[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014041863A - Semiconductor light-emitting device and method for manufacturing the same - Google Patents

Semiconductor light-emitting device and method for manufacturing the same Download PDF

Info

Publication number
JP2014041863A
JP2014041863A JP2012182149A JP2012182149A JP2014041863A JP 2014041863 A JP2014041863 A JP 2014041863A JP 2012182149 A JP2012182149 A JP 2012182149A JP 2012182149 A JP2012182149 A JP 2012182149A JP 2014041863 A JP2014041863 A JP 2014041863A
Authority
JP
Japan
Prior art keywords
recess
semiconductor light
led device
led
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012182149A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sakai
圭亮 堺
Hiroyuki Tsukada
浩之 塚田
Masahiro Fukuda
福田  匡広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2012182149A priority Critical patent/JP2014041863A/en
Publication of JP2014041863A publication Critical patent/JP2014041863A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method in which chromaticity correction is facilitated on the blue side with respect to an LED device having LED dies covered with a translucent member containing a phosphor, and which has high productivity.SOLUTION: First, light emission color of an LED device 10 is measured to calculate a correction amount. Next, based on this correction amount, a flat recess 13 having a light outgoing surface is formed in a part of a translucent member 12. Since a phosphor is reduced by forming the recess 13 and the light outgoing surface of the recess 13 is flat, blue light radiated by the LED dies 21 is efficiently emitted to the outside of the LED device 10. As a result, the light emission color of the LED device 10 is shifted onto the blue side.

Description

本発明は、透光性部材により半導体発光素子を被覆した半導体発光装置及びその製造方法に関する。   The present invention relates to a semiconductor light emitting device in which a semiconductor light emitting element is covered with a translucent member and a method for manufacturing the same.

ウェハーから切り出された半導体発光素子(以後とくに断らない限りLEDダイと呼ぶ)をリードフレームや回路基板に実装し、樹脂やガラス等の透光性部材で被覆してパッケージ化した半導体発光装置(以後とくに断らない限りLED装置と呼ぶ)が普及している。このなかで青色発光するLEDダイを、蛍光体を含有した透光性部材で被覆したLED装置がある。   A semiconductor light emitting device (hereinafter referred to as an LED die unless otherwise specified) cut from a wafer is mounted on a lead frame or a circuit board and covered with a translucent member such as resin or glass and packaged (hereinafter referred to as a light emitting device). Unless otherwise specified, it is called an LED device). Among these, there is an LED device in which an LED die that emits blue light is covered with a translucent member containing a phosphor.

このLED装置は、LEDダイの発光スペクトルや透光性部材の厚さ及び蛍光体濃度などにより発光色が変動する。このようななかLED装置の間で発光色に対する色度範囲・分布が広いと製品として成立しなくなることがある。そこでLED装置に追加工を施し発光色の分布を狭い範囲に絞り込むことがある。   In this LED device, the emission color varies depending on the emission spectrum of the LED die, the thickness of the translucent member, the phosphor concentration, and the like. Under such circumstances, if the chromaticity range / distribution with respect to the emission color is wide among LED devices, the product may not be established. Therefore, additional processing may be applied to the LED device to narrow the emission color distribution to a narrow range.

例えば特許文献1の段落0026には「光散乱部は、臨界角度内の領域内に設けられることによってLED光源(LED装置)から出射する擬似白色の色度を黄色よりに調整する」と記載されている。つまり蛍光体を含有した透光性部材の表面に散乱部を設け、LED光源から出射しようとする青色光の一部を散乱部により透光性部材内へ戻し、蛍光体によりこの青色光を長波長側に波長変換している。このようにしてLED光源の発光色を長波長側(黄色より)にシフトさせることができる。   For example, paragraph 0026 of Patent Document 1 describes that “the light scattering portion adjusts the pseudo-white chromaticity emitted from the LED light source (LED device) to be more yellow than that by being provided in a region within a critical angle”. ing. In other words, a scattering part is provided on the surface of the translucent member containing the phosphor, and part of the blue light to be emitted from the LED light source is returned to the translucent member by the scattering part, and this blue light is elongated by the phosphor. Wavelength conversion is performed on the wavelength side. In this way, the emission color of the LED light source can be shifted to the long wavelength side (from yellow).

さらに特許文献1の段落0027には「光散乱部は、臨界角度内の領域外に設けられることによってLED光源(LED装置)から出射する擬似白色の色度を青色よりに調整する」と記載されている。つまり蛍光体を含有した透光性部材の表面であっても、LEDダイの発する青色光が全反射する領域に散乱部を設けると、全反射しようとする青色光の一部を散乱部から透光性部材外へ出射させられる。このようにしてLED光源の発光色を短波長側(青色より)にシフトできる。   Further, paragraph 0027 of Patent Document 1 describes that “the light scattering portion is provided outside the region within the critical angle to adjust the chromaticity of the pseudo white emitted from the LED light source (LED device) to be blue”. ing. In other words, even if the surface of the translucent member containing the phosphor is provided with a scattering portion in a region where the blue light emitted from the LED die is totally reflected, a part of the blue light to be totally reflected is transmitted from the scattering portion. The light is emitted out of the optical member. In this way, the emission color of the LED light source can be shifted to the short wavelength side (from blue).

特許文献1に示された黄色側への補正では、LEDダイの直上部付近に散乱部を設けており、対象とする青色光の強度が強かったため、充分な補正量が得られた。これに対し特許文献1に示された青色側への補正では、全反射を起こす領域(LEDダイの直上部から離れた領域)の青色光が弱かったため充分な補正量が得られなかった。そこでLEDダイの直上部に追加工して青色側に補正する手法として特許文献2の方法が提案された。   In the correction to the yellow side shown in Patent Document 1, a scattering portion is provided in the vicinity of the upper portion of the LED die, and the intensity of the target blue light was strong, so that a sufficient correction amount was obtained. On the other hand, in the correction to the blue side shown in Patent Document 1, a sufficient amount of correction cannot be obtained because the blue light in the region where the total reflection occurs (the region away from the upper part of the LED die) is weak. Therefore, the method of Patent Document 2 has been proposed as a method of performing additional processing directly above the LED die and correcting it to the blue side.

