[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014047815A - Rotation supporter - Google Patents

Rotation supporter Download PDF

Info

Publication number
JP2014047815A
JP2014047815A JP2012189547A JP2012189547A JP2014047815A JP 2014047815 A JP2014047815 A JP 2014047815A JP 2012189547 A JP2012189547 A JP 2012189547A JP 2012189547 A JP2012189547 A JP 2012189547A JP 2014047815 A JP2014047815 A JP 2014047815A
Authority
JP
Japan
Prior art keywords
bearing
load
radial
peripheral surface
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012189547A
Other languages
Japanese (ja)
Other versions
JP6047999B2 (en
Inventor
Hiroshi Ishikawa
宏史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012189547A priority Critical patent/JP6047999B2/en
Publication of JP2014047815A publication Critical patent/JP2014047815A/en
Application granted granted Critical
Publication of JP6047999B2 publication Critical patent/JP6047999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/48Needle bearings with two or more rows of needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/381Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with at least one row for radial load in combination with at least one row for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/588Races of sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • F16C33/605Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings with a separate retaining member, e.g. flange, shoulder, guide ring, secured to a race ring, adjacent to the race surface, so as to abut the end of the rolling elements, e.g. rollers, or the cage

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a structure that can sufficiently bear a load even in any load area in a case of changing the load of a shell-shaped needle bearing, and can prevent loss torque based on the rotation resistance of a bearing part from uselessly increasing.SOLUTION: The radial gap of a first bearing part 18 is properly made smaller than the radial gap of a second bearing part 19. Consequently, in a state where a load is relatively small, the load is borne only with the first bearing part 18, and in a state where a load is relatively large, the load is borne with the first and second bearing parts 18, 19.

Description

この発明は、自動車やオートバイ等の各種車両用の変速機、工作機械、建設機械等の各種機械装置に組み込んで使用される、回転支持装置の改良に関する。   The present invention relates to an improvement in a rotation support device used by being incorporated in various mechanical devices such as transmissions for various vehicles such as automobiles and motorcycles, machine tools, and construction machines.

図5に示す様に、自動車用変速機では、一部の歯車軸であって軸部材である回転軸1の端部を、外径側部材であるハウジング2に対し、シェル形ニードル軸受3により回転自在に支持している。この為に、このハウジング2の一部に取付孔4を設け、この取付孔4の内周面と、前記回転軸1の端部外周面との間に、前記シェル形ニードル軸受3を組み付けている。   As shown in FIG. 5, in the automobile transmission, the end of the rotary shaft 1 that is a part of the gear shaft and the shaft member is connected to the housing 2 that is the outer diameter side member by the shell-type needle bearing 3. It is supported rotatably. For this purpose, a mounting hole 4 is provided in a part of the housing 2, and the shell needle bearing 3 is assembled between the inner peripheral surface of the mounting hole 4 and the outer peripheral surface of the end portion of the rotary shaft 1. Yes.

このシェル形ニードル軸受3は、特許文献1等に記載されて従来から広く知られている、複列タイプのもので、シェル形外輪5と、複数個のラジアルニードル6、6と、1対のラジアル保持器7、7とを備える。このうちのシェル形外輪5は、金属板である、肌焼鋼、軸受鋼等の硬質金属製の板材に、絞り加工等の塑性加工を施して成るもので、円筒部8と、この円筒部8の軸方向両端部を径方向内方に折り曲げて成る1対の内向鍔部9、9とを備える。そして、単一円筒面である、前記円筒部8の内周面の軸方向両半部を、1対の外輪軌道10、10としている。この様なシェル形外輪5は、前記円筒部8を前記取付孔4に対し、全体的に均一の締め代を持った締り嵌めで内嵌する事により、前記ハウジング2に固定されている。又、単一円筒面である、前記回転軸1の端部外周面のうち、前記両外輪軌道10、10と対向する部分を、1対の内輪軌道11、11としている。又、それぞれが鋼製である前記各ラジアルニードル6、6は、前記両外輪軌道10、10と前記両内輪軌道11、11との間に、両列毎に複数個ずつ、それぞれが鋼板製である、前記両ラジアル保持器7、7により保持された状態で、転動自在に設けられている。   This shell-type needle bearing 3 is a double-row type described in Patent Document 1 or the like and has been widely known, and includes a shell-type outer ring 5, a plurality of radial needles 6, 6, and a pair of Radial cages 7 and 7 are provided. Among these, the shell-shaped outer ring 5 is formed by subjecting a hard metal plate material such as case-hardened steel or bearing steel, which is a metal plate, to plastic processing such as drawing, and includes a cylindrical portion 8 and the cylindrical portion. 8 is provided with a pair of inward flange portions 9 and 9 formed by bending both axial end portions in the radial direction. A pair of outer ring raceways 10 and 10 are formed on both axial halves of the inner peripheral surface of the cylindrical portion 8, which is a single cylindrical surface. Such a shell-shaped outer ring 5 is fixed to the housing 2 by internally fitting the cylindrical portion 8 into the mounting hole 4 with an interference fit having a uniform fastening allowance as a whole. Further, a portion of the outer peripheral surface of the end portion of the rotating shaft 1 that is a single cylindrical surface is opposed to the outer ring raceways 10 and 10 as a pair of inner ring raceways 11 and 11. Each of the radial needles 6, 6, each made of steel, is made of a steel plate between the outer ring raceways 10, 10 and the inner ring raceways 11, 11. It is provided so as to be able to roll while being held by the radial holders 7 and 7.

ところで、上述したシェル形ニードル軸受3の様に、自動車用変速機を構成する歯車軸の回転支持部分に組み込んで使用される転がり軸受の負荷荷重の大きさは、使用時に変化する。この為、当該転がり軸受には、この負荷荷重の最大値を十分に支承できるだけの負荷容量を有している事が要求される。これに対して、上述したシェル形ニードル軸受3の場合には、前記ラジアルニードル6、6の列を複列としている為、当該要求に応えられる大きさの負荷容量を確保し易い。   By the way, the magnitude | size of the load load of the rolling bearing used by incorporating in the rotation support part of the gear shaft which comprises the transmission for motor vehicles like the shell type needle bearing 3 mentioned above changes at the time of use. For this reason, the rolling bearing is required to have a load capacity that can sufficiently support the maximum value of the load. On the other hand, in the case of the shell-type needle bearing 3 described above, since the rows of the radial needles 6 and 6 are double rows, it is easy to ensure a load capacity large enough to meet the requirements.

ところが、上述した従来構造の場合には、以下に説明する様な点で、改善の余地がある。
即ち、上述した従来構造の場合には、両列の軸受部の諸元(前記外輪軌道10の直径、前記内輪軌道11の直径、前記各ラジアルニードル6、6の転動面の直径及び個数等)が互いに等しくなっている。又、前記取付孔4と前記シェル形外輪5を構成する円筒部8との嵌合部の締め代が、全体的に均一(嵌合に伴う前記両外輪軌道10、10の縮径量が同一)になっている。この為、両列の軸受部のラジアル隙間(ラジアル方向の内部隙間)は、互いに等しくなっている。従って、使用時に変化する負荷荷重の大きさに拘らず、この負荷荷重を、常に、両列の軸受部で分担して支承する状態となる。つまり、この負荷荷重が、両列の軸受部で分担しなければ支承できない程大きくなっている場合に限らず、何れか一方の列の軸受部のみで十分に支承できる程小さくなっている場合にも、前記負荷荷重を両列の軸受部で分担して支承する状態となる。
一方、両列の軸受部に関しては、それぞれ負荷荷重を支承していない状態(負荷圏が発生していない状態)よりも、負荷荷重を支承している状態(負荷圏が発生している状態)の方が、回転抵抗が大きくなる。
従って、上述した従来構造の場合、本来であれば、何れか一方の列の軸受部のみで負荷荷重を支承できる状態(この負荷荷重が比較的小さくなっている状態)で、両列の軸受部の回転抵抗に基づく損失トルク(動トルク)が無駄に大きくなる傾向がある。
However, in the case of the conventional structure described above, there is room for improvement in the following points.
That is, in the case of the above-described conventional structure, the specifications of the bearing portions in both rows (the diameter of the outer ring raceway 10, the diameter of the inner ring raceway 11, the diameter and number of rolling surfaces of the radial needles 6 and 6, etc. ) Are equal to each other. Further, the tightening margin of the fitting portion between the mounting hole 4 and the cylindrical portion 8 constituting the shell-shaped outer ring 5 is uniform throughout (the diameter reduction amount of the outer ring raceways 10 and 10 accompanying the fitting is the same). )It has become. For this reason, the radial clearances (internal clearances in the radial direction) of the bearing portions in both rows are equal to each other. Therefore, regardless of the magnitude of the load that changes during use, the load is always shared and supported by the bearing portions of both rows. In other words, this load is not limited to the case where the load is large enough to be supported if it is not shared by the bearings in both rows, but when the load is small enough to be supported by only one of the rows. Moreover, it will be in the state which shares and supports the said load load by the bearing part of both rows.
On the other hand, with respect to the bearings in both rows, the load load is supported (the load zone is generated) rather than the load load is not supported (the load zone is not generated). The rotation resistance becomes larger.
Therefore, in the case of the conventional structure described above, the bearing portions of both rows are originally in a state where the load load can be supported by only one of the bearing portions (the load load is relatively small). There is a tendency that the loss torque (dynamic torque) based on the rotational resistance of the motor becomes uselessly large.

