waveguide end portion 212 and the standing wave stabilizing means 213 are the center line in the horizontal direction of the bottom surface 210 of the heating chamber 202 and the mounting table 208, respectively. 214 is connected so as to coincide with 214. Accordingly, the openings 204, 205, 206, and 207 are symmetrically arranged with respect to the bottom surface 210 of the heating chamber 202 and the horizontal direction of the mounting table 208.
開口204,205,206,207は、長孔を交差させたX字状の形状により円偏波
を放射できる開口とし、導波管203のセンターである管軸211にはかからないように配置している。
The openings 204, 205, 206, and 207 are openings that can radiate circularly polarized waves with an X-shaped shape that intersects the long holes, and are arranged so as not to reach the tube axis 211 that is the center of the waveguide 203. Yes.
(実施の形態3)
図11は、本発明の実施の形態3におけるマイクロ波加熱装置のマイクロ波放射部を示す関係説明図、図12は、本発明の実施の形態3におけるマイクロ波加熱装置のマイクロ波放射部の課題を説明するための本実施の形態3を用いない場合の被加熱物載置における課題説明図、図13は、本発明の実施の形態3におけるマイクロ波加熱装置の加熱室へ被加熱物を載置した時の関係説明図である。
(Embodiment 3)
FIG. 11 is an explanatory diagram showing a microwave radiating unit of the microwave heating apparatus according to the third embodiment of the present invention, and FIG. 12 is a problem of the microwave radiating unit of the microwave heating apparatus according to the third embodiment of the present invention. FIG. 13 is a diagram for explaining the problem in placing the object to be heated when the third embodiment is not used for explaining the above, and FIG. 13 shows the object to be heated in the heating chamber of the microwave heating apparatus according to the third embodiment of the present invention. FIG.
以下、その動作、作用を説明する。なお、図面において、(実施の形態1)〜(実施の形態2)と同一動作を示す部分は同一番号を付与している。また、(実施の形態3)における基本的な動作は(実施の形態1)〜(実施の形態2)と同様である。 The operation and action will be described below. In the drawings, the same reference numerals are given to the portions showing the same operations as those in (Embodiment 1) to (Embodiment 2). The basic operation in (Embodiment 3) is the same as that in (Embodiment 1) to (Embodiment 2).
本実施の形態においては、図11(c)に示すように、マイクロ波放射部301の開口部を加熱室の左右方向の対称軸601と交差しない位置に設けている。図11(c)を見れば明らかなように導波管壁電流は対称軸601と管軸901の交点に最も集中した状態となっている。一方で、一般にマイクロ波加熱装置では、マイクロ波の加熱室内分布が比較的良好になり易い加熱室の中心に被加熱物を載置することが推奨される。ここで図12(c)のようにマイクロ波放射部301と対称軸601が交差している場合、導波管壁電流が最も集中している加熱室の中央は単に加熱集中が起こり易いだけでなく、導波管306を伝送するマイクロ波が開口部を通して放射された後、マイクロ波放射部301から最も近い距離で被加熱物302に直接当たることになる。この状況で、じゃがいものような小さな塊状の被加熱物302が載置される場合、被加熱物302の下部に加熱が集中し過加熱が発生し易くなってしまうことになる。 In the present embodiment, as shown in FIG. 11C, the opening of the microwave radiating unit 301 is provided at a position that does not intersect the symmetry axis 601 in the horizontal direction of the heating chamber. As apparent from FIG. 11C, the waveguide wall current is most concentrated at the intersection of the symmetry axis 601 and the tube axis 901. On the other hand, in general, in a microwave heating apparatus, it is recommended that an object to be heated be placed at the center of a heating chamber in which the distribution of the microwave in the heating chamber tends to be relatively good. Here, as shown in FIG. 12C, when the microwave radiating portion 301 and the axis of symmetry 601 intersect, the center of the heating chamber in which the waveguide wall current is most concentrated is merely a concentration of heating. Instead, after the microwave transmitted through the waveguide 306 is radiated through the opening, it directly hits the object 302 to be heated at the closest distance from the microwave radiating unit 301. In this situation, when a small block-like object to be heated 302 such as a potato is placed, heating concentrates on the lower part of the object to be heated 302 and overheating is likely to occur.
この状況を回避するためには図11(c)に示すマイクロ波放射部配置が有効である。図11(c)のように、マイクロ波放射部301の開口部を対称軸601と交差しない位置に設ける配置とすれば、導波管壁電流が最も集中する加熱室中央に、じゃがいものような小さい塊状の被加熱物302が載置されても、導波管306を伝送するマイクロ波が、マイクロ波放射部301から最も近い距離で被加熱物302に直接放射される状況を回避でき、被加熱物302の下部に加熱が集中し過加熱となる状況を防ぐことができる(図13)。 In order to avoid this situation, the arrangement of the microwave radiation section shown in FIG. 11C is effective. As shown in FIG. 11C, when the opening of the microwave radiating portion 301 is provided at a position that does not intersect the axis of symmetry 601, a potato-like material is placed in the center of the heating chamber where the waveguide wall current is most concentrated. Even when the small object to be heated 302 is placed, it is possible to avoid the situation where the microwave transmitted through the waveguide 306 is directly radiated to the object to be heated 302 at the closest distance from the microwave radiating unit 301. It is possible to prevent the situation where the heating is concentrated on the lower portion of the heated object 302 and the overheating occurs (FIG. 13).
以上のように、本実施の形態においては、マイクロ波放射部301を構成する開口部を対称軸601と交差しない位置に設けることにより、加熱室の中央部に載置された小さい塊状の被加熱物302の下部へのマイクロ波の直接放射を防ぐことができる。 As described above, in the present embodiment, by providing the opening that constitutes the microwave radiating unit 301 at a position that does not intersect the symmetry axis 601, a small lump-like object to be heated placed in the center of the heating chamber. Direct radiation of microwaves to the lower part of the object 302 can be prevented.