例えば特許文献2の段落0024には「LED素子1(LEDダイ)から出力される光の光路の一部に該当する部分を切削し、蛍光体を含まない透明樹脂3を充填すれば、LED素子1から出力される光が蛍光体によって黄色光に変換される割合が少なくなって、LED光源10(LED装置)全体の色度は青色側にシフトする。」と記載されている。すなわちこの方法では、蛍光体を含む透光性部材の上面を削り、削った部分に透明樹脂3を充填することによりLED光源10の発光色を青色側にシフトさせている。   For example, in paragraph 0024 of Patent Document 2, “LED element is obtained by cutting a portion corresponding to a part of the optical path of light output from LED element 1 (LED die) and filling transparent resin 3 not containing phosphor. The ratio that the light output from 1 is converted into yellow light by the phosphor is reduced, and the chromaticity of the entire LED light source 10 (LED device) is shifted to the blue side. That is, in this method, the light emitting color of the LED light source 10 is shifted to the blue side by scraping the upper surface of the translucent member containing the phosphor and filling the shaved portion with the transparent resin 3.

特開2009−283887号公報 (段落0026,0027)JP 2009-283877 A (paragraphs 0026 and 0027) 特開2010−232525号公報 (段落0024)JP 2010-232525 (paragraph 0024)

しかしながら特許文献2で示された製造方法は、切削により形成する散乱面だけで色度を補正する特許文献1で示された方法に比べ、透明樹脂3を充填する工程が追加されており製造工程が長くなっている。   However, in the manufacturing method shown in Patent Document 2, a process of filling the transparent resin 3 is added as compared with the method shown in Patent Document 1 in which chromaticity is corrected only by a scattering surface formed by cutting. Is getting longer.

そこで本発明は、この課題を解決するため、蛍光体を含有した透光性部材により半導体発光素子を被覆しても、青色側への有効な色度補正が容易に実現できる半導体発光装置及びその製造方法を提供することを目的とする。   Therefore, in order to solve this problem, the present invention provides a semiconductor light emitting device capable of easily realizing effective chromaticity correction to the blue side even when the semiconductor light emitting element is covered with a translucent member containing a phosphor, and the semiconductor light emitting device An object is to provide a manufacturing method.

上記課題を解決するため本発明の半導体発光装置の製造方法は、蛍光体を含有した透光性部材により半導体発光素子を被覆した半導体発光装置の製造方法において、
前記半導体発光装置の発光色を測定し補正量を算出する補正量算出工程と、
前記補正量に基づいて前記透光性部材の一部に光出射面が平坦な凹部を形成する凹部形成工程と
を備えていることを特徴とする。
In order to solve the above problems, a method for manufacturing a semiconductor light-emitting device according to the present invention is a method for manufacturing a semiconductor light-emitting device in which a semiconductor light-emitting element is covered with a translucent member containing a phosphor.
A correction amount calculating step of measuring a light emission color of the semiconductor light emitting device and calculating a correction amount;
A recess forming step of forming a recess having a flat light exit surface on a part of the translucent member based on the correction amount.

本発明の半導体発光装置の製造方法では、まず半導体発光装置の発光色を測定し補正量を算出する。次に補正量と凹部の形状や位置との間の関係に基づき、半導体発光素子を被覆している透光性部材に対し切削により凹部を形成する。透光性部材は切削により蛍光体が減少し半導体発光素子の発する青色光が波長変換されづらくなるため、半導体発光装置の発光色が青色側にシフトする。また切削により形成した凹部の光出射面は平坦であるため、光出射面において青色光の散乱がない。つまり散乱により透光性部材の内部に戻り波長変換される青色光がないため黄色側へのシフト成分がほとんどない。   In the method for manufacturing a semiconductor light emitting device of the present invention, first, the emission color of the semiconductor light emitting device is measured to calculate a correction amount. Next, based on the relationship between the correction amount and the shape and position of the recess, the recess is formed by cutting the translucent member covering the semiconductor light emitting element. Since the phosphor is reduced by cutting the light-transmitting member and the wavelength of blue light emitted from the semiconductor light emitting element is difficult to convert, the emission color of the semiconductor light emitting device is shifted to the blue side. Further, since the light exit surface of the recess formed by cutting is flat, there is no blue light scattering on the light exit surface. In other words, since there is no blue light that returns to the inside of the translucent member due to scattering and undergoes wavelength conversion, there is almost no shift component to the yellow side.

補正量に応じて前記凹部の中心位置を前記半導体発光素子の中心位置から移動させても良い。   The center position of the recess may be moved from the center position of the semiconductor light emitting element according to the correction amount.

一般に半導体発光素子の直上部が最も青色光の強い領域となる。このため凹部の中心位置が半導体発光素子の直上部からずれるに従って、凹部から出射する青色光が弱くなるので半導体発光装置の発光色に対する青色側への補正量が小さくなる。   Generally, the region directly above the semiconductor light emitting element is the region with the strongest blue light. For this reason, as the center position of the concave portion is shifted from the portion directly above the semiconductor light emitting element, the blue light emitted from the concave portion becomes weak, so that the correction amount to the blue side with respect to the emission color of the semiconductor light emitting device becomes small.

前記凹部がV字溝となるよう切削しても良い。   You may cut so that the said recessed part may become a V-shaped groove.

上記課題を解決するため本発明の半導体発光装置は、蛍光体を含有した透光性部材により半導体発光素子を被覆した半導体発光装置おいて、
前記透光性部材の一部に光出射面が平坦な凹部を備えていることを特徴とする。
In order to solve the above problems, a semiconductor light-emitting device of the present invention is a semiconductor light-emitting device in which a semiconductor light-emitting element is covered with a translucent member containing a phosphor.
A part of the translucent member is provided with a recess having a flat light exit surface.

本発明の半導体発光装置は透光性部材の一部に凹部を備えている。この凹部は半導体発光素子の上部にあり、凹部がない状態に比べ凹部がある状態では蛍光体が減少している。また凹部は、光出射面が平坦であるため、光出射面における透光性部材内部への散乱が起こらず、半導体発光素子が発する青色光が光出射面から効率よく外部に放射される。これらの結果、半導体発光装置は、凹部がない状態に比べ凹部がある状態では発光色が青色側にシフトする。   The semiconductor light emitting device of the present invention includes a recess in a part of the translucent member. This recess is in the upper part of the semiconductor light emitting element, and the phosphor is reduced in the state where the recess is present compared to the state where there is no recess. Further, since the light exit surface of the recess is flat, the light exit surface is not scattered into the translucent member, and the blue light emitted from the semiconductor light emitting element is efficiently emitted from the light exit surface to the outside. As a result, in the semiconductor light emitting device, the emission color is shifted to the blue side when there is a recess as compared to the state without a recess.

前記凹部の中心位置が前記半導体発光素子の中心位置からずれていても良い。   The center position of the recess may be shifted from the center position of the semiconductor light emitting element.

前記凹部はV字溝であっても良い。   The recess may be a V-shaped groove.

以上のように本発明の半導体発光装置の製造方法は、補正前の半導体発光装置の発光色を測定し、この測定値から得られる補正量に基づいて透光性部材に凹部を形成するだけで、青色側に発光色をシフトさせ発光色が狭い色度範囲に収まった半導体発光装置を製造することができる。   As described above, the method for manufacturing a semiconductor light emitting device of the present invention merely measures the emission color of the semiconductor light emitting device before correction, and forms a recess in the translucent member based on the correction amount obtained from the measured value. Thus, it is possible to manufacture a semiconductor light emitting device in which the emission color is shifted to the blue side and the emission color is within a narrow chromaticity range.

以上のように本発明の半導体発光装置は、追加工により形成した凹部を備えているため凹部がない状態に比べ蛍光体が減少しているうえ、凹部の光出射面が平坦であるため、青色側への有効な色度補正が容易に実現できる。   As described above, the semiconductor light-emitting device of the present invention has a concave portion formed by additional processing, so that the phosphor is reduced compared to the state without the concave portion, and the light emission surface of the concave portion is flat, so that the blue color is blue. Effective chromaticity correction to the side can be easily realized.

本発明の第1実施形態におけるLED装置の外形図。The external view of the LED device in 1st Embodiment of this invention. 図1のLED装置の断面図。Sectional drawing of the LED apparatus of FIG. 図1のLED装置の製造に係るフローチャート。The flowchart which concerns on manufacture of the LED device of FIG. 図3の製造工程で製造される他のLED装置の断面図。Sectional drawing of the other LED device manufactured at the manufacturing process of FIG. 図1のLED装置の特性図。The characteristic view of the LED apparatus of FIG. 本発明の第2実施形態におけるLED装置の断面図。Sectional drawing of the LED apparatus in 2nd Embodiment of this invention. 図6のLED装置の特性図。The characteristic view of the LED device of FIG. 本発明の第3実施形態におけるLED装置の断面図。Sectional drawing of the LED apparatus in 3rd Embodiment of this invention.

以下、添付図1〜8を参照しながら本発明の好適な実施形態について詳細に説明する。なお図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。また説明のため部材の縮尺は適宜変更している。さらに特許請求の範囲に記載した発明特定事項との関係をカッコ内に記載している。
(第1実施形態)
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. In the description of the drawings, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted. For the sake of explanation, the scale of the members is changed as appropriate. Furthermore, the relationship with the invention specific matter described in the claims is described in parentheses.
(First embodiment)

図1から図5により本発明の第1実施形態におけるLED装置10(半導体発光装置)及びLED装置10の製造方法を説明する。先ず図1によりLED装置10の外形を説明する。図1はLED装置10の外形図であり、(a)が平面図、(b)が正面図、(c)が底面図である。(a)に示すように、LED装置10を上部から眺めると長方形の白色反射枠11に囲まれた透光性部材12と、透光性部材12の一部に形成された2個の凹部13が見える。(b)に示すようにLED装置10を正面から眺めると、白色反射枠11の下に配置された回路基板14と、回路基板14の底面に形成された外部接続電極15,16が見える。(c)に示すようにLED装置10を底面から眺めると、回路基板14の内側の領域に外部接続電極15,16が見える。   The manufacturing method of the LED device 10 (semiconductor light emitting device) and the LED device 10 according to the first embodiment of the present invention will be described with reference to FIGS. First, the outer shape of the LED device 10 will be described with reference to FIG. FIG. 1 is an outline view of the LED device 10, (a) is a plan view, (b) is a front view, and (c) is a bottom view. As shown in (a), when the LED device 10 is viewed from above, a translucent member 12 surrounded by a rectangular white reflecting frame 11 and two recesses 13 formed in a part of the translucent member 12 are shown. Can be seen. When the LED device 10 is viewed from the front as shown in (b), the circuit board 14 disposed under the white reflection frame 11 and the external connection electrodes 15 and 16 formed on the bottom surface of the circuit board 14 can be seen. When the LED device 10 is viewed from the bottom as shown in (c), the external connection electrodes 15 and 16 can be seen in the area inside the circuit board 14.

白色反射枠11は、シリコーン樹脂に酸化チタンやアルミナなどの反射性微粒子を混練し硬化させたもので、厚さが100μm程度である。透光性部材12は、シリコーン樹脂に青色光を長波長側に波長変換する蛍光体微粒子を混練し硬化させたものである。凹部13は透光性部材12の上面をエンドミルで切削して形成する。外部接続電極15,16はLED装置10のアノードとカソードになる。   The white reflective frame 11 is obtained by kneading and curing reflective fine particles such as titanium oxide and alumina in a silicone resin, and has a thickness of about 100 μm. The translucent member 12 is obtained by kneading and curing phosphor fine particles for converting blue light into a long wavelength side in a silicone resin. The recess 13 is formed by cutting the upper surface of the translucent member 12 with an end mill. The external connection electrodes 15 and 16 become the anode and cathode of the LED device 10.

次に図2により、図1に示したLED装置10の内部構造を説明する。図2は図1(a)に示したAA線に沿って描いたLED装置10の断面図である。回路基板14上には2個のLEDダイ21(半導体発光素子)がフリップチップ実装されている。回路基板14の外周部には白色反射枠11が設けられ、白色反射枠11の内側に透光性部材12が存在する。透光性部材12は、LEDダイ21を被覆し、上部に2個の凹部13を備えている
。凹部13は、LEDダイ21の直上部に存在し、底面が平坦で深さが調整されている。なお本図では回路基板14の底面に形成された外部接続電極15,16を図示している一方で、回路基板14の上面に形成された内部接続電極及び配線類は図示していない。また内部接続電極と外部接続電極15,16を接続するスルーホールも図示していない。
Next, the internal structure of the LED device 10 shown in FIG. 1 will be described with reference to FIG. FIG. 2 is a cross-sectional view of the LED device 10 drawn along the line AA shown in FIG. Two LED dies 21 (semiconductor light emitting elements) are flip-chip mounted on the circuit board 14. A white reflective frame 11 is provided on the outer periphery of the circuit board 14, and the translucent member 12 is present inside the white reflective frame 11. The translucent member 12 covers the LED die 21 and has two concave portions 13 on the top. The concave portion 13 exists immediately above the LED die 21, has a flat bottom surface, and is adjusted in depth. In the drawing, the external connection electrodes 15 and 16 formed on the bottom surface of the circuit board 14 are shown, but the internal connection electrodes and wirings formed on the top surface of the circuit board 14 are not shown. Also, a through hole connecting the internal connection electrode and the external connection electrodes 15 and 16 is not shown.

LEDダイ21は、突起電極21a上に半導体層と透明絶縁基板が積層したものである。半導体層はp型GaN層とn型GaN層を含み、p型GaN層とn型GaN層の境界部が発光層となる。透明絶縁基板はサファイヤからなり厚さが80から120μmである。突起電極21aはCuやAuをコアとしたバンプ電極であり前述の内部接続電極と接続する。LEDダイ21はフリップチップ実装されているが、一般にLEDダイの実装方法はフリップチップ実装に限られず、LEDダイを回路基板やリードフレームにダイボンディングし、ワイヤでLEDダイの電極を内部接続電極若しくはリードフレームに接続しても良い。なおフリップチップ実装はワイヤがないため、実装面積を小さくできることや、ワイヤの影による損失がないという長所が知られている。   The LED die 21 is formed by laminating a semiconductor layer and a transparent insulating substrate on the protruding electrode 21a. The semiconductor layer includes a p-type GaN layer and an n-type GaN layer, and a boundary portion between the p-type GaN layer and the n-type GaN layer serves as a light emitting layer. The transparent insulating substrate is made of sapphire and has a thickness of 80 to 120 μm. The protruding electrode 21a is a bump electrode having Cu or Au as a core and is connected to the internal connection electrode described above. The LED die 21 is flip-chip mounted, but generally the LED die mounting method is not limited to flip-chip mounting. The LED die is die-bonded to a circuit board or a lead frame, and the LED die electrode is connected to an internal connection electrode or wire. It may be connected to a lead frame. Since flip-chip mounting has no wires, it is known that the mounting area can be reduced and there is no loss due to the shadow of the wires.

次に図3によりLED装置10の製造に係るフローチャートを説明する。なお本フローチャートにより示した工程は、LED装置10を製造する工程を一部分として含んでいる。そこで先ずフローチャートの概要を説明する。初期状態として色度補正前のLED装置を準備する。このLED装置は補正量算出工程32において発光色が測定され、補正量が算出される。短波長側に色度補正しなければならない場合、LED装置は凹部を形成する凹部形成工程33に進む。長波長側に色度補正しなければならない場合、LED装置は散乱部を形成する散乱部形成工程35に進む。これらの工程33,35で色度補正されたLED装置は、再測定工程34,36において発光色を再び測定される。補正量算出工程32で補正が不要と判断されたLED装置、及び再測定工程34,36で所定の色度範囲に入ったことが確認されたLED装置は、テーピング工程37においてキャリアテープに搭載される。   Next, the flowchart concerning manufacture of the LED device 10 will be described with reference to FIG. In addition, the process shown by this flowchart includes the process of manufacturing the LED device 10 as a part. First, the outline of the flowchart will be described. An LED device before chromaticity correction is prepared as an initial state. In the LED device, the emission color is measured in the correction amount calculation step 32, and the correction amount is calculated. When chromaticity correction has to be performed on the short wavelength side, the LED device proceeds to a recess forming step 33 for forming a recess. When chromaticity correction has to be performed on the long wavelength side, the LED device proceeds to a scattering portion forming step 35 for forming a scattering portion. The LED device whose chromaticity has been corrected in these steps 33 and 35 is again measured for emission color in the re-measurement steps 34 and 36. The LED device determined to be unnecessary in the correction amount calculation step 32 and the LED device confirmed to be in the predetermined chromaticity range in the remeasurement steps 34 and 36 are mounted on the carrier tape in the taping step 37. The

図3で示したように、短波長側に色度を補正したLED装置10以外に、色度補正をしないLED装置と長波長側に色度補正したLED装置がテーピング工程37に集まる。そこで各工程32〜37を説明する前に図4によりこれらのLED装置における追加工の状況を説明する。図4は図3の製造工程で物流するLED装置10以外のLED装置の断面図である。(a)で示したLED装置41は、図3の補正量算出工程32において補正が不要と判断されたものであり、追加工を施していないため透光性部材12の上面が平坦になっている。(b)で示したLED装置42は、補正量算出工程32において長波長側への補正が必要と判断されたものであり、散乱部形成工程35における追加工により透光性部材12の上面に散乱部43が形成されている。なお補正量算出工程32において短波長側への補正が必要と判断されたLED装置は、凹部形成工程33で追加工が施され図2のLED装置10となる。   As shown in FIG. 3, in addition to the LED device 10 in which the chromaticity is corrected on the short wavelength side, the LED device in which the chromaticity is not corrected and the LED device in which the chromaticity is corrected on the long wavelength side gather in the taping process 37. Then, before explaining each process 32-37, the condition of the additional process in these LED devices is demonstrated with FIG. 4 is a cross-sectional view of an LED device other than the LED device 10 distributed in the manufacturing process of FIG. The LED device 41 shown in (a) has been determined that correction is unnecessary in the correction amount calculation step 32 of FIG. 3, and the upper surface of the translucent member 12 becomes flat because no additional processing is performed. Yes. The LED device 42 shown in (b) is determined to require correction to the long wavelength side in the correction amount calculation step 32, and is added to the upper surface of the translucent member 12 by additional processing in the scattering portion formation step 35. A scattering portion 43 is formed. Note that the LED device that is determined to require correction to the short wavelength side in the correction amount calculation step 32 is subjected to additional processing in the recess formation step 33 to become the LED device 10 in FIG.

再び図3に戻り各工程32〜37を説明する。補正量算出工程32では、追加工前のLED装置に対して色度計により発光色を測定し補正量を算出する。ここで補正量とは目標とする発光色の色度座標とLED装置の発光色の色度座標との差である。LED装置の色度座標が所定の範囲内であれば補正は不要と判断する。またLED装置の発光色の分布は色度座標系(x,y)において右肩上がりの分布を示すことが多いので、実用的には補正量をxのみで示すことができる。この場合、目標とする色度座標xに対してLED装置の色度座標xが大きい場合、短波長側への色度補正が必要であると判断する。同様に目標とする色度座標xに対してLED装置の色度座標xが小さい場合、長波長側への色度補正が必要であると判断する。   Returning to FIG. 3 again, steps 32 to 37 will be described. In the correction amount calculation step 32, the emission color is measured with a chromaticity meter for the LED device before the additional work, and the correction amount is calculated. Here, the correction amount is the difference between the chromaticity coordinates of the target emission color and the chromaticity coordinates of the emission color of the LED device. If the chromaticity coordinates of the LED device are within a predetermined range, it is determined that correction is unnecessary. Further, since the distribution of the luminescent color of the LED device often shows an upwardly rising distribution in the chromaticity coordinate system (x, y), the correction amount can be practically indicated only by x. In this case, when the chromaticity coordinate x of the LED device is larger than the target chromaticity coordinate x, it is determined that chromaticity correction to the short wavelength side is necessary. Similarly, when the chromaticity coordinate x of the LED device is smaller than the target chromaticity coordinate x, it is determined that chromaticity correction to the long wavelength side is necessary.

短波長側への色度補正が必要であると判断したら、LED装置を凹部形成工程33へ進
め凹部13(図2参照)を形成する。凹部形成工程33では予め補正量と凹部13の深さの関係を示すテーブルを準備しておく。このテーブルを使い補正量に基づいて前記透光性部材12の一部に光出射面が平坦な凹部13を形成する。凹部13はエンドミルで削って形成する。なお凹部13の直径や位置は各LED装置10で同じ値をとる。凹部13を形成すると蛍光体の分量が減るため青色光が波長変換されづらくなる。この結果、LED装置10(図1,2参照)の発光色は短波長側(青色側)にシフトする。
If it is determined that chromaticity correction to the short wavelength side is necessary, the LED device is advanced to the recess forming step 33 to form the recess 13 (see FIG. 2). In the recess forming step 33, a table showing the relationship between the correction amount and the depth of the recess 13 is prepared in advance. Using this table, a concave portion 13 having a flat light exit surface is formed in a part of the translucent member 12 based on the correction amount. The recess 13 is formed by cutting with an end mill. In addition, the diameter and position of the recessed part 13 take the same value in each LED device 10. FIG. When the concave portion 13 is formed, the amount of phosphor is reduced, so that it is difficult to convert the wavelength of blue light. As a result, the emission color of the LED device 10 (see FIGS. 1 and 2) is shifted to the short wavelength side (blue side).

凹部13を形成したらLED装置10の発光色を再び測定する(再測定工程34)。LED装置10の発光色の色度座標(x,y)が規格内に入ったらLED装置10をテーピング工程37に進める。LED装置10の発光色が規格内に入らなかったら、LED装置10を廃棄するか、あらためて凹部形成工程33又は散乱部形成工程35に進めても良い。また再測定工程34では色度とともに輝度も測定し、輝度に基づいてLED装置10をランク分けしておいても良い。   When the recess 13 is formed, the emission color of the LED device 10 is measured again (re-measurement step 34). When the chromaticity coordinates (x, y) of the emission color of the LED device 10 are within the standard, the LED device 10 is advanced to the taping step 37. If the emission color of the LED device 10 does not fall within the standard, the LED device 10 may be discarded or may be advanced to the recess forming step 33 or the scattering portion forming step 35 again. In the re-measurement step 34, the luminance as well as the chromaticity may be measured, and the LED devices 10 may be ranked based on the luminance.

長波長側への色度補正が必要であると判断したら、LED装置を散乱部形成工程35へ進め散乱部43(図4(b)参照)を形成する。散乱部形成工程35でも予め補正量と散乱部43の関係を示すテーブルを準備しておく。なお散乱部の変数としては面積や位置を与える。このテーブルを使い補正量に基づいて前記透光性部材12の一部に散乱部43を形成する。散乱部43はドリルで形成され、補正量に応じて面積や位置が調整される。散乱部43で散乱する青色光は、一部分が透光性部材12(図4(b)参照)の内部に戻り、蛍光体により長波長側(黄色より)に波長変換される。この結果、LED装置42(図4(b)参照)の発光色は長波長側にシフトする。   If it is determined that chromaticity correction to the long wavelength side is necessary, the LED device is advanced to the scattering portion forming step 35 to form the scattering portion 43 (see FIG. 4B). Also in the scattering portion forming step 35, a table showing the relationship between the correction amount and the scattering portion 43 is prepared in advance. In addition, an area and a position are given as a variable of a scattering part. Using this table, the scattering portion 43 is formed in a part of the translucent member 12 based on the correction amount. The scattering portion 43 is formed by a drill, and the area and position are adjusted according to the correction amount. Part of the blue light scattered by the scattering portion 43 returns to the inside of the translucent member 12 (see FIG. 4B), and is wavelength-converted to the long wavelength side (from yellow) by the phosphor. As a result, the emission color of the LED device 42 (see FIG. 4B) is shifted to the long wavelength side.

散乱部43を形成したらLED装置42の発光色を再び測定する(再測定工程36)。LED装置42の発光色の色度座標(x,y)が規格内に入ったらLED装置42をテーピング工程37に進める。LED装置42の発光色が規格内に入らなかったら、LED装置42を廃棄するか、あらためて凹部形成工程33又は散乱部形成工程35に進めても良い。また再測定工程36では色度とともに輝度も測定し、輝度に基づいてLED装置42をランク分けしておいても良い。   When the scattering portion 43 is formed, the emission color of the LED device 42 is measured again (re-measurement step 36). When the chromaticity coordinates (x, y) of the emission color of the LED device 42 are within the standard, the LED device 42 is advanced to the taping step 37. If the emission color of the LED device 42 does not fall within the standard, the LED device 42 may be discarded or may be advanced to the recess forming step 33 or the scattering portion forming step 35 again. In the re-measurement step 36, the luminance as well as the chromaticity may be measured, and the LED devices 42 may be ranked based on the luminance.

最後にテーピング工程37において規格内に入ったLED装置10,41,42(図2,4参照)をキャリアテープに実装する。キャリアテープは輝度ランク別としても良いし、輝度ランクの異なるLED装置10,41,42をキャリアテープ上で分散するように配列し輝度ランクを平均化しても良い。   Finally, the LED devices 10, 41, and 42 (see FIGS. 2 and 4) that are within the standards in the taping step 37 are mounted on the carrier tape. The carrier tape may be classified by luminance rank, or the LED devices 10, 41, and 42 having different luminance ranks may be arranged so as to be dispersed on the carrier tape, and the luminance ranks may be averaged.

次に図5によりLED装置10(図1,2参照)における補正量と凹部13の形状の関係を説明する。図5はLED装置10における補正量と凹部13の深さとの関係を示す特性図である。横軸が凹部13(図1,2参照)の深さ、縦軸が補正量(色度変化Δx)である。LEDダイ21は平面サイズが290μm×500μmで、厚さが120μmである。凹部13は円筒状で直径が600μmである。凹部13を100μmまで削る場合、最大で1.5/100程度色度座標xを移動させることができる。   Next, the relationship between the correction amount and the shape of the recess 13 in the LED device 10 (see FIGS. 1 and 2) will be described with reference to FIG. FIG. 5 is a characteristic diagram showing the relationship between the correction amount and the depth of the recess 13 in the LED device 10. The horizontal axis represents the depth of the recess 13 (see FIGS. 1 and 2), and the vertical axis represents the correction amount (chromaticity change Δx). The LED die 21 has a planar size of 290 μm × 500 μm and a thickness of 120 μm. The recess 13 is cylindrical and has a diameter of 600 μm. When the recess 13 is cut down to 100 μm, the chromaticity coordinate x can be moved up to about 1.5 / 100.

凹部形成工程33と散乱部形成工程35は切削だけにより色度を調整していることが共通している。このため製造装置など共通化できる要素が多い。
(第2実施形態)
The concave portion forming step 33 and the scattering portion forming step 35 are common in that the chromaticity is adjusted only by cutting. For this reason, there are many elements that can be shared, such as a manufacturing apparatus.
(Second Embodiment)

第1実施形態で示したLED装置10(図1,2参照)は補正量に応じて凹部13の深さを調整していたが、前述したように凹部の位置を変更することでも補正量を調節できる。そこで図6,7により本発明の第2実施形態として凹部の位置を変更することにより補正量を調節したLED装置60について説明する。図6はLED装置60の断面図である
。図2で示した第1実施形態におけるLED装置10の断面図に対し、図6では凹部63の位置のみが異なっている。すなわち凹部63の中心位置はLEDダイ21の中心位置からずれている。LED装置60は補正量に応じてこの移動量(ずれ量)を調整する。
The LED device 10 (see FIGS. 1 and 2) shown in the first embodiment adjusts the depth of the recess 13 in accordance with the correction amount. However, as described above, the correction amount can also be changed by changing the position of the recess. Can be adjusted. An LED device 60 in which the correction amount is adjusted by changing the position of the concave portion will be described as a second embodiment of the present invention with reference to FIGS. FIG. 6 is a cross-sectional view of the LED device 60. 6 differs from the cross-sectional view of the LED device 10 according to the first embodiment shown in FIG. 2 only in the position of the recess 63 in FIG. That is, the center position of the recess 63 is shifted from the center position of the LED die 21. The LED device 60 adjusts this movement amount (deviation amount) according to the correction amount.

LEDダイ21が発する青色光の放射強度はLEDダイ21の直上部が最も強いので、凹部63がLEDダイ21の直上部にあれば青色側への色度補正量が最も大きくなる。この状態と比較して、図6のように凹部63がLEDダイ21の直上部からずれていると青色側への補正量が小さくなる。   Since the radiant intensity of the blue light emitted from the LED die 21 is strongest in the upper part of the LED die 21, the chromaticity correction amount toward the blue side becomes the largest if the concave portion 63 is in the upper part of the LED die 21. Compared to this state, when the concave portion 63 is displaced from the position directly above the LED die 21 as shown in FIG.

そこで図7によりLED装置60(図6参照)における補正量と凹部63(図6参照)の位置の関係を説明する。図7はLED装置60における補正量と凹部63の位置の関係を示す特性図である。横軸が凹部63の移動量(LEDダイ21の中心位置と凹部63の中心位置の距離であり、縦軸が補正量(色度変化Δx)である。LEDダイ21は平面サイズが290μm×500μmで、厚さが120μmである。凹部63は円筒状で、直径が600μm、深さが100μmである。凹部63を0〜600μmの範囲で移動させると−1.5/100〜0程度色度座標xを変化させることができる。
(第3実施形態)
Therefore, the relationship between the correction amount in the LED device 60 (see FIG. 6) and the position of the recess 63 (see FIG. 6) will be described with reference to FIG. FIG. 7 is a characteristic diagram showing the relationship between the correction amount and the position of the recess 63 in the LED device 60. The horizontal axis is the amount of movement of the recess 63 (the distance between the center position of the LED die 21 and the center position of the recess 63, and the vertical axis is the correction amount (chromaticity change Δx). The LED die 21 has a planar size of 290 μm × 500 μm. The thickness of the recess 63 is cylindrical, the diameter is 600 μm, and the depth is 100 μm.When the recess 63 is moved in the range of 0 to 600 μm, the chromaticity is about −1.5 / 100 to 0. The coordinate x can be changed.
(Third embodiment)

第1実施形態で示したLED装置10(図1,2参照)及び第2実施形態で示したLED装置60(図6参照)の凹部13,63は円筒状であった。しかしながら凹部の形状は円筒状に限られない。そこで図8により第3実施形態として凹部の形状がV字溝となるLED装置80を説明する。図8はLED装置80の断面図である。図2で示したLED装置10の断面図に対し、図8では凹部83の位置と形状が異なっている。すなわち凹部83は、中心位置がLEDダイ21の中心位置からずれており、V字溝となっている。LED装置80は補正量に応じてこのずれ量を調整する。また凹部83は、透光性部材12の上面だけのダイシングで形成し、斜面が平坦になっており青色光の散乱を誘発しない。   The concave portions 13 and 63 of the LED device 10 (see FIGS. 1 and 2) shown in the first embodiment and the LED device 60 (see FIG. 6) shown in the second embodiment were cylindrical. However, the shape of the recess is not limited to a cylindrical shape. Accordingly, an LED device 80 in which the shape of the recess is a V-shaped groove will be described as a third embodiment with reference to FIG. FIG. 8 is a cross-sectional view of the LED device 80. Compared to the sectional view of the LED device 10 shown in FIG. 2, the position and shape of the recess 83 are different in FIG. 8. That is, the recess 83 has a center position that is offset from the center position of the LED die 21 and is a V-shaped groove. The LED device 80 adjusts this shift amount according to the correction amount. The recess 83 is formed by dicing only the upper surface of the translucent member 12, and the inclined surface is flat, so that the blue light is not scattered.

なお図8に示したLED装置80のV字溝(凹部83)と図4(b)に示したLED装置42の散乱部43とを比較すると、V字部分の大きさと数が違うだけのように見える。しかしながらV字溝(凹部83)は紙面の表裏方向に延びる一本の溝であるのに対し、散乱部43のV字部分はドリルで形成した円錐形の孔の断面である。またV字溝(凹部83)の幅は散乱部43のV字部分の最大径の数倍程度ある。この結果、散乱部43のV字部分は光を散乱する能力が高い一方、V字溝(凹部83)は光を散乱しないか或いはほとんど散乱させることがない。   When comparing the V-shaped groove (recessed portion 83) of the LED device 80 shown in FIG. 8 and the scattering portion 43 of the LED device 42 shown in FIG. 4B, the size and number of the V-shaped portions are different. Looks like. However, the V-shaped groove (recessed portion 83) is a single groove extending in the front and back direction of the paper surface, whereas the V-shaped portion of the scattering portion 43 is a cross section of a conical hole formed by a drill. Further, the width of the V-shaped groove (recessed portion 83) is several times the maximum diameter of the V-shaped portion of the scattering portion 43. As a result, the V-shaped portion of the scattering portion 43 has a high ability to scatter light, while the V-shaped groove (concave portion 83) does not scatter or hardly scatters light.

10,41,42,60,80…LED装置(半導体発光装置)、
11…白色反射枠、
12…透光性部材、
13,63,83…凹部、
14…回路基板、
15,16…外部接続電極、
21…LEDダイ(半導体発光素子)、
21a…突起電極、
32…補正量算出工程、
33…凹部形成工程、
34,36…再測定工程、
35…散乱部形成工程、
37…テーピング工程、
43…散乱部。
10, 41, 42, 60, 80 ... LED device (semiconductor light emitting device),
11 ... White reflective frame,
12 ... translucent member,
13, 63, 83 ... concave portion,
14 ... circuit board,
15, 16 ... external connection electrodes,
21 ... LED die (semiconductor light emitting element),
21a ... protruding electrode,
32 ... Correction amount calculation step,
33 ... concave portion forming step,
34, 36 ... re-measurement step,
35 ... scattering part forming step,
37 ... Taping process,
43: Scattering part.

Claims (6)

蛍光体を含有した透光性部材により半導体発光素子を被覆した半導体発光装置の製造方法において、
前記半導体発光装置の発光色を測定し補正量を算出する補正量算出工程と、
前記補正量に基づいて前記透光性部材の一部に光出射面が平坦な凹部を形成する凹部形成工程と
を備えていることを特徴とする半導体発光装置の製造方法。
In a method for manufacturing a semiconductor light emitting device in which a semiconductor light emitting element is covered with a translucent member containing a phosphor,
A correction amount calculating step of measuring a light emission color of the semiconductor light emitting device and calculating a correction amount;
A method of manufacturing a semiconductor light emitting device, comprising: a recess forming step of forming a recess having a flat light exit surface in a part of the translucent member based on the correction amount.
前記補正量に応じて前記凹部の中心位置を前記半導体発光素子の中心位置から移動させることを特徴とする請求項1に記載の半導体発光装置の製造方法。   2. The method of manufacturing a semiconductor light emitting device according to claim 1, wherein the center position of the recess is moved from the center position of the semiconductor light emitting element in accordance with the correction amount. 前記凹部がV字溝となるよう切削することを特徴とする請求項1又は2に記載の半導体発光装置の製造方法。   The method for manufacturing a semiconductor light emitting device according to claim 1, wherein the recess is cut into a V-shaped groove. 蛍光体を含有した透光性部材により半導体発光素子を被覆した半導体発光装置おいて、
前記透光性部材の一部に光出射面が平坦な凹部を備えていることを特徴とする半導体発光装置。
In a semiconductor light emitting device in which a semiconductor light emitting element is covered with a translucent member containing a phosphor,
A semiconductor light-emitting device, wherein a part of the translucent member is provided with a recess having a flat light exit surface.
前記凹部の中心位置が前記半導体発光素子の中心位置からずれていることを特徴とする請求項4に記載の半導体発光装置。   The semiconductor light emitting device according to claim 4, wherein a center position of the recess is shifted from a center position of the semiconductor light emitting element. 前記凹部はV字溝であることを特徴とする請求項4又は5に記載の半導体発光装置。   The semiconductor light emitting device according to claim 4, wherein the recess is a V-shaped groove.
JP2012182149A 2012-08-21 2012-08-21 Semiconductor light-emitting device and method for manufacturing the same Pending JP2014041863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182149A JP2014041863A (en) 2012-08-21 2012-08-21 Semiconductor light-emitting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182149A JP2014041863A (en) 2012-08-21 2012-08-21 Semiconductor light-emitting device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014041863A true JP2014041863A (en) 2014-03-06

Family

ID=50393916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182149A Pending JP2014041863A (en) 2012-08-21 2012-08-21 Semiconductor light-emitting device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014041863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085003A1 (en) * 2014-11-27 2016-06-02 주식회사 포스포 Phosphor film and manufacturing method therefor, and led chip package employing phosphor sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130301A (en) * 2007-11-27 2009-06-11 Sharp Corp Light-emitting element and method of manufacturing the same
JP2009176780A (en) * 2008-01-21 2009-08-06 Sharp Corp Method for adjusting chromaticity of light emitting device
US20090221106A1 (en) * 2008-03-01 2009-09-03 Goldeneye, Inc. Article and method for color and intensity balanced solid state light sources
JP2009283887A (en) * 2008-04-24 2009-12-03 Citizen Holdings Co Ltd Led light source and chromaticity adjustment method for the led light source
JP2010232525A (en) * 2009-03-27 2010-10-14 Citizen Holdings Co Ltd Led light source, and method of manufacturing led light source
JP2011517090A (en) * 2008-03-31 2011-05-26 クリー インコーポレイテッド Light emission adjusting method and device manufactured using the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130301A (en) * 2007-11-27 2009-06-11 Sharp Corp Light-emitting element and method of manufacturing the same
JP2009176780A (en) * 2008-01-21 2009-08-06 Sharp Corp Method for adjusting chromaticity of light emitting device
US20090221106A1 (en) * 2008-03-01 2009-09-03 Goldeneye, Inc. Article and method for color and intensity balanced solid state light sources
JP2011517090A (en) * 2008-03-31 2011-05-26 クリー インコーポレイテッド Light emission adjusting method and device manufactured using the method
JP2009283887A (en) * 2008-04-24 2009-12-03 Citizen Holdings Co Ltd Led light source and chromaticity adjustment method for the led light source
JP2010232525A (en) * 2009-03-27 2010-10-14 Citizen Holdings Co Ltd Led light source, and method of manufacturing led light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085003A1 (en) * 2014-11-27 2016-06-02 주식회사 포스포 Phosphor film and manufacturing method therefor, and led chip package employing phosphor sheet

Similar Documents

Publication Publication Date Title
KR101775183B1 (en) Optoelectronic semiconductor component
EP2943986B1 (en) Led with shaped growth substrate for side emission and method of its fabrication
TWI622190B (en) Light emitting device
EP2996166A1 (en) Semiconductor light-emitting device
JP6261718B2 (en) Light emitting semiconductor device and method for manufacturing light emitting semiconductor device
JP2008172239A (en) Led package
US20150263065A1 (en) Light emitting device and method of manufacturing the same
TWI583022B (en) Light emitting diode package, light emitting diode die and method for manufacuring the same
JP2015079917A (en) Semiconductor light emitting device
US20150076541A1 (en) Light-emitting device
US8641256B2 (en) Semiconductor light emitting device, composite light emitting device with arrangement of semiconductor light emitting devices, and planar light source using composite light emitting device
JPWO2017013869A1 (en) Light emitting device and light emitting module
CN115719787A (en) Light emitting device
JP6077392B2 (en) Manufacturing method of LED device
JP2014041863A (en) Semiconductor light-emitting device and method for manufacturing the same
JP2008166661A (en) Semiconductor light-emitting apparatus
JP6188919B2 (en) Optoelectronic semiconductor chip and optoelectronic semiconductor component
JP2007201121A (en) Semiconductor light emitting device and its manufacturing method
US20150001548A1 (en) Light emitting chip
KR20190111799A (en) Chip-scale linear light-emitting device
TW201537774A (en) Semiconductor light emitting device and method of manufacturing same
JP5669525B2 (en) Semiconductor light emitting device
KR101863538B1 (en) Semiconductor Light Emitting Device And Method of Manufacturing the same
US20160284946A1 (en) Illuminant component
KR20170030125A (en) Semiconductor Light Emitting Device And Method of Manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161011