尚、自動車やオートバイ用の変速機の一種である、デュアルクラッチトランスミッション(DCT)には、使用時に回転する外径側部材である外径側歯車軸の径方向中心部に設けた取付孔の内周面と、使用時に回転する軸部材である内径側歯車軸の外周面との間に、転がり軸受を組み付けて成る、回転支持装置が組み込まれている。使用時に、前記両歯車軸は相対回転し、前記転がり軸受は、これら両歯車軸同士の間に作用するラジアル荷重を支承しつつ、これら両歯車軸同士が相対回転する事を許容する。この様な回転支持装置を構成する前記転がり軸受として、複列のシェル形ニードル軸受を使用する場合にも、やはり、上述した様な問題が発生する。   Note that a dual clutch transmission (DCT), which is a kind of transmission for automobiles and motorcycles, has a mounting hole provided in a central portion in the radial direction of an outer diameter side gear shaft that is an outer diameter side member that rotates during use. A rotation support device is assembled between a peripheral surface and an outer peripheral surface of an inner diameter side gear shaft that is a shaft member that rotates in use. In use, the gear shafts rotate relative to each other, and the rolling bearing allows the gear shafts to rotate relative to each other while bearing a radial load acting between the gear shafts. Even when a double-row shell-type needle bearing is used as the rolling bearing constituting such a rotation support device, the above-described problem also occurs.

特開2005−42879号公報Japanese Patent Laid-Open No. 2005-42879

本発明は、上述の様な事情に鑑み、使用時に負荷荷重の大きさが変化する用途に於いて、何れの負荷荷重領域でも、この負荷荷重を十分に支承できると共に、各列の軸受部の回転抵抗に基づく損失トルクが無駄に大きくなる事を抑えられる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can sufficiently support this load load in any load load region in an application in which the magnitude of the load load changes during use. The present invention has been invented to realize a structure capable of suppressing the loss torque based on the rotational resistance from increasing unnecessarily.

本発明の回転支持装置は、取付孔を有する外径側部材と、この取付孔の内径側に、この取付孔と同心に設けられた軸部材と、これら取付孔の内周面と軸部材の外周面との間に組み付けられたシェル形ニードル軸受とを備える。
又、このうちのシェル形ニードル軸受は、シェル形外輪と、複数個のラジアルニードルとを備える。
又、このうちのシェル形外輪は、金属板製で且つ内周面の軸方向複数箇所にそれぞれが円筒面状の外輪軌道を有するもので、前記取付孔に内嵌固定されている。
又、前記各ラジアルニードルは、前記両外輪軌道と、前記軸部材の外周面のうちでこれら両外輪軌道と対向する部分に設けられた、それぞれが円筒面状の1対の内輪軌道との間に、両列毎に複数個ずつ、転動自在に設けられている。
特に、本発明の回転支持装置に於いては、前記取付孔の内周面と前記軸部材の外周面との間に前記シェル形ニードル軸受を組み付けた状態での、このシェル形ニードル軸受を構成する各列の軸受部のラジアル隙間を、互いに異ならせている。
尚、本発明は、前記外径側部材を、使用時にも回転しないハウジングとすると共に、前記軸部材を、使用時に回転する回転軸として実施する事もできるし、前記外径側部材を、使用時に回転する回転体とすると共に、前記軸部材を、使用時にも回転しない静止軸(固定軸)として実施する事もできる。更に、前記外径側部材と前記軸部材との構成に関しては、後述する請求項6に記載した発明の構成を採用する事もできる。
The rotation support device of the present invention includes an outer diameter side member having an attachment hole, a shaft member provided concentrically with the attachment hole on the inner diameter side of the attachment hole, an inner peripheral surface of the attachment hole, and a shaft member. And a shell-type needle bearing assembled with the outer peripheral surface.
Of these, the shell type needle bearing includes a shell type outer ring and a plurality of radial needles.
Of these, the shell-shaped outer ring is made of a metal plate and has cylindrical outer ring raceways at a plurality of axial positions on the inner peripheral surface, and is fitted and fixed in the mounting hole.
Each of the radial needles is provided between the outer ring raceway and a pair of inner ring raceways each provided on a portion of the outer peripheral surface of the shaft member facing the outer raceway. In addition, a plurality of pieces are provided for both rows so as to be freely rollable.
In particular, in the rotation support device of the present invention, the shell type needle bearing is configured in a state where the shell type needle bearing is assembled between the inner peripheral surface of the mounting hole and the outer peripheral surface of the shaft member. The radial gaps of the bearing portions in each row are made different from each other.
In the present invention, the outer diameter side member may be a housing that does not rotate even when used, and the shaft member may be implemented as a rotating shaft that rotates when used, or the outer diameter side member may be used. In addition to a rotating body that rotates sometimes, the shaft member can be implemented as a stationary shaft (fixed shaft) that does not rotate during use. Furthermore, regarding the configuration of the outer diameter side member and the shaft member, the configuration of the invention described in claim 6 described later can be employed.

本発明を実施する場合に、好ましくは、請求項2に記載した発明の様に、前記各軸受部の基本動定格荷重を、ラジアル隙間がより小さい軸受部程大きくする。
この場合には、例えば請求項3に記載した発明の様に、前記各軸受部の基本動定格荷重を、ラジアル隙間がより小さい軸受部程大きくする手段として、前記ラジアルニードルの個数を、ラジアル隙間がより小さい軸受部程多くする手段と、前記ラジアルニードルの転動面の直径を、ラジアル隙間がより小さい軸受部程大きくする手段と、前記ラジアルニードルの転動面の軸方向長さを、ラジアル隙間がより小さい軸受部程大きくする手段とのうちから選択される、少なくとも1つの手段を採用する事ができる。
又、この場合には、例えば請求項4に記載した発明の様に、前記各軸受部を構成する前記外輪軌道の直径と前記内輪軌道の直径とを、それぞれ基本動定格荷重をより大きくした軸受部程大きくする事ができる。
又、前記ラジアルニードルの転動面の直径を、ラジアル隙間がより小さい軸受部程大きくする手段を採用する場合には、例えば請求項5に記載した発明の様に、前記各軸受部を構成する前記内輪軌道の直径を、これら各軸受部同士で互いに等しくすると共に、前記各軸受部を構成する前記外輪軌道の直径を、前記ラジアルニードルの転動面の直径をより大きくした軸受部程大きくする。
When practicing the present invention, preferably, as in the invention described in claim 2, the basic dynamic load rating of each bearing portion is increased as the bearing portion has a smaller radial clearance.
In this case, for example, as in the invention described in claim 3, as a means for increasing the basic dynamic load rating of each bearing portion as the bearing portion having a smaller radial clearance, the number of the radial needles is set as the radial clearance. The means for increasing the bearing portion with a smaller diameter, the means for increasing the diameter of the rolling surface of the radial needle with a bearing portion with a smaller radial clearance, and the axial length of the rolling surface of the radial needle with a radial At least one means selected from the means for increasing the bearing portion with a smaller clearance can be employed.
Further, in this case, for example, as in the invention described in claim 4, the bearings in which the diameter of the outer ring raceway and the diameter of the inner ring raceway constituting each bearing portion are made larger in basic dynamic load rating, respectively. The department can be enlarged.
Further, when adopting a means for increasing the diameter of the rolling surface of the radial needle as the bearing portion having a smaller radial clearance, the bearing portions are configured as in the invention described in claim 5, for example. The diameter of the inner ring raceway is made equal to each other between the bearing portions, and the diameter of the outer ring raceway constituting each bearing portion is made larger as the bearing portion having a larger diameter of the rolling surface of the radial needle. .

又、本発明を実施する場合には、例えば請求項6に記載した発明の様に、前記外径側部材を、使用時に前記取付孔の中心軸を中心として回転する回転部材とし、前記軸部材を、使用時に自身の中心軸を中心として回転する回転軸とし、更に、前記回転部材とこの回転軸とが、互いに相対回転する状態で使用されるものとする事ができる。この様な請求項6に記載した発明は、例えば前述したDCTに組み込んで使用される回転支持装置として実施する事ができる。即ち、この場合には、前記外径側部材である回転部材を前記外径側歯車軸とし、前記軸部材である回転軸を前記内径側歯車軸とし、前記シェル形ニードル軸受を、これら外径側歯車軸の取付孔の内周面と内径側歯車軸の外周面との間に組み付ける転がり軸受とする。   When carrying out the present invention, for example, as in the invention described in claim 6, the outer diameter side member is a rotating member that rotates around the central axis of the mounting hole when in use, and the shaft member Can be used as a rotating shaft that rotates about its own central axis when used, and the rotating member and the rotating shaft can be used in a state of rotating relative to each other. The invention described in claim 6 can be implemented as a rotary support device used by being incorporated in the DCT described above, for example. That is, in this case, the rotating member that is the outer diameter side member is the outer diameter side gear shaft, the rotating shaft that is the shaft member is the inner diameter side gear shaft, and the shell needle bearing is the outer diameter side shaft. A rolling bearing assembled between the inner peripheral surface of the mounting hole of the side gear shaft and the outer peripheral surface of the inner diameter side gear shaft.