なお、導波管306内の定在波を安定させるために、導波管306内に(実施の形態1,2)で説明したような定在波安定手段を配置してもよい。 In order to stabilize the standing wave in the waveguide 306, the standing wave stabilizing means as described in the first and second embodiments may be disposed in the waveguide 306.
なお、マイクロ波放射部301を閉塞した状態で、導波管306の導波管軸方向における電界分布を測定することで導波管306内の定在波状態を特定し、得られた定在波位置に合うように対称軸601を設定すれば、実験的に対称軸601を設定することもできる。 In addition, the standing wave state in the waveguide 306 is specified by measuring the electric field distribution in the waveguide axis direction of the waveguide 306 in a state where the microwave radiation unit 301 is closed, and the obtained standing wave is obtained. If the symmetry axis 601 is set so as to match the wave position, the symmetry axis 601 can also be set experimentally.
また、マイクロ波加熱装置において、被加熱物302の載置位置として推奨され易い加熱室の中央における加熱効率を向上できるように、加熱室中央に加熱基準としたい負荷量の被加熱物302(例えば直径19センチの円柱容器に入れた1Lの水)を載置した状態で、導波管306内の電界分布を測定することで導波管306内の定在波状態を特定し、
得られた定在波位置に合うように対称軸601を設定すれば、加熱基準負荷に合わせた対称軸601を設定することもできる。
In addition, in the microwave heating apparatus, the object to be heated 302 having a load amount (for example, a heating reference) in the center of the heating chamber (e.g. The standing wave state in the waveguide 306 is specified by measuring the electric field distribution in the waveguide 306 in a state where 1 L of water placed in a cylindrical container having a diameter of 19 cm is placed,
If the symmetry axis 601 is set so as to match the obtained standing wave position, the symmetry axis 601 can be set according to the heating reference load.
なお、加熱室の凹凸構造や使用者の載置利便性などから、被加熱物推奨載置位置を加熱室の中央としない場合、対称軸601はそれに合わせて加熱室の中心から外れた位置としてもよい。 If the recommended placement position of the object to be heated is not the center of the heating chamber due to the uneven structure of the heating chamber or the user's placement convenience, the symmetry axis 601 is set to a position off the center of the heating chamber accordingly. Also good.
(実施の形態4)
図14は、本発明の実施の形態4におけるマイクロ波加熱装置のマイクロ波放射部を示す関係説明図、図15は、本発明の実施の形態4におけるマイクロ波放射部の電流遮断有効幅を説明する模式図である。
(Embodiment 4)
FIG. 14 is a diagram illustrating the relationship between the microwave radiating unit of the microwave heating apparatus according to the fourth embodiment of the present invention, and FIG. 15 illustrates the current cutoff effective width of the microwave radiating unit according to the fourth embodiment of the present invention. It is a schematic diagram to do.
以下、その動作、作用を説明する。なお、図面において、(実施の形態1)〜(実施の形態3)と同一動作を示す部分は同一番号を付与している。また、(実施の形態4)における基本的な動作は(実施の形態1)〜(実施の形態3)と同様である。 The operation and action will be described below. In the drawings, the same reference numerals are given to the portions showing the same operations as those in (Embodiment 1) to (Embodiment 3). The basic operation in (Embodiment 4) is the same as that in (Embodiment 1) to (Embodiment 3).
本実施の形態においては、図14に示すように、対称軸601に隣接するマイクロ波放射部301の開口部の幅を、対称軸601に隣接しないマイクロ波放射部301の前記開口部の幅よりも大きく設定している。 In the present embodiment, as shown in FIG. 14, the width of the opening of the microwave radiating portion 301 adjacent to the symmetry axis 601 is made larger than the width of the opening of the microwave radiating portion 301 not adjacent to the symmetry axis 601. Is also set larger.
マイクロ波放射部301の開口部が管壁電流を遮ることで電界303が発生し、開口下の磁界(導波管壁電流は磁界に直交する方向に流れる)に垂直なマイクロ波放射方向に、マイクロ波放射部301の開口を通してマイクロ波が放射される。 An electric field 303 is generated when the opening of the microwave radiating unit 301 blocks the tube wall current, and the microwave radiation direction perpendicular to the magnetic field under the opening (the waveguide wall current flows in a direction perpendicular to the magnetic field) Microwaves are radiated through the opening of the microwave radiation unit 301.
したがって、開口部の幅を図15(a)から図15(b)のように大きくすると、管壁電流を遮るための電流遮断有効幅b1502は、電流遮断有効幅a1501よりも狭くなることになるため、管壁電流を遮ることを基点して発生する電界の発生が抑制され、マイクロ波放射部301からのマイクロ波放射が抑制されることになる。 Therefore, when the width of the opening is increased from FIG. 15A to FIG. 15B, the current cutoff effective width b1502 for blocking the tube wall current becomes narrower than the current cutoff effective width a1501. Therefore, the generation of an electric field generated based on blocking the tube wall current is suppressed, and the microwave radiation from the microwave radiation unit 301 is suppressed.
この原理を、対称軸601に隣接するマイクロ波放射部301の開口部の幅に適用し、対称軸601に隣接しないマイクロ波放射部301の開口部の幅よりも大きく設定することにより、マイクロ波放射部301から放射されるマイクロ波の量を抑えて、加熱室の中央部に載置されたじゃがいものような小さい塊状の被加熱物302の下部へのマイクロ波集中を緩和することが可能となる。 By applying this principle to the width of the opening of the microwave radiating portion 301 adjacent to the symmetry axis 601 and setting the width larger than the width of the opening of the microwave radiating portion 301 not adjacent to the symmetry axis 601, the microwave It is possible to reduce the amount of microwaves radiated from the radiating unit 301 and to reduce the concentration of microwaves in the lower portion of the small object to be heated 302 such as a potato placed in the center of the heating chamber. Become.
以上のように、本実施の形態においては、対称軸601に隣接するマイクロ波放射部301の開口部の幅を、対称軸601に隣接しないマイクロ波放射部301の開口部の幅よりも大きく設定することにより、マイクロ波放射部301から放射されるマイクロ波の量を抑えて、加熱室の中央部に載置されたじゃがいものような小さい塊状の被加熱物302の下部へのマイクロ波集中を緩和することができる。 As described above, in the present embodiment, the width of the opening of the microwave radiating unit 301 adjacent to the symmetry axis 601 is set larger than the width of the opening of the microwave radiating unit 301 not adjacent to the symmetry axis 601. By doing so, the amount of microwaves radiated from the microwave radiating unit 301 is suppressed, and the microwaves are concentrated on the lower part of the small object to be heated 302 such as a potato placed in the center of the heating chamber. Can be relaxed.
なお、導波管306内の定在波を安定させるために、導波管306内に(実施の形態1,2)で説明したような定在波安定手段を配置してもよい。 In order to stabilize the standing wave in the waveguide 306, the standing wave stabilizing means as described in the first and second embodiments may be disposed in the waveguide 306.
なお、マイクロ波放射部301を閉塞した状態で、導波管306の導波管軸方向における電界分布を測定することで導波管306内の定在波状態を特定し、得られた定在波位置に合うように対称軸601を設定すれば、実験的に対称軸601を設定することもできる。 In addition, the standing wave state in the waveguide 306 is specified by measuring the electric field distribution in the waveguide axis direction of the waveguide 306 in a state where the microwave radiation unit 301 is closed, and the obtained standing wave is obtained. If the symmetry axis 601 is set so as to match the wave position, the symmetry axis 601 can also be set experimentally.
また、マイクロ波加熱装置において、被加熱物302の載置位置として推奨され易い加
熱室の中央における加熱効率を向上できるように、加熱室中央に加熱基準としたい負荷量の被加熱物302(例えば直径19センチの円柱容器に入れた1Lの水)を載置した状態で、導波管306内の電界分布を測定することで導波管306内の定在波状態を特定し、得られた定在波位置に合うように対称軸601を設定すれば、加熱基準負荷に合わせた対称軸601を設定することもできる。
In addition, in the microwave heating apparatus, the object to be heated 302 having a load amount (for example, a heating reference) in the center of the heating chamber (e.g. The standing wave state in the waveguide 306 was identified and obtained by measuring the electric field distribution in the waveguide 306 in a state where 1 L of water placed in a cylindrical container having a diameter of 19 cm was placed. If the symmetry axis 601 is set so as to match the standing wave position, it is possible to set the symmetry axis 601 according to the heating reference load.
なお、加熱室の凹凸構造や使用者の載置利便性などから、被加熱物推奨載置位置を加熱室の中央としない場合、対称軸601はそれに合わせて加熱室の中心から外れた位置としてもよい。 If the recommended placement position of the object to be heated is not the center of the heating chamber due to the uneven structure of the heating chamber or the user's placement convenience, the symmetry axis 601 is set to a position off the center of the heating chamber accordingly. Also good.
なお、実験上、開口幅拡大の効果は10%程度大きくすることで、実調理結果として目に見える効果が確認できるため、幅拡大は10%以上を目安とするとよい。 In addition, in the experiment, the effect of expanding the opening width is increased by about 10%, so that a visible effect can be confirmed as an actual cooking result. Therefore, the width expansion should be 10% or more.
なお、このように対称軸601に隣接するマイクロ波放射部301の開口部の幅を、対称軸601に隣接しないマイクロ波放射部301の開口部の幅よりも大きく設定することで、小さい塊状の被加熱物302の下部へのマイクロ波集中を抑える方法は、加熱室中央付近の開口部面積を拡げることに繋がるため、小負荷への加熱集中を抑えるだけでなく、加熱室中央に置いた負荷の大きい被加熱物302(例えば直径19センチの円柱容器に入れた1Lの水)への効率を高める効果もあることは言うまでもない。 In addition, by setting the width of the opening of the microwave radiating portion 301 adjacent to the symmetry axis 601 to be larger than the width of the opening of the microwave radiating portion 301 not adjacent to the symmetry axis 601 as described above, The method of suppressing the microwave concentration to the lower part of the object to be heated 302 leads to the enlargement of the opening area near the center of the heating chamber. Therefore, not only the heating concentration to a small load is suppressed, but also the load placed in the center of the heating chamber. Needless to say, there is an effect of increasing the efficiency of the heated object 302 having a large diameter (for example, 1 L of water in a cylindrical container having a diameter of 19 cm).
(実施の形態5)
図16は、本発明の実施の形態5におけるマイクロ波加熱装置のマイクロ波放射部を示す関係説明図である。以下、その動作、作用を説明する。なお、図面において、(実施の形態1)〜(実施の形態4)と同一動作を示す部分は同一番号を付与している。また、(実施の形態5)における基本的な動作は(実施の形態1)〜(実施の形態4)と同様である。
(Embodiment 5)
FIG. 16 is an explanatory diagram illustrating a microwave radiating unit of the microwave heating apparatus according to the fifth embodiment of the present invention. The operation and action will be described below. In the drawings, the same reference numerals are given to portions showing the same operations as those in (Embodiment 1) to (Embodiment 4). The basic operation in (Embodiment 5) is the same as that in (Embodiment 1) to (Embodiment 4).
本実施の形態においては、図16に示すように、マイクロ波放射部301を均等配置した時(図16(b))、対称軸601に隣接するマイクロ波放射部301の配置間隔が管内波長の4分の1(λg/4)より大きい場合に(図16(a)および(b))、対称軸601に隣接するマイクロ波放射部301の間隔を均等配置間隔よりも狭く設定している(図16(c))。このようにマイクロ波放射部301の間隔を狭くすることで、図16(d)のように加熱室中央にじゃがいものような小さい塊状の被加熱物302が載置された場合の被加熱物302下部への加熱集中を緩和することが出来る。この加熱集中緩和理由については図17、図18を用いて説明を行う。 In the present embodiment, as shown in FIG. 16, when the microwave radiating portions 301 are evenly arranged (FIG. 16B), the arrangement interval of the microwave radiating portions 301 adjacent to the symmetry axis 601 is equal to the guide wavelength. When it is larger than a quarter (λg / 4) (FIGS. 16A and 16B), the interval between the microwave radiation portions 301 adjacent to the symmetry axis 601 is set to be narrower than the uniform arrangement interval ( FIG. 16 (c)). Thus, by narrowing the space | interval of the microwave radiation | emission part 301, the to-be-heated object 302 in case the small to-be-heated object 302 like a potato is mounted in the center of a heating chamber like FIG.16 (d). Heating concentration at the bottom can be reduced. The reason for relaxing the heating concentration will be described with reference to FIGS.
図17(a)は図16(c)と同じ図であり、対称軸601に隣接するマイクロ波放射部301の間隔を均等配置間隔よりも狭く設定した状態を示している。この間隔を狭くした4つの隣接したマイクロ波放射部301は、図17(b)および図17(c)に示すように斜めに配置した2つのマイクロ波放射部に分解できる。そして、この斜めに配置されたマイクロ波放射部は、一般的に知られている方向性結合器における開口配置と同様の配置となっている。ここでは、被加熱物302下部への加熱集中を緩和できることを説明することが目的であるので、説明を簡単にするため、方向性結合器の原理については、図18(g)に示すような上下に並んだ第1の導波管1801と第2の導波管1802を第1のマイクロ波放射部1803と第2のマイクロ波放射部1804で接続する単純な構成を用いて基本的な考え方を説明することとする。 FIG. 17A is the same view as FIG. 16C and shows a state in which the interval between the microwave radiating portions 301 adjacent to the symmetry axis 601 is set narrower than the uniform arrangement interval. The four adjacent microwave radiating portions 301 having the narrow interval can be decomposed into two microwave radiating portions arranged obliquely as shown in FIGS. 17 (b) and 17 (c). And the microwave radiation | emission part arrange | positioned diagonally becomes the arrangement | positioning similar to the opening arrangement | positioning in the directional coupler generally known. Here, the purpose is to explain that the heating concentration at the lower part of the object to be heated 302 can be alleviated. Therefore, in order to simplify the explanation, the principle of the directional coupler is as shown in FIG. A basic concept using a simple configuration in which the first waveguide 1801 and the second waveguide 1802 arranged vertically are connected by the first microwave radiation unit 1803 and the second microwave radiation unit 1804. Will be explained.
図18において、1801は第1の導波管、1802は第2の導波管、1803は第1のマイクロ波放射部、1804は第2のマイクロ波放射部、1805は第1の導波管1801の入力部、1806は第1の導波管1802の出力部、1807、1808は第2の
導波管の出力部、1809は第1のマイクロ波放射部1803からマイクロ波が直接放射される放射位置、1810は第2のマイクロ波放射部1804から放射されたマイクロ波が第2の導波管の出力部1807へ向けて進行しマイクロ波放射部1803への到達する到達位置、1811は第2のマイクロ波放射部1804からマイクロ波が直接放射される放射位置、1810は第2のマイクロ波放射部1804から放射されたマイクロ波が第2の導波管の出力部1808へ向けて進行しマイクロ波放射部1804へ到達する到達位置である。
In FIG. 18, reference numeral 1801 denotes a first waveguide, 1802 denotes a second waveguide, 1803 denotes a first microwave radiating portion, 1804 denotes a second microwave radiating portion, and 1805 denotes a first waveguide. 1801 is an input unit, 1806 is an output unit of the first waveguide 1802, 1807 and 1808 are output units of the second waveguide, and 1809 is a microwave directly emitted from the first microwave radiation unit 1803. Radiation position, 1810 is the arrival position where the microwave radiated from the second microwave radiation portion 1804 travels toward the output portion 1807 of the second waveguide and reaches the microwave radiation portion 1803, 1811 is the first position The radiation position where the microwave is directly radiated from the second microwave radiation portion 1804, 1810 is the direction where the microwave radiated from the second microwave radiation portion 1804 is directed to the output portion 1808 of the second waveguide. Advanced Te and a reached position to reach the microwave radiation portion 1804.
ここで、図18(a)は放射位置1809におけるマイクロ波波形、図18(b)は到達位置1810におけるマイクロ波波形、図18(c)は図18(a)と図18(b)の合成波形で振幅は0となる。これは、第2のマイクロ波放射部1804から放射されたマイクロ波が到達位置1810へ到達する迄に、第1のマイクロ波放射部1803から第2のマイクロ波放射部1804への距離(λg/4)を行き来することから半波長(λg/2)分の位相がずれて合成されるためである。なお、この合成波形は第1のマイクロ波出力部直上の出力を表すことになる。 Here, FIG. 18A is a microwave waveform at the radiation position 1809, FIG. 18B is a microwave waveform at the arrival position 1810, and FIG. 18C is a combination of FIG. 18A and FIG. The amplitude is 0 in the waveform. This is because the distance (λg / g) from the first microwave radiating unit 1803 to the second microwave radiating unit 1804 until the microwave radiated from the second microwave radiating unit 1804 reaches the arrival position 1810. This is because the phase is shifted by half a wavelength (λg / 2) because of going back and forth in 4). This synthesized waveform represents the output immediately above the first microwave output unit.
また、図18(d)は放射位置1811におけるマイクロ波波形、図18(e)は到達位置1812におけるマイクロ波波形、図18(f)は図18(d)と図18(e)の合成波形で振幅は図18(d)および図18(e)の2倍となる。これは、第1のマイクロ波放射部1803から放射されたマイクロ波が到達位置1812へ到達する迄の移動距離が同じであり同位相で合成されるためである。なお、この合成波形は第2のマイクロ波出力部直上の出力を表すことになる。 18D shows the microwave waveform at the radiation position 1811, FIG. 18E shows the microwave waveform at the arrival position 1812, and FIG. 18F shows the combined waveform of FIGS. 18D and 18E. Thus, the amplitude is twice that of FIGS. 18 (d) and 18 (e). This is because the moving distance until the microwave radiated from the first microwave radiating unit 1803 reaches the arrival position 1812 is the same and synthesized in the same phase. This combined waveform represents the output immediately above the second microwave output unit.
図18(c)、図18(f)、図18(g)を見れば、マイクロ波放射部を方向性結合性のある配置とすることで、マイクロ波放射部からの出力は方向性をもって2つのマイクロ波放射部に挟まれた領域の外側へ向かって放射されることが分かる。 18 (c), 18 (f), and 18 (g), the output from the microwave radiating unit is directional with 2 by arranging the microwave radiating unit with directional coupling. It turns out that it radiates | emits toward the outer side of the area | region pinched | interposed into two microwave radiation | emission parts.
次に第1のマイクロ波放射部1803と第2のマイクロ波放射部1804に挟まれた領域における振幅について図19を用いて説明する。図19において1901は第1のマイクロ波放射部1803と第2のマイクロ波放射部1804の中点である。図19(a)は第1のマイクロ波放射部1803から放射されたマイクロ波が第2の導波管1802の出力部1808へ向けて進行し中点1901へ到達した時のマイクロ波波形、図19(b)は第2のマイクロ波放射部1804から放射されたマイクロ波が第2の導波管1802の出力部1807へ向けて進行し中点1901へ到達した時のマイクロ波波形、図19(c)は図19(a)および図19(b)の合成波形である。合成された波の振幅は図19(a)および図19(b)の単独の振幅より大きく方向性結合後の2倍の振幅よりも小さくなる。 Next, the amplitude in a region sandwiched between the first microwave radiating unit 1803 and the second microwave radiating unit 1804 will be described with reference to FIG. In FIG. 19, reference numeral 1901 denotes a midpoint between the first microwave radiating unit 1803 and the second microwave radiating unit 1804. FIG. 19A shows a microwave waveform when the microwave radiated from the first microwave radiating portion 1803 travels toward the output portion 1808 of the second waveguide 1802 and reaches the midpoint 1901. 19 (b) shows the microwave waveform when the microwave radiated from the second microwave radiating portion 1804 travels toward the output portion 1807 of the second waveguide 1802 and reaches the middle point 1901. FIG. (C) is a composite waveform of FIG. 19 (a) and FIG. 19 (b). The amplitude of the synthesized wave is larger than the single amplitude in FIGS. 19A and 19B and smaller than twice the amplitude after directional coupling.
したがって、方向性結合する開口配置の場合は、第1のマイクロ波放射部1803と第2のマイクロ波放射部1804に挟まれた領域の外側に放射方向が拡げられる上に、挟まれた領域の合成振幅もやや弱くなるため、2つのマイクロ波放射部の間に、じゃがいものような小さい塊状の被加熱物が置かれた際、下部へのマイクロ波集中を緩和することが可能となる。 Therefore, in the case of the opening arrangement for directional coupling, the radiation direction is expanded outside the region sandwiched between the first microwave radiation unit 1803 and the second microwave radiation unit 1804, and the sandwiched region Since the combined amplitude also becomes slightly weak, when a small massive object to be heated such as a potato is placed between the two microwave radiation portions, it becomes possible to alleviate the microwave concentration in the lower part.
なお、現実のマイクロ波加熱装置では、第1の導波管1801のマイクロ波放射部から放射される先は、第2の導波管1802ではなく広い空間を備えた加熱室であり、この空間を伝搬するマイクロ波の波長は導波管の管内波長ではなく、マイクロ波発生手段の発振波長となるため、管内波長の4分の1波長の距離を置いても理想的な方向性結合状態にはならない。また、マイクロ波放射部301の間隔もマイクロ波放射部301の大きさの制約により、4分の1波長まで近づけることができない場合も発生する。しかしながらこう
いった場合でも、マイクロ波放射部の間隔を対称軸601に隣接するマイクロ波放射部301の間隔を均等配置間隔よりも、4分の1波長にできる限り近づけるよう狭く設定した状態とすることで、図16(d)のように加熱室中央にじゃがいものような小さい塊状の被加熱物302が載置した際に、被加熱物302下部への加熱集中を緩和できることが実験的にも確認できている。
In the actual microwave heating device, the tip radiated from the microwave radiating portion of the first waveguide 1801 is not the second waveguide 1802 but a heating chamber having a wide space. The wavelength of the microwave propagating through the waveguide is not the waveguide wavelength of the waveguide, but the oscillation wavelength of the microwave generating means, so that an ideal directional coupling state can be obtained even when a quarter wavelength is placed. Must not. Further, there may be a case where the interval between the microwave radiating units 301 cannot be reduced to a quarter wavelength due to the size limitation of the microwave radiating unit 301. However, even in such a case, the interval between the microwave radiating portions is set to be as narrow as possible so that the interval between the microwave radiating portions 301 adjacent to the symmetry axis 601 is as close as possible to the quarter wavelength than the uniform arrangement interval. As a result, when a small block-like object 302 such as a potato is placed in the center of the heating chamber as shown in FIG. Confirmed.
以上のように、本実施の形態においては、マイクロ波放射部301を均等配置した時、対称軸601に隣接するマイクロ波放射部301の間隔が管内波長の4分の1(λg/4)より大きい場合は、対称軸601に隣接するマイクロ波放射部301の間隔を均等配置間隔よりも狭くすることにより、マイクロ波放射部301からのマイクロ波放射方向を変更し、加熱室の中央部に載置された小さい塊状の被加熱物302の下部へのマイクロ波集中を緩和することができる。 As described above, in the present embodiment, when the microwave radiating portions 301 are evenly arranged, the interval between the microwave radiating portions 301 adjacent to the symmetry axis 601 is less than a quarter of the guide wavelength (λg / 4). In the case of being large, the direction of the microwave radiation from the microwave radiation unit 301 is changed by making the interval between the microwave radiation units 301 adjacent to the symmetry axis 601 narrower than the uniform arrangement interval, and the microwave radiation unit 301 is mounted in the center of the heating chamber. Microwave concentration in the lower portion of the small object to be heated 302 placed can be reduced.
なお、導波管306内の定在波を安定させるために、導波管306内に(実施の形態1,2)で説明したような定在波安定手段を配置してもよい。 In order to stabilize the standing wave in the waveguide 306, the standing wave stabilizing means as described in the first and second embodiments may be disposed in the waveguide 306.
なお、マイクロ波放射部301を閉塞した状態で、導波管306の導波管軸方向における電界分布を測定することで導波管306内の定在波状態を特定し、得られた定在波位置に合うように対称軸601を設定すれば、実験的に対称軸601を設定することもできる。 In addition, the standing wave state in the waveguide 306 is specified by measuring the electric field distribution in the waveguide axis direction of the waveguide 306 in a state where the microwave radiation unit 301 is closed, and the obtained standing wave is obtained. If the symmetry axis 601 is set so as to match the wave position, the symmetry axis 601 can also be set experimentally.
また、マイクロ波加熱装置において、被加熱物302の載置位置として推奨され易い加熱室の中央における加熱効率を向上できるように、加熱室中央に加熱基準としたい負荷量の被加熱物302(例えば直径19センチの円柱容器に入れた1Lの水)を載置した状態で、導波管306内の電界分布を測定することで導波管306内の定在波状態を特定し、得られた定在波位置に合うように対称軸601を設定すれば、加熱基準負荷に合わせた対称軸601を設定することもできる。 In addition, in the microwave heating apparatus, the object to be heated 302 having a load amount (for example, a heating reference) in the center of the heating chamber (e.g. The standing wave state in the waveguide 306 was identified and obtained by measuring the electric field distribution in the waveguide 306 in a state where 1 L of water placed in a cylindrical container having a diameter of 19 cm was placed. If the symmetry axis 601 is set so as to match the standing wave position, it is possible to set the symmetry axis 601 according to the heating reference load.
なお、加熱室の凹凸構造や使用者の載置利便性などから、被加熱物推奨載置位置を加熱室の中央としない場合、対称軸601はそれに合わせて加熱室の中心から外れた位置としてもよい。 If the recommended placement position of the object to be heated is not the center of the heating chamber due to the uneven structure of the heating chamber or the user's placement convenience, the symmetry axis 601 is set to a position off the center of the heating chamber accordingly. Also good.
なお、このように、対称軸601に隣接するマイクロ波放射部301の間隔を均等配置間隔よりも狭くすることにより、マイクロ波放射部301からのマイクロ波放射方向を変更し、加熱室の中央部に載置された小さい塊状の被加熱物302の下部へのマイクロ波集中を緩和する方法は、加熱室中央付近の開口部面積を同一にできるため、小負荷への加熱集中を抑えるだけでなく、加熱室中央に置いた負荷の大きい被加熱物302(例えば直径19センチの円柱容器に入れた1Lの水)への効率を維持する効果もあることは言うまでもない。 In this way, the microwave radiation direction from the microwave radiation part 301 is changed by making the interval between the microwave radiation parts 301 adjacent to the symmetry axis 601 smaller than the uniform arrangement interval, and the central part of the heating chamber The method of relaxing the microwave concentration in the lower portion of the small object to be heated 302 placed on the heating chamber can make the opening area near the center of the heating chamber the same, and thus not only suppress the heating concentration to a small load. Needless to say, there is also an effect of maintaining the efficiency of the heated object 302 placed in the center of the heating chamber (for example, 1 L of water placed in a cylindrical container having a diameter of 19 cm).
(実施の形態6)
図20は、本発明の実施の形態6におけるマイクロ波加熱装置の開口形状を説明する模式図である。
(Embodiment 6)
FIG. 20 is a schematic diagram illustrating the opening shape of the microwave heating apparatus according to the sixth embodiment of the present invention.
特に、マイクロ波放射部として円偏波を放射する開口の形状について、少なくとも2本以上のスリットにより構成される開口について述べる。開口411〜417のように、2本以上のスリットにより構成されており、このうちの少なくとも1本のスリットの長辺をマイクロ波の伝送方向(矢線418)に対して傾いた形状となっていれば良い。よって、開口415および開口416のように交差していない形状や、開口414のように3本のスリットにより構成されている形状でも良い。 In particular, an aperture configured by at least two slits will be described as the shape of the aperture that radiates circularly polarized waves as the microwave radiation portion. Like the openings 411 to 417, the slits are composed of two or more slits, and the long side of at least one of these slits is inclined with respect to the microwave transmission direction (arrow line 418). Just do it. Therefore, a shape that does not intersect such as the opening 415 and the opening 416 or a shape that includes three slits such as the opening 414 may be used.
なお、2本のスリットにより構成されている開口の最良な形状の条件としては以下の3点が挙げられる。 In addition, the following 3 points | pieces are mentioned as conditions of the optimal shape of the opening comprised by two slits.
1点目は、各スリットの長辺の長さは導波管419内の管内波長λgの約1/4以上であることである。 The first point is that the length of the long side of each slit is about ¼ or more of the guide wavelength λg in the waveguide 419.
2点目は、2本のスリットはお互いに直交していることおよび伝送方向418に対して各スリットの長辺が45°傾いていることである。 The second point is that the two slits are orthogonal to each other and the long side of each slit is inclined 45 ° with respect to the transmission direction 418.
3点目は、導波管419の伝送方向418に平行かつ開口の中心を通る直線を軸として考えた時に、電界の分布が軸対称とならないことである。例えば、TE10モードでマイクロ波を伝送している場合においては、導波管419の幅方向420の中心線となる管軸421を対称軸として電界が対称に分布しているので、開口の形状が管軸421に対して軸対称とならないように(すなわち開口の中心が管軸421上にこないように)配置することが最良の条件となる。 The third point is that the electric field distribution is not axisymmetric when a straight line parallel to the transmission direction 418 of the waveguide 419 and passing through the center of the opening is considered as an axis. For example, in the case of transmitting microwaves in the TE10 mode, the electric field is symmetrically distributed with the tube axis 421 serving as the center line in the width direction 420 of the waveguide 419 being the axis of symmetry, so the shape of the opening is It is the best condition to arrange them so as not to be symmetric with respect to the tube axis 421 (that is, the center of the opening does not come on the tube axis 421).
また、図20には長孔が直交するものばかりを示したが、長孔を直交させずに傾斜させて構成することによりX字が押しつぶされたような形状とした場合でも、真円から変形し楕円となるものの、円偏波を放射することができる。 In addition, FIG. 20 shows only those in which the long holes are orthogonal, but even when the X holes are crushed by forming the long holes to be inclined rather than orthogonal, they are deformed from a perfect circle. Although it becomes an ellipse, it can radiate circularly polarized waves.
また、図20の開口413のようなL字型、開口415のようなT字型の構成にすることで、特許文献2のように離して配置するときにも応用できる可能性がある。特許文献2によれば図22(b)のように、二つのスリットは直交関係でなくても30度程度なら傾けても良いとも示されている。 In addition, by adopting an L-shaped configuration such as the opening 413 and a T-shaped configuration such as the opening 415 in FIG. According to Patent Document 2, as shown in FIG. 22B, it is indicated that the two slits may be inclined as long as they are about 30 degrees, even if they are not orthogonal.
また、長孔とは言うものの、長方形に限定されるものではない。開口のコーナー部にRをつけるとか楕円状にするなどしても円偏波を発生することも可能である。基本的な円偏波開口の考え方としては、一方向に長めでその直角方向には短めである長細い形状のものを二つ組み合わせればよいと推察される。 Moreover, although it is a long hole, it is not limited to a rectangle. It is possible to generate circularly polarized waves by adding an R to the corner of the opening or making it elliptical. As a basic idea of circularly polarized aperture, it is presumed that two long and narrow shapes that are longer in one direction and shorter in the perpendicular direction may be combined.
以上のように、本発明のマイクロ波加熱装置は、マイクロ波を被加熱物に均一に照射することができるので、食品の加熱加工や殺菌などを行うマイクロ波加熱装置などに有効に利用することができる。 As described above, since the microwave heating apparatus of the present invention can uniformly irradiate the object to be heated with microwaves, the microwave heating apparatus can be effectively used for a microwave heating apparatus that performs heating processing or sterilization of food. Can do.
101 電子レンジ(マイクロ波加熱装置)
102,128,202 加熱室
103,201 マグネトロン(マイクロ波発生手段)
104,130,203,306,419 導波管
105a 第一の開口(マイクロ波放射部)
105b 第二の開口(マイクロ波放射部)
105c 第三の開口(マイクロ波放射部)
105d 第四の開口(マイクロ波放射部)
108,211,421,901 幅方向の中央(管軸)
111,131,212 終端部
112a 第一の定在波安定手段
112b 第二の定在波安定手段
112c 第三の定在波安定手段
129,139a,139b,204,205,206,207,301,411,412,413,414,415,416,417 開口(マイクロ波放射部)
134,135,136,213 定在波安定手段
302 被加熱物
101 Microwave oven (microwave heating device)
102, 128, 202 Heating chamber 103, 201 Magnetron (microwave generating means)
104, 130, 203, 306, 419 Waveguide 105a First aperture (microwave radiation part)
105b Second opening (microwave radiation part)
105c 3rd opening (microwave radiation part)
105d 4th opening (microwave radiation part)
108, 211, 421, 901 Center in the width direction (tube axis)
111, 131, 212 Termination part 112a First standing wave stabilization means 112b Second standing wave stabilization means 112c Third standing wave stabilization means 129, 139a, 139b, 204, 205, 206, 207, 301, 411, 412, 413, 414, 415, 416, 417 opening (microwave radiation part)
134, 135, 136, 213 Standing wave stabilizing means 302 Object to be heated
Claims (12)
マイクロ波を発生させるマイクロ波発生手段と、
マイクロ波を伝送する導波管と、
前記導波管から前記加熱室内にマイクロ波を放射する複数のマイクロ波放射部とを有し、前記導波管内には定在波を生じ、前記複数のマイクロ波放射部は、前記導波管の伝送方向に管内波長の1/4を超えて1/2に満たない間隔で配置する構成としたマイクロ波加熱装置。 A heating chamber for storing an object to be heated;
Microwave generation means for generating microwaves;
A waveguide for transmitting microwaves;
A plurality of microwave radiating portions for radiating microwaves from the waveguide into the heating chamber, a standing wave is generated in the waveguide, and the plurality of microwave radiating portions are arranged in the waveguide. A microwave heating apparatus configured to be arranged in the transmission direction at an interval exceeding 1/4 of the guide wavelength and less than 1/2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012188367A JP5816820B2 (en) | 2012-08-29 | 2012-08-29 | Microwave heating device |
CN201310383166.1A CN103687122B (en) | 2012-08-29 | 2013-08-29 | Microwave heating equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012188367A JP5816820B2 (en) | 2012-08-29 | 2012-08-29 | Microwave heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014049178A true JP2014049178A (en) | 2014-03-17 |
JP5816820B2 JP5816820B2 (en) | 2015-11-18 |
Family
ID=50323049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012188367A Active JP5816820B2 (en) | 2012-08-29 | 2012-08-29 | Microwave heating device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5816820B2 (en) |
CN (1) | CN103687122B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019203172A1 (en) * | 2018-04-20 | 2019-10-24 | パナソニックIpマネジメント株式会社 | Microwave heating device |
WO2019203171A1 (en) * | 2018-04-20 | 2019-10-24 | パナソニックIpマネジメント株式会社 | Microwave heating device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102655694B1 (en) * | 2018-08-09 | 2024-04-08 | 삼성디스플레이 주식회사 | Annealing apparatus |
CN111467531B (en) * | 2020-06-24 | 2020-10-02 | 中钞长城金融设备控股有限公司 | Microwave sterilizing device for negotiable securities |
CN111643695B (en) * | 2020-08-06 | 2020-11-17 | 中钞长城金融设备控股有限公司 | Transverse wave-based valuable document microwave processing device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4301347A (en) * | 1980-08-14 | 1981-11-17 | General Electric Company | Feed system for microwave oven |
JPS58175284A (en) * | 1982-04-06 | 1983-10-14 | 株式会社日立ホームテック | High frequency heater |
JPS59198697A (en) * | 1983-04-25 | 1984-11-10 | 松下電器産業株式会社 | High frequency heater |
JPH10284246A (en) * | 1997-04-03 | 1998-10-23 | Samsung Electron Co Ltd | Microwave oven |
JP3510523B2 (en) * | 1998-04-06 | 2004-03-29 | エルジー電子株式会社 | Microwave and waveguide systems |
JP2005235772A (en) * | 2004-02-19 | 2005-09-02 | Lg Electronics Inc | Microwave oven |
WO2012073451A1 (en) * | 2010-11-29 | 2012-06-07 | パナソニック株式会社 | Microwave heater |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1565266A1 (en) * | 1965-06-18 | 1970-02-05 | Fried. Krupp Gmbh, 4300 Essen | Transverse reflector |
JPS5919229A (en) * | 1982-07-22 | 1984-01-31 | Matsushita Electric Ind Co Ltd | Magnetic recording medium |
DE20006527U1 (en) * | 2000-04-08 | 2000-09-28 | Prozeßautomation Kohler GmbH, 35510 Butzbach | Slot waveguide |
US6703628B2 (en) * | 2000-07-25 | 2004-03-09 | Axceliss Technologies, Inc | Method and system for ion beam containment in an ion beam guide |
CN1871875A (en) * | 2003-10-21 | 2006-11-29 | 特博切夫技术有限公司 | Speed cooking oven with slotted microwave antenna |
-
2012
- 2012-08-29 JP JP2012188367A patent/JP5816820B2/en active Active
-
2013
- 2013-08-29 CN CN201310383166.1A patent/CN103687122B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4301347A (en) * | 1980-08-14 | 1981-11-17 | General Electric Company | Feed system for microwave oven |
JPS58175284A (en) * | 1982-04-06 | 1983-10-14 | 株式会社日立ホームテック | High frequency heater |
JPS59198697A (en) * | 1983-04-25 | 1984-11-10 | 松下電器産業株式会社 | High frequency heater |
JPH10284246A (en) * | 1997-04-03 | 1998-10-23 | Samsung Electron Co Ltd | Microwave oven |
JP3510523B2 (en) * | 1998-04-06 | 2004-03-29 | エルジー電子株式会社 | Microwave and waveguide systems |
JP2005235772A (en) * | 2004-02-19 | 2005-09-02 | Lg Electronics Inc | Microwave oven |
WO2012073451A1 (en) * | 2010-11-29 | 2012-06-07 | パナソニック株式会社 | Microwave heater |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019203172A1 (en) * | 2018-04-20 | 2019-10-24 | パナソニックIpマネジメント株式会社 | Microwave heating device |
WO2019203171A1 (en) * | 2018-04-20 | 2019-10-24 | パナソニックIpマネジメント株式会社 | Microwave heating device |
CN111052863A (en) * | 2018-04-20 | 2020-04-21 | 松下知识产权经营株式会社 | Microwave heating device |
CN111052862A (en) * | 2018-04-20 | 2020-04-21 | 松下知识产权经营株式会社 | Microwave heating device |
JPWO2019203172A1 (en) * | 2018-04-20 | 2021-04-22 | パナソニックIpマネジメント株式会社 | Microwave heating device |
JPWO2019203171A1 (en) * | 2018-04-20 | 2021-05-13 | パナソニックIpマネジメント株式会社 | Microwave heating device |
EP3784003A4 (en) * | 2018-04-20 | 2021-06-02 | Panasonic Intellectual Property Management Co., Ltd. | Microwave heating device |
EP3784002A4 (en) * | 2018-04-20 | 2021-06-02 | Panasonic Intellectual Property Management Co., Ltd. | Microwave heating device |
CN111052862B (en) * | 2018-04-20 | 2022-05-10 | 松下知识产权经营株式会社 | Microwave heating device |
CN111052863B (en) * | 2018-04-20 | 2022-07-15 | 松下知识产权经营株式会社 | Microwave heating device |
JP7316496B2 (en) | 2018-04-20 | 2023-07-28 | パナソニックIpマネジメント株式会社 | microwave heating device |
JP7386398B2 (en) | 2018-04-20 | 2023-11-27 | パナソニックIpマネジメント株式会社 | microwave heating device |
Also Published As
Publication number | Publication date |
---|---|
JP5816820B2 (en) | 2015-11-18 |
CN103687122B (en) | 2016-08-10 |
CN103687122A (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10045403B2 (en) | Microwave heating device | |
EP2741574B1 (en) | Microwave heating device | |
US10356855B2 (en) | Microwave heating apparatus | |
WO2013171990A1 (en) | Microwave heating device | |
JP5816820B2 (en) | Microwave heating device | |
JP2014135123A (en) | Microwave heating device | |
JP6528088B2 (en) | Microwave heating device | |
JP2014032744A (en) | Microwave heating device | |
JP6273598B2 (en) | Microwave heating device | |
JP6179814B2 (en) | Microwave heating device | |
WO2013001787A1 (en) | Microwave heating device | |
JP2015015225A (en) | Microwave heating device | |
JP6459123B2 (en) | Microwave heating device | |
JP2014229532A (en) | Microwave heating apparatus | |
WO2016103586A1 (en) | Microwave heating device | |
JP2016118345A (en) | Microwave heating device | |
JP2014120416A (en) | Microwave heating device | |
WO2016103585A1 (en) | Microwave heating device | |
JP6715525B2 (en) | Microwave heating device | |
JP2014089942A (en) | Microwave heating device | |
JP2013125670A (en) | Microwave heating device | |
JP2013191349A (en) | Microwave heating device | |
JP2014116175A (en) | Microwave heating device | |
JP6414684B2 (en) | Microwave heating device | |
JP2018198223A (en) | Microwave heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140312 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140414 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140819 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141014 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150225 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150331 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150413 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5816820 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |