[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014042857A - Processing system and processing method of suspension property organic material inclusion waste water - Google Patents

Processing system and processing method of suspension property organic material inclusion waste water Download PDF

Info

Publication number
JP2014042857A
JP2014042857A JP2012184808A JP2012184808A JP2014042857A JP 2014042857 A JP2014042857 A JP 2014042857A JP 2012184808 A JP2012184808 A JP 2012184808A JP 2012184808 A JP2012184808 A JP 2012184808A JP 2014042857 A JP2014042857 A JP 2014042857A
Authority
JP
Japan
Prior art keywords
treatment
liquid
organic matter
separation
suspended organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012184808A
Other languages
Japanese (ja)
Other versions
JP5968723B2 (en
Inventor
Tomoko Matsuzaki
智子 松▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2012184808A priority Critical patent/JP5968723B2/en
Priority to CN201380024713.5A priority patent/CN104271516A/en
Priority to PCT/JP2013/071906 priority patent/WO2014030583A1/en
Publication of JP2014042857A publication Critical patent/JP2014042857A/en
Priority to IN10992DEN2014 priority patent/IN2014DN10992A/en
Priority to PH12014502879A priority patent/PH12014502879A1/en
Application granted granted Critical
Publication of JP5968723B2 publication Critical patent/JP5968723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a further efficient processing system and a processing method of suspension property organic material inclusion waste water even for waste water including high concentration suspension property organic material.SOLUTION: A processing system and a processing method of suspension property organic material inclusion waste water include: a suspension property organic material separation apparatus 10 that separates a suspension property organic material included in water to be treated; a polluted sludge anaerobic digestion apparatus 20 in which the suspension property organic material separated by the suspension property organic material separation apparatus 10 is performed by anaerobic digestion; a nitrous acid making apparatus 30 in which ammonia included in a digestive juice of the polluted sludge anaerobic digestion apparatus 20 is oxidized to nitrous acid under an aerobic condition; an autotrophic denitration apparatus 40 in which ammonia included in a process liquid of the nitrous acid making apparatus 30 is oxidized by an autotrophic denitration microorganism to nitrogen gas under an anaerobic condition; and a first transfer channel R1 in which a separated liquid in which the suspension property organic material is removed by the suspension property organic material separation apparatus 10 is supplied to the nitrous acid making apparatus 30.

Description

本発明は、懸濁性有機物含有廃水の処理システム及び処理方法に関し、特に高濃度の懸濁性有機物を含有する廃水に好適な処理システム及び処理方法に関する。   The present invention relates to a treatment system and a treatment method for suspending organic substance-containing wastewater, and particularly to a treatment system and treatment method suitable for wastewater containing a high concentration of suspending organic matter.

従来、高濃度の懸濁性有機物を含有する廃水を処理する際には、先ず廃水から懸濁性有機物を除去し、その後に分離液を硝化脱窒法等の生物学的処理工程で処理する方法が採用されてきた。廃水から除去された懸濁性有機物は、そのまま脱水処理し或いは減量化やメタンガス回収を目的とした嫌気性消化処理された後に処分される。そして、これらの処理の際に発生する脱水ろ液や消化液は、生物学的処理工程に返流されて、分離液とともに処理される。   Conventionally, when treating wastewater containing a high concentration of suspending organic matter, first, the suspending organic matter is removed from the wastewater, and then the separated solution is treated in a biological treatment step such as nitrification denitrification. Has been adopted. Suspended organic substances removed from waste water are disposed of after being dehydrated or subjected to anaerobic digestion for the purpose of weight reduction and methane gas recovery. And the dehydrated filtrate and digestive juice which generate | occur | produce in the case of these processes are returned to a biological treatment process, and are processed with a separated liquid.

硝化脱窒法は、廃水中のアンモニア態窒素をアンモニア酸化細菌により亜硝酸態窒素に酸化し、更に亜硝酸態窒素を亜硝酸酸化細菌により硝酸態窒素に酸化する硝化工程と、亜硝酸態窒素及び硝酸態窒素を従属栄養性の脱窒菌により窒素分子にまで分解する脱窒工程を経て、廃水中のアンモニア態窒素を窒素分子にまで分解する方法である。   The nitrification denitrification method is a nitrification process in which ammonia nitrogen in wastewater is oxidized to nitrite nitrogen by ammonia oxidizing bacteria, and nitrite nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria, This is a method of decomposing ammonium nitrogen in waste water into nitrogen molecules through a denitrification step of decomposing nitrate nitrogen into nitrogen molecules by heterotrophic denitrifying bacteria.

しかし、このような従来の生物学的硝化脱窒法では、硝化工程で大量の酸素が必要となり、曝気のためのブロワファン等に要する電力コストが高騰するという問題、脱窒工程で有機炭素源として大量のメタノール等を添加する必要があり、そのための薬品コストが高騰するという問題、さらに従属栄養性脱窒微生物を用いるために汚泥発生量が多く、余剰汚泥の処理コストが嵩むという問題等のランニングコストが嵩むという問題があった。   However, in such a conventional biological nitrification denitrification method, a large amount of oxygen is required in the nitrification process, and the power cost required for a blower fan or the like for aeration rises. As a source of organic carbon in the denitrification process Running such as the problem that it is necessary to add a large amount of methanol and so on, and the cost of chemicals increases, and that the amount of sludge generation is large due to the use of heterotrophic denitrifying microorganisms, and the treatment cost of surplus sludge increases. There was a problem that the cost increased.

そこで、特許文献1には、SS性有機物及びアンモニア態窒素を含有する対象処理液を固液分離する固液分離手段と、前記固液分離手段にて分離された分離汚泥を嫌気性消化処理する嫌気性消化槽と、前記嫌気性消化槽の処理液を亜硝酸化処理する亜硝酸化槽と、前記亜硝酸化槽の硝化液と前記固液分離手段の分離液を混合して脱窒処理する脱窒槽を備えた生物学的窒素除去システムが提案されている。   Therefore, Patent Document 1 discloses an anaerobic digestion treatment of solid-liquid separation means for solid-liquid separation of a target treatment liquid containing SS organic substances and ammonia nitrogen, and separated sludge separated by the solid-liquid separation means. Denitrification treatment by mixing anaerobic digestion tank, a nitritation tank that nitrites the treatment liquid of the anaerobic digestion tank, a nitrification liquid of the nitritation tank and a separation liquid of the solid-liquid separation means Biological nitrogen removal systems with denitrification tanks have been proposed.

当該生物学的窒素除去システムは、SS性有機物及びアンモニア態窒素を含有する対象処理液を固液分離して得られた分離汚泥を嫌気性消化した後、嫌気性消化により得られた処理液を亜硝酸化処理した硝化液と、前記対象処理液を固液分離して得られた分離液とを、嫌気的アンモニア酸化処理により脱窒するシステムである。   The biological nitrogen removal system anaerobically digests the separated sludge obtained by solid-liquid separation of the target treatment liquid containing SS organic matter and ammonia nitrogen, and then treats the treatment liquid obtained by anaerobic digestion. This is a system that denitrifies a nitrifying solution that has been subjected to nitritation treatment and a separation solution obtained by solid-liquid separation of the target treatment solution by anaerobic ammonia oxidation treatment.

特開2003−245689号公報Japanese Patent Laid-Open No. 2003-245687

嫌気的アンモニア酸化処理とは、嫌気条件下で独立栄養性脱窒微生物(独立栄養性脱窒菌)によるアンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体として、以下の式で表されるように、1当量のアンモニア態窒素と1.32当量の亜硝酸態窒素とを脱窒反応によって窒素分子に変換する処理である。この際、0.26当量の硝酸が生成される。
NH4 ++1.32NO2 -+0.066HCO3 -+0.13H+
1.02N2+0.26NO3 -+0.066CH2O0.5N0.15+2.03H2O
Anaerobic ammonia oxidation treatment is expressed by the following formula using ammonia nitrogen by an autotrophic denitrifying microorganism (autotrophic denitrifying bacteria) as an electron donor and nitrite nitrogen as an electron acceptor under anaerobic conditions. As described above, 1 equivalent of ammonia nitrogen and 1.32 equivalent of nitrite nitrogen are converted into nitrogen molecules by denitrification reaction. At this time, 0.26 equivalent of nitric acid is produced.
NH 4 + + 1.32NO 2 - + 0.066HCO 3 - + 0.13H + →
1.02N 2 + 0.26NO 3 - + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O

高濃度の懸濁性有機物を含有する廃水を、特許文献1に記載された生物学的窒素除去システムで処理すると、沈殿槽で分離された多量の分離汚泥が嫌気性消化処理されて高濃度のアンモニアが発生する。発生したアンモニアは硝化槽で亜硝酸化され、沈殿槽の分離液とともに脱窒槽で嫌気的アンモニア酸化処理されて脱窒される。   When waste water containing high-concentration suspended organic matter is treated with the biological nitrogen removal system described in Patent Document 1, a large amount of separated sludge separated in the settling tank is subjected to anaerobic digestion treatment, resulting in a high concentration. Ammonia is generated. The generated ammonia is nitritized in a nitrification tank, and anaerobic ammonia oxidation treatment is performed in a denitrification tank together with a separation liquid in a precipitation tank, followed by denitrification.

しかし、当該生物学的窒素除去システムでは、硝化槽内の亜硝酸濃度(遊離亜硝酸濃度)が高くなると、アンモニア酸化細菌の活性が阻害されて亜硝酸化反応の効率が低下する。硝化槽で亜硝酸化されなかった多量のアンモニア態窒素が脱窒槽に流入する結果、脱窒槽では亜硝酸態窒素に対してアンモニア態窒素が過多となり、処理しきれないアンモニアがリークするという問題があった。   However, in the biological nitrogen removal system, when the nitrite concentration (free nitrous acid concentration) in the nitrification tank becomes high, the activity of ammonia oxidizing bacteria is inhibited and the efficiency of the nitrification reaction is lowered. As a result of the large amount of ammonia nitrogen that has not been nitritized in the nitrification tank flowing into the denitrification tank, the nitrogen nitrogen in the denitrification tank is excessive with respect to the nitrite nitrogen, and ammonia that cannot be treated leaks. there were.

本発明の目的は、上述した問題点に鑑み、従来技術より効率的な処理が可能となり、さらには、高濃度の懸濁性有機物を含有する廃水であっても、より効率的な懸濁性有機物含有廃水の処理システム及び処理方法を提供する点にある。   In view of the above-mentioned problems, the object of the present invention is to enable more efficient treatment than the prior art. Furthermore, even wastewater containing a high concentration of suspending organic matter can be more efficiently suspended. It is in the point which provides the processing system and processing method of organic matter containing wastewater.

上述の目的を達成するため、本発明による懸濁性有機物含有廃水の処理システムの第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離装置と、前記懸濁性有機物分離装置により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化装置と、前記汚泥嫌気性消化装置の消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化装置と、前記亜硝酸化装置の処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒装置を有する懸濁性有機物含有廃水の処理システムであって、前記懸濁性有機物分離装置で懸濁性有機物が除去された分離液または当該分離液を生物処理した処理液を前記亜硝酸化装置に供給する第1移送経路を備えている点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the treatment system for waste water containing suspended organic matter according to the present invention contains the suspended organic matter as described in claim 1 of the claims. Suspended organic matter separator for separating suspended organic matter from water to be treated, sludge anaerobic digester for anaerobically digesting suspended organic matter separated by the suspended organic matter separator, and sludge anaerobic A nitrifier that oxidizes ammonia contained in the digestive juice of the digester into nitrous acid under aerobic conditions, and ammonia contained in the treatment liquid of the nitrifier by an autotrophic denitrifying microorganism under anaerobic conditions A wastewater-containing wastewater treatment system having an autotrophic denitrification device that oxidizes to nitrogen gas, wherein the separation liquid from which the suspension organic matter has been removed by the suspension organic matter separation device or the separation solution Processing place Is a liquid in that it includes a first transport path for supplying the nitrite apparatus.

懸濁性有機物分離装置により被処理水から分離された懸濁性有機物が汚泥嫌気性消化装置で嫌気性消化される。嫌気性消化によりアンモニアを含有した消化液は亜硝酸化装置に導入されて好気条件下で亜硝酸に酸化され、アンモニアと亜硝酸を含む処理液が独立栄養性脱窒装置に導入される。独立栄養性脱窒装置では、嫌気条件下で、独立栄養性脱窒微生物によって処理液に含まれるアンモニア態窒素を電子供与体とし亜硝酸態窒素を電子受容体とする嫌気的アンモニア酸化処理により脱窒処理される。亜硝酸化装置でアンモニアが亜硝酸に酸化される際に、亜硝酸濃度(遊離亜硝酸濃度)が所定濃度よりも高くなると、アンモニア酸化細菌の活性が阻害されて亜硝酸化反応の効率が低下し、後段の独立栄養性脱窒装置で脱窒処理の効率が低下する。   Suspended organic matter separated from the water to be treated by the suspended organic matter separation device is anaerobically digested by the sludge anaerobic digester. A digestion solution containing ammonia by anaerobic digestion is introduced into a nitritation device and oxidized to nitrous acid under aerobic conditions, and a treatment solution containing ammonia and nitrite is introduced into an autotrophic denitrification device. In the autotrophic denitrification device, the anaerobic ammonia oxidation treatment uses ammonia nitrogen contained in the treatment liquid as an electron donor and nitrite nitrogen as an electron acceptor under anaerobic conditions. Nitrogenized. When ammonia is oxidized to nitrite in the nitrifier, if the nitrous acid concentration (free nitrous acid concentration) is higher than the specified concentration, the activity of ammonia-oxidizing bacteria is inhibited and the efficiency of the nitrification reaction decreases. However, the efficiency of the denitrification process is lowered by the autotrophic denitrification apparatus at the latter stage.

しかし、そのような状況であっても、第1移送経路を経由して、懸濁性有機物分離装置で懸濁性有機物が除去された分離液または当該分離液を生物処理した処理液が亜硝酸化装置に供給されるので、亜硝酸化装置内の硝化液の亜硝酸濃度(遊離亜硝酸濃度)がアンモニアの亜硝酸化処理に適した濃度に調整され、亜硝酸化反応が促進されるようになる。尚、このような構成によれば、水道水等を用いた別途の希釈水供給設備を準備する必要がなく、特段の温度制御やpH制御をすることなく、亜硝酸化反応を促進することができる。水道水や電力等のエネルギーコストや薬品コストを節約できるようになる。   However, even in such a situation, the separation liquid from which the suspended organic matter is removed by the suspended organic matter separation apparatus or the treatment liquid obtained by biologically treating the separated liquid is transferred to the nitrous acid via the first transfer path. The nitrite concentration (free nitrous acid concentration) in the nitrification solution in the nitrification device is adjusted to a concentration suitable for ammonia nitritation treatment so that the nitrification reaction is promoted. become. In addition, according to such a structure, it is not necessary to prepare the separate dilution water supply equipment using a tap water etc., and it can accelerate | stimulate a nitritation reaction, without performing special temperature control and pH control. it can. Energy costs such as tap water and electricity, and chemical costs can be saved.

同第二の特徴構成は、同請求項2に記載した通り、上述した第一の特徴構成に加えて、前記懸濁性有機物分離装置の分離液または当該分離液を生物処理した処理液を前記独立栄養性脱窒装置に供給する第2移送経路を備えている点にある。   As described in claim 2, the second characteristic configuration includes, in addition to the first characteristic configuration described above, a separation liquid of the suspension organic substance separation device or a treatment liquid obtained by biologically treating the separation liquid. It is in the point provided with the 2nd transfer route which supplies to an autotrophic denitrification apparatus.

独立栄養性脱窒装置では、亜硝酸化装置の処理液に含まれるアンモニアが嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化される。しかし、独立栄養性脱窒装置に導入される処理液の亜硝酸濃度(遊離亜硝酸濃度)が高くなると嫌気的アンモニア酸化処理の処理効率が低下する。   In the autotrophic denitrification apparatus, ammonia contained in the treatment liquid of the nitritation apparatus is oxidized to nitrogen gas by the autotrophic denitrification microorganisms under anaerobic conditions. However, when the nitrous acid concentration (free nitrous acid concentration) of the treatment liquid introduced into the autotrophic denitrification apparatus is increased, the treatment efficiency of the anaerobic ammonia oxidation treatment is lowered.

しかし、そのような状況であっても、第2移送経路を経由して、懸濁性有機物分離装置で懸濁性有機物が除去された分離液または当該分離液を生物処理した処理液が独立栄養性脱窒装置に供給されるので、独立栄養性脱窒装置内の処理液の亜硝酸濃度(遊離亜硝酸濃度)が嫌気的アンモニア酸化処理に適した濃度になるように独立栄養性脱窒装置内の処理液が希釈され、効率的な嫌気的アンモニア酸化処理が促進されるようになる。同様に、このような構成によれば、水道水等を用いた別途の希釈水供給設備を準備する必要がない。   However, even in such a situation, the separation liquid from which the suspending organic matter is removed by the suspending organic matter separation device or the treatment liquid obtained by biologically treating the separation liquid is passed through the second transfer path. Since the nitrous acid concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification device is a concentration suitable for anaerobic ammonia oxidation treatment, the autotrophic denitrification device The inner treatment liquid is diluted, and efficient anaerobic ammonia oxidation treatment is promoted. Similarly, according to such a configuration, it is not necessary to prepare a separate dilution water supply facility using tap water or the like.

同第三の特徴構成は、同請求項3に記載した通り、上述した第一または第二の特徴構成に加えて、前記独立栄養性脱窒装置で処理した脱窒液を前記独立栄養性脱窒装置に返送する第3移送経路を備えている点にある。   In addition to the first or second characteristic configuration described above, the third characteristic configuration is characterized in that the denitrification liquid treated by the autotrophic denitrification device is the autotrophic denitrification as described in claim 3. It is in the point provided with the 3rd transfer route which returns to a nitrogen device.

上述の分離液または当該分離液を生物処理した処理液の投入により独立栄養性脱窒装置内の処理液の亜硝酸濃度(遊離亜硝酸濃度)を適正な値に希釈できない場合であっても、第3移送経路を経由して、独立栄養性脱窒装置で処理され、亜硝酸濃度が低下した脱窒液が独立栄養性脱窒装置に返送されるので、独立栄養性脱窒装置内の処理液の亜硝酸濃度(遊離亜硝酸濃度)が適正な値になるように、さらに希釈できるようになる。同様に、このような構成によれば、水道水等を用いた別途の希釈水供給設備を準備する必要がない。   Even if it is not possible to dilute the nitrous acid concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification apparatus to an appropriate value by adding the above-mentioned separation liquid or the treatment liquid obtained by biologically treating the separation liquid, Since the denitrification liquid that has been processed by the autotrophic denitrification device and the concentration of nitrous acid has been reduced is returned to the autotrophic denitrification device via the third transfer route, the processing in the autotrophic denitrification device Further dilution is possible so that the nitrous acid concentration (free nitrous acid concentration) of the liquid becomes an appropriate value. Similarly, according to such a configuration, it is not necessary to prepare a separate dilution water supply facility using tap water or the like.

同第四の特徴構成は、同請求項4に記載した通り、上述した第一または第二特徴構成に加えて、前記独立栄養性脱窒処理装置の脱窒液に含有する硝酸を嫌気条件下で従属栄養性脱窒微生物によって窒素ガスに還元する従属栄養性脱窒装置を備え、前記従属栄養性脱窒装置で処理した脱窒液を前記独立栄養性脱窒装置に返送する第4移送経路を備えている点にある。   In the fourth feature configuration, as described in claim 4, in addition to the first or second feature configuration described above, nitric acid contained in the denitrification solution of the autotrophic denitrification apparatus is subjected to anaerobic conditions. And a heterotrophic denitrification device that reduces the nitrogen to the nitrogen gas by the heterotrophic denitrification microorganism, and a denitrification solution treated by the heterotrophic denitrification device is returned to the autotrophic denitrification device. It is in the point equipped with.

独立栄養性脱窒処理装置で嫌気的アンモニア酸化処理された脱窒液には硝酸が含まれる。そのような脱窒液が従属栄養性脱窒装置に導入されることにより、脱窒液に含まれる硝酸が嫌気条件下で従属栄養性脱窒微生物によって窒素ガスに還元されるようになる。第4移送経路を経由して、従属栄養性脱窒装置で処理された脱窒液が独立栄養性脱窒装置に返送されるので、独立栄養性脱窒装置内の処理液の亜硝酸濃度(遊離亜硝酸濃度)が適正な値になるように、さらに希釈できるようになる。   Nitric acid is contained in the denitrification liquid that has been subjected to the anaerobic ammonia oxidation treatment in the autotrophic denitrification treatment apparatus. By introducing such a denitrification liquid into the heterotrophic denitrification apparatus, the nitric acid contained in the denitrification liquid is reduced to nitrogen gas by the heterotrophic denitrification microorganisms under anaerobic conditions. Since the denitrification liquid processed in the heterotrophic denitrification apparatus is returned to the autotrophic denitrification apparatus via the fourth transfer route, the concentration of nitrous acid in the treatment liquid in the autotrophic denitrification apparatus ( It can be further diluted so that the concentration of free nitrous acid becomes an appropriate value.

本発明による懸濁性有機物含有廃水の処理方法の第一の特徴構成は、同請求項5に記載した通り、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、前記懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、前記汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、前記亜硝酸化処理による処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒処理を行なう懸濁性有機物含有廃水の処理方法であって、前記懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を、前記亜硝酸化処理と前記独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節する点にある。   The first characteristic configuration of the method for treating suspending organic substance-containing wastewater according to the present invention is the suspending property for separating the suspending organic substance from the water to be treated containing the suspending organic substance as described in claim 5. Organic matter separation treatment, sludge anaerobic digestion treatment for anaerobically digesting suspended organic matter separated by the suspension organic matter separation treatment, and ammonia contained in the digested liquid by the sludge anaerobic digestion treatment under aerobic conditions Nitrite treatment that oxidizes to nitrous acid at the same time, and autotrophic denitrification treatment that oxidizes ammonia contained in the treatment solution by the nitrite treatment to nitrogen gas by an autotrophic denitrifying microorganism under anaerobic conditions. A method for treating turbid organic substance-containing wastewater, wherein a separation liquid from which suspended organic substances have been removed in the suspension organic substance separation treatment or a treatment liquid in which the separation liquid has been biologically treated is the nitritation treatment and the treatment Autotrophic denitrification Transferring sense, it lies in regulating the free nitrous acid concentration at each step.

同第二の特徴構成は、同請求項6に記載した通り、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、前記懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、前記汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、前記亜硝酸化処理による処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒処理を行なう懸濁性有機物含有廃水の処理方法であって、前記懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を前記亜硝酸化処理に移送し、前記処理液または前記分離液と前記処理液の双方を、前記独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節する点にある。   The second characteristic configuration includes a suspending organic matter separation treatment for separating the suspending organic matter from the water to be treated containing the suspending organic matter, and the suspending organic matter separation treatment as described in claim 6. Sludge anaerobic digestion treatment for anaerobically digesting suspended organic matter separated by the above, and nitritation treatment for oxidizing ammonia contained in the digested liquid by the sludge anaerobic digestion treatment to nitrous acid under aerobic conditions; A process for treating suspended organic matter-containing wastewater for performing an autotrophic denitrification treatment in which ammonia contained in the treatment liquid by the nitrite treatment is oxidized to nitrogen gas by an autotrophic denitrification microorganism under anaerobic conditions, The separation liquid from which suspended organic substances have been removed by the suspension organic substance separation treatment or the treatment liquid obtained by biologically treating the separation liquid is transferred to the nitritation treatment, and the treatment liquid or the separation liquid and the treatment liquid are transferred to the nitritation treatment. Both of the above Transferred to nutritive denitrification treatment lies in that mediate the release nitrite concentration at each step.

同第三の特徴構成は、同請求項7に記載した通り、上述した第一または第二の特徴構成に加えて、前記亜硝酸化処理の工程は遊離亜硝酸濃度を0.2ppm未満に調整し、前記独立栄養性脱窒処理の工程は遊離亜硝酸濃度を0.08ppm未満に調節する点にある。   In the third feature configuration, as described in claim 7, in addition to the first or second feature configuration described above, the nitritation step adjusts the free nitrous acid concentration to less than 0.2 ppm. However, the step of the autotrophic denitrification treatment is to adjust the free nitrous acid concentration to less than 0.08 ppm.

亜硝酸化処理の工程では、遊離亜硝酸濃度を0.2ppm未満に調整して実行することで、アンモニアは効率的に亜硝酸化される。前記独立栄養性脱窒処理の工程では、遊離亜硝酸濃度を0.08ppm未満に調節して実行することで、嫌気的アンモニア酸化処理を効率的に行うことができる。つまり、高濃度の懸濁性有機物を含有する廃水であっても効率的に窒素除去できる。   In the nitritation process, ammonia is efficiently nitrified by adjusting the free nitrous acid concentration to less than 0.2 ppm. In the autotrophic denitrification process, the anaerobic ammonia oxidation process can be efficiently performed by adjusting the free nitrous acid concentration to less than 0.08 ppm. That is, nitrogen can be removed efficiently even with wastewater containing a high concentration of suspended organic matter.

以上説明した通り、本発明によれば、従来技術より効率的な処理が可能となり、さらには、高濃度の懸濁性有機物を含有する廃水であっても、より効率的な懸濁性有機物含有廃水の処理システム及び処理方法を提供することができるようになった。   As described above, according to the present invention, more efficient treatment than the prior art is possible, and even wastewater containing a high concentration of suspended organic matter contains more efficient suspended organic matter. A wastewater treatment system and treatment method can be provided.

本発明による処理システムの第一態様の説明図Explanatory drawing of the 1st aspect of the processing system by this invention 本発明による処理システムの第二態様の説明図Explanatory drawing of the 2nd aspect of the processing system by this invention 本発明による処理システムの第三態様の説明図Explanatory drawing of the 3rd aspect of the processing system by this invention. 本発明による処理システムの第四態様の説明図Explanatory drawing of the 4th aspect of the processing system by this invention. 本発明による処理システムの第五態様の説明図Explanatory drawing of the 5th aspect of the processing system by this invention. 本発明による処理システムの第六態様の説明図Explanatory drawing of the 6th aspect of the processing system by this invention. 本発明による処理システムの数値シミュレーションの説明図Explanatory drawing of numerical simulation of the processing system by this invention 本発明による処理システムの数値シミュレーションの説明図Explanatory drawing of numerical simulation of the processing system by this invention

以下、本発明による懸濁性有機物含有廃水の処理システム及び処理方法の実施形態を説明する。   Hereinafter, an embodiment of a processing system and a processing method for waste water containing suspended organic matter according to the present invention will be described.

図1には、第一の態様の懸濁性有機物含有廃水の処理システムが示されている。当該処理システムは、懸濁性有機物を含有する被処理水を浄化するシステムであり、被処理水に含まれる懸濁性有機物を分離する懸濁性有機物分離装置10と、懸濁性有機物分離装置10で分離した懸濁性有機物を嫌気性消化する汚泥嫌気性消化装置20と、汚泥嫌気性消化装置20の消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化装置30と、亜硝酸化装置30の処理液に含まれるアンモニア及び亜硝酸を嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに変換する独立栄養性脱窒装置40と、懸濁性有機物分離装置10で懸濁性有機物が除去された分離液を亜硝酸化装置30に供給する第1移送経路R1を備えている。   FIG. 1 shows a treatment system for suspending organic substance-containing wastewater according to the first embodiment. The said processing system is a system which purifies the to-be-processed water containing a suspending organic substance, the suspending organic substance separation apparatus 10 which isolate | separates the suspending organic substance contained in a to-be-processed water, and a suspending organic substance separation apparatus A sludge anaerobic digester 20 for anaerobically digesting the suspended organic matter separated in 10; and a nitritizer 30 for oxidizing ammonia contained in the digested liquid of the sludge anaerobic digester 20 to nitrous acid under aerobic conditions. An autotrophic denitrification device 40 for converting ammonia and nitrous acid contained in the treatment liquid of the nitritation device 30 into nitrogen gas by an autotrophic denitrification microorganism under anaerobic conditions, and the suspended organic matter separation device 10 The first transfer path R1 for supplying the separated liquid from which the suspended organic substances have been removed to the nitritation apparatus 30 is provided.

懸濁性有機物分離装置10は、沈殿装置、凝集沈殿装置、浮上分離装置、スクリーン装置、膜分離装置、サイクロン装置、スクリュープレスやデカンタ等の機械的分離装置の何れかで構成することができる。また、これらの装置を組み合わせて構成することも可能である。   The suspending organic matter separation device 10 can be configured by any of a precipitation device, a coagulation precipitation device, a flotation separation device, a screen device, a membrane separation device, a cyclone device, and a mechanical separation device such as a screw press or a decanter. Further, these devices can be combined.

懸濁性有機物分離装置10で被処理水から分離された懸濁性有機物は、汚泥嫌気性消化装置20で嫌気性消化されて、アンモニア態窒素を含有する消化液となる。   The suspending organic substance separated from the water to be treated by the suspending organic substance separating apparatus 10 is anaerobically digested by the sludge anaerobic digesting apparatus 20 to become a digested liquid containing ammonia nitrogen.

亜硝酸化装置30に投入されたアンモニア態窒素を含有する消化液は、好気条件下で亜硝酸化菌によって亜硝酸化処理され、アンモニア態窒素の一部が亜硝酸態窒素に酸化される。   The digested liquid containing ammonia nitrogen charged into the nitritation apparatus 30 is subjected to nitritation treatment by nitrite bacteria under aerobic conditions, and a part of the ammonia nitrogen is oxidized to nitrite nitrogen. .

独立栄養性脱窒装置40に投入された亜硝酸化装置30の処理液、つまりアンモニア態窒素と亜硝酸態窒素を含む処理液は、嫌気条件下で独立栄養性脱窒微生物によってアンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする嫌気的アンモニア酸化処理によって脱窒される。つまり、独立栄養性脱窒装置40は嫌気的アンモニア酸化装置である。   The treatment liquid of the nitritation apparatus 30 charged into the autotrophic denitrification apparatus 40, that is, the treatment liquid containing ammonia nitrogen and nitrite nitrogen, is converted to ammonia nitrogen by the autotrophic denitrification microorganisms under anaerobic conditions. It is denitrified by an anaerobic ammonia oxidation treatment using an electron donor and nitrite nitrogen as an electron acceptor. That is, the autotrophic denitrification device 40 is an anaerobic ammonia oxidation device.

独立栄養性脱窒微生物は、浮遊菌の形で独立栄養性脱窒装置40内に保持され、充填材に付着させた生物膜、或いは独立栄養性脱窒微生物を固定化材に固定化した固定化担体として独立栄養性脱窒装置40内に保持することもできる。   The autotrophic denitrifying microorganisms are held in the autotrophic denitrification apparatus 40 in the form of airborne bacteria and fixed by immobilizing the biofilm adhered to the filler or the autotrophic denitrifying microorganisms on the immobilizing material. It can also be held in the autotrophic denitrification apparatus 40 as a nitrifying carrier.

独立栄養性脱窒微生物を充填材に付着させた生物膜を採用する場合、独立栄養性脱窒装置40への生物膜の充填量は、固定床式の場合に20〜80容積%が好ましい。充填材として、不織布、プラスチック材料、スポンジ材料または多孔質セラミックス等の材質を使用することができ、板状、粒状または筒状等の各種の形状を採用することができる。   When employing a biofilm in which autotrophic denitrifying microorganisms are attached to a filler, the biofilm filling amount in autotrophic denitrification apparatus 40 is preferably 20 to 80% by volume in the case of a fixed bed type. As the filler, a material such as a nonwoven fabric, a plastic material, a sponge material, or porous ceramics can be used, and various shapes such as a plate shape, a granular shape, and a cylindrical shape can be adopted.

独立栄養性脱窒微生物を固定化材に固定化した固定化担体を採用する場合、固定化材への独立栄養性脱窒微生物固定化には、付着固定化及び包括固定化の2つの方法を採用することができる。   When adopting an immobilization carrier in which autotrophic denitrifying microorganisms are immobilized on an immobilizing material, two methods of adhesion immobilization and entrapping immobilization are used for immobilizing autotrophic denitrifying microorganisms on the immobilizing material. Can be adopted.

付着固定化を採用する場合は、球状や筒状などの担体の他、ひも状材料、ゲル状材料または不織布状材料等を採用することができ、微生物を付着させ易い凹凸の多い材料を担体として採用することが好ましい。   In the case of adopting adhesion fixation, in addition to a carrier such as a sphere or cylinder, a string material, a gel material, or a nonwoven material can be adopted, and a material with many irregularities that easily attach microorganisms is used as a carrier. It is preferable to adopt.

包括固定化を採用する場合は、固定化の対象となる微生物と担体であるモノマやプレポリマを混合した後に重合させて、微生物を包括固定化させる方法を採用するのが一般的である。   When employing entrapping immobilization, it is common to employ a method in which microorganisms to be immobilized and monomers or prepolymers as carriers are mixed and then polymerized to entrap and immobilize the microorganisms.

モノマ材料として、アクリルアミド、メチレンビスアクリルアミド、トリアクリルフォルマール等が好ましく利用でき、プレポリマ材料として、ポリエチレングリコールジアクリレートやポリエチレングリコールメタアクリレートが好ましく利用できる。上述した付着固定と同様に凹凸の多い形状の固定化材を採用すれば、被処理水との接触効率がよく、脱窒能が向上する。   As the monomer material, acrylamide, methylenebisacrylamide, triacryl formal and the like can be preferably used, and as the prepolymer material, polyethylene glycol diacrylate and polyethylene glycol methacrylate can be preferably used. If an immobilizing material with many irregularities is employed in the same manner as the above-described adhesion fixing, the contact efficiency with the water to be treated is good and the denitrification ability is improved.

上述したように、独立栄養性脱窒装置40で行なわれる嫌気的アンモニア酸化処理は、1当量のアンモニア態窒素と1.32当量の亜硝酸態窒素とを脱窒反応によって窒素分子に変換する処理である。従って、効率的に嫌気的アンモニア酸化処理するために、理想的には亜硝酸化装置30でアンモニアと亜硝酸のモル比が1:1.32になるように亜硝酸化処理されることが好ましい。   As described above, the anaerobic ammonia oxidation process performed in the autotrophic denitrification apparatus 40 is a process of converting 1 equivalent of ammonia nitrogen and 1.32 equivalents of nitrite nitrogen into nitrogen molecules by a denitrification reaction. It is. Therefore, in order to efficiently perform the anaerobic ammonia oxidation treatment, ideally, the nitritation treatment is preferably performed in the nitritation apparatus 30 so that the molar ratio of ammonia to nitrous acid is 1: 1.32. .

つまり、高濃度の懸濁性有機物が消化処理された消化液には高濃度のアンモニア態窒素が含まれるため、亜硝酸化装置30内の亜硝酸濃度(遊離亜硝酸濃度)も高くなる傾向にある。   That is, since the digested liquid obtained by digesting the high-concentration suspended organic substance contains high-concentration ammonia nitrogen, the nitrite concentration (free nitrous acid concentration) in the nitritation apparatus 30 tends to increase. is there.

硝化においては、遊離亜硝酸濃度(FNA)が0.2ppm以上になると全ての硝化細菌が阻害を受けると言われている。Anthonisenらの計算式によると、遊離亜硝酸濃度(FNA)は次式で表される。つまり、遊離亜硝酸濃度(FNA)は亜硝酸濃度、温度、pHで決まるのである。

Figure 2014042857
Figure 2014042857
In nitrification, it is said that all nitrifying bacteria are inhibited when the free nitrite concentration (FNA) is 0.2 ppm or more. According to the calculation formula of Anthonisen et al., The free nitrous acid concentration (FNA) is expressed by the following formula. That is, the free nitrous acid concentration (FNA) is determined by the nitrous acid concentration, temperature, and pH.
Figure 2014042857
Figure 2014042857

表1は、嫌気性消化液のアンモニア態窒素濃度と亜硝酸態窒素濃度が1:1.32になるように亜硝酸化したときの遊離亜硝酸濃度を、上式に基づいて算出した値が示されている。   Table 1 shows the values calculated based on the above formula for the free nitrous acid concentration when nitrous acid was used so that the ammonia nitrogen concentration and nitrite nitrogen concentration of the anaerobic digestion solution were 1: 1.32. It is shown.

嫌気性消化液のアンモニア態窒素濃度が1000ppmのとき、亜硝酸態窒素濃度が570ppmになるように亜硝酸化される。このときにpH7.4、水温30℃であるならば遊離亜硝酸濃度が0.151ppmであって、亜硝酸化に支障はない。しかしpHが7.2まで下がると遊離亜硝酸濃度は0.239ppmとなり亜硝酸化に支障のある濃度となってしまう。   When the ammonia nitrogen concentration of the anaerobic digestion liquid is 1000 ppm, nitrite is oxidized so that the nitrite nitrogen concentration becomes 570 ppm. At this time, if the pH is 7.4 and the water temperature is 30 ° C., the free nitrous acid concentration is 0.151 ppm and there is no problem in nitritation. However, when the pH is lowered to 7.2, the concentration of free nitrous acid becomes 0.239 ppm, which is a concentration that hinders nitritation.

従来はpHを上げるためにアルカリ剤を添加していたが、第一の態様の処理システムによれば、第1移送経路R1を経由して、分離液を亜硝酸化装置30に供給して、亜硝酸態窒素濃度が470ppm程度になるように希釈して、遊離亜硝酸濃度を亜硝酸化に支障のないレベルにすることができる。   Conventionally, an alkaline agent has been added to raise the pH, but according to the treatment system of the first aspect, the separation liquid is supplied to the nitritation device 30 via the first transfer path R1, By diluting the nitrite nitrogen concentration to be about 470 ppm, the free nitrite concentration can be adjusted to a level that does not hinder nitritation.

水温が15℃になると遊離亜硝酸濃度は0.224ppmになるが、水温を上げずに亜硝酸態窒素濃度500ppm程度になるように希釈して亜硝酸化に良好な状態を維持することができる。   When the water temperature reaches 15 ° C., the free nitrous acid concentration becomes 0.224 ppm, but it can be diluted to a nitrite nitrogen concentration of about 500 ppm without increasing the water temperature and can maintain a good state for nitritation. .

嫌気性消化液のアンモニア態窒素濃度が2000ppmになるとpH7.4、水温30℃の状態で遊離亜硝酸濃度が0.302ppmになる。このとき、pHを7.6あるいは水温を48℃に調節すると遊離亜硝酸濃度は0.2ppm未満になるが、大量のアルカリ剤や加温のための莫大なエネルギーが必要となる。しかし、第一の態様の処理システムによれば、亜硝酸態窒素濃度を740ppm程度に希釈することで、遊離亜硝酸濃度を亜硝酸化に支障のないレベルにすることができる。   When the concentration of ammonia nitrogen in the anaerobic digestion solution reaches 2000 ppm, the free nitrous acid concentration becomes 0.302 ppm at a pH of 7.4 and a water temperature of 30 ° C. At this time, when the pH is adjusted to 7.6 or the water temperature is adjusted to 48 ° C., the concentration of free nitrous acid becomes less than 0.2 ppm, but a large amount of alkaline agent and enormous energy for heating are required. However, according to the treatment system of the first aspect, by diluting the nitrite nitrogen concentration to about 740 ppm, the free nitrite concentration can be brought to a level that does not hinder nitritation.

このように、第1移送経路R1を介して分離液を亜硝酸化装置30に供給して、亜硝酸化装置30内の消化液を希釈することで、亜硝酸化装置30内の消化液の亜硝酸濃度(遊離亜硝酸濃度)を、アンモニアの亜硝酸化に適した濃度に調整することができる。   In this way, the separation liquid is supplied to the nitritation apparatus 30 via the first transfer path R1 to dilute the digestion liquid in the nitritation apparatus 30 so that the digestion liquid in the nitritation apparatus 30 is diluted. The nitrous acid concentration (free nitrous acid concentration) can be adjusted to a concentration suitable for ammonia nitritation.

図1では、第1移送経路R1を介して亜硝酸化装置30に供給される希釈液が、懸濁性有機物分離装置10で懸濁性有機物が除去された分離液である例を説明したが、好気性微生物を用いて当該分離液を生物処理する生物処理装置を備えている場合には、当該分離液に替えて、当該分離液を生物処理した処理液を希釈液として亜硝酸化装置30に供給してもよい。この態様については、後に詳述する。   In FIG. 1, the example in which the diluent supplied to the nitritation device 30 via the first transfer path R1 is a separated solution from which the suspended organic matter has been removed by the suspended organic matter separating device 10 has been described. In the case where a biological treatment apparatus for biologically treating the separation liquid using aerobic microorganisms is provided, the nitritation apparatus 30 uses the treatment liquid obtained by biological treatment of the separation liquid as a diluent instead of the separation liquid. May be supplied. This aspect will be described in detail later.

亜硝酸化装置30でアンモニア酸化細菌は阻害を受けることなくアンモニアの亜硝酸化を効率的に行なうことができ、亜硝酸化装置30でアンモニアが十分に亜硝酸化することができる。   Ammonia-oxidizing bacteria can efficiently perform nitritation of ammonia without being inhibited by the nitritation apparatus 30, and the nitritation apparatus 30 can sufficiently nitrify ammonia.

亜硝酸化処装置30の処理液は独立栄養性脱窒装置40で効率的に嫌気的アンモニア酸化処理され脱窒処理される。前記消化液の亜硝酸濃度(遊離亜硝酸濃度)の調整に、前記分離液または前記分離液を生物処理した処理液を用いる構成であるので、水道水等の別途の希釈水の供給装置を準備する必要がない。効率的な亜硝酸化反応のための温度制御やpH制御のための電力コストや薬品コストを節約できるようになる。   The treatment liquid of the nitritation treatment device 30 is efficiently anaerobic ammonia oxidation treatment and denitrification treatment by the autotrophic denitrification device 40. Since the separation liquid or a treatment liquid obtained by biological treatment of the separation liquid is used to adjust the nitrous acid concentration (free nitrous acid concentration) of the digestion liquid, a separate dilution water supply device such as tap water is prepared. There is no need to do. Electricity costs and chemical costs for temperature control and pH control for efficient nitritation reaction can be saved.

上述の構成により、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、亜硝酸化処理による処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒処理を行ない、懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を、亜硝酸化処理に移送し、亜硝酸化処理工程での遊離亜硝酸濃度を調節する懸濁性有機物含有廃水の処理方法が実行される。   With the above-described configuration, the suspension organic matter separation treatment for separating the suspension organic matter from the water to be treated containing the suspension organic matter and the suspension organic matter separated by the suspension organic matter separation treatment are anaerobically digested. Sludge anaerobic digestion treatment, nitritation treatment that oxidizes ammonia contained in digestion fluid by sludge anaerobic digestion treatment to nitrous acid under aerobic conditions, and ammonia contained in treatment solution by nitritation treatment under anaerobic conditions Under the conditions, the autotrophic denitrification process that oxidizes to nitrogen gas by autotrophic denitrifying microorganisms is performed, and the separation liquid from which suspended organic substances have been removed by the suspension organic substance separation process or the process in which the separation liquid is biologically treated The liquid is transferred to nitritation treatment, and a method for treating suspended organic matter-containing wastewater that adjusts the concentration of free nitrous acid in the nitritation treatment step is executed.

図2には、第二の態様の処理システムが示されている。当該処理システムは、上述した第一の態様の処理システムに加え、前記分離液を独立栄養性脱窒装置40に供給する第2移送経路R2を備えていることを特徴とする。   FIG. 2 shows a processing system according to the second embodiment. In addition to the processing system of the first aspect described above, the processing system includes a second transfer path R2 that supplies the separation liquid to the autotrophic denitrification apparatus 40.

上述したように、独立栄養性脱窒装置40では、亜硝酸化装置30の処理液に対し、嫌気条件下で独立栄養性脱窒微生物によってアンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする嫌気的アンモニア酸化処理による脱窒が行なわれる。このとき、独立栄養性脱窒装置40内の亜硝酸濃度(遊離亜硝酸濃度)が高いと、嫌気的アンモニア酸化処理の効率が低下してしまう。   As described above, in the autotrophic denitrification apparatus 40, ammonia nitrogen is used as an electron donor by the autotrophic denitrification microorganisms under anaerobic conditions with respect to the treatment liquid of the nitritation apparatus 30, and nitrite nitrogen is converted. Denitrification is performed by anaerobic ammonia oxidation treatment as an electron acceptor. At this time, if the concentration of nitrous acid (free nitrous acid concentration) in the autotrophic denitrification apparatus 40 is high, the efficiency of the anaerobic ammonia oxidation treatment is lowered.

第2移送経路R2により分離液を独立栄養性脱窒装置40に供給することで、独立栄養性脱窒装置40内の処理液は希釈され、処理液の亜硝酸濃度(遊離亜硝酸濃度)は、嫌気的アンモニア酸化処理に適した濃度に調整される。従って、独立栄養性脱窒装置40では効率的な嫌気的アンモニア酸化処理が可能となる。分離液を用いて、亜硝酸濃度(遊離亜硝酸濃度)の調整を行う構成であるため、水道水等の別途の希釈水供給設備を準備する必要がない。   By supplying the separation liquid to the autotrophic denitrification apparatus 40 through the second transfer path R2, the processing liquid in the autotrophic denitrification apparatus 40 is diluted, and the nitrous acid concentration (free nitrous acid concentration) of the processing liquid is It is adjusted to a concentration suitable for anaerobic ammonia oxidation treatment. Accordingly, the autotrophic denitrification apparatus 40 can efficiently perform anaerobic ammonia oxidation treatment. Since it is the structure which adjusts nitrous acid concentration (free nitrous acid concentration) using a separated liquid, it is not necessary to prepare separate dilution water supply facilities, such as tap water.

つまり、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、亜硝酸化処理による処理液に含まれるアンモニア及び亜硝酸を嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに変換する独立栄養性脱窒処理を行ない、懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を、亜硝酸化処理と独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節することを特徴とする懸濁性有機物含有廃水の処理方法が実行される。   In other words, suspended organic matter separation treatment that separates suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic that digests suspended organic matter separated by suspended organic matter separation treatment Nitrite treatment that oxidizes ammonia contained in digestion solution by digestion treatment and sludge anaerobic digestion to nitrous acid under aerobic conditions, and anaerobic condition of ammonia and nitrite contained in treatment solution by nitrite treatment Under the condition that autotrophic denitrification treatment is performed to convert nitrogen gas by autotrophic denitrifying microorganisms and the suspended organic matter is removed by the suspension organic matter separation treatment, or the separation solution is biologically treated. The liquid is transferred to a nitrification treatment and an autotrophic denitrification treatment, and a treatment method of wastewater containing suspended organic matter, characterized in that the free nitrous acid concentration in each treatment step is adjusted.

尚、亜硝酸化処理の工程は遊離亜硝酸濃度を0.2ppm未満に調整し、独立栄養性脱窒処理の工程は遊離亜硝酸濃度を0.08ppm未満に調節することが好ましく、0.06ppm未満がより好ましい。亜硝酸化処理の工程では、遊離亜硝酸濃度を0.2ppm未満に調整して実行することで、アンモニアは効率的に亜硝酸化される。独立栄養性脱窒処理の工程では、遊離亜硝酸濃度を0.08ppm未満に調節して実行することで、嫌気的アンモニア酸化処理を効率的に行うことができる。つまり、高濃度の懸濁性有機物を含有する廃水であっても効率的に窒素除去できる。   In the nitrification process, the free nitrous acid concentration is preferably adjusted to less than 0.2 ppm, and the autotrophic denitrification process is preferably adjusted to a free nitrous acid concentration of less than 0.08 ppm. Less than is more preferable. In the nitritation process, ammonia is efficiently nitrified by adjusting the free nitrous acid concentration to less than 0.2 ppm. In the autotrophic denitrification process, the anaerobic ammonia oxidation process can be efficiently performed by adjusting the free nitrous acid concentration to less than 0.08 ppm. That is, nitrogen can be removed efficiently even with wastewater containing a high concentration of suspended organic matter.

図3には、第三の態様の処理システムが示されている。当該処理システムは、上述の第二の態様の処理システムに加え、独立栄養性脱窒装置40で処理した脱窒液を独立栄養性脱窒装置40に返送する第3移送経路R3を備えていることを特徴とする。尚、第2移送経路R2は必ずしも備える必要はない。   FIG. 3 shows the processing system of the third aspect. In addition to the processing system of the second aspect described above, the processing system includes a third transfer path R3 that returns the denitrification liquid processed by the autotrophic denitrification device 40 to the autotrophic denitrification device 40. It is characterized by that. Note that the second transfer path R2 is not necessarily provided.

第1移送経路R1及び第2移送経路R2を介した前記分離液の供給だけでは、独立栄養性脱窒装置40内の処理液の希釈が十分でない場合がある。このような場合であっても、第3移送経路R3により独立栄養性脱窒装置40で処理した脱窒液を独立栄養性脱窒装置40に返送することで、独立栄養性脱窒装置40内の処理液をさらに希釈することができる。従って、希釈のための水を系外から独立栄養性脱窒装置40に供給しなくても、独立栄養性脱窒装置40内の処理液の亜硝酸濃度(遊離亜硝酸濃度)の調整を確実に行うことができる。   The supply of the separation liquid only through the first transfer path R1 and the second transfer path R2 may not sufficiently dilute the processing liquid in the autotrophic denitrification apparatus 40. Even in such a case, the denitrification liquid treated by the autotrophic denitrification apparatus 40 is returned to the autotrophic denitrification apparatus 40 through the third transfer route R3, so that the inside of the autotrophic denitrification apparatus 40 The treatment liquid can be further diluted. Therefore, the nitrite concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification device 40 can be reliably adjusted without supplying dilution water to the autotrophic denitrification device 40 from outside the system. Can be done.

尚、独立栄養性脱窒装置40で処理した脱窒液には、硝酸に加えて、未処理の亜硝酸やアンモニアが残留している。独立栄養性脱窒装置40に亜硝酸イオンやアンモニアイオンを測定するセンサを備えて、残留する亜硝酸やアンモニアに応じて、独立栄養性脱窒装置40から系外に放流される脱窒液の放流基準を満たすように、返送量を調整することが好ましい。   In addition, in the denitrification liquid processed with the autotrophic denitrification apparatus 40, untreated nitrous acid and ammonia remain in addition to nitric acid. A sensor for measuring nitrite ions and ammonia ions is provided in the autotrophic denitrification device 40, and the denitrification liquid discharged from the autotrophic denitrification device 40 to the outside of the system according to the remaining nitrous acid and ammonia. It is preferable to adjust the return amount so as to satisfy the discharge standard.

つまり、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、亜硝酸化処理による処理液に含まれるアンモニア及び亜硝酸を嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに変換する独立栄養性脱窒処理を行ない、懸濁性有機物分離処理で懸濁性有機物が除去された分離液を亜硝酸化処理に移送し、前記処理液または前記分離液と前記処理液の双方を、独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節する懸濁性有機物含有廃水の処理方法が実行される。   In other words, suspended organic matter separation treatment that separates suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic that digests suspended organic matter separated by suspended organic matter separation treatment Nitrite treatment that oxidizes ammonia contained in digestion solution by digestion treatment and sludge anaerobic digestion to nitrous acid under aerobic conditions, and anaerobic condition of ammonia and nitrite contained in treatment solution by nitrite treatment Under the autotrophic denitrification microorganisms, autotrophic denitrification treatment is carried out to convert to nitrogen gas, and the separated liquid from which suspended organic substances have been removed by the suspension organic matter separation treatment is transferred to nitritation treatment, A treatment method for treating wastewater containing suspended organic substances is carried out by transferring the treatment solution or both the separation solution and the treatment solution to an autotrophic denitrification treatment and adjusting the concentration of free nitrous acid in each treatment step. .

図4には、第四の態様の処理システムが示されている。当該処理システムは、上述した第二の態様の処理システムに加え、独立栄養性脱窒処理装置40の脱窒液に含有する硝酸を嫌気条件下で従属栄養性脱窒微生物によって窒素ガスに還元する従属栄養性脱窒装置50を備え、従属栄養性脱窒装置50で処理した脱窒液を独立栄養性脱窒装置40に返送する第4移送経路R4を備えている。尚、懸濁性有機物分離装置10の分離液を従属栄養性脱窒装置50に供給する第5移送経路R5を備えてもよい。また、第2移送経路R2は必ずしも備える必要はない。   FIG. 4 shows a processing system according to the fourth aspect. In addition to the treatment system of the second aspect described above, the treatment system reduces nitric acid contained in the denitrification liquid of the autotrophic denitrification apparatus 40 to nitrogen gas by heterotrophic denitrification microorganisms under anaerobic conditions. A heterotrophic denitrification apparatus 50 is provided, and a fourth transfer path R4 for returning the denitrification liquid processed by the heterotrophic denitrification apparatus 50 to the autotrophic denitrification apparatus 40 is provided. In addition, you may provide 5th transfer path | route R5 which supplies the separation liquid of the suspension organic substance separation apparatus 10 to the heterotrophic denitrification apparatus 50. FIG. Further, the second transfer path R2 is not necessarily provided.

従属栄養性脱窒装置50では、嫌気的アンモニア酸化処理にて発生した硝酸態窒素を電子受容体とし、分離液に溶解する有機物等を電子供与体とした従属栄養性脱窒微生物による脱窒反応を進行させることで、独立栄養性脱窒装置40から系外に排出される硝酸量や有機物量を低減できるようになる。   In the heterotrophic denitrification apparatus 50, a denitrification reaction by a heterotrophic denitrification microorganism using nitrate nitrogen generated by anaerobic ammonia oxidation treatment as an electron acceptor and organic matter dissolved in the separation liquid as an electron donor. The amount of nitric acid and organic matter discharged from the autotrophic denitrification apparatus 40 to the outside of the system can be reduced by advancing the process.

ここで、亜硝酸化装置30ではアンモニアと亜硝酸のモル比が1:1.32になるように調節されることが理想であるが、後段の従属栄養性脱窒装置50で嫌気的アンモニア酸化反応で余った亜硝酸を従属栄養性脱窒微生物で脱窒処理することができるので、亜硝酸化装置30では亜硝酸がアンモニアとのモル比1.32より大きくなるように調節すればよい。場合によっては硝酸まで硝化が進行してもよい。ただし、脱窒の効率化や硝化に要する酸素量を低減するために、亜硝酸化装置30ではアンモニア:亜硝酸が1:1.32〜1.5程度に調節するのが望ましい。   Here, it is ideal that the molar ratio of ammonia and nitrous acid is adjusted to 1: 1.32 in the nitritation apparatus 30, but anaerobic ammonia oxidation is performed in the heterotrophic denitrification apparatus 50 in the subsequent stage. Since the nitrite remaining in the reaction can be denitrified by the heterotrophic denitrifying microorganism, the nitritation apparatus 30 may be adjusted so that the nitrous acid is larger than the molar ratio of 1.32 with ammonia. In some cases, nitrification may proceed to nitric acid. However, in order to increase the efficiency of denitrification and reduce the amount of oxygen required for nitrification, it is desirable that ammonia: nitrous acid be adjusted to about 1: 1.32 to 1.5 in the nitritation apparatus 30.

第4移送経路R4により従属栄養性脱窒装置50で脱窒処理された脱窒液を独立栄養性脱窒装置40に返送することで、独立栄養性脱窒装置40内の処理液をさらに希釈することができる。従って、独立栄養性脱窒装置40内の処理液の亜硝酸濃度(遊離亜硝酸濃度)の調整を確実に行うことができる。   By returning the denitrification liquid denitrified by the heterotrophic denitrification apparatus 50 through the fourth transfer route R4 to the autotrophic denitrification apparatus 40, the treatment liquid in the autotrophic denitrification apparatus 40 is further diluted. can do. Therefore, the nitrite concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification apparatus 40 can be adjusted reliably.

尚、従属栄養性脱窒装置50には、従属栄養性脱窒微生物が投入されており、嫌気性雰囲気に保持される。従属栄養性脱窒装置50内における従属栄養性脱窒微生物の保持形態は、第一の態様の処理システムにおいて説明した独立栄養性脱窒装置40内における独立栄養性脱窒微生物と同様の保持形態を採用することができる。独立栄養性脱窒装置40で処理した脱窒液に含まれる有機物が不足する場合は、従属栄養性脱窒装置50に、第5移送経路R5を介して懸濁性有機物分離装置10の分離液を供給することで、不足する有機物を補うことができる。   The heterotrophic denitrification apparatus 50 is charged with heterotrophic denitrification microorganisms and is maintained in an anaerobic atmosphere. The retention form of the heterotrophic denitrification microorganisms in the heterotrophic denitrification apparatus 50 is the same retention form as the autotrophic denitrification microorganisms in the autotrophic denitrification apparatus 40 described in the processing system of the first aspect. Can be adopted. When the organic substance contained in the denitrification liquid processed by the autotrophic denitrification apparatus 40 is insufficient, the heterotrophic denitrification apparatus 50 is separated into the suspended organic substance separation apparatus 10 via the fifth transfer path R5. By supplying, the lack of organic matter can be compensated.

上述した第一から第四の態様の処理システムでは、懸濁性有機物分離装置10で懸濁性有機物が除去された分離液を、第1移送経路R1を介して亜硝酸化装置30に供給し、または第2移送経路R2を介して嫌気的アンモニア酸化装置40に供給する構成を説明したが、各移送経路R1,R2を介して供給される希釈液は当該分離液に限られず、当該分離液を生物処理して有機物濃度を低減した処理液を希釈液としてもよい。   In the processing systems of the first to fourth aspects described above, the separation liquid from which the suspended organic matter has been removed by the suspended organic matter separation device 10 is supplied to the nitritation device 30 via the first transfer path R1. Alternatively, the configuration for supplying the anaerobic ammonia oxidation apparatus 40 via the second transfer path R2 has been described, but the diluent supplied via the transfer paths R1, R2 is not limited to the separation liquid, and the separation liquid A treatment solution in which the organic matter concentration is reduced by biological treatment may be used as a diluent.

図5には、第五の態様の処理システムが示されている。当該処理システムは、上述した第二の態様の処理システムに加え、懸濁性有機物分離装置10の分離液を生物処理する生物処理装置60を備えて、当該生物処理された処理液を亜硝酸化装置30に供給する構成となっている。尚、第一、第三または第四の何れの態様の処理システムでも同様の構成を採用することができる。   FIG. 5 shows a processing system according to a fifth aspect. In addition to the treatment system of the second aspect described above, the treatment system includes a biological treatment device 60 that biologically treats the separated liquid of the suspending organic matter separation device 10, and nitrites the biologically treated treatment solution. It is configured to supply to the device 30. It should be noted that the same configuration can be adopted in the processing system of any of the first, third, and fourth modes.

懸濁性有機物分離装置10の分離液に含まれるBOD成分が多いと、亜硝酸化装置30や独立栄養性脱窒装置40内で従属栄養性細菌が優勢となってしまい、亜硝酸化や嫌気的アンモニア酸化処理の効率が低下する虞がある。生物処理装置60で分離液に含まれるBODを適当に除去することで、この問題を解決することができる。尚、生物処理装置60は曝気槽が例示できる。   If the BOD component contained in the separation liquid of the suspending organic matter separation device 10 is large, heterotrophic bacteria predominate in the nitritation device 30 and the autotrophic denitrification device 40, resulting in nitritation and anaerobic conditions. There is a risk that the efficiency of the active ammonia oxidation treatment will decrease. This problem can be solved by appropriately removing BOD contained in the separation liquid by the biological treatment apparatus 60. In addition, the biological treatment apparatus 60 can illustrate an aeration tank.

図6には、第六の態様の処理システムが示されている。当該処理システムは、上述した第一の態様の処理システムの汚泥嫌気性消化装置20に、さらに懸濁性有機物分離装置10から供給される懸濁性有機物とは異なるルートから液状有機性廃棄物が流入するように構成されている。当該液状有機性廃棄物は、食品廃棄物、排水処理で生じる汚泥、家畜糞尿等が好適である。第二から第五の態様の処理システムでも同様の構成とすることができる。   FIG. 6 shows a processing system according to the sixth aspect. In the treatment system, liquid organic waste is supplied to the sludge anaerobic digester 20 of the treatment system according to the first aspect described above from a route different from the suspended organic matter supplied from the suspended organic matter separation device 10. It is configured to flow in. The liquid organic waste is preferably food waste, sludge generated by wastewater treatment, livestock manure, and the like. The processing system of the second to fifth aspects can have the same configuration.

上述の第一から第五の態様として示すような本発明による懸濁性有機物含有廃水の処理システム及び処理方法によると、系外から液状有機性廃棄物を汚泥嫌気消化装置に投入して、アンモニア発生量が増加しても、懸濁性有機物分離装置で懸濁性有機物が除去された分離液により亜硝酸化装置内の亜硝酸濃度(遊離亜硝酸濃度)が調整できるので、後段の嫌気性アンモニア酸化処理により効率的な窒素除去が可能となる。   According to the processing system and the processing method for suspending organic substance-containing wastewater according to the present invention as shown in the first to fifth aspects described above, the liquid organic waste is introduced into the sludge anaerobic digester from outside the system, and ammonia Even if the amount generated is increased, the nitrous acid concentration (free nitrous acid concentration) in the nitrifying device can be adjusted by the separated liquid from which the suspending organic matter has been removed by the suspending organic matter separating device. Efficient nitrogen removal becomes possible by the ammonia oxidation treatment.

以下に、本発明による処理システムに対して数値シミュレーションを行った結果を説明する。   Below, the result of having performed numerical simulation with respect to the processing system by this invention is demonstrated.

図7には、図2で説明した第二の態様の処理システムに対して数値シミュレーションを行った結果が示されている。当該処理システムには、200m/dの被処理水が流入する。懸濁性有機物分離装置10は、被処理水に含まれる10m/dの懸濁性有機物を分離する。尚、懸濁性有機物分離装置10の190m/dの分離液のアンモニア態窒素及び亜硝酸態窒素の濃度は便宜上夫々0ppmとする。 FIG. 7 shows the result of a numerical simulation performed on the processing system of the second mode described in FIG. 200 m 3 / d treated water flows into the treatment system. The suspending organic matter separation device 10 separates 10 m 3 / d suspending organic matter contained in the water to be treated. The concentration of ammonia nitrogen and nitrite nitrogen in the 190 m 3 / d separation liquid of the suspending organic matter separation apparatus 10 is 0 ppm for convenience.

懸濁性有機物分離装置10で分離された懸濁性有機物は、汚泥嫌気性消化装置20で嫌気性消化される。その消化液には、5000ppmのアンモニア態窒素が含まれる。   The suspended organic matter separated by the suspended organic matter separation device 10 is anaerobically digested by the sludge anaerobic digester 20. The digestive fluid contains 5000 ppm of ammonia nitrogen.

亜硝酸化装置30は、温度30℃、pH7.4で好気性に保たれ、汚泥嫌気性消化装置20の嫌気性消化液に含まれるアンモニアを、アンモニアと亜硝酸のモル比が約1:1.3になるように亜硝酸化する。従って、5000ppmのアンモニア態窒素をそのまま亜硝酸化すると、2160ppmのアンモニア態窒素と、2840ppmの亜硝酸態窒素となる。このとき、遊離アンモニア濃度は、53.8ppmであり、遊離亜硝酸濃度は0.75ppmとなる。   The nitritation apparatus 30 is kept aerobic at a temperature of 30 ° C. and pH 7.4, and ammonia contained in the anaerobic digestion liquid of the sludge anaerobic digestion apparatus 20 has a molar ratio of ammonia to nitrous acid of about 1: 1. Nitrite to 3. Therefore, when nitrifying 5000 ppm of ammonia nitrogen as it is, it becomes 2160 ppm of ammonia nitrogen and 2840 ppm of nitrite nitrogen. At this time, the free ammonia concentration is 53.8 ppm and the free nitrous acid concentration is 0.75 ppm.

尚、遊離アンモニア濃度は、被処理水のアンモニウムイオン濃度を隔膜式イオン電極法等によって測定し、下記の数式2に示すように、温度、pHとの関係から算出するAnthonisenらの計算式で求める方法を採用することができる。   The concentration of free ammonia is determined by the formula of Anthonisen et al., Which is obtained by measuring the ammonium ion concentration of water to be treated by a diaphragm type ion electrode method or the like and calculating from the relationship between temperature and pH as shown in the following formula 2. The method can be adopted.

Figure 2014042857
Figure 2014042857

この遊離亜硝酸濃度の0.75ppmという値は、上述したように全ての硝化細菌が阻害を受けると言われている遊離亜硝酸濃度の0.2ppmを上回り、アンモニアの亜硝酸化に支障のある濃度となってしまう。   This free nitrous acid concentration of 0.75 ppm exceeds the free nitrous acid concentration of 0.2 ppm, which is said to inhibit all nitrifying bacteria, as described above, and hinders the nitritation of ammonia. It becomes concentration.

そこで、懸濁性有機物分離装置10で分離された190m/dの分離液のうち45m/dを第1移送経路R1を経由して、亜硝酸化装置30に供給する。つまり、汚泥嫌気性消化装置20の消化液10m/dを、45m/dの分離液で5.5倍に希釈する。すると、アンモニア態窒素が5000ppmもあった汚泥嫌気性消化装置20の消化液は、そのアンモニア態窒素が900ppmまで希釈される。 Therefore, the 45 m 3 / d of the separated liquid separated 190 m 3 / d in suspension organic material separating device 10 via the first transfer path R1, and supplies the nitrous acid apparatus 30. That is, the digestive liquid 10 m 3 / d of the sludge anaerobic digester 20 is diluted 5.5 times with a 45 m 3 / d separation liquid. Then, the digestive liquid of the sludge anaerobic digester 20 having 5000 ppm of ammonia nitrogen is diluted to 900 ppm.

希釈後消化液に含まれる900ppmのアンモニア態窒素は、亜硝酸化装置30で亜硝酸化され、390ppmのアンモニア態窒素と、510ppmの亜硝酸態窒素となる。このとき、遊離アンモニア濃度は、9.7ppmであり、遊離亜硝酸濃度は0.13ppmとなる。このように、第1移送経路R1を経由して、分離液を亜硝酸化装置30に供給することで、遊離亜硝酸濃度を亜硝酸化に支障のない0.2ppm以下のレベルにすることができる。   900 ppm ammonia nitrogen contained in the digested liquid after dilution is nitritized by the nitritation device 30 to become 390 ppm ammonia nitrogen and 510 ppm nitrite nitrogen. At this time, the free ammonia concentration is 9.7 ppm, and the free nitrous acid concentration is 0.13 ppm. Thus, by supplying the separation liquid to the nitritation device 30 via the first transfer path R1, the concentration of free nitrous acid can be reduced to a level of 0.2 ppm or less that does not interfere with nitritation. it can.

尚、汚泥嫌気性消化装置20の消化液10m/dを、30m/dの分離液で4倍に希釈すると、希釈後消化液に含まれるアンモニア態窒素は1250ppmとなる。この希釈後消化液を亜硝酸化装置30で亜硝酸化すると、543ppmのアンモニア態窒素と、707ppmの亜硝酸態窒素となる。このとき、遊離亜硝酸濃度は0.19ppmとなる。つまり、消化液を4倍希釈で遊離亜硝酸濃度の0.2ppm未満を達成できる。しかし、遊離アンモニア濃度が13.5ppmであるので、硝酸菌が選択的に阻害を受けるといわれている遊離アンモニア濃度0.1〜10ppmを達成するために、汚泥嫌気性消化装置20の消化液10m/dを、45m/dの分離液で5.5倍に希釈した。このように、消化液の希釈は、遊離亜硝酸濃度が0.2ppm未満となるように行うが、さらに遊離アンモニア濃度が0.1〜10ppmの範囲になるように希釈するのが、より好ましい。 In addition, if 10 m < 3 > / d of the digestion liquid of the sludge anaerobic digester 20 is diluted 4 times with the separation liquid of 30 m < 3 > / d, the ammonia nitrogen contained in the digested liquid after dilution will be 1250 ppm. When the digested liquid after this dilution is nitritized by the nitritation apparatus 30, it becomes 543 ppm of ammonia nitrogen and 707 ppm of nitrite nitrogen. At this time, the free nitrous acid concentration is 0.19 ppm. That is, it is possible to achieve a free nitrous acid concentration of less than 0.2 ppm by diluting the digestive fluid four times. However, since the free ammonia concentration is 13.5 ppm, in order to achieve a free ammonia concentration of 0.1 to 10 ppm, which is said to be selectively inhibited by nitric acid bacteria, the digestive fluid 10 m of the sludge anaerobic digester 20 is used. 3 / d was diluted 5.5 times with 45 m 3 / d separation. Thus, the digestive juice is diluted so that the concentration of free nitrous acid is less than 0.2 ppm, but it is more preferable to dilute so that the concentration of free ammonia falls within the range of 0.1 to 10 ppm.

独立栄養性脱窒装置40は、温度30℃、pH7.4で嫌気性に保たれ、亜硝酸化装置30の処理液を嫌気的アンモニア酸化処理によって脱窒する。上述したように、亜硝酸化処理装置30の処理液の遊離亜硝酸濃度は0.13ppmである。この0.13ppmという遊離亜硝酸濃度は、効率的な嫌気的アンモニア酸化処理の条件である遊離亜硝酸濃度を0.08ppmを上回るため、このままでは嫌気的アンモニア酸化処理の効率が低下してしまう。   The autotrophic denitrification apparatus 40 is kept anaerobic at a temperature of 30 ° C. and pH 7.4, and denitrifies the treatment liquid of the nitritation apparatus 30 by anaerobic ammonia oxidation treatment. As described above, the concentration of free nitrous acid in the treatment liquid of the nitritation treatment apparatus 30 is 0.13 ppm. This free nitrous acid concentration of 0.13 ppm exceeds the free nitrous acid concentration, which is a condition for efficient anaerobic ammonia oxidation treatment, by 0.08 ppm. Therefore, the efficiency of the anaerobic ammonia oxidation treatment is lowered as it is.

そこで、懸濁性有機物分離装置10で分離された分離液の残りの135m/dうち85m/dを第2移送経路R2を経由して、独立栄養性脱窒装置40に供給する。つまり、亜硝酸化装置30の55m/dの消化液を、85m/dの分離液で約2.55倍に希釈する。すると、亜硝酸態窒素が510ppmもあった亜硝酸化処理装置30の処理液は、その亜硝酸態窒素が200ppmまで希釈される。このとき遊離亜硝酸濃度は、0.053ppmとなり、効率的な嫌気的アンモニア酸化処理の条件である0.08ppm未満となる。尚、1.7倍希釈で亜硝酸態窒素が300ppmとなって、このとき遊離亜硝酸濃度は0.079ppmとなり、0.08ppm未満となるが、より効率的に処理できる0.06ppm未満となるように希釈した。 Therefore, the remaining 135m 3 / d of which 85 m 3 / d of separating liquid separated in suspension organic material separating device 10 via the second transfer path R2, and supplies the autotrophic denitrification device 40. That is, the 55 m 3 / d digested liquid of the nitritation apparatus 30 is diluted about 2.55 times with the 85 m 3 / d separated liquid. Then, the nitrite nitrogen is diluted to 200 ppm in the treatment liquid of the nitrite treatment apparatus 30 having 510 ppm of nitrite nitrogen. At this time, the concentration of free nitrous acid is 0.053 ppm, which is less than 0.08 ppm, which is a condition for efficient anaerobic ammonia oxidation treatment. In addition, nitrous acid nitrogen becomes 300 ppm by 1.7 times dilution, At this time, free nitrous acid concentration will be 0.079 ppm and will be less than 0.08 ppm, but it will be less than 0.06 ppm which can be processed more efficiently. Diluted.

図8には、図3で説明した第三の態様の処理システムに対して数値シミュレーションを行った結果が示されている。当該処理システムは、図3で説明した第三の態様の処理システムである。当該処理システムには、200m/dの被処理水が流入する。懸濁性有機物分離装置10は、被処理水に含まれる懸濁性有機物20m/dを分離する。尚、懸濁性有機物分離装置10の180m/dの分離液のアンモニア態窒素及び亜硝酸態窒素の濃度は便宜上夫々0ppmとする。 FIG. 8 shows the result of a numerical simulation performed on the processing system of the third aspect described in FIG. The processing system is the processing system of the third aspect described in FIG. 200 m 3 / d treated water flows into the treatment system. The suspending organic matter separation device 10 separates the suspending organic matter 20 m 3 / d contained in the water to be treated. The concentration of ammonia nitrogen and nitrite nitrogen in the 180 m 3 / d separation liquid of the suspending organic matter separation apparatus 10 is 0 ppm for convenience.

懸濁性有機物分離装置10で分離された懸濁性有機物は、汚泥嫌気性消化装置20で嫌気性消化される。その消化液には、5000ppmのアンモニア態窒素が含まれる。   The suspended organic matter separated by the suspended organic matter separation device 10 is anaerobically digested by the sludge anaerobic digester 20. The digestive fluid contains 5000 ppm of ammonia nitrogen.

亜硝酸化装置30は、温度30℃、pH7.4で好気性に保たれ、汚泥嫌気性消化装置20の嫌気性消化液に含まれるアンモニアを、アンモニアと亜硝酸のモル比が約1:1.3になるように亜硝酸化する。従って、5000ppmのアンモニア態窒素をそのまま亜硝酸化すると、2160ppmのアンモニア態窒素と、2840ppmの亜硝酸態窒素となる。このとき、遊離アンモニア濃度は、53.8ppmであり、遊離亜硝酸濃度は0.75ppmとなる。   The nitritation apparatus 30 is kept aerobic at a temperature of 30 ° C. and pH 7.4, and ammonia contained in the anaerobic digestion liquid of the sludge anaerobic digestion apparatus 20 has a molar ratio of ammonia to nitrous acid of about 1: 1. Nitrite to 3. Therefore, when nitrifying 5000 ppm of ammonia nitrogen as it is, it becomes 2160 ppm of ammonia nitrogen and 2840 ppm of nitrite nitrogen. At this time, the free ammonia concentration is 53.8 ppm and the free nitrous acid concentration is 0.75 ppm.

この遊離亜硝酸濃度の0.75ppmという値は、上述したように全ての硝化細菌が阻害を受けると言われている遊離亜硝酸濃度の0.2ppmを上回り、アンモニアの亜硝酸化に支障のある濃度となってしまう。   This free nitrous acid concentration of 0.75 ppm exceeds the free nitrous acid concentration of 0.2 ppm, which is said to inhibit all nitrifying bacteria, as described above, and hinders the nitritation of ammonia. It becomes concentration.

そこで、懸濁性有機物分離装置10で分離された180m/dの分離液のうち90m/dを第1移送経路R1を経由して、亜硝酸化装置30に供給する。つまり、汚泥嫌気性消化装置20の消化液20m/dを、90m/dの分離液で5.5倍に希釈する。すると、汚泥嫌気性消化装置20の消化液のアンモニア態窒素は5000ppmから900ppmまで希釈される。 Accordingly, the 90m 3 / d of the separated liquid separated 180 m 3 / d in suspension organic material separating device 10 via the first transfer path R1, and supplies the nitrous acid apparatus 30. That is, the digestive liquid 20m 3 / d of the sludge anaerobic digester 20 is diluted 5.5 times with a 90 m 3 / d separation liquid. Then, the ammonia nitrogen in the digestive liquid of the sludge anaerobic digester 20 is diluted from 5000 ppm to 900 ppm.

希釈後消化液に含まれる900ppmのアンモニア態窒素は、亜硝酸化装置30で亜硝酸化され、390ppmのアンモニア態窒素と、510ppmの亜硝酸態窒素となる。このとき、遊離アンモニア濃度は、9.7ppmであり、遊離亜硝酸濃度は0.13ppmとなる。このように、第1移送経路R1を経由して、分離液を亜硝酸化装置30に供給することで、遊離亜硝酸濃度を亜硝酸化に支障のない0.2ppm未満にすることができる。   900 ppm ammonia nitrogen contained in the digested liquid after dilution is nitritized by the nitritation device 30 to become 390 ppm ammonia nitrogen and 510 ppm nitrite nitrogen. At this time, the free ammonia concentration is 9.7 ppm, and the free nitrous acid concentration is 0.13 ppm. In this way, by supplying the separation liquid to the nitritation device 30 via the first transfer path R1, the free nitrous acid concentration can be reduced to less than 0.2 ppm that does not interfere with nitritation.

独立栄養性脱窒装置40は、温度30℃、pH7.4で嫌気性に保たれ、亜硝酸化装置30の処理液を嫌気的アンモニア酸化処理によって脱窒する。上述したように、亜硝酸化処理装置30の処理液の遊離亜硝酸濃度は0.13ppmである。この0.13ppmという遊離亜硝酸濃度は、効率的な嫌気的アンモニア酸化処理の条件である遊離亜硝酸濃度を0.06ppmを上回るため、このままでは嫌気的アンモニア酸化処理の効率が低下してしまう。   The autotrophic denitrification apparatus 40 is kept anaerobic at a temperature of 30 ° C. and pH 7.4, and denitrifies the treatment liquid of the nitritation apparatus 30 by anaerobic ammonia oxidation treatment. As described above, the concentration of free nitrous acid in the treatment liquid of the nitritation treatment apparatus 30 is 0.13 ppm. This free nitrous acid concentration of 0.13 ppm exceeds the free nitrous acid concentration, which is a condition for efficient anaerobic ammonia oxidation treatment, by more than 0.06 ppm, so that the efficiency of the anaerobic ammonia oxidation treatment is lowered as it is.

亜硝酸化処理装置30の処理液は、亜硝酸態窒素が510ppmから200ppmとなるまで希釈すると、このとき遊離亜硝酸濃度は、0.053ppmとなり、効率的な嫌気的アンモニア酸化処理の条件である0.06ppm未満を達成できる。そのためには、亜硝酸化装置30の処理液110m/dを、約2.55倍に希釈する必要がある。従って、処理液の希釈のために170m/dの分離液が必要である。しかし、懸濁性有機物分離装置10で分離された分離液は90m/dしかない。 When the treatment liquid of the nitritation treatment apparatus 30 is diluted until nitrite nitrogen is reduced from 510 ppm to 200 ppm, the free nitrous acid concentration at this time becomes 0.053 ppm, which is a condition for efficient anaerobic ammonia oxidation treatment. Less than 0.06 ppm can be achieved. For this purpose, it is necessary to dilute the treatment liquid 110 m 3 / d of the nitritation apparatus 30 about 2.55 times. Therefore, a separation liquid of 170 m 3 / d is necessary for dilution of the treatment liquid. However, the separation liquid separated by the suspending organic matter separation device 10 is only 90 m 3 / d.

そこで、懸濁性有機物分離装置10で分離された分離液の残りの90m/dを第2移送経路R2を経由して、独立栄養性脱窒装置40に供給するとともに、独立栄養性脱窒装置40の脱窒液のうち80m/dを第3移送経路R3を経由して、独立栄養性脱窒処理装置40に返送する。 Therefore, the remaining 90 m 3 / d of the separation liquid separated by the suspending organic matter separation device 10 is supplied to the autotrophic denitrification device 40 via the second transfer path R2, and the autotrophic denitrification is also performed. Of the denitrification liquid in the apparatus 40, 80 m 3 / d is returned to the autotrophic denitrification apparatus 40 via the third transfer path R3.

これによって、亜硝酸化装置30の110m/dの処理液を、第1移送経路R1を経由して供給された90m/dの分離液と、第3移送経路R3を経由して供給された80m/dの脱窒液とで、約2.55倍に希釈することができる。すると、亜硝酸化処理装置30の処理液の亜硝酸態窒素は510ppmから200ppmまで希釈される。このとき遊離亜硝酸濃度は、0.053ppmとなり、効率的な嫌気的アンモニア酸化処理の条件である0.06ppm未満にすることができる。 As a result, the 110 m 3 / d treatment liquid of the nitritation apparatus 30 is supplied via the 90 m 3 / d separation liquid supplied via the first transfer path R 1 and the third transfer path R 3. Furthermore, it can be diluted about 2.55 times with a denitrification solution of 80 m 3 / d. Then, the nitrite nitrogen in the treatment liquid of the nitritation treatment apparatus 30 is diluted from 510 ppm to 200 ppm. At this time, the concentration of free nitrous acid is 0.053 ppm, and can be made less than 0.06 ppm, which is a condition for efficient anaerobic ammonia oxidation treatment.

尚、ここでは、亜硝酸化装置30の110m/dの消化液を、第1移送経路R1を経由して供給された90m/dの分離液と、第3移送経路R3を経由して供給された90m/dの脱窒液とで、約2.55倍に希釈する場合について説明したが、亜硝酸化装置30の処理液の希釈に使用する分離液及び脱窒液の配分は、任意であり、例えば、亜硝酸化装置30の110m/dの処理液を、分離液を用いずに、第3移送経路R3を経由して供給された170m/dの脱窒液のみで希釈するように構成してもよい。また、第四の態様の処理システムのように、独立栄養性脱窒装置40の後段に従属栄養性脱窒装置50を備える処理システムでは、従属栄養性脱窒装置50の脱窒液を、亜硝酸化装置30の処理液の希釈に用いてもよい。 Here, the 110 m 3 / d digested liquid of the nitritation apparatus 30 is passed through the 90 m 3 / d separation liquid supplied via the first transfer path R 1 and the third transfer path R 3. The case of diluting about 2.55 times with the supplied 90 m 3 / d denitrification liquid has been described, but the distribution of the separation liquid and denitrification liquid used for dilution of the treatment liquid of the nitritation apparatus 30 is as follows. For example, only 110 m 3 / d denitrification liquid supplied through the third transfer path R 3 without using a separation liquid is used as the 110 m 3 / d treatment liquid of the nitritation apparatus 30. You may comprise so that it may be diluted with. Further, in the treatment system including the heterotrophic denitrification device 50 in the subsequent stage of the autotrophic denitrification device 40 as in the treatment system of the fourth aspect, the denitrification liquid of the heterotrophic denitrification device 50 is sublimated. You may use for the dilution of the process liquid of the nitrification apparatus 30. FIG.

上述した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately designed within the range where the effects of the present invention are exhibited. Needless to say.

10:懸濁性有機物分離装置
20:汚泥嫌気性消化装置
30:亜硝酸化装置
40:独立栄養性脱窒装置
50:従属栄養性脱窒装置
60:生物処理装置
R1:第1移送経路
R2:第2移送経路
R3:第3移送経路
R4:第4移送経路
R5:第5移送経路
10: Suspended organic matter separation device 20: Sludge anaerobic digester 30: Nitrite device 40: Autotrophic denitrification device 50: Heterotrophic denitrification device 60: Biological treatment device R1: First transfer route R2: Second transfer route R3: Third transfer route R4: Fourth transfer route R5: Fifth transfer route

Claims (7)

懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離装置と、前記懸濁性有機物分離装置により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化装置と、前記汚泥嫌気性消化装置の消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化装置と、前記亜硝酸化装置の処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒装置を有する懸濁性有機物含有廃水の処理システムであって、
前記懸濁性有機物分離装置で懸濁性有機物が除去された分離液または当該分離液を生物処理した処理液を前記亜硝酸化装置に供給する第1移送経路を備えていることを特徴とする懸濁性有機物含有廃水の処理システム。
Suspended organic matter separation device for separating suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic digestion for anaerobic digestion of suspended organic matter separated by the suspended organic matter separation device Apparatus, nitritation apparatus that oxidizes ammonia contained in digestion liquid of sludge anaerobic digestion apparatus to nitrous acid under aerobic conditions, and ammonia contained in treatment liquid of nitritation apparatus under anaerobic conditions A treatment system for wastewater containing suspended organic matter having an autotrophic denitrification device that oxidizes to nitrogen gas by autotrophic denitrifying microorganisms,
It is provided with the 1st transfer path which supplies the separation liquid from which suspended organic matter was removed with the suspension organic substance separation device, or the processing liquid which carried out the biological treatment of the separation liquid to the nitritation device. Suspended organic matter-containing wastewater treatment system.
前記懸濁性有機物分離装置の分離液または当該分離液を生物処理した処理液を前記独立栄養性脱窒装置に供給する第2移送経路を備えていることを特徴とする請求項1記載の懸濁性有機物含有廃水の処理システム。   2. The suspension according to claim 1, further comprising a second transfer path for supplying a separation liquid of the suspending organic matter separation apparatus or a treatment liquid obtained by biological treatment of the separation liquid to the autotrophic denitrification apparatus. Wastewater treatment system containing turbid organic substances. 前記独立栄養性脱窒装置で処理した脱窒液を前記独立栄養性脱窒装置に返送する第3移送経路を備えていることを特徴とする請求項1または2記載の懸濁性有機物含有廃水の処理システム。   The wastewater containing suspended organic matter according to claim 1 or 2, further comprising a third transfer path for returning the denitrification liquid treated by the autotrophic denitrification apparatus to the autotrophic denitrification apparatus. Processing system. 前記独立栄養性脱窒処理装置の脱窒液に含有する硝酸を嫌気条件下で従属栄養性脱窒微生物によって窒素ガスに還元する従属栄養性脱窒装置を備え、前記従属栄養性脱窒装置で処理した脱窒液を前記独立栄養性脱窒装置に返送する第4移送経路を備えていることを特徴とする請求項1または2記載の懸濁性有機物含有廃水の処理システム。   A heterotrophic denitrification device for reducing nitric acid contained in the denitrification solution of the autotrophic denitrification treatment device to nitrogen gas by heterotrophic denitrification microorganisms under anaerobic conditions; The suspension system for suspended organic matter-containing wastewater according to claim 1 or 2, further comprising a fourth transfer path for returning the treated denitrification liquid to the autotrophic denitrification apparatus. 懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、前記懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、前記汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、前記亜硝酸化処理による処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒処理を行なう懸濁性有機物含有廃水の処理方法であって、
前記懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を、前記亜硝酸化処理と前記独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節することを特徴とする懸濁性有機物含有廃水の処理方法。
Suspended organic matter separation treatment for separating suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic digestion for anaerobically digesting suspended organic matter separated by the suspended organic matter separation treatment Nitrification treatment that oxidizes ammonia contained in the digestion liquid by the sludge anaerobic digestion treatment to nitrous acid under aerobic conditions, and ammonia contained in the treatment liquid by the nitritation treatment under anaerobic conditions A process for treating suspended organic matter-containing wastewater that performs autotrophic denitrification that is oxidized to nitrogen gas by autotrophic denitrifying microorganisms,
The separation liquid from which the suspended organic substances have been removed by the suspension organic substance separation treatment or the treatment liquid in which the separation liquid has been biologically treated is transferred to the nitritation treatment and the autotrophic denitrification treatment, A method for treating wastewater containing suspended organic matter, characterized by adjusting the concentration of free nitrous acid in the treatment step.
懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、前記懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、前記汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、前記亜硝酸化処理による処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒処理を行なう懸濁性有機物含有廃水の処理方法であって、
前記懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を前記亜硝酸化処理に移送し、前記処理液または前記分離液と前記処理液の双方を、前記独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節することを特徴とする懸濁性有機物含有廃水の処理方法。
Suspended organic matter separation treatment for separating suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic digestion for anaerobically digesting suspended organic matter separated by the suspended organic matter separation treatment Nitrification treatment that oxidizes ammonia contained in the digestion liquid by the sludge anaerobic digestion treatment to nitrous acid under aerobic conditions, and ammonia contained in the treatment liquid by the nitritation treatment under anaerobic conditions A process for treating suspended organic matter-containing wastewater that performs autotrophic denitrification that is oxidized to nitrogen gas by autotrophic denitrifying microorganisms,
The separation liquid from which suspended organic substances have been removed by the suspension organic substance separation treatment or the treatment liquid obtained by biologically treating the separation liquid is transferred to the nitritation treatment, and the treatment liquid or the separation liquid and the treatment liquid are transferred to the nitritation treatment. Both of these are transferred to the autotrophic denitrification treatment, and the concentration of free nitrous acid in each treatment step is adjusted.
前記亜硝酸化処理の工程は遊離亜硝酸濃度を0.2ppm未満に調整し、前記独立栄養性脱窒処理の工程は遊離亜硝酸濃度を0.08ppm未満に調節することを特徴とする請求項5または6記載の懸濁性有機物含有廃水の処理方法。   The nitrite treatment step adjusts the free nitrous acid concentration to less than 0.2 ppm, and the autotrophic denitrification treatment step adjusts the free nitrous acid concentration to less than 0.08 ppm. 7. A method for treating wastewater containing suspended organic substances according to 5 or 6.
JP2012184808A 2012-08-24 2012-08-24 Suspended organic matter-containing wastewater treatment system and treatment method Active JP5968723B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012184808A JP5968723B2 (en) 2012-08-24 2012-08-24 Suspended organic matter-containing wastewater treatment system and treatment method
CN201380024713.5A CN104271516A (en) 2012-08-24 2013-08-14 System and method for treating wastewater containing suspended organic substance
PCT/JP2013/071906 WO2014030583A1 (en) 2012-08-24 2013-08-14 System and method for treating wastewater containing suspended organic substance
IN10992DEN2014 IN2014DN10992A (en) 2012-08-24 2014-12-23
PH12014502879A PH12014502879A1 (en) 2012-08-24 2014-12-23 System and method for treating wastewater containing suspended organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184808A JP5968723B2 (en) 2012-08-24 2012-08-24 Suspended organic matter-containing wastewater treatment system and treatment method

Publications (2)

Publication Number Publication Date
JP2014042857A true JP2014042857A (en) 2014-03-13
JP5968723B2 JP5968723B2 (en) 2016-08-10

Family

ID=50149892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184808A Active JP5968723B2 (en) 2012-08-24 2012-08-24 Suspended organic matter-containing wastewater treatment system and treatment method

Country Status (5)

Country Link
JP (1) JP5968723B2 (en)
CN (1) CN104271516A (en)
IN (1) IN2014DN10992A (en)
PH (1) PH12014502879A1 (en)
WO (1) WO2014030583A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008204A (en) * 2016-07-13 2018-01-18 西松建設株式会社 Production method and system of methane gas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077954A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Biological nitrogen removal method
CN105366889B (en) * 2015-11-26 2018-02-06 中国市政工程华北设计研究总院有限公司 A kind of town sewage high standard denitrification dephosphorization system without additional carbon
CN109628309A (en) * 2018-12-28 2019-04-16 江苏大学 A kind of separation method of saline-alkali tolerant denitrifying microorganism bacterial strain

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117594A (en) * 2001-10-12 2003-04-22 Ebara Corp Treating method and treating equipment for organic sewage
JP2003245689A (en) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd Method and apparatus for treating wastewater
JP2010005554A (en) * 2008-06-27 2010-01-14 Ebara Corp Removal apparatus of ammoniacal nitrogen
JP2012024707A (en) * 2010-07-23 2012-02-09 Swing Corp Denitrification method and denitrification device for ammoniacal nitrogen waste liquid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244883B (en) * 2008-03-21 2011-01-12 北京工业大学 High-efficiency low-consumption retexture method for urban sewage
CN101967030B (en) * 2010-09-26 2012-01-04 山东大学 Integrated filler ammoxidation internal circulation short-distance denitrification process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117594A (en) * 2001-10-12 2003-04-22 Ebara Corp Treating method and treating equipment for organic sewage
JP2003245689A (en) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd Method and apparatus for treating wastewater
JP2010005554A (en) * 2008-06-27 2010-01-14 Ebara Corp Removal apparatus of ammoniacal nitrogen
JP2012024707A (en) * 2010-07-23 2012-02-09 Swing Corp Denitrification method and denitrification device for ammoniacal nitrogen waste liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008204A (en) * 2016-07-13 2018-01-18 西松建設株式会社 Production method and system of methane gas

Also Published As

Publication number Publication date
PH12014502879A1 (en) 2015-02-23
IN2014DN10992A (en) 2015-09-25
CN104271516A (en) 2015-01-07
WO2014030583A1 (en) 2014-02-27
JP5968723B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
KR100327154B1 (en) High Concentrated Organic Wastewater Treatment Process Using Bio-maker
Rosenwinkel et al. Deammonification in the moving‐bed process for the treatment of wastewater with high ammonia content
CN104961306B (en) A kind of processing method of vaccary breeding wastewater
WO2010150691A1 (en) Method for treating wastewater containing ammonia nitrogen
KR100953058B1 (en) Natural high-treatment system
CN103402926A (en) Methods and systems for treating wastewater
CN110395851B (en) High-altitude town sewage treatment method based on nitrogen and phosphorus capture and completely autotrophic nitrogen removal
JP4632135B2 (en) Method and apparatus for treating ammonia-containing liquid
WO2013084973A1 (en) Processing system and processing method for nitrogen-containing organic waste water
JP4872171B2 (en) Biological denitrification equipment
JP5098183B2 (en) Waste water treatment method and apparatus
JP6445855B2 (en) Nitrogen treatment method and nitrogen treatment apparatus
JP5968723B2 (en) Suspended organic matter-containing wastewater treatment system and treatment method
JP4915036B2 (en) Denitrification method and denitrification apparatus
KR20140063454A (en) Apparatus and method for treatment wastewater
JP5858769B2 (en) Suspended organic matter-containing wastewater treatment system and treatment method
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
CN105016467B (en) A kind of device for landfill leachate treatment
JPH09299988A (en) Nitrificating and denitrificating method and device therefor
JP6651298B2 (en) Wastewater treatment method and wastewater treatment device for wastewater containing high salt concentration
JP3858271B2 (en) Wastewater treatment method and apparatus
JP2010201377A (en) System and method for preserving anaerobic microorganism immobilizing carrier
JP2006239572A (en) Oxidation treatment method of nitrous acid-containing liquid
KR20160024011A (en) Apparatus for Wastewater treatment Having Returning Device of Fluidized Carrier
JP4618420B2 (en) Method for oxidizing nitrous acid-containing liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160706

R150 Certificate of patent or registration of utility model

Ref document number: 5968723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150