又、本発明を実施する場合で、前記外径側部材を、使用時にも回転しないハウジングとし、前記軸部材を、使用時に回転する回転軸とし、前記シェル形ニードル軸受を、この回転軸の一端部外周面と前記取付孔の内周面との間に組み付けると共に、この回転軸の一部で前記シェル形ニードル軸受を構成する各列の軸受部よりもこの回転軸の一端縁から遠い位置にラジアル荷重が作用する状態で使用する場合に、好ましくは、請求項7に記載した発明の様に、前記各列の軸受部のラジアル隙間を、前記回転軸の一端縁からより遠い位置に存在する軸受部程小さくする。   In the case of carrying out the present invention, the outer diameter side member is a housing that does not rotate even when used, the shaft member is a rotating shaft that rotates when used, and the shell needle bearing is one end of the rotating shaft. Assemble between the outer peripheral surface of the portion and the inner peripheral surface of the mounting hole, and at a position farther from one end edge of the rotating shaft than the bearing portion of each row constituting the shell-type needle bearing with a part of the rotating shaft. When used in a state where a radial load is applied, preferably, as in the invention described in claim 7, the radial gaps of the bearing portions of the respective rows exist at positions farther from one end edge of the rotary shaft. Make the bearing part smaller.

又、本発明を実施する場合に、好ましくは、請求項8に記載した発明の様に、前記シェル形外輪の内周面と前記軸部材の外周面との間部分で、軸方向に関して互いに隣り合う軸受部を構成するラジアルニードル同士の間部分に、円環状の間座を配置する。
又、本発明を実施する場合には、例えば請求項9に記載した発明の様に、前記シェル形外輪の内周面の軸方向一部分に設けた段差面と、前記軸部材の外周面の軸方向一部分に設けた段差面との間に、スラスト軸受を設置する事もできる。このスラスト軸受は、軸方向に関して互いに対向する1対のスラスト軌道面と、これら両スラスト軌道面同士の間に、スラスト保持器により保持された状態で転動自在に設けられた複数のスラストニードルとを備えたものである。尚、前記両スラスト軌道面は、それぞれ前記シェル形外輪や前記軸部材と別体に造られたスラスト軌道輪の側面に設ける事もできるし、或いは、前記両段差面のうちの少なくとも一方を、前記スラスト軌道面とする事もできる。
In carrying out the present invention, preferably, as in the invention described in claim 8, adjacent to each other in the axial direction at a portion between the inner peripheral surface of the shell-shaped outer ring and the outer peripheral surface of the shaft member. An annular spacer is arranged between the radial needles constituting the matching bearing portion.
When carrying out the present invention, for example, as in the invention described in claim 9, a stepped surface provided in a part of the inner peripheral surface of the shell-shaped outer ring in the axial direction and an axis of the outer peripheral surface of the shaft member. A thrust bearing can be installed between the step surface provided in a part of the direction. The thrust bearing includes a pair of thrust raceway surfaces opposed to each other in the axial direction, and a plurality of thrust needles provided between the thrust raceway surfaces so as to be able to roll while being held by a thrust holder. It is equipped with. The two thrust raceway surfaces may be provided on the side surfaces of the thrust raceway rings formed separately from the shell-shaped outer ring and the shaft member, respectively, or at least one of the two step surfaces, The thrust raceway surface can also be used.

上述の様に構成する本発明の回転支持装置の場合、シェル形ニードル軸受に小さい負荷荷重のみが作用している状態(例えば、運転停止時に設定されている予圧に基づく負荷荷重のみが作用している状態や、運転開始直後に負荷荷重が発生し始めた状態、更には伝達トルクが小さい状態)では、各列の軸受部のうちで、ラジアル隙間が最も小さい軸受部にのみ、負荷圏が発生した状態となる。この状態から、前記負荷荷重が増大すると、これに合わせて各部材の弾性変形量が増大する事に伴い、残りの列の軸受部にも、ラジアル隙間が小さいものから順番に、負荷圏が発生し始める。そして、最終的には、総ての列の軸受部に、負荷圏が発生した状態となる。何れの状態でも、前記負荷荷重は、負荷圏が発生した軸受部によってのみ支承される。又、前記各列の軸受部の回転抵抗は、負荷圏が発生している状態よりも、負荷圏が発生していない状態の方が、小さくなる。従って、本発明の場合、使用時に変化する前記負荷荷重の範囲を考慮して、前記各列の軸受部のラジアル隙間を適切に規制しておけば、前記負荷荷重の大きさに拘らず、この負荷荷重を、必要最小限となる個数の軸受部により分担して支承できる。この結果、何れの負荷荷重領域でも、この負荷荷重を十分に支承できると共に、前記各列の軸受部の回転抵抗に基づく損失トルクが無駄に大きくなる事を抑えられる。   In the case of the rotary support device of the present invention configured as described above, only a small load is acting on the shell-type needle bearing (for example, only a load based on a preload set at the time of operation stop is acting. Load load begins to be generated immediately after the start of operation, and the transmission torque is small), among the bearings in each row, a load zone is generated only in the bearing with the smallest radial clearance. It will be in the state. From this state, when the load increases, the amount of elastic deformation of each member increases accordingly, and the bearings in the remaining rows also generate load zones in order from the smallest radial clearance. Begin to. Eventually, a load zone is generated in the bearing portions of all rows. In any state, the load is supported only by the bearing portion where the load zone is generated. Further, the rotational resistance of the bearings in each row is smaller in the state where the load area is not generated than in the state where the load area is generated. Therefore, in the case of the present invention, if the radial gaps of the bearing portions in each row are appropriately regulated in consideration of the range of the load load that changes during use, the load load is not limited regardless of the magnitude of the load load. The load can be shared and supported by the minimum number of bearings. As a result, it is possible to sufficiently support this load load in any load load region, and it is possible to prevent the loss torque based on the rotational resistance of the bearing portions of each row from becoming unnecessarily large.

又、請求項2に記載した発明の構成を採用すれば、各列の軸受部同士の寿命のバランスを取り易くできる。即ち、本発明の場合、ラジアル隙間がより小さい軸受部程、負荷荷重がより小さい段階から、この負荷荷重を支承する状態になる。この為、この負荷荷重の支承頻度(支承時間)は、ラジアル隙間がより小さい軸受部程多く(長く)なる。又、本発明の場合、前記負荷荷重を複数の軸受部により分担して支承する場合に、これら各軸受部で発生する負荷圏の広さは、ラジアル隙間がより小さい軸受部程広くなる。つまり、前記負荷荷重の支承分担割合は、ラジアル隙間がより小さい軸受部程大きくなる。従って、本発明の場合、ラジアル隙間がより小さい軸受部程、厳しい荷重条件で使用される事になる。これに対して、請求項2に記載した発明の場合には、前記各列の軸受部の基本動定格荷重を、ラジアル隙間がより小さい軸受部程(より厳しい荷重条件で使用される軸受部程)、大きくしている。この為、前記各列の軸受部同士の寿命のバランスを取り易くできる。
又、請求項5に記載した発明の構成を採用すれば、軸部材の外周面の一部で、軸方向に隣り合う内輪軌道同士の間に、段差面を形成する必要がなくなる。従って、その分だけ、前記軸部材の加工を容易にできる。
Moreover, if the structure of the invention described in claim 2 is adopted, it is possible to easily balance the life of the bearing portions in each row. In other words, in the case of the present invention, the bearing portion with a smaller radial gap is in a state of supporting this load load from the stage where the load load is smaller. For this reason, the load frequency (support time) of the load is increased (longer) as the bearing portion has a smaller radial clearance. Further, in the case of the present invention, when the load load is shared and supported by a plurality of bearing portions, the width of the load zone generated in each of the bearing portions becomes wider as the bearing portion having a smaller radial clearance. That is, the load sharing ratio of the load is increased as the bearing portion has a smaller radial clearance. Therefore, in the case of the present invention, a bearing portion with a smaller radial clearance is used under severe load conditions. On the other hand, in the case of the invention described in claim 2, the basic dynamic load rating of the bearings in each row is set so that the bearings with smaller radial clearances (the bearings used under more severe load conditions). ), Bigger. For this reason, it is possible to easily balance the lifetimes of the bearing portions in each row.
If the configuration of the invention described in claim 5 is adopted, it is not necessary to form a step surface between the inner ring raceways adjacent in the axial direction at a part of the outer peripheral surface of the shaft member. Therefore, the shaft member can be easily processed accordingly.

又、請求項7に記載した発明の構成を採用すれば、軸部材である回転軸の一端部のうち、ラジアル荷重の作用点に近い部分から順番に、ラジアル隙間がより小さい軸受部が配置される状態となる。この為、前記ラジアル荷重に対する前記回転軸の曲げ剛性を、効率良く確保できる。
又、請求項8に記載した発明の構成を採用すれば、円環状の間座により、この間座の軸方向両側に配置された、1対の軸受部を構成するラジアルニードルの軸方向変位を規制し易くできる。
又、請求項9に記載した発明の構成を採用すれば、軸部材と、シェル形外輪を内嵌した相手部材との間に作用するスラスト荷重を、スラスト軸受により支承できる。又、このスラスト軸受を、前記シェル形外輪と前記軸部材との間に組み付けている為、この軸部材と前記相手部材との間の回転支持部分を小型に構成できると共に、この回転支持部分に対する前記スラスト軸受の組み付け性を良好にできる。
In addition, if the configuration of the invention described in claim 7 is adopted, a bearing portion having a smaller radial clearance is arranged in order from a portion close to the point of action of the radial load in one end portion of the rotating shaft as the shaft member. It becomes a state. For this reason, the bending rigidity of the said rotating shaft with respect to the said radial load can be ensured efficiently.
Further, if the configuration of the invention described in claim 8 is adopted, the axial displacement of the radial needle constituting the pair of bearing portions disposed on both sides in the axial direction of the spacer is regulated by the annular spacer. Easy to do.
If the structure of the invention described in claim 9 is adopted, the thrust load acting between the shaft member and the mating member with the shell-shaped outer ring fitted therein can be supported by the thrust bearing. In addition, since the thrust bearing is assembled between the shell-shaped outer ring and the shaft member, the rotation support portion between the shaft member and the mating member can be made compact, and the rotation support portion can be configured with respect to the rotation support portion. The assemblability of the thrust bearing can be improved.

本発明の実施の形態の第1例を示す部分断面図。The fragmentary sectional view which shows the 1st example of embodiment of this invention. 同第2例を示す部分断面図。The fragmentary sectional view which shows the 2nd example. 同第3例を示す部分断面図。The fragmentary sectional view which shows the 3rd example. 同第4例を示す部分断面図。The fragmentary sectional view which shows the 4th example. 従来構造の1例を示す部分断面図。The fragmentary sectional view which shows one example of the conventional structure.

[実施の形態の第1例]
図1は、請求項1〜4、7に対応する、本発明の実施の形態の第1例を示している。本例の回転支持装置は、自動車用変速機を構成するハウジング2aと、歯車軸であって軸部材である回転軸1aと、シェル形ニードル軸受3aとを備える。そして、この回転軸1aの一端部を、前記ハウジング2aに対し、前記シェル形ニードル軸受3aにより回転自在に支持している。
[First example of embodiment]
FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1 to 4 and 7. The rotation support device of this example includes a housing 2a that constitutes an automobile transmission, a rotation shaft 1a that is a gear shaft and a shaft member, and a shell-type needle bearing 3a. One end of the rotating shaft 1a is rotatably supported by the shell needle bearing 3a with respect to the housing 2a.

前記シェル形ニードル軸受3aは、シェル形外輪5aと、複数個のラジアルニードル6、6と、1対のラジアル保持器7a、7bとを備える。このうちのシェル形外輪5aは、金属板である、肌焼鋼、軸受鋼等の硬質金属製の板材に、絞り加工等の塑性加工を施して成るもので、段付円筒部12と、この段付円筒部12の軸方向両端部を径方向内方に折り曲げて成る1対の内向鍔部9a、9bとを有する。又、このうちの段付円筒部12は、互いに同心に配置された大径円筒部13及び小径円筒部14と、これら両円筒部13、14の軸方向端縁同士をつなぐ円輪部15とから成る。そして、それぞれが円筒面である、前記両円筒部13、14の内周面を、1対の外輪軌道10a、10bとしている。この様な構成を有するシェル形外輪5aは、前記両円筒部13、14を、それぞれ前記ハウジング2aの一部に設けた段付の取付孔4aの内周面に締り嵌めで内嵌している。これと共に、前記両内向鍔部9a、9bのうちの小径側の内向鍔部9bの外側面と、前記円輪部15の外側面とを、それぞれ前記取付孔4aの内周面に設けられた段差面に当接させる事で、前記ハウジング2aに対する前記シェル形外輪5aの軸方向の位置決めを図っている。   The shell type needle bearing 3a includes a shell type outer ring 5a, a plurality of radial needles 6 and 6, and a pair of radial cages 7a and 7b. Of these, the shell-shaped outer ring 5a is formed by subjecting a hard metal plate material such as case-hardened steel, bearing steel or the like, which is a metal plate, to plastic processing such as drawing processing. It has a pair of inward flange portions 9a and 9b formed by bending both axial end portions of the stepped cylindrical portion 12 radially inward. Of these, the stepped cylindrical portion 12 includes a large-diameter cylindrical portion 13 and a small-diameter cylindrical portion 14 that are arranged concentrically with each other, and an annular portion 15 that connects the end edges in the axial direction of both the cylindrical portions 13 and 14. Consists of. The inner peripheral surfaces of the cylindrical portions 13 and 14, each of which is a cylindrical surface, serve as a pair of outer ring raceways 10a and 10b. In the shell-shaped outer ring 5a having such a configuration, both the cylindrical portions 13 and 14 are fitted into the inner peripheral surface of the stepped mounting hole 4a provided in a part of the housing 2a by an interference fit. . At the same time, the outer surface of the inner flange 9b on the smaller diameter side of the inner flanges 9a, 9b and the outer surface of the ring portion 15 are provided on the inner peripheral surface of the mounting hole 4a. By abutting against the step surface, the shell-shaped outer ring 5a is positioned in the axial direction with respect to the housing 2a.

又、鋼製である、前記回転軸1aの一端部は、前記シェル形外輪5aの内径側に、このシェル形外輪5aと同心に配置している。この回転軸1aの一端部は、先端側(図1の左側)の小径部16と、中央側(図1の右側)の大径部17とを、互いに同心に設けて成る。そして、それぞれが円筒面である、これら大径部17の外周面及び小径部16の外周面を、1対の内輪軌道11a、11bとしている。   Further, one end portion of the rotating shaft 1a, which is made of steel, is disposed concentrically with the shell-shaped outer ring 5a on the inner diameter side of the shell-shaped outer ring 5a. One end of the rotating shaft 1a is formed by concentrically providing a small-diameter portion 16 on the tip side (left side in FIG. 1) and a large-diameter portion 17 on the center side (right side in FIG. 1). The outer peripheral surface of the large-diameter portion 17 and the outer peripheral surface of the small-diameter portion 16, each of which is a cylindrical surface, are used as a pair of inner ring raceways 11a and 11b.

又、それぞれが鋼製である、前記各ラジアルニードル6、6は、前記両外輪軌道10a、10bと前記両内輪軌道11a、11bとの間に、両列毎に複数個ずつ、それぞれが鋼板製である、前記両ラジアル保持器7a、7bにより保持された状態で、転動自在に設けられている。又、この状態で、それぞれが両列毎の外輪軌道10a(10b)と内輪軌道11a(11b)と複数個のラジアルニードル6、6とラジアル保持器7a(7b)とを含んで構成される、両列の軸受部18、19のうち、大径側の第一軸受部18を構成するラジアルニードル6、6及びラジアル保持器7aは、大径側の内向鍔部9aの内側面と前記円輪部15の内側面とにより、その軸方向変位を規制されている。これに対して、小径側の第二軸受部18を構成するラジアルニードル6、6及びラジアル保持器7bは、小径側の内向鍔部9bの内側面と、前記回転軸1aの外周面のうちで前記両内輪軌道11a、11b同士の間に設けられた段差面20とにより、その軸方向変位を規制されている。又、本例の場合、前記各ラジアルニードル6、6は、前記両列の軸受部18、19同士で、互いに同一の諸元を有するものを使用している。   Further, each of the radial needles 6, 6, each made of steel, is made of a steel plate between the outer ring raceways 10 a, 10 b and the inner ring raceways 11 a, 11 b. It is provided so that it can roll while being held by the radial holders 7a and 7b. Further, in this state, each includes an outer ring raceway 10a (10b), an inner ring raceway 11a (11b), a plurality of radial needles 6 and 6, and a radial cage 7a (7b) for each row. The radial needles 6, 6 and the radial cage 7 a constituting the first bearing portion 18 on the large diameter side of the bearing portions 18, 19 in both rows are the inner surface of the inward flange portion 9 a on the large diameter side and the ring. The axial displacement is restricted by the inner surface of the portion 15. On the other hand, the radial needles 6 and 6 and the radial cage 7b constituting the second bearing portion 18 on the small diameter side are among the inner surface of the inward flange portion 9b on the small diameter side and the outer peripheral surface of the rotating shaft 1a. The axial displacement is regulated by the step surface 20 provided between the inner ring raceways 11a and 11b. Further, in the case of this example, the radial needles 6 and 6 are the same in the two rows of bearing portions 18 and 19 having the same specifications.

又、本例の場合、前記第一、第二両軸受部18、19のラジアル隙間を、前記回転軸1aの一端縁(先端縁)から遠い側(軸方向中央寄り)に配置された第一軸受部18で、この一端縁に近い側(軸方向端部寄り)に配置された第二軸受部19よりも小さくしている。この為に、本例の場合には、図示の組立状態(前記取付孔4aに前記シェル形外輪5aを締り嵌めで内嵌する事に伴い、前記両外輪軌道10a、10bに弾性的な縮径が生じた状態)で、前記第一軸受部18を構成する外輪軌道10aと内輪軌道11aとの直径差を、前記第二軸受部19を構成する外輪軌道10bと内輪軌道11bとの直径差よりも小さくしている。   In the case of the present example, the radial gap between the first and second bearing portions 18 and 19 is arranged on the side far from the one end edge (tip edge) of the rotary shaft 1a (the axial center). The bearing portion 18 is smaller than the second bearing portion 19 disposed on the side close to the one end edge (close to the end portion in the axial direction). For this reason, in the case of this example, the assembly state shown in the figure (with the inner fitting of the shell-shaped outer ring 5a into the mounting hole 4a by the interference fit, both the outer ring raceways 10a and 10b are elastically reduced in diameter. In this state, the diameter difference between the outer ring raceway 10a and the inner ring raceway 11a constituting the first bearing portion 18 is determined from the diameter difference between the outer ring raceway 10b and the inner ring raceway 11b constituting the second bearing portion 19. Is also small.

更に、本例の場合、前記第一、第二両軸受部18、19の基本動定格荷重を、ラジアル隙間が比較的小さい第一軸受部18で、ラジアル隙間が比較的大きい第二軸受部19よりも、大きくしている。この為に、本例の場合には、前記第一軸受部18を構成するラジアルニードル6、6の個数を、前記第二軸受部19を構成するラジアルニードル6、6の個数よりも多くしている。ここで、本例の場合、前記第一軸受部18を構成するラジアルニードル6、6の設置空間(円筒状空間)は、前記第二軸受部19を構成するラジアルニードル6、6の設置空間(円筒状空間)よりも、径寸法が大きくなっている為、周方向長さも長くなっている。従って、上述の様に第一軸受部18を構成するラジアルニードル6、6の個数を、第二軸受部19を構成するラジアルニードル6、6の個数よりも多くする事は、容易である。   Further, in this example, the basic dynamic load rating of the first and second bearing portions 18 and 19 is the first bearing portion 18 having a relatively small radial gap and the second bearing portion 19 having a relatively large radial gap. Is bigger than. For this reason, in the case of this example, the number of radial needles 6, 6 constituting the first bearing portion 18 is made larger than the number of radial needles 6, 6 constituting the second bearing portion 19. Yes. Here, in the case of this example, the installation space (cylindrical space) of the radial needles 6 and 6 constituting the first bearing portion 18 is the installation space of the radial needles 6 and 6 constituting the second bearing portion 19 ( Since the diameter dimension is larger than the cylindrical space), the circumferential length is also longer. Therefore, as described above, it is easy to increase the number of radial needles 6 and 6 constituting the first bearing portion 18 as compared with the number of radial needles 6 and 6 constituting the second bearing portion 19.

尚、本例の場合、前記回転軸1aの図示しない他端部は、前記ハウジング2aに対し、他の転がり軸受により回転自在に支持されている。又、前記回転軸1aの図示しない軸方向中間部には、歯車が固定されている。前記自動車用変速機の運転時に、この回転軸1aの軸方向中間部には、この歯車を介して、ラジアル荷重が作用する。このラジアル荷重の大きさは、前記自動車用変速機の運転状態によって変化する(伝達トルクが大きくなる程大きくなる)。そして、これに伴い、前記シェル形ニードル軸受3a及び前記他の転がり軸受の負荷荷重の大きさも変化する。   In the case of this example, the other end (not shown) of the rotary shaft 1a is rotatably supported by another rolling bearing with respect to the housing 2a. A gear is fixed to an axial intermediate portion (not shown) of the rotary shaft 1a. During the operation of the automobile transmission, a radial load acts on the intermediate portion in the axial direction of the rotary shaft 1a via the gear. The magnitude of the radial load varies depending on the driving state of the automobile transmission (the greater the transmission torque, the larger the radial load). Along with this, the magnitudes of the load loads of the shell-type needle bearing 3a and the other rolling bearings also change.

上述の様に構成する本例の回転支持装置の場合、前記シェル形ニードル軸受3aに極く小さい負荷荷重のみが作用している状態(例えば、運転停止時に設定されている予圧に基づく負荷荷重のみが作用している状態や、運転開始直後に負荷荷重が発生し始めた状態、更には、前記回転軸1aが伝達するトルクが小さい状態)では、前記第一、第二両軸受部18、19のうちで、ラジアル隙間が比較的小さい第一軸受部18にのみ、負荷圏が発生した状態となる。この状態から、前記負荷荷重が増大すると、これに合わせて各部材の弾性変形量が増大する事に伴い、ラジアル隙間が比較的大きい第二軸受部19にも、負荷圏が発生し始める。つまり、前記負荷荷重が或る一定値を超えて大きくなると、前記第一、第二両軸受部18、19に、それぞれ負荷圏が発生した状態となる。何れの状態でも、前記負荷荷重は、負荷圏が発生した軸受部によってのみ支承される。又、前記第一、第二両軸受部18、19の回転抵抗は、負荷圏が発生している状態よりも、負荷圏が発生していない状態の方が、小さくなる。従って、本例の場合、使用時に変化する前記負荷荷重の範囲を考慮して、前記第一、第二両軸受部18、19のラジアル隙間を適切に規制しておけば、前記負荷荷重の大きさに拘らず、この負荷荷重を、必要最小限となる個数(1列又は2列)の軸受部18(19)により、単独で又は分担して支承できる。この結果、何れの負荷荷重領域でも、この負荷荷重を十分に支承できると共に、前記第一、第二両軸受部18、19の回転抵抗に基づく損失トルクが無駄に大きくなる事を抑制できる。   In the case of the rotary support device of the present example configured as described above, only a very small load is acting on the shell-type needle bearing 3a (for example, only a load based on a preload set at the time of operation stop). In the state where the load is applied, the state where the load starts to be generated immediately after the start of operation, and the state where the torque transmitted by the rotating shaft 1a is small). Of these, only the first bearing portion 18 having a relatively small radial gap is in a state where a load zone is generated. From this state, when the load increases, the amount of elastic deformation of each member increases accordingly, and a load zone also starts to occur in the second bearing portion 19 having a relatively large radial gap. That is, when the load increases beyond a certain value, load zones are generated in the first and second bearing portions 18 and 19, respectively. In any state, the load is supported only by the bearing portion where the load zone is generated. Further, the rotational resistance of the first and second bearing portions 18 and 19 is smaller in the state where the load area is not generated than in the state where the load area is generated. Therefore, in the case of this example, if the radial gap between the first and second bearing portions 18 and 19 is appropriately regulated in consideration of the range of the load load that changes during use, the magnitude of the load load is increased. Regardless of this, this load can be supported alone or in a shared manner by the minimum number (one or two rows) of bearing portions 18 (19). As a result, it is possible to sufficiently support the load load in any load load region, and it is possible to suppress the loss torque based on the rotational resistances of the first and second bearing portions 18 and 19 from becoming unnecessarily large.

又、本例の場合、ラジアル隙間が比較的小さい第一軸受部18は、ラジアル隙間が比較的大きい第二軸受部19に比べ、前記負荷荷重がより小さい段階から、この負荷荷重を支承する状態になる。この為、この負荷荷重の支承頻度(支承時間)は、前記第一軸受部18で、前記第二軸受部19よりも多く(長く)なる。又、本例の場合、前記負荷荷重を、前記第一、第二両軸受部18、19により分担して支承する場合に、これら第一、第二両軸受部18、19で発生する負荷圏の広さは、ラジアル隙間が比較的小さい第一軸受部18で、ラジアル隙間が比較的大きい第二軸受部19よりも広くなる。つまり、前記負荷荷重の支承分担割合は、前記第一軸受部18で、前記第二軸受部19よりも大きくなる。従って、本例の場合、前記第一軸受部18の方が、前記第二軸受部19よりも、厳しい荷重条件で使用される事になる。これに対して、本例の場合には、比較的厳しい荷重条件で使用される第一軸受部18の基本動定格荷重を、比較的緩い荷重条件で使用される第二軸受部19の基本動定格荷重よりも大きくしている。この為、本例の場合には、前記第一、第二両軸受部18、19の基本動定格荷重を互いに等しくする構成を採用する場合に比べて、これら第一、第二両軸受部18、19の寿命を互いに近づける事ができる。   In the case of this example, the first bearing portion 18 having a relatively small radial gap is in a state of supporting this load load from the stage where the load load is smaller than that of the second bearing portion 19 having a relatively large radial gap. become. For this reason, the load frequency (support time) of the load is greater (longer) at the first bearing portion 18 than at the second bearing portion 19. In the case of this example, when the load load is shared and supported by the first and second bearing portions 18 and 19, the load range generated in the first and second bearing portions 18 and 19. The first bearing portion 18 having a relatively small radial gap is wider than the second bearing portion 19 having a relatively large radial gap. That is, the load sharing ratio of the load load is greater in the first bearing portion 18 than in the second bearing portion 19. Therefore, in the case of this example, the first bearing portion 18 is used under severer load conditions than the second bearing portion 19. On the other hand, in the case of this example, the basic dynamic load rating of the first bearing portion 18 used under relatively severe load conditions is the same as the basic dynamic load rating of the second bearing portion 19 used under relatively loose load conditions. It is larger than the rated load. For this reason, in the case of this example, compared with the case where the basic dynamic load ratings of the first and second bearing portions 18 and 19 are equal to each other, these first and second bearing portions 18 are used. , 19 lifespans can be brought close to each other.

又、本例の場合、前記第一、第二両軸受部18、19のうちで、前記負荷荷重の増大に伴って負荷圏が先に発生する第一軸受部18を、負荷圏が後に発生する第二軸受部19よりも、前記回転軸1aのラジアル荷重の作用点である軸方向中間部に近い位置に配置している。この為、この回転軸1aのスパン(軸方向両端部に設けた1対の軸受部同士の間隔を)短くして、前記ラジアル荷重に対する前記回転軸1aの曲げ剛性を、効率良く確保できる。   In the case of this example, among the first and second bearing portions 18 and 19, the first bearing portion 18 where the load zone is generated first with the increase of the load load is generated later. It arrange | positions in the position near the axial direction intermediate part which is an action point of the radial load of the said rotating shaft 1a rather than the 2nd bearing part 19 to do. For this reason, the span of the rotating shaft 1a (the interval between the pair of bearing portions provided at both ends in the axial direction) is shortened, and the bending rigidity of the rotating shaft 1a with respect to the radial load can be efficiently secured.

[実施の形態の第2例]
図2は、請求項1〜4、7、8に対応する、本発明の実施の形態の第2例を示している。本例の場合には、シェル形外輪5aの内周面と回転軸1aの外周面との間部分で、第一、第二両軸受部18、19同士の間部分(より具体的には、軸方向に関して、前記シェル形外輪5aの円輪部15の内側面と、前記回転軸1aの段差面20との間に挟まれた部分)に、円輪状の間座21を配置している。そして、この間座21により、前記第一、第二両軸受部18、19を構成するラジアル保持器7a、7b及びラジアルニードル6、6の、互いに近づき合う方向の変位を規制している。尚、前記間座21を構成する材料は、特に限定される事はないが、好ましくは、高強度を有する滑り易い材料(例えば、含油メタル、高機能樹脂等)を用いるのが良い。
その他の部分の構造及び作用は、上述の図1に示した第1例の場合と同様であるから、同等部分には同一符号を付して、重複する説明は省略する。
[Second Example of Embodiment]
FIG. 2 shows a second example of an embodiment of the present invention corresponding to claims 1 to 4, 7 and 8. In the case of this example, in the portion between the inner peripheral surface of the shell-shaped outer ring 5a and the outer peripheral surface of the rotary shaft 1a, the portion between the first and second bearing portions 18, 19 (more specifically, With respect to the axial direction, an annular spacer 21 is disposed on the inner surface of the annular portion 15 of the shell-shaped outer ring 5a and the stepped surface 20 of the rotating shaft 1a. The spacer 21 regulates the displacement of the radial cages 7a and 7b and the radial needles 6 and 6 constituting the first and second bearing portions 18 and 19 in the approaching direction. In addition, although the material which comprises the said spacer 21 is not specifically limited, Preferably, it is good to use the material (for example, oil-containing metal, highly functional resin) which has high intensity | strength and is easy to slip.
Since the structure and operation of the other parts are the same as in the case of the first example shown in FIG. 1 described above, the same parts are denoted by the same reference numerals, and redundant description is omitted.

[実施の形態の第3例]
図3は、請求項1〜3、5、7、8に対応する、本発明の実施の形態の第3例を示している。本例の場合には、ラジアル隙間を比較的小さくした第一軸受部18aの基本動定格荷重を、ラジアル隙間を比較的大きくした第二軸受部19の基本動定格荷重よりも大きくする為に、前記第一軸受部18aを構成するラジアルニードル6a、6aの転動面の直径を、前記第二軸受部19を構成するラジアルニードル6、6の転動面の直径よりも大きくしている。即ち、本例の場合には、回転軸1bの一端部外周面を単一円筒面として、この一端部外周面に設けられた、両列の内輪軌道11c、11bの外径寸法を互いに等しくしている。これにより、前記第一軸受部18aを構成する外輪軌道10aと内輪軌道11cとの間の径方向幅を、前記第二軸受部19を構成する外輪軌道10bと内輪軌道11bとの間の径方向幅よりも十分に大きくする事により、上述の様な両軸受部18a、19間で、ラジアルニードル6a、6の転動面に、直径差を持たせられる様にしている。尚、本例の構造を実施する場合、前記第一軸受部18aの基本動定格荷重を、前記第二軸受部19の基本動定格荷重よりも大きくできる範囲内であれば、これら第一、第二両軸受部18a、19を構成するラジアルニードル6a、6の個数は、互いに異ならせても良いし、互いに等しくしても良い。
その他の部分の構造及び作用は、上述の図2に示した第2例の場合と同様であるから、同等部分には同一符号を付して、重複する説明は省略する。
[Third example of embodiment]
FIG. 3 shows a third example of an embodiment of the present invention corresponding to claims 1 to 3, 5, 7 and 8. In the case of this example, in order to make the basic dynamic load rating of the first bearing portion 18a with a relatively small radial gap larger than the basic dynamic load rating of the second bearing portion 19 with a relatively large radial gap, The diameter of the rolling surface of the radial needles 6a, 6a constituting the first bearing portion 18a is made larger than the diameter of the rolling surface of the radial needles 6, 6 constituting the second bearing portion 19. That is, in the case of this example, the outer peripheral surface of one end portion of the rotary shaft 1b is a single cylindrical surface, and the outer diameter dimensions of the inner ring raceways 11c and 11b provided on the outer peripheral surface of the one end portion are made equal to each other. ing. Thus, the radial width between the outer ring raceway 10a and the inner ring raceway 11c constituting the first bearing portion 18a is set to the radial direction between the outer ring raceway 10b and the inner ring raceway 11b constituting the second bearing portion 19. By making it sufficiently larger than the width, the rolling surfaces of the radial needles 6a, 6 can have a diameter difference between the bearing portions 18a, 19 as described above. In the case of carrying out the structure of this example, if the basic dynamic load rating of the first bearing portion 18a is within a range that can be larger than the basic dynamic load rating of the second bearing portion 19, these first and first The number of radial needles 6a, 6 constituting the two-bearing portions 18a, 19 may be different from each other or may be equal to each other.
Since the structure and operation of the other parts are the same as in the case of the second example shown in FIG. 2 described above, the same parts are denoted by the same reference numerals, and redundant description is omitted.

[実施の形態の第4例]
図4は、請求項1〜4、7、9に対応する、本発明の実施の形態の第4例を示している。本例の場合には、シェル形外輪5bと回転軸1cとの間部分で、第一軸受部18に対して、第二軸受部19と反対側に隣接する部分に、スラスト軸受22を組み付けている。この為に、前記シェル形外輪5bを構成する大径円筒部13の内端縁(図4の右端縁)から径方向外方に直角に折れ曲がる状態で第二円輪部23を設けると共に、この第二円輪部23の外周縁から軸方向内側(図4の右側)に直角に折れ曲がる状態で第二大径円筒部24を設けている。又、前記回転軸1cの一端寄り部分で、大径部17の基端側に隣接する部分に、この大径部17よりも外径寸法が大きい、第二大径部25を設けると共に、この第二大径部25の基端側に隣接する部分に、この第二大径部25よりも更に外径寸法が大きい、第三大径部26を設けている。そして、前記第二大径円筒部24の内周面と前記第二大径部25の外周面との間部分に前記スラスト軸受22を配置した状態で、このスラスト軸受22を、段差面である前記第二円輪部23の内側面と、前記第二大径部25の外周面と前記第三大径部26の外周面との間に存在する段差面27との間に挟持している。又、図示の使用状態で、前記第二円輪部23の外側面は、ハウジング2bの取付孔4bの内面に設けた段差面に当接させている。
[Fourth Example of Embodiment]
FIG. 4 shows a fourth example of the embodiment of the invention corresponding to claims 1 to 4, 7, and 9. In the case of this example, the thrust bearing 22 is assembled to a portion adjacent to the first bearing portion 18 on the opposite side to the second bearing portion 19 between the shell-shaped outer ring 5b and the rotary shaft 1c. Yes. For this purpose, the second circular ring portion 23 is provided in a state of being bent at a right angle radially outward from the inner end edge (the right end edge in FIG. 4) of the large-diameter cylindrical portion 13 constituting the shell-shaped outer ring 5b. The second large-diameter cylindrical portion 24 is provided so as to be bent at a right angle from the outer peripheral edge of the second annular portion 23 to the axially inner side (right side in FIG. 4). In addition, a second large diameter portion 25 having a larger outer diameter than the large diameter portion 17 is provided in a portion adjacent to the proximal end side of the large diameter portion 17 at a portion near one end of the rotary shaft 1c. A third large diameter portion 26 having a larger outer diameter than the second large diameter portion 25 is provided in a portion adjacent to the proximal end side of the second large diameter portion 25. And in the state which has arrange | positioned the said thrust bearing 22 in the part between the internal peripheral surface of said 2nd large diameter cylindrical part 24, and the outer peripheral surface of said 2nd large diameter part 25, this thrust bearing 22 is a level | step difference surface. The second annular portion 23 is sandwiched between an inner surface and a stepped surface 27 existing between the outer peripheral surface of the second large diameter portion 25 and the outer peripheral surface of the third large diameter portion 26. . In the illustrated state of use, the outer surface of the second annular portion 23 is in contact with a stepped surface provided on the inner surface of the mounting hole 4b of the housing 2b.

又、前記スラスト軸受22は、軸方向に関して互いに対向する内側面を円輪状のスラスト軌道面28、29とした、それぞれが鋼板製である1対のスラスト軌道輪30、31と、これら両スラスト軌道面28、29同士の間に、鋼板製のスラスト保持器32により保持された状態で転動自在に設けられた、それぞれが鋼製である複数のスラストニードル33、33とを備える。そして、前記両スラスト軌道輪30、31のうち、一方のスラスト軌道輪30の外側面を前記段差面27に、他方のスラスト軌道輪31の外側面を前記第二円輪部23の内側面に、それぞれ当接させている。又、本例の場合、前記第二軸受部19を構成するラジアル保持器7a及びラジアルニードル6、6は、前記大径部17の外周面と前記第二大径部25の外周面との間に存在する段差面34により、軸方向内側への変位を規制されている。   The thrust bearing 22 includes a pair of thrust raceways 30 and 31 each having an annular inner raceway surface 28 and 29 that are opposed to each other in the axial direction, each made of a steel plate, and both thrust raceways. A plurality of thrust needles 33 and 33 each made of steel are provided between the surfaces 28 and 29 so as to be able to roll while being held by a thrust retainer 32 made of a steel plate. Of the two thrust raceways 30, 31, the outer surface of one thrust raceway 30 is the stepped surface 27, and the outer surface of the other thrust raceway 31 is the inner surface of the second annular ring portion 23. , Respectively. In the case of this example, the radial cage 7 a and the radial needles 6, 6 constituting the second bearing portion 19 are between the outer peripheral surface of the large diameter portion 17 and the outer peripheral surface of the second large diameter portion 25. The displacement inward in the axial direction is restricted by the step surface 34 existing in

上述の様に構成する本例の回転支持装置によれば、前記回転軸1cと前記ハウジング2bとの間に作用するスラスト荷重を、前記スラスト軸受22により支承できる。又、このスラスト軸受22を、前記シェル形外輪5bと前記回転軸1cとの間に組み付けている為、前記ハウジング2bに対する前記回転軸1cの一端部の回転支持部分を小型に構成できると共に、この回転支持部分に対する前記スラスト軸受22の組み付け性を良好にできる。
その他の部分の構造及び作用は、前述の図1に示した第1例の場合と同様であるから、同等部分には同一符号を付して、重複する説明は省略する。
According to the rotation support device of this example configured as described above, the thrust load acting between the rotating shaft 1c and the housing 2b can be supported by the thrust bearing 22. Further, since the thrust bearing 22 is assembled between the shell-shaped outer ring 5b and the rotary shaft 1c, the rotation support portion at one end of the rotary shaft 1c with respect to the housing 2b can be made compact, and this The assembling property of the thrust bearing 22 to the rotation support portion can be improved.
Since the structure and operation of the other parts are the same as in the case of the first example shown in FIG. 1 described above, the same parts are denoted by the same reference numerals, and redundant description is omitted.

上述した各実施の形態では示さなかったが、本発明を実施する場合には、各列の軸受部の基本動定格荷重を異ならせる手段として、これら各列の軸受部毎にラジアルニードルの転動面の軸方向長さを異ならせる手段を採用する事もできる。
又、スラスト軸受を設ける場合には、このスラスト軸受を、軸方向に隣り合う軸受部同士の間に配置する事もできる。
Although not shown in each of the above-described embodiments, when the present invention is implemented, as a means for varying the basic dynamic load rating of the bearing portions in each row, the radial needle rolling for each bearing portion in each row. It is also possible to adopt means for varying the axial length of the surface.
Moreover, when providing a thrust bearing, this thrust bearing can also be arrange | positioned between the bearing parts adjacent to an axial direction.

1、1a〜1c 回転軸
2、2a、2b ハウジング
3、3a〜3d シェル形ニードル軸受
4、4a、4b 取付孔
5、5a、5b シェル形外輪
6、6a ラジアルニードル
7、7a〜7c ラジアル保持器
8 円筒部
9、9a、9b 内向鍔部
10、10a、10b 外輪軌道
11、11a〜11c 内輪軌道
12 段付円筒部
13 大径円筒部
14 小径円筒部
15 円輪部
16 小径部
17 大径部
18、18a 第一軸受部
19 第二軸受部
20 段差面
21 間座
22 スラスト軸受
23 第二円輪部
24 第二大径円筒部
25 第二大径部
26 第三大径部
27 段差面
28 スラスト軌道面
29 スラスト軌道面
30 スラスト軌道輪
31 スラスト軌道輪
32 スラスト保持器
33 スラストニードル
34 段差面
DESCRIPTION OF SYMBOLS 1, 1a-1c Rotating shaft 2, 2a, 2b Housing 3, 3a-3d Shell type needle bearing 4, 4a, 4b Mounting hole 5, 5a, 5b Shell type outer ring 6, 6a Radial needle 7, 7a-7c Radial cage 8 Cylindrical portion 9, 9a, 9b Inward flange portion 10, 10a, 10b Outer ring raceway 11, 11a-11c Inner ring raceway 12 Stepped cylindrical portion 13 Large diameter cylindrical portion 14 Small diameter cylindrical portion 15 Circular ring portion 16 Small diameter portion 17 Large diameter portion 18, 18a First bearing portion 19 Second bearing portion 20 Stepped surface 21 Spacer 22 Thrust bearing 23 Second annular portion 24 Second large diameter cylindrical portion 25 Second large diameter portion 26 Third large diameter portion 27 Stepped surface 28 Thrust raceway surface 29 Thrust raceway surface 30 Thrust raceway ring 31 Thrust raceway ring 32 Thrust retainer 33 Thrust needle 34 Step surface

Claims (9)

取付孔を有する外径側部材と、この取付孔の内径側に、この取付孔と同心に設けられた軸部材と、これら取付孔の内周面と軸部材の外周面との間に組み付けられたシェル形ニードル軸受とを備え、
このシェル形ニードル軸受は、シェル形外輪と、複数個のラジアルニードルとを備え、
このうちのシェル形外輪は、金属板製で且つ内周面の軸方向複数箇所にそれぞれが円筒面状の外輪軌道を有するもので、前記取付孔に内嵌固定されており、
前記各ラジアルニードルは、前記両外輪軌道と、前記軸部材の外周面のうちでこれら両外輪軌道と対向する部分に設けられた、それぞれが円筒面状の1対の内輪軌道との間に、両列毎に複数個ずつ、転動自在に設けられている、
回転支持装置に於いて、
前記取付孔の内周面と前記軸部材の外周面との間に前記シェル形ニードル軸受を組み付けた状態での、このシェル形ニードル軸受を構成する各列の軸受部のラジアル隙間を、それぞれ異ならせている事を特徴とする回転支持装置。
The outer diameter side member having the mounting hole, the shaft member provided concentrically with the mounting hole on the inner diameter side of the mounting hole, and the inner peripheral surface of the mounting hole and the outer peripheral surface of the shaft member are assembled. Shell-type needle bearings,
The shell needle bearing includes a shell outer ring and a plurality of radial needles.
Of these, the shell-shaped outer ring is made of a metal plate and has cylindrical outer ring raceways at a plurality of axial positions on the inner peripheral surface, and is fitted and fixed in the mounting hole.
Each of the radial needles is provided between the outer ring raceway and a pair of inner ring raceways each having a cylindrical surface provided on a portion of the outer peripheral surface of the shaft member facing the outer raceway. Multiple rolls are provided for both rows,
In the rotation support device,
When the shell-type needle bearings are assembled between the inner peripheral surface of the mounting hole and the outer peripheral surface of the shaft member, the radial clearances of the bearing portions of the rows constituting the shell-type needle bearings are different from each other. Rotating support device characterized by that.
前記各軸受部の基本動定格荷重を、ラジアル隙間がより小さい軸受部程大きくしている、請求項1に記載した回転支持装置。   The rotation support device according to claim 1, wherein the basic dynamic load rating of each bearing portion is increased as the bearing portion has a smaller radial clearance. 前記各軸受部の基本動定格荷重を、ラジアル隙間がより小さい軸受部程大きくする手段として、前記ラジアルニードルの個数を、ラジアル隙間がより小さい軸受部程多くする手段と、前記ラジアルニードルの転動面の直径を、ラジアル隙間がより小さい軸受部程大きくする手段と、前記ラジアルニードルの転動面の軸方向長さを、ラジアル隙間がより小さい軸受部程大きくする手段とのうちから選択される、少なくとも1つの手段を採用している、請求項2に記載した回転支持装置。   Means for increasing the basic dynamic load rating of each bearing portion as the bearing portion with a smaller radial clearance, means for increasing the number of the radial needles with a bearing portion with a smaller radial clearance, and rolling of the radial needle The diameter of the surface is selected from a means for increasing the bearing portion with a smaller radial clearance, and a means for increasing the axial length of the rolling surface of the radial needle as the bearing portion with a smaller radial clearance. The rotation support device according to claim 2, wherein at least one means is employed. 前記各軸受部を構成する前記外輪軌道の直径と前記内輪軌道の直径とを、それぞれ基本動定格荷重をより大きくした軸受部程大きくしている、請求項3に記載した回転支持装置。   4. The rotation support device according to claim 3, wherein a diameter of the outer ring raceway and a diameter of the inner ring raceway constituting each bearing portion are increased as a bearing portion having a larger basic dynamic load rating. 前記ラジアルニードルの転動面の直径を、ラジアル隙間がより小さい軸受部程大きくする手段を採用し、且つ、前記各軸受部を構成する前記内輪軌道の直径を、これら各軸受部同士で互いに等しくすると共に、前記各軸受部を構成する前記外輪軌道の直径を、前記ラジアルニードルの転動面の直径をより大きくした軸受部程大きくしている、請求項3に記載した回転支持装置。   A means for increasing the diameter of the rolling surface of the radial needle as the bearing portion having a smaller radial clearance is employed, and the diameters of the inner ring raceways constituting the bearing portions are equal to each other. In addition, the rotation support device according to claim 3, wherein the diameter of the outer ring raceway constituting each bearing portion is increased as the bearing portion having a larger diameter of the rolling surface of the radial needle. 前記外径側部材が、使用時に前記取付孔の中心軸を中心として回転する回転部材であり、前記軸部材が、使用時に自身の中心軸を中心として回転する回転軸であり、更に、前記回転部材と前記回転軸とが、互いに相対回転する状態で使用される、請求項1〜5のうちの何れか1項に記載した回転支持装置。   The outer diameter side member is a rotating member that rotates around the central axis of the mounting hole when used, the shaft member is a rotating shaft that rotates about its own central axis when used, and the rotation The rotation support device according to any one of claims 1 to 5, wherein the member and the rotation shaft are used in a state of rotating relative to each other. 前記外径側部材が、使用時にも回転しないハウジングであり、前記軸部材が、使用時に回転する回転軸であり、前記シェル形ニードル軸受が、この回転軸の一端部外周面と前記取付孔の内周面との間に組み付けられており、前記シェル形ニードル軸受を構成する各列の軸受部のラジアル隙間が、前記回転軸の一端縁からより遠い位置に存在する軸受部程小さくなっており、前記回転軸の一部で前記各軸受部よりもこの回転軸の一端縁から遠い位置にラジアル荷重が作用する状態で使用される請求項1〜5のうちの何れか1項に記載した回転支持装置。   The outer diameter side member is a housing that does not rotate even when used, the shaft member is a rotating shaft that rotates when used, and the shell-type needle bearing has an outer peripheral surface of one end of the rotating shaft and the mounting hole. It is assembled between the inner peripheral surface, and the radial clearance of the bearing portions of each row constituting the shell-type needle bearing is smaller as the bearing portion is located farther from one end edge of the rotating shaft. The rotation according to any one of claims 1 to 5, wherein the rotation is used in a state in which a radial load acts on a part of the rotating shaft farther from one end edge of the rotating shaft than the bearings. Support device. 前記シェル形外輪の内周面と前記軸部材の外周面との間部分で、軸方向に関して互いに隣り合う軸受部を構成するラジアルニードル同士の間部分に、円環状の間座を配置している、請求項1〜7のうちの何れか1項に記載した回転支持装置。   An annular spacer is arranged between the radial needles constituting the bearing portions adjacent to each other in the axial direction at a portion between the inner peripheral surface of the shell-shaped outer ring and the outer peripheral surface of the shaft member. The rotation support device according to any one of claims 1 to 7. 前記シェル形外輪の内周面の軸方向一部分に設けた段差面と、前記軸部材の外周面の軸方向一部分に設けた段差面との間に、スラスト軸受を設置しており、このスラスト軸受は、軸方向に関して互いに対向する1対のスラスト軌道面と、これら両スラスト軌道面同士の間に、スラスト保持器により保持された状態で転動自在に設けられた複数のスラストニードルとを備えたものである、請求項1〜8のうちの何れか1項に記載した回転支持装置。   A thrust bearing is installed between a step surface provided in a part in the axial direction of the inner peripheral surface of the shell-shaped outer ring and a step surface provided in a part in the axial direction of the outer peripheral surface of the shaft member. Includes a pair of thrust raceway surfaces opposed to each other in the axial direction, and a plurality of thrust needles provided between the two thrust raceway surfaces so as to be able to roll while being held by a thrust retainer. The rotation support device according to claim 1, wherein the rotation support device is a device.
JP2012189547A 2012-08-30 2012-08-30 Rotating support device Expired - Fee Related JP6047999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012189547A JP6047999B2 (en) 2012-08-30 2012-08-30 Rotating support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012189547A JP6047999B2 (en) 2012-08-30 2012-08-30 Rotating support device

Publications (2)

Publication Number Publication Date
JP2014047815A true JP2014047815A (en) 2014-03-17
JP6047999B2 JP6047999B2 (en) 2016-12-21

Family

ID=50607716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189547A Expired - Fee Related JP6047999B2 (en) 2012-08-30 2012-08-30 Rotating support device

Country Status (1)

Country Link
JP (1) JP6047999B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015207113A1 (en) * 2015-04-20 2016-05-25 Schaeffler Technologies AG & Co. KG Roller bearing and bearing of a gear shaft
DE102015215304A1 (en) * 2015-08-11 2016-09-29 Schaeffler Technologies AG & Co. KG Rolling bearing assembly for supporting a shaft
DE102015210712A1 (en) * 2015-06-11 2016-12-15 Schaeffler Technologies AG & Co. KG roller bearing
JP2017048838A (en) * 2015-09-01 2017-03-09 本田技研工業株式会社 Rotary shaft supporting structure of transmission
JP2019173710A (en) * 2018-03-29 2019-10-10 本田技研工業株式会社 Pump shaft support structure
JP2020051488A (en) * 2018-09-26 2020-04-02 日本精工株式会社 Rotation support device for planetary gear mechanism
WO2022228597A1 (en) * 2021-04-26 2022-11-03 Schaeffler Technologies AG & Co. KG Combined radial-axial bearing unit having components made by a shaping technique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771530B (en) * 2018-01-31 2022-07-21 日商三共製作所股份有限公司 Cam gear

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747020A (en) * 1980-07-18 1982-03-17 Skf Kugellagerfabriken Gmbh Bearing device of journal in fork hole of universal joint utilizing cylindrical roller bearing
JPH1151073A (en) * 1997-08-01 1999-02-23 Koyo Seiko Co Ltd Bearing device for universal joint
JP2000345982A (en) * 1999-06-03 2000-12-12 Shiro Sawa Turning joint
JP2002206525A (en) * 2000-11-06 2002-07-26 Nsk Ltd Needle bearing
JP2005042879A (en) * 2003-07-25 2005-02-17 Ntn Corp Roller bearing with race ring formed of steel plate
JP2008115954A (en) * 2006-11-06 2008-05-22 Ntn Corp Bearing device for wheel
JP2010002043A (en) * 2008-06-23 2010-01-07 Ntn Corp Bearing for cross shaft coupling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747020A (en) * 1980-07-18 1982-03-17 Skf Kugellagerfabriken Gmbh Bearing device of journal in fork hole of universal joint utilizing cylindrical roller bearing
JPH1151073A (en) * 1997-08-01 1999-02-23 Koyo Seiko Co Ltd Bearing device for universal joint
JP2000345982A (en) * 1999-06-03 2000-12-12 Shiro Sawa Turning joint
JP2002206525A (en) * 2000-11-06 2002-07-26 Nsk Ltd Needle bearing
JP2005042879A (en) * 2003-07-25 2005-02-17 Ntn Corp Roller bearing with race ring formed of steel plate
JP2008115954A (en) * 2006-11-06 2008-05-22 Ntn Corp Bearing device for wheel
JP2010002043A (en) * 2008-06-23 2010-01-07 Ntn Corp Bearing for cross shaft coupling

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015207113A1 (en) * 2015-04-20 2016-05-25 Schaeffler Technologies AG & Co. KG Roller bearing and bearing of a gear shaft
DE102015210712A1 (en) * 2015-06-11 2016-12-15 Schaeffler Technologies AG & Co. KG roller bearing
DE102015215304A1 (en) * 2015-08-11 2016-09-29 Schaeffler Technologies AG & Co. KG Rolling bearing assembly for supporting a shaft
JP2017048838A (en) * 2015-09-01 2017-03-09 本田技研工業株式会社 Rotary shaft supporting structure of transmission
JP2019173710A (en) * 2018-03-29 2019-10-10 本田技研工業株式会社 Pump shaft support structure
JP2020051488A (en) * 2018-09-26 2020-04-02 日本精工株式会社 Rotation support device for planetary gear mechanism
WO2022228597A1 (en) * 2021-04-26 2022-11-03 Schaeffler Technologies AG & Co. KG Combined radial-axial bearing unit having components made by a shaping technique

Also Published As

Publication number Publication date
JP6047999B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6047999B2 (en) Rotating support device
US9062710B2 (en) Combined load rolling bearing
KR102078048B1 (en) Retainer-equipped needle rollers
US9581193B2 (en) Press-fit combination bearing
JP2016109253A (en) Rolling bearing
JP2011038563A (en) Inner ring and outer ring, and ball bearing
JP2008180246A (en) Tapered roller bearing
JP2010255778A (en) Radial needle bearing
JP5101086B2 (en) Tapered roller bearing
JP2012246972A (en) Roller thrust bearing
JP2005214330A (en) Four-point contact ball bearing and manufacturing method thereof
JP6064783B2 (en) Rolling bearing
US9670960B2 (en) Radial rolling bearing assembly with connector sleeve
JP2010159787A (en) Thrust roller bearing
JP5119942B2 (en) Thrust roller bearing with race
JP2009216112A (en) Radial needle roller bearing
US20150043852A1 (en) Rolling Bearing With Reduced Friction Torque
JP2015031390A (en) Thrust roller bearing
JP5029430B2 (en) Thrust roller bearing device
JP5347804B2 (en) Thrust roller bearing with race
JP2009180235A (en) Automatic self-aligning roller bearing
JP2024031207A (en) Shaft-integrated angular contact ball bearing
JP2010164081A (en) Cage and roller, and radial needle bearing
JP4321092B2 (en) Double row tapered roller bearing
JP2007010012A (en) Needle roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6047999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees