[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013529258A - Side emission type linear evaporation source, manufacturing method thereof, and linear evaporator - Google Patents

Side emission type linear evaporation source, manufacturing method thereof, and linear evaporator Download PDF

Info

Publication number
JP2013529258A
JP2013529258A JP2013514091A JP2013514091A JP2013529258A JP 2013529258 A JP2013529258 A JP 2013529258A JP 2013514091 A JP2013514091 A JP 2013514091A JP 2013514091 A JP2013514091 A JP 2013514091A JP 2013529258 A JP2013529258 A JP 2013529258A
Authority
JP
Japan
Prior art keywords
pbn
heat generating
evaporation source
crucible
linear evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013514091A
Other languages
Japanese (ja)
Other versions
JP5732531B2 (en
Inventor
ドクハ ウ
ソンホ キム
ソク イ
ヨンミン ジョン
ミンチョル パク
ヨンウ ジョン
シングン キム
ジェフン キム
ヨンテ ビョン
Original Assignee
コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー filed Critical コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー
Publication of JP2013529258A publication Critical patent/JP2013529258A/en
Application granted granted Critical
Publication of JP5732531B2 publication Critical patent/JP5732531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は側面放出型線状蒸発源、その製造及び線状蒸発器に関している。真空の中で坩堝を加熱して坩堝から放出される材料を基板に蒸着する方法を用いる蒸発システムで坩堝と発熱部から構成され、蒸発源の側面に形成された放出口を有する線状蒸発源、その線状蒸発源の製造方法及び線状蒸発器に関している。本発明では蒸発装置用PBN放出部と、上記放出部の外部表面に蒸着されて加熱に合うようにパターニングされた発熱部と、上記放出部の側面に形成された多数個の放出口を含む線状蒸発源、その製造方法及び線状蒸発器が提示される。
【選択図】 図3
The present invention relates to a side-emitting linear evaporation source, its manufacture and a linear evaporator. A linear evaporation source having a discharge port formed on a side surface of an evaporation source, which is composed of a crucible and a heat generating part in an evaporation system using a method of heating a crucible in vacuum and depositing a material discharged from the crucible on a substrate. The present invention relates to a method for manufacturing the linear evaporation source and a linear evaporator. In the present invention, a line including a PBN emitting portion for an evaporation device, a heat generating portion deposited on the outer surface of the emitting portion and patterned so as to be heated, and a plurality of emitting ports formed on a side surface of the emitting portion. A vaporized evaporation source, a method for its production and a linear evaporator are presented.
[Selection] Figure 3

Description

本発明は、真空中から坩堝を加熱して坩堝から放出される材料を基板に蒸着する方法を用いる有機発光ダイオード(OLED、organic light emitting diode)蒸着装置のような、蒸発システムで坩堝と発熱部で構成された側面放出型線状蒸発源(Linear effusion cell with side orifice array)、その線状蒸発源の製造方法(the method of manufacturing linear effusion cell with side orifice array)及び線状蒸発器(evaporator)に関する。
更に詳しくは、放出部の外部表面に発熱物質を蒸着してこれを加熱に合うようにパターニングして発熱部を有し、上記放出部の側面に多数個の放出口を有して、上記発熱部に電流を注入することで発熱部に直接に接している放出部の側面に形成された多数個の放出口を通じて、坩堝の側面へ原料物質が放出される線状蒸発源、その製造方法及び線状蒸発器に関する。
The present invention relates to a crucible and a heat generating part in an evaporation system such as an organic light emitting diode (OLED) vapor deposition apparatus using a method in which a crucible is heated from a vacuum and a material emitted from the crucible is deposited on a substrate. A linear effusion cell with side orifice array, a method of manufacturing linear effusion cell with side orifice array, and a linear evaporator (evaporator) About.
More specifically, a heat-generating substance is deposited on the outer surface of the discharge portion and is patterned so as to be suitable for heating. The heat-generation portion has a plurality of discharge openings on the side surface of the discharge portion. A linear evaporation source in which a source material is discharged to the side surface of the crucible through a plurality of discharge ports formed on the side surface of the discharge portion that is in direct contact with the heat generating portion by injecting current into the portion, a manufacturing method thereof, and Relates to a linear evaporator.

基板に薄膜を形成する一般的な方法には、真空蒸着(evaporation)法、イオンプレーティング(ion plating)法、及びスパッタリング(sputtering)法のような物理気相蒸着(PVD)法と、ガス反応による化学気相蒸着(CVD)法等がある。有機発光ダイオード薄膜成長装置は、有機発光ダイオードを構成する有機物を真空蒸着法によって基板に蒸着することで薄膜を成長する。
また、有機発光ダイオードで電極形成のためにアルミニウムのような金属は真空蒸着法を利用して蒸着する。
Common methods for forming thin films on substrates include physical vapor deposition (PVD) methods such as vacuum evaporation, ion plating, and sputtering, and gas reactions. There is a chemical vapor deposition (CVD) method. The organic light emitting diode thin film growth apparatus grows a thin film by depositing an organic substance constituting the organic light emitting diode on a substrate by a vacuum deposition method.
In addition, a metal such as aluminum is deposited using a vacuum deposition method for forming an electrode in an organic light emitting diode.

このように、真空蒸着法を利用して有機膜及び金属膜を蒸着する一般的な蒸着装置で、蒸着チャンバの上部には基板が装着され、蒸着チャンバの下部には蒸発源が配置される。上記蒸発源は、蒸着物質を含む坩堝と、坩堝の外側に設置されて蒸着物質を蒸発させるための熱源で作用する発熱部を含む。上記された蒸発源の発熱部に電源を加えると、坩堝及び坩堝内部の材料物質が加熱され、蒸発された材料物質が坩堝の上部開口部に放出されてチャンバの内側上部に装着された基板に蒸着され、上記基板に有機膜や金属膜等が形成される。
上記蒸発源に関して、本出願人が特許出願した韓国出願番号第10−2009−114068号の“発熱部一体型真空薄膜蒸着用分子線蒸発源、その製造方法及び蒸発器”の発明がある。上記特許出願の発明は、真空で試料に有機物等の材料を蒸着するための蒸着システムに使われる上記材料を入れるためにPBNで製作された坩堝と、上記PBN坩堝の外部表面に発熱部を直接蒸着して加熱することにより、伝導により坩堝を加熱することで熱効率を高めて、構造を単純にする発熱部一体型蒸発源に関する。
As described above, in a general vapor deposition apparatus for vapor-depositing an organic film and a metal film using a vacuum vapor deposition method, a substrate is mounted on the upper part of the vapor deposition chamber, and an evaporation source is disposed on the lower part of the vapor deposition chamber. The evaporation source includes a crucible containing a vapor deposition material and a heat generating unit that is installed outside the crucible and acts as a heat source for evaporating the vapor deposition material. When a power source is applied to the heat generating part of the evaporation source described above, the crucible and the material substance inside the crucible are heated, and the evaporated material substance is discharged to the upper opening of the crucible and applied to the substrate mounted on the inner upper part of the chamber. By vapor deposition, an organic film or a metal film is formed on the substrate.
Regarding the above-mentioned evaporation source, there is an invention of “a molecular beam evaporation source for heat generating part integrated vacuum thin film deposition, its manufacturing method and an evaporator” of Korean Patent Application No. 10-2009-1114068 filed by the present applicant. The invention of the above-mentioned patent application is a crucible made of PBN for putting the material used in a vapor deposition system for vapor-depositing a material such as an organic substance on a sample in a vacuum, and a heating part directly on the outer surface of the PBN crucible. The present invention relates to a heat generating part integrated evaporation source that heats a crucible by conduction and increases thermal efficiency by heating by vapor deposition and simplifies the structure.

しかし、有機発光ダイオード基板の大きさが大型化されながら基板を上部に装着すると、曲げがひどくて蒸着物質の均一度が下がって扱いにくくなる問題点がある。従って、大形基板を垂直から約20度以下の角度で傾けて(以下垂直で約20度以下の角度に傾いたものも垂直と称する)装着するか、下部に装着すれば曲げがなくて扱うのが容易である。上記蒸発源は、上部の開口部を通じて材料物質が放出されるから垂直や下部に装着された基板に材料物質を蒸着することができない問題点がある。   However, when the size of the organic light emitting diode substrate is increased and the substrate is mounted on the upper portion, there is a problem that bending becomes severe and the uniformity of the deposited material is lowered, which makes it difficult to handle. Therefore, if the large substrate is mounted at an angle of about 20 degrees or less from the vertical (hereinafter, the vertical and inclined at an angle of about 20 degrees or less is also referred to as vertical) or mounted at the bottom, it is handled without bending. Easy to do. The evaporation source has a problem in that the material substance cannot be deposited on the substrate mounted vertically or below because the material substance is discharged through the upper opening.

従って、垂直に装着されるか、下部に装着された基板に原料物質を効率的に供給することができる側面放出型線状蒸発源の開発が要求されている。   Accordingly, there is a need for the development of a side emission linear evaporation source that can efficiently supply a source material to a substrate mounted vertically or mounted on a lower portion.

本発明は、上記従来技術の問題点を解決するためになされたものであって、本発明の目的は、基板を垂直に装着して、インラインで薄膜を蒸着するシステムで使用できる側面へ材料を放出するための線状蒸発源、その線状蒸発源の製造方法及び線状蒸発器を提供することである。   The present invention has been made to solve the above-described problems of the prior art, and the object of the present invention is to provide a material on a side surface that can be used in a system in which a substrate is mounted vertically and a thin film is deposited in-line. It is to provide a linear evaporation source for discharge, a method of manufacturing the linear evaporation source, and a linear evaporator.

上記本発明の目的を果たすための技術的解決手段として、本発明の第1観点は、真空で試料に有機物や金属等の材料を蒸着するための蒸着システムに使われる上記材料を入れるためのPBNで製作された坩堝と、上記PBN坩堝の外部表面に加熱に合うようにパターニングされて蒸着されたPGから構成される第1発熱部と、上記PBN坩堝と上記PG第1発熱部を貫通して坩堝の側面に形成された多数個の放出口を含む側面放出型線状蒸発源が提示される。   As a technical solution for achieving the above object of the present invention, the first aspect of the present invention is to provide a PBN for containing the above materials used in a vapor deposition system for vapor depositing materials such as organic substances and metals on a sample in a vacuum. A crucible manufactured in the above, a first heat generating part composed of a PG patterned and deposited on the outer surface of the PBN crucible, and passing through the PBN crucible and the PG first heat generating part. A side emission type linear evaporation source including a plurality of emission ports formed on a side surface of a crucible is presented.

本発明の第2観点は、真空で試料に有機物等の材料を蒸着するための蒸着システムに用いられる上記材料を入れるためのPBNで製作された坩堝と、上記PBN坩堝の外部表面に加熱に合うようにパターニングされて蒸着されたPGから構成される第1発熱部と、上記PBN坩堝の内部表面に蒸着されてアルミニウムのようなPBNによく癒着される試料から坩堝を保護するために蒸着されたPGから構成される第1保護膜と、上記第1発熱部と上記第1保護膜を電気的に絶縁するための絶縁部と、上記PBN坩堝、上記PG第1発熱部及び上記第1保護膜を貫通して坩堝の側面に形成された多数個の放出口を含む側面放出型線状蒸発源が提示される。アルミニウムのような、一部材料等は冷却の時に液体状態から固体状態へ変わりながらPBN坩堝とよく付くようになり、坩堝の冷却の時に試料と坩堝の熱膨脹係数差によって坩堝の破損される問題点がある。このような試料等は、PGとはよく付かないので、坩堝の内部にPGからなった保護膜を形成することで坩堝破損の問題点を解決することができる。   The second aspect of the present invention is suitable for heating a crucible made of PBN for putting the material used in a vapor deposition system for depositing a material such as an organic substance on a sample in vacuum, and an external surface of the PBN crucible. The first heat generating part composed of PG patterned and deposited as described above, and deposited to protect the crucible from a sample deposited on the inner surface of the PBN crucible and well adhered to PBN such as aluminum. A first protective film made of PG; an insulating part for electrically insulating the first heat generating part and the first protective film; the PBN crucible; the PG first heat generating part; and the first protective film. A side emission type linear evaporation source including a plurality of emission ports formed on the side surface of the crucible through the crucible is presented. Some materials, such as aluminum, are attached to the PBN crucible while changing from a liquid state to a solid state during cooling, and the crucible is damaged due to the difference in thermal expansion coefficient between the sample and the crucible when the crucible is cooled. There is. Since such a sample does not adhere well to PG, the problem of crucible breakage can be solved by forming a protective film made of PG inside the crucible.

本発明の第3観点は、本発明の上記第1観点の発明で、上記PBN坩堝の開口部を覆うためのPBN蓋体と、上記PBN蓋体の外部表面に加熱に合うようにパターニングされて蒸着されたPGから構成される第2発熱部を含む側面放出型線状蒸発源が提示される。   A third aspect of the present invention is the invention according to the first aspect of the present invention, wherein the PBN lid for covering the opening of the PBN crucible and the outer surface of the PBN lid are patterned so as to be suitable for heating. A side emission type linear evaporation source including a second heat generating part composed of vapor-deposited PG is presented.

本発明の第4観点は、本発明の上記第2観点の発明で、上記PBN坩堝の開口部を覆うためのPBN蓋体と、上記PBN蓋体の外部表面に加熱に合うようにパターニングされて蒸着されたPGから構成される第2発熱部と、上記PBN蓋体の内部表面に蒸着されてアルミニウムのようなPBNによく癒着される試料から坩堝を保護するためのPGから構成される第2保護膜と、上記第2発熱部と上記第2保護膜を電気的に絶縁するための絶縁部を含む側面放出型線状蒸発源が提示される。   A fourth aspect of the present invention is the invention according to the second aspect of the present invention, wherein the PBN lid for covering the opening of the PBN crucible and the outer surface of the PBN lid are patterned so as to be suitable for heating. A second heat generating part composed of vapor-deposited PG and a second heat-generating part composed of PG for protecting the crucible from a sample which is vapor-deposited on the inner surface of the PBN lid and adheres well to PBN such as aluminum. A side emission linear evaporation source including a protective film and an insulating part for electrically insulating the second heat generating part and the second protective film is presented.

本発明の第5観点は、PBNで製作された坩堝と、上記PBN坩堝の外部表面に加熱に合うようにパターニングされて蒸着されたPGから構成される第1発熱部を含む蒸発部と、PBNで製作された放出部と、上記PBN放出部の外部表面に加熱に合うようにパターニングされて蒸着されたPGから構成される第2発熱部と、上記PBN放出部と上記PG第2発熱部を貫通して放出部の側面に形成された多数個の放出口を含む放出部で構成される側面放出型線状蒸発源が提示される。   According to a fifth aspect of the present invention, there is provided an evaporating unit including a first heat generating unit composed of a crucible made of PBN, a PG patterned and deposited on the external surface of the PBN crucible to be heated, and a PBN. A second heat generating part composed of a PG deposited on the outer surface of the PBN emitting part and deposited on the outer surface of the PBN emitting part, and the PBN emitting part and the PG second heat generating part. A side emission type linear evaporation source composed of an emission part including a plurality of emission ports penetrating through and formed on a side surface of the emission part is presented.

本発明の第6観点は、上記本発明の第5観点の発明で、上記PBN坩堝と上記PBN放出部の内部表面に蒸着されてアルミニウムのようなPBNによく癒着される試料から坩堝を保護するためのPGから構成される保護膜を含む側面放出型線状蒸発源が提示される。   A sixth aspect of the present invention is the invention of the fifth aspect of the present invention, wherein the crucible is protected from a sample which is vapor-deposited on the inner surfaces of the PBN crucible and the PBN discharge part and adheres well to PBN such as aluminum. A side emission linear evaporation source including a protective film made of PG is provided.

本発明の第7観点は、上記本発明の第1ないし第6観点の側面放出型線状蒸発源を製造する方法が提示される。 According to a seventh aspect of the present invention, there is provided a method for manufacturing the side emission linear evaporation source according to the first to sixth aspects of the present invention.

本発明の第8観点は、上記側面放出型線状蒸発源を真空フランジに装着する時に電源供給用電極を支持台で活用する線状蒸発器が提示される。   According to an eighth aspect of the present invention, there is provided a linear evaporator that utilizes a power supply electrode in a support when the side emission linear evaporation source is mounted on a vacuum flange.

本発明の第9観点は、上記側面放出型線状蒸発源を真空フランジに装着する時に線状蒸発源が力を受けて動く又は破損されることを防止するために接触面積が最小化されるように設計された間隔維持装置(スペーサ)を更に含む線状蒸発器が提示される。   According to a ninth aspect of the present invention, the contact area is minimized in order to prevent the linear evaporation source from being moved or damaged by force when the side emission linear evaporation source is mounted on the vacuum flange. A linear evaporator is further provided that further includes a spacing device (spacer) designed to be such.

本発明の第10観点は、上記側面放出型線状蒸発源を真空フランジに装着する時、線状蒸発源と電極の固定時に力を分散しながら、電流も分散して発熱部に均一な電流を供給するための分散器(スプレッダー、spreader)を更に含む線状蒸発器が提示される。   According to a tenth aspect of the present invention, when the side-emission linear evaporation source is mounted on a vacuum flange, the current is distributed while the force is distributed while the linear evaporation source and the electrode are fixed, and a uniform current is generated in the heat generating portion. A linear evaporator is further included that further includes a spreader for supplying the water.

本発明の側面放出型線状蒸発源によると、基板を垂直に装着してインラインで真空蒸着するシステムで側面方向へ材料物質を効率的に放出することにより、大型基板にも均一に材料物質を容易に蒸着することができる効果がある。   According to the side emission type linear evaporation source of the present invention, a material substance can be uniformly distributed even to a large substrate by efficiently discharging the material substance in the side direction by a system in which the substrate is vertically mounted and vacuum-deposited in-line. There exists an effect which can be vapor-deposited easily.

本発明の側面放出型線状蒸発源の第1実施例に関する概略的な構成図である。It is a schematic block diagram regarding the 1st Example of the side emission type linear evaporation source of this invention. 本発明の側面放出型線状蒸発源の第2実施例に関する概略的な構成図である。It is a schematic block diagram regarding 2nd Example of the side emission type | mold linear evaporation source of this invention. 本発明の側面放出型線状蒸発源の第3実施例に関する概略的な構成図である。It is a schematic block diagram regarding the 3rd Example of the side emission type linear evaporation source of this invention. 本発明の側面放出型線状蒸発源の第4実施例に関する概略的な構成図である。It is a schematic block diagram regarding the 4th Example of the side emission type linear evaporation source of this invention. 従来の蒸発器に関する構成図である。It is a block diagram regarding the conventional evaporator. 本発明の側面放出型線状蒸発源を利用した線状蒸発器の実施例に関する概略的な構成図である。It is a schematic block diagram regarding the Example of the linear evaporator using the side emission type | mold linear evaporation source of this invention. 真空フランジを上部に位置するようにしながら、本発明の側面放出型線状蒸発源を利用した線状蒸発器の実施例に関する概略的な構成図である。It is a schematic block diagram regarding the Example of the linear evaporator using the side emission type linear evaporation source of this invention, making a vacuum flange located in the upper part. 本発明の側面放出型線状蒸発源の製造方法の第1実施例を説明する図である。It is a figure explaining 1st Example of the manufacturing method of the side emission type linear evaporation source of this invention. 本発明の側面放出型線状蒸発源の製造方法の第2実施例を説明する図である。It is a figure explaining 2nd Example of the manufacturing method of the side emission type | mold linear evaporation source of this invention. 本発明の側面放出型線状蒸発源の製造方法の第3実施例を説明する図である。It is a figure explaining the 3rd Example of the manufacturing method of the side emission type linear evaporation source of the present invention. 本発明の側面放出型線状蒸発源の製造方法の第4実施例を説明する図である。It is a figure explaining the 4th Example of the manufacturing method of the side emission type linear evaporation source of the present invention.

以下本発明の実施例に関する発明の構成を添付された図面を参照して詳しく説明する。   Hereinafter, the configuration of the invention relating to the embodiments of the present invention will be described in detail with reference to the accompanying drawings.

参照で図5は、既存の一般的な蒸発器の概略的な構成図である。
図5に示されたように、従来の蒸発源は坩堝1、熱遮断膜2、坩堝1と熱遮断膜2の間に設置されるヒーター3、熱電対4、下部熱遮断膜5、真空フランジ6、電源供給用電極7及び電源接続子8を含む構成である。既存の一般的な蒸発源の発熱部は、坩堝と隔離された状態で坩堝の側面を取り囲んでいるから、坩堝の側面に放出口を形成することができず、上部の開口部を通じて材料物質が放出される。
FIG. 5 is a schematic configuration diagram of an existing general evaporator.
As shown in FIG. 5, the conventional evaporation source is a crucible 1, a heat blocking film 2, a heater 3 installed between the crucible 1 and the heat blocking film 2, a thermocouple 4, a lower heat blocking film 5, a vacuum flange. 6 includes a power supply electrode 7 and a power connector 8. The heat generating part of an existing general evaporation source surrounds the side surface of the crucible while being isolated from the crucible, so that a discharge port cannot be formed on the side surface of the crucible, and the material substance passes through the upper opening. Released.

図1は、本発明の側面放出型線状蒸発源の第1実施例に関する概略的な構成図である。   FIG. 1 is a schematic configuration diagram relating to a first embodiment of a side emission type linear evaporation source according to the present invention.

図1Aに示されたように、真空で試料に有機物、金属等の材料を蒸着するための蒸着システムにおいて、上記材料30を入れるためのPBN(Pyrolytic Boron Nitride:熱分解窒化ホウ素)で製作された坩堝10と、上記PBN坩堝10の外部表面に加熱に合うようにパターニングされ蒸着されたPG(Pyrolytic Graphite:熱分解黒鉛)で構成される第1発熱部20と、上記PBN坩堝10と上記PBN坩堝10の外部表面に蒸着されたPG20を貫通して側面に形成された多数個の放出口40と、上記PBN坩堝10の開口部を覆うPBNで構成された蓋体50と、上記PBN蓋体50の外部表面に加熱に合うようにパターニング(例えば、対称形パターン)になって蒸着されたPGから構成される第2発熱部60を含む構成である。   As shown in FIG. 1A, in a vapor deposition system for depositing materials such as organic substances and metals on a sample in a vacuum, it was made of PBN (Pyrolytic Boron Nitride) for containing the material 30. A crucible 10, a first heating unit 20 composed of PG (Pyrolytic Graphite) patterned and deposited on the outer surface of the PBN crucible 10 to suit heating, the PBN crucible 10 and the PBN crucible 10 a plurality of discharge ports 40 formed on the side surface through the PG 20 deposited on the external surface, a lid body 50 made of PBN covering the opening of the PBN crucible 10, and the PBN lid body 50. The second heat generating portion 60 is formed of PG deposited by patterning (for example, a symmetric pattern) so as to be suitable for heating on the outer surface of the substrate.

上記第1発熱部20及び第2発熱部60に電圧が認可された時、上記PBN蓋体50の温度が上記PBN坩堝10の温度より高くするか同じに維持されるように、上記PBN蓋体50に蒸着された第2発熱部60のPGの厚さと上記PBN坩堝10に蒸着された第1発熱部20のPGの厚さの比や、上記第1及び第2発熱部のパターンを調節することが好ましい。   When the voltage is applied to the first heat generating unit 20 and the second heat generating unit 60, the PBN cover 50 is maintained so that the temperature of the PBN cover 50 is higher than or equal to the temperature of the PBN crucible 10. The ratio of the PG thickness of the second heat generating part 60 deposited on 50 to the PG thickness of the first heat generating part 20 deposited on the PBN crucible 10 and the pattern of the first and second heat generating parts are adjusted. It is preferable.

図1Bは、図1AのA−A’の断面の概略図である。
上記第1発熱部の形態の一例は、上記A−A’断面の概略図に示されたように、坩堝の側面の中、放出口と直角な方向で側面底から側面上端部に至る幅約0.5mm以下のPGから構成された発熱部の一部を除去することにより形成できる。このような構造では、放出口近所の抵抗が大きくなり、それによって他の部分に比べて放出口近所の温度が最も高い温度分布が得られるので、単純な対称形パターンで好ましい温度分布が容易に得られる。
FIG. 1B is a schematic view of a cross section taken along line AA ′ of FIG. 1A.
An example of the form of the first heat generating part is as shown in the schematic diagram of the AA ′ cross section, about the width from the bottom of the side to the top of the side in the direction perpendicular to the discharge port in the side of the crucible. It can be formed by removing a part of the heat generating part composed of PG of 0.5 mm or less. In such a structure, the resistance near the discharge port is increased, thereby obtaining a temperature distribution having the highest temperature in the vicinity of the discharge port as compared with other portions, and thus a preferable temperature distribution can be easily obtained with a simple symmetrical pattern. can get.

上記本発明の第1実施例のように、上記PBN坩堝10の外部表面にPGを直接蒸着することで、第1発熱部20と上記PBN坩堝10が付いている一体型線状蒸発源を具現することができ、上記線状蒸発源の側面に上記多数個の放出口40が容易に形成できる。   As in the first embodiment of the present invention, by directly depositing PG on the outer surface of the PBN crucible 10, an integrated linear evaporation source having the first heat generating part 20 and the PBN crucible 10 is realized. The plurality of discharge ports 40 can be easily formed on the side surface of the linear evaporation source.

坩堝の上部に行くほど圧力が低くなるので、上部側放出口の間隔をより狭くするか上部側放出口の穴を大きくすることで、基板に蒸着される物質の厚さを均一にすることができる。   Since the pressure decreases as it goes to the upper part of the crucible, the thickness of the material deposited on the substrate can be made uniform by narrowing the interval between the upper discharge ports or increasing the holes of the upper discharge ports. it can.

インラインに蒸着される対面的基板の全面的に対して蒸着が成るほど放出口が形成された部分の高さは基板の高さより少し高いことが好ましい。   It is preferable that the height of the portion where the discharge port is formed is slightly higher than the height of the substrate as the deposition is performed on the entire surface of the facing substrate deposited in-line.

図2は、本発明の側面放出型線状蒸発源の第2実施例に関する概略的な構成図である。
図2に示されたように、本発明の第2実施例は、上記第1実施例における上記PBN坩堝10及びPBN蓋体50の内部表面及び上記放出口40の表面に上記PGを蒸着して保護膜が構成されている。本発明の第2実施例は、アルミニウムのようなPBNによく癒着される試料からPBN坩堝10を保護するために、上記PBN坩堝10の内部表面及び上記放出口40の表面に蒸着されたPGから構成された第1保護膜70と、上記放出口40の周辺で、上記第1発熱部20と上記第1保護膜70を電気的に絶縁するために、PGが除去された第1絶縁部80と、上記PBN坩堝10の上端部で、上記第1発熱部20と上記第1保護膜70を電気的に絶縁するためにPGが除去された第2絶縁部100を含み、上記PBN蓋体50の内部表面に蒸着されたPGから構成された第2保護膜90と、上記第2発熱部60と上記第2保護膜90を電気的に絶縁するためにPGが除去された第3絶縁部110を含む構成である。
FIG. 2 is a schematic configuration diagram of a second embodiment of the side emission type linear evaporation source according to the present invention.
As shown in FIG. 2, in the second embodiment of the present invention, the PG is deposited on the inner surface of the PBN crucible 10 and the PBN lid 50 and the surface of the discharge port 40 in the first embodiment. A protective film is formed. The second embodiment of the present invention is based on the PG deposited on the inner surface of the PBN crucible 10 and the surface of the discharge port 40 in order to protect the PBN crucible 10 from a sample well adhered to PBN such as aluminum. In order to electrically insulate the first heat generating part 20 and the first protective film 70 around the first protective film 70 and the discharge port 40, the first insulating part 80 from which PG is removed. And a second insulating part 100 from which PG is removed in order to electrically insulate the first heat generating part 20 and the first protective film 70 at the upper end of the PBN crucible 10, and the PBN lid 50 A second protective film 90 made of PG deposited on the inner surface of the second insulating film 110, and a third insulating part 110 from which PG is removed to electrically insulate the second heat generating part 60 and the second protective film 90 from each other. It is the structure containing.

上記第1絶縁部80及び第2絶縁部100の形成は、例えば、上記PBN坩堝10に側面放出口40を形成した後、上記PBN坩堝10の内外部にPGを蒸着して、上記第1発熱部20と第1保護膜70が電気的に絶縁されるように、蒸着されたPGの一部を除去することで第1絶縁部80及び第2絶縁部100が形成できる。
また、他の例は、第1実施例のように発熱部を形成した後、電極接触部を除いた部分をPBNにすべて蒸着した後、坩堝の内部表面及び上記放出口にPG保護膜を形成することもできる。
The first insulating part 80 and the second insulating part 100 are formed by, for example, forming a side discharge port 40 in the PBN crucible 10 and then depositing PG on the inside and outside of the PBN crucible 10 to form the first heat generation. The first insulating part 80 and the second insulating part 100 can be formed by removing a part of the deposited PG so that the part 20 and the first protective film 70 are electrically insulated.
In another example, after forming the heat generating portion as in the first embodiment, the portion excluding the electrode contact portion is deposited on the PBN, and then the PG protective film is formed on the inner surface of the crucible and the discharge port. You can also

上記第3絶縁部110の形成は、例えば、上記PBN蓋体50の内外部にPGを蒸着して、上記第2発熱部60と上記第2保護膜90が電気的に絶縁されるように、蒸着されたPGの一部を除去することで形成できる。   The third insulating part 110 may be formed by, for example, depositing PG on the inside and outside of the PBN lid 50 so that the second heat generating part 60 and the second protective film 90 are electrically insulated. It can be formed by removing a part of the deposited PG.

上記本発明の第2実施例によって、アルミニウムのようなPBNに癒着される材料30を冷却する時に、熱膨脹係数の差によってPBN坩堝10が破損されることを阻むことができるので、材料を速かに冷凍させることができる。例えば、500cc以上の坩堝で保護膜がない場合に、アルミニウムの融点である摂氏660度より高い温度で摂氏100度まで冷却するためには8時間以上がかかるが、保護膜がある場合には1時間以下の短い時間で冷却ができる。   The second embodiment of the present invention can prevent the PBN crucible 10 from being damaged due to the difference in thermal expansion coefficient when cooling the material 30 adhered to the PBN such as aluminum. Can be frozen. For example, when there is no protective film in a crucible of 500 cc or more, it takes 8 hours or more to cool to 100 degrees Celsius at a temperature higher than 660 degrees Celsius, which is the melting point of aluminum. Cooling can be done in a short period of time.

図3は、本発明の側面放出型線状蒸発源の第3実施例に関する概略的な構成図である。   FIG. 3 is a schematic diagram showing a third embodiment of the side emission type linear evaporation source according to the present invention.

図3に示されたように、真空で試料に有機物、金属等の材料を蒸着するための蒸着システムにおいて、上記材料30を入れるためのPBN(Pyrolytic Boron Nitride:熱分解窒化ホウ素)で製作された坩堝10と、上記PBN坩堝10の外部表面に加熱に合うようにパターニングされ蒸着されたPG(Pyrolytic Graphite:熱分解黒鉛)で構成される第1発熱部20と、上記PBN坩堝10の開口部を覆うPBNで構成された放出部200と、上記PBN放出部200の外部表面に加熱に合うようにパターニング(例えば、対称形パターン)されて蒸着されたPGから構成される第2発熱部220と、上記PBN放出部200と上記PBN放出部200の外部表面に蒸着された、PG220を貫通して側面に形成された多数個の放出口240を含む構成である。   As shown in FIG. 3, in a vapor deposition system for depositing materials such as organic substances and metals on a sample in a vacuum, it was made of PBN (Pyrolytic Boron Nitride) for containing the material 30. A crucible 10, a first heating part 20 composed of PG (Pyrolytic Graphite) patterned and deposited on the outer surface of the PBN crucible 10 to be heated, and an opening of the PBN crucible 10 A discharge part 200 made of PBN covering, and a second heating part 220 made of PG deposited on the outer surface of the PBN discharge part 200 by patterning (for example, symmetrical pattern) so as to be suitable for heating, The PBN discharge unit 200 and a plurality of discharge ports 240 formed on the side surface through the PG 220 are deposited on the outer surface of the PBN discharge unit 200. That.

上記第1発熱部20及び第2発熱部220に電圧が認可された時、上記PBN放出部200の温度が上記PBN坩堝10の温度より高いか同じに維持されるように、上記PBN放出部200に蒸着された第2発熱部220PGの厚さと上記PBN坩堝10に蒸着された第1発熱部20PGの厚さの比、及び上記第1及び第2発熱部のパターンを調節するのが好ましい。   When the voltage is applied to the first heat generating unit 20 and the second heat generating unit 220, the PBN discharging unit 200 is maintained such that the temperature of the PBN discharging unit 200 is higher than or equal to the temperature of the PBN crucible 10. It is preferable to adjust the ratio of the thickness of the second heat generating part 220PG deposited on the first heat generating part 20PG deposited on the PBN crucible 10 and the pattern of the first and second heat generating parts.

放出部の上部に行くほど圧力が低くなるので、上部側放出口の間隔をより狭くするか上部側放出口の穴を大きくすることで、基板に蒸着される物質の厚さを均一にすることができる。   Since the pressure becomes lower toward the upper part of the discharge part, the thickness of the substance deposited on the substrate is made uniform by narrowing the interval between the upper discharge holes or increasing the hole of the upper discharge hole. Can do.

インラインに蒸着される対面的基板の全面的に対して蒸着ができるように、放出口が形成された部分の高さは、基板の高さより少し高いことが好ましい。   It is preferable that the height of the portion where the discharge port is formed is slightly higher than the height of the substrate so that vapor deposition can be performed on the entire surface of the facing substrate deposited in-line.

図4は、本発明の側面放出型線状蒸発源の第4実施例に関する概略的な構成図である。   FIG. 4 is a schematic configuration diagram of a fourth embodiment of the side emission type linear evaporation source according to the present invention.

図4に示されたように、本発明の第4実施例は、上記第3実施例における上記PBN坩堝10及びPBN放出部200の内部表面及び上記放出口240の表面に、上記第2実施例のような方法で、上記PGを蒸着して保護膜70、270が構成されている。   As shown in FIG. 4, the fourth embodiment of the present invention includes the second embodiment on the inner surface of the PBN crucible 10 and the PBN discharge part 200 and the surface of the discharge port 240 in the third embodiment. Thus, the protective films 70 and 270 are formed by vapor-depositing the PG.

図6は、上記本発明の第4実施例に開示された側面放出型線状蒸発源を用いた線状蒸発器の第5実施例に関する概略的な構成図である。
図6Aに示されたように、本発明の側面放出型線状蒸発源を電源供給用電極600と熱電対(Thermocouple、T/C)用電極300が装着された真空フランジ400に装着することができる。この時に、電源供給用電極600は、上記第1発熱部20と第2発熱部220に電源が供給できるように連結され、熱電対用電極300は、線状蒸発源の温度を測定できるように連結される。
上記電源供給用電極600を支持台で用いられることにより構造を単純化することができる。上記電源供給用電極600が側面放出口240に支障にならないように、2つの電極から側面放出口240が遠い所に位置するように電極が配置されている。
FIG. 6 is a schematic diagram of a fifth embodiment of the linear evaporator using the side emission type linear evaporation source disclosed in the fourth embodiment of the present invention.
As shown in FIG. 6A, the side emission linear evaporation source of the present invention can be mounted on a vacuum flange 400 on which a power supply electrode 600 and a thermocouple (T / C) electrode 300 are mounted. it can. At this time, the power supply electrode 600 is connected so that power can be supplied to the first heat generating unit 20 and the second heat generating unit 220, and the thermocouple electrode 300 can measure the temperature of the linear evaporation source. Connected.
The structure can be simplified by using the power supply electrode 600 on a support base. The electrodes are arranged so that the side discharge port 240 is located far from the two electrodes so that the power supply electrode 600 does not interfere with the side discharge port 240.

上記線状蒸発器は、本発明の側面放出型線状蒸発源の下側及び上側に設置されるスペーサ500a・500bと、上記線状蒸発源の底面第1発熱部20に接触されるように設置される熱電対(Thermocouple、T/C)用電極300と、上記線状蒸発源の下側から所定距離(通り)離隔されて設置される真空フランジ400と、上記線状蒸発源の放出口240を間に置いて上記スペーサ500a・500bを貫通して上記第1発熱部20及び第2発熱部220に接触されるように設置される1対以上の電源供給用電極600と、第1発熱部20の電極接触部下部に位置する分散器700aと、第2発熱部220の電極接触部上部に位置する分散器700bと、を含んでいる。   The linear evaporator is brought into contact with the spacers 500a and 500b installed on the lower side and the upper side of the side emission type linear evaporation source of the present invention and the bottom surface first heating unit 20 of the linear evaporation source. A thermocouple (T / C) electrode 300 to be installed, a vacuum flange 400 installed at a predetermined distance from the lower side of the linear evaporation source, and an outlet of the linear evaporation source A pair of power supply electrodes 600 installed so as to be in contact with the first heat generating unit 20 and the second heat generating unit 220 through the spacers 500a and 500b with a 240 therebetween, and a first heat generation The disperser 700a is located below the electrode contact part of the part 20, and the disperser 700b is located above the electrode contact part of the second heat generating part 220.

図6Bは、図6Aのスペーサの概略図である。   FIG. 6B is a schematic view of the spacer of FIG. 6A.

上記スペーサ500a・500bは、線状蒸発源が動かないように線状蒸発源を固定する役目をし、熱損室を最小化するために線状蒸発源との接触を最小化する構造の接触部520と、電源供給用電極600が通過する貫通ホール511−514を含んでいる。   The spacers 500a and 500b serve to fix the linear evaporation source so that the linear evaporation source does not move, and contact with a structure that minimizes contact with the linear evaporation source in order to minimize the heat loss chamber. Part 520 and through hole 511-514 through which power supply electrode 600 passes.

図6Cは、図6Aの分散器の概略図である。   FIG. 6C is a schematic diagram of the disperser of FIG. 6A.

上記分散器700a・700bは、線状蒸発源の重さが電極接触部に集中することを防止して力を分散する役目をする。また電流が1個所で集中されることを防止して発熱部から熱が均一に発熱されるように行う役目をする。上記分散器700a・700bは、図6Cに示されたように、電源供給用電極600が貫通する貫通ホール711−714を含んでいる。   The dispersers 700a and 700b serve to disperse the force by preventing the weight of the linear evaporation source from concentrating on the electrode contact portion. In addition, the current is prevented from being concentrated at one place, so that heat is uniformly generated from the heat generating portion. The dispersers 700a and 700b include through holes 711-714 through which the power supply electrode 600 passes, as shown in FIG. 6C.

上記分散器は、グラファイトで製作することが好ましい。然し、高温特性が優れたモリブデン等の金属で製作することもできる。   The disperser is preferably made of graphite. However, it can be made of a metal such as molybdenum having excellent high temperature characteristics.

図7は、上記本発明の実施例4に掲示された側面放出型線状蒸発源を使った線状蒸発器の第6実施例に関する概略的な構成図である。   FIG. 7 is a schematic diagram showing a sixth embodiment of the linear evaporator using the side emission type linear evaporation source posted in the fourth embodiment of the present invention.

図7Aに示されたように、第5実施例と異なって、真空フランジを線状蒸発源の上部に装着する線状蒸発器の構成である。従って、図7Bのように、熱電対(Thermocouple、T/C)用電極300が貫通できる貫通ホール530と、両側の電源供給用電極600が貫通できる貫通ホール511−514及び接触部520を含んでいる。   As shown in FIG. 7A, unlike the fifth embodiment, it is a configuration of a linear evaporator in which a vacuum flange is mounted on an upper portion of a linear evaporation source. Accordingly, as shown in FIG. 7B, a through hole 530 through which a thermocouple (T / C) electrode 300 can pass, a through hole 511-514 through which a power supply electrode 600 on both sides can pass, and a contact portion 520 are included. Yes.

図7Cは、図6Cのような趣旨の分散器700a・700bに関する概略的な構成図である。上記分散器700a・700bは、図7Cに図示されたように熱電対(Thermocouple、T/C)用電極300が貫通できる貫通ホール730と、両側の電源供給用電極600が貫通できる貫通ホール711−714を含んでいる。   FIG. 7C is a schematic configuration diagram relating to the dispersers 700a and 700b having a purpose as shown in FIG. 6C. As shown in FIG. 7C, the dispersers 700a and 700b include a through hole 730 through which a thermocouple (T / C) electrode 300 can penetrate, and a through hole 711 through which the power supply electrodes 600 on both sides can penetrate. 714 is included.

図8は、本発明の側面放出型線状蒸発源製造方法に関する第1実施例を説明する図である。
図8に示されたように、本発明の側面放出型線状蒸発源製造方法は、真空蒸着システムの線状蒸発源製造において、PBN坩堝を準備する段階(S100)と、上記PBN坩堝の外部表面にPGを蒸着して第1発熱層を形成する段階(S110)と、上記PBN坩堝の側面に所定大きさの放出口を上記PBN坩堝の長さ方向に多数個を形成する段階(S120)と、上記PBN坩堝外部表面に形成された第1発熱層に加熱に適合するパターン(例えば、対称形パターン)を形成する段階(S130)と、を含む。
FIG. 8 is a diagram for explaining a first embodiment relating to a method for manufacturing a side emission type linear evaporation source according to the present invention.
As shown in FIG. 8, the method for manufacturing a side-emission type linear evaporation source according to the present invention includes a step of preparing a PBN crucible (S100) in manufacturing a linear evaporation source of a vacuum deposition system, and an outside of the PBN crucible. Forming a first heat generating layer by depositing PG on the surface (S110), and forming a plurality of discharge holes of a predetermined size on the side surface of the PBN crucible in the length direction of the PBN crucible (S120). And a step (S130) of forming a pattern (for example, a symmetrical pattern) suitable for heating on the first heat generating layer formed on the outer surface of the PBN crucible.

又、本発明の上記側面放出型線状蒸発源製造方法は、上記PBN坩堝の上側開口部を覆うためのPBN蓋体を準備する段階(S140)と、上記PBN蓋体の外部表面にPGを蒸着して第2発熱層を形成する段階(S150)と、上記PBN蓋体の外部表面に形成された第2発熱層に加熱に適合するパターン(例えば、対称形パターン)を形成する段階(S160)をさらに含むことができる。上記第2発熱層は、好ましくは厚さ1000ミクロメーター以下のPGで蒸着されることが好ましい。   The method for manufacturing a side emission type linear evaporation source according to the present invention includes a step of preparing a PBN lid for covering the upper opening of the PBN crucible (S140), and PG on the outer surface of the PBN lid. A step of forming a second heat generating layer by vapor deposition (S150) and a step of forming a pattern suitable for heating (for example, a symmetrical pattern) on the second heat generating layer formed on the outer surface of the PBN lid (S160). ). The second heat generating layer is preferably deposited by PG having a thickness of 1000 micrometers or less.

図9は、本発明の側面放出型線状蒸発源製造方法に関する第2実施例を説明する図である。
図9に示されたように、本発明の側面放出型線状蒸発源製造に関する第2実施例は、上記第1実施例で、上記PBN坩堝の内部表面及び上記PBN蓋体の下部表面にPGを蒸着して保護膜を更に形成することを特徴とする。
FIG. 9 is a diagram for explaining a second embodiment relating to the method for manufacturing a side emission type linear evaporation source of the present invention.
As shown in FIG. 9, the second embodiment relating to the production of the side emission type linear evaporation source according to the present invention is the first embodiment described above, and the PG is formed on the inner surface of the PBN crucible and the lower surface of the PBN lid. The protective film is further formed by vapor deposition.

本発明の側面放出型線状蒸発源製造方法に関する第2実施例は、真空蒸着システムの線状蒸発源製造において、PBN坩堝を準備する段階(S200)と、上記PBN坩堝の側面に所定大きさの放出口を上記PBN坩堝の長さ方向に多数個を形成する段階(S210)と、上記PBN坩堝の内部及び外部表面にPGを蒸着して上記PBN坩堝の外部表面に第1発熱層と内部表面に第1保護膜を形成する段階(S220)と、上記PBN坩堝外部表面に形成された第1発熱層に加熱に適合するなパターン(例えば、対称形パターン)を形成する段階(S230)と、上記第1発熱層と第1保護膜を電気的に絶縁させる絶縁部を形成する段階(S240)と、を含む。   A second embodiment of the method for manufacturing a side emission type linear evaporation source according to the present invention includes a step of preparing a PBN crucible (S200) in manufacturing a linear evaporation source of a vacuum deposition system, and a predetermined size on a side surface of the PBN crucible. Forming a plurality of discharge ports in the length direction of the PBN crucible (S210), and depositing PG on the inside and outside surfaces of the PBN crucible to form the first heat generating layer and the inside on the outside surface of the PBN crucible. Forming a first protective film on the surface (S220), forming a pattern suitable for heating (for example, a symmetrical pattern) on the first heat generating layer formed on the outer surface of the PBN crucible (S230); Forming an insulating part that electrically insulates the first heat generating layer from the first protective film (S240).

又、本発明の上記側面放出型線状蒸発源製造方法は、上記PBN坩堝を覆って蒸発のための放出口が形成されたPBN蓋体を準備する段階(S250)と、上記PBN蓋体の内部及び外部表面にPGを蒸着して、上記PBN蓋体の外部表面に第2発熱層と内部表面に第2保護膜を形成する段階(S260)と、上記PBN蓋体の外部表面に形成された上記第2発熱層に加熱に適合するパターン(例えば、対称形パターン)を形成する段階(S270)と、上記第2発熱層と上記第2保護膜を電気的に絶縁させるための絶縁部を形成する段階(S280)と、を含む。   The method of manufacturing a side-emission type linear evaporation source according to the present invention includes a step (S250) of preparing a PBN lid body that covers the PBN crucible and has an outlet for evaporation (S250); PG is deposited on the inner and outer surfaces to form a second heat generating layer on the outer surface of the PBN lid and a second protective film on the inner surface (S260); and formed on the outer surface of the PBN lid. Forming a pattern suitable for heating (for example, a symmetrical pattern) on the second heat generating layer (S270), and an insulating portion for electrically insulating the second heat generating layer from the second protective film. Forming (S280).

図10は、本発明の側面放出型線状蒸発源製造方法に関する第3実施例を説明する図である。
図10に示されたように、本発明の側面放出型線状蒸発源製造方法に関する第3実施例は、PBN坩堝を準備する段階(S300)と、上記PBN坩堝の外部表面にPGを蒸着して第1発熱層を形成する段階(S310)と、上記PBN坩堝外部表面に形成された上記第1発熱層に加熱に適合するパターンを形成する段階(S320)と、PBN放出部を準備する段階(S330)と、上記PBN放出部の外部表面にPGを蒸着して第2発熱層を形成する段階(S340)と、上記PBN放出部外部表面に形成された上記第2発熱層に加熱に適合するパターンを形成する段階(S350)と、上記PBN放出部の側面に所定大きさの多数個の放出口を形成する段階(S360)と、を含む。
FIG. 10 is a diagram for explaining a third embodiment relating to the method for manufacturing a side emission type linear evaporation source according to the present invention.
As shown in FIG. 10, the third embodiment of the method for manufacturing a side-emission type linear evaporation source according to the present invention includes a step of preparing a PBN crucible (S300), and depositing PG on the outer surface of the PBN crucible. Forming a first heat generating layer (S310), forming a pattern suitable for heating on the first heat generating layer formed on the outer surface of the PBN crucible (S320), and preparing a PBN discharge portion (S330), PG is deposited on the outer surface of the PBN emitting part to form a second heating layer (S340), and the second heating layer formed on the outer surface of the PBN emitting part is adapted for heating. Forming a pattern to be formed (S350), and forming a plurality of discharge ports of a predetermined size on the side surface of the PBN discharge part (S360).

図11は、本発明の側面放出型線状蒸発源製造方法に関する第4実施例を説明する図である。
図11に示されたように、本発明の側面放出型線状蒸発源製造方法に関する第4実施例は、PBN坩堝を準備する段階(S400)と、上記PBN坩堝の内外部表面にPGを蒸着して第1発熱層及び第1保護膜を形成する段階(S410)と、上記PBN坩堝外部表面に形成された上記第1発熱層に加熱に適合するパターンを形成する段階(S420)と、上記第1発熱層と上記第1保護膜の間に電気的に絶縁させるための絶縁部を形成する段階(S430)と、上記PBN坩堝を覆うPBN放出部を準備する段階(S440)と、上記PBN放出部の側面に放出口を形成する段階(S450)と、上記PBN放出部の内部及び外部表面にPGを蒸着して、上記PBN放出部の外部表面に第2発熱層と内部表面に第2保護膜を形成する段階(S460)と、上記PBN放出部の外部表面に形成された上記第2発熱層に加熱に適合するパターンを形成する段階(S470)と、上記第2発熱層と上記第2保護膜を電気的に絶縁させるための絶縁部を形成する段階(S480)と、を含む。
FIG. 11 is a diagram for explaining a fourth embodiment relating to the method for manufacturing a side emission type linear evaporation source according to the present invention.
As shown in FIG. 11, the fourth embodiment of the method for manufacturing a side emission type linear evaporation source according to the present invention includes a step of preparing a PBN crucible (S400), and deposits PG on the inner and outer surfaces of the PBN crucible. Forming a first heat generating layer and a first protective film (S410), forming a pattern suitable for heating on the first heat generating layer formed on the outer surface of the PBN crucible (S420), and Forming an insulating part for electrical insulation between the first heat generating layer and the first protective film (S430), preparing a PBN discharge part covering the PBN crucible (S440), and the PBN; Forming a discharge port on a side surface of the emission part (S450), depositing PG on the inside and outside surfaces of the PBN emission part, and forming a second heat generating layer on the outer surface of the PBN emission part and a second on the inner surface; Step of forming a protective film ( 460), forming a pattern suitable for heating on the second heat generating layer formed on the outer surface of the PBN emitting part (S470), electrically connecting the second heat generating layer and the second protective film. Forming an insulating part for insulation (S480).

以上で説明された、本発明の側面放出型線状蒸発源及びその製造方法に関する発明の技術的範囲は、上述された実施例等に限定されるものではなく、本発明の技術的思想に含まれる予測可能な多様な実施例を当然に含んでいる。例えば、上述された本発明の実施例に適用された発熱部を保護するために、第1発熱部及び第2発熱部の外部にPBNを追加に蒸着することができる。この時には電源供給用電極との連結のための部分にはPBNが蒸着されないように行う。また発熱部に用いられるPGの代りに、高温発熱が可能なタングステン(W)、モリブデン(Mo)、チタン(Ti)等の物質を用いることができる。また、上記の線状蒸発器で真空システムに熱を放出することを最小化するために線状蒸発器の外部に熱遮断膜を装着することができる。   The technical scope of the invention relating to the side emission type linear evaporation source and the manufacturing method thereof according to the present invention described above is not limited to the above-described embodiments and the like, and is included in the technical idea of the present invention. Naturally, it includes a variety of predictable examples. For example, in order to protect the heat generating part applied to the above-described embodiment of the present invention, PBN can be additionally deposited outside the first heat generating part and the second heat generating part. At this time, PBN is not deposited on the portion for connection with the power supply electrode. Further, instead of PG used for the heat generating part, a substance such as tungsten (W), molybdenum (Mo), titanium (Ti), etc., capable of generating heat at high temperature can be used. Further, in order to minimize the release of heat to the vacuum system with the above-described linear evaporator, a heat shielding film can be attached to the outside of the linear evaporator.

10・・・PBN坩堝、20・・・第1発熱部、30・・・材料(試料)、40、240・・・放出口、50・・・PBN蓋体、60、220・・・第2発熱部、70・・・第1保護膜、90、270・・・第2保護膜、80、100、110・・・絶縁部、300・・・熱電対用電極、500a、500b・・・スペーサ、600・・・電源供給用電極、700a、700b・・・スプレッダー。   DESCRIPTION OF SYMBOLS 10 ... PBN crucible, 20 ... 1st heat generating part, 30 ... Material (sample), 40, 240 ... Release port, 50 ... PBN cover body, 60, 220 ... 2nd Heat generating part, 70 ... first protective film, 90, 270 ... second protective film, 80, 100, 110 ... insulating part, 300 ... thermocouple electrode, 500a, 500b ... spacer 600 ... Power supply electrodes, 700a, 700b ... spreaders.

Claims (20)

真空蒸着システムで用いられる線状蒸発源において、
材料を入れるための上側が開口されたPBN(pyrolytic boron nitride、熱分解窒化ホウ素)坩堝と、
上記PBN坩堝の外部表面に蒸着され、加熱に適合なパターンが形成された第1発熱部と、
上記PBN坩堝の側面と上記第1発熱部を貫通して形成された多数個の側面放出口を含む側面放出型線状蒸発源。
In linear evaporation sources used in vacuum deposition systems,
A PBN (pyrolytic boron nitride) crucible with an open top to contain the material;
A first heat generating part deposited on the outer surface of the PBN crucible and formed with a pattern suitable for heating;
A side emission type linear evaporation source including a plurality of side emission ports formed through the side surface of the PBN crucible and the first heat generating portion.
請求項1において、
上記PBN坩堝の内部表面及び上記放出口の表面に形成された第1保護膜と、
上記第1発熱部と上記第1保護膜を電気的に絶縁させるための絶縁部を更に含む側面放出型線状蒸発源。
In claim 1,
A first protective film formed on the inner surface of the PBN crucible and the surface of the discharge port;
The side emission type linear evaporation source further comprising an insulating part for electrically insulating the first heat generating part and the first protective film.
請求項1において、
上記PBN坩堝の開口部を覆うPBN蓋体と、
上記PBN蓋体の外部表面に蒸着され、加熱に適合なパターンが形成された第2発熱部を更に含む側面放出型線状蒸発源。
In claim 1,
A PBN lid that covers the opening of the PBN crucible;
A side-emission linear evaporation source further comprising a second heat generating part deposited on the outer surface of the PBN lid and formed with a pattern suitable for heating.
請求項3において、
上記PBN坩堝及び上記放出口の内部表面に蒸着され、上記第1発熱部と電気的に絶縁されている第1保護膜と、
上記PBN蓋体の下側表面に蒸着され、上記第2発熱部と電気的に絶縁されている第2保護膜を更に含む側面放出型線状蒸発源。
In claim 3,
A first protective film deposited on the inner surfaces of the PBN crucible and the discharge port and electrically insulated from the first heat generating part;
A side emission linear evaporation source further comprising a second protective film deposited on the lower surface of the PBN lid and electrically insulated from the second heat generating part.
真空蒸着システムで用いられる線状蒸発源において、
材料を入れるためのPBN(pyrolytic boron nitride、熱分解窒化ホウ素)坩堝と、
上記PBN坩堝の外部表面に蒸着され、加熱に適合なパターンが形成された第1発熱部と、
PBNで構成された放出部と、
上記PBN放出部の外部表面に蒸着され、加熱に適合なパターンが形成された第2発熱部と、
上記PBN放出部の側面と上記第2発熱部を貫通して形成された側面放出口を含む側面放出型線状蒸発源。
In linear evaporation sources used in vacuum deposition systems,
PBN (pyrolytic boron nitride) crucible for containing materials,
A first heat generating part deposited on the outer surface of the PBN crucible and formed with a pattern suitable for heating;
An emission part composed of PBN;
A second heat generating part deposited on the outer surface of the PBN emitting part and formed with a pattern suitable for heating;
A side emission type linear evaporation source including a side emission port formed through a side surface of the PBN emission unit and the second heat generation unit.
請求項5において、
上記PBN坩堝の内部表面に蒸着され、上記第1発熱部と電気的に絶縁されている第1保護膜と、
上記PBN放出部の内部表面及び上記放出口の表面に蒸着され、上記第2発熱部と電気的に絶縁されている第2保護膜を更に含む側面放出型線状蒸発源。
In claim 5,
A first protective film deposited on the inner surface of the PBN crucible and electrically insulated from the first heating part;
A side emission type linear evaporation source further comprising a second protective film deposited on the inner surface of the PBN emission part and the surface of the emission port and electrically insulated from the second heat generating part.
請求項3ないし請求項6中の何れか一項において、
上記第1及び第2発熱部に電流を認可する時に上記第2発熱部の温度が上記第1発熱部の温度より高く維持されるように構成されることを特徴とする側面放出型線状蒸発源。
In any one of Claims 3 thru | or 6,
The side-emission type linear evaporation characterized in that the temperature of the second heat generating part is maintained higher than the temperature of the first heat generating part when current is applied to the first and second heat generating parts. source.
請求項1ないし請求項6のうち何れか1項において、
上記発熱部及び保護膜は厚さ1000ミクロメーター以下の熱分解黒鉛(PG、Pyrolytic Graphite)からなることを特徴とする側面放出型線状蒸発源。
In any one of Claims 1 thru | or 6,
The side emission linear evaporation source, wherein the heat generating part and the protective film are made of pyrolytic graphite (PG) having a thickness of 1000 micrometers or less.
請求項1ないし請求項6のうち何れか1項において、
上記発熱部のパターンは対称形であることを特徴とする側面放出型線状蒸発源。
In any one of Claims 1 thru | or 6,
A side-emission type linear evaporation source characterized in that the pattern of the heat generating part is symmetrical.
請求項1または請求項5において、
上部と下部の蒸着速度を同じく維持するために上部放出口の間隔が下部放出口の間隔より狭いことを特徴とする側面放出型線状蒸発源。
In claim 1 or claim 5,
A side-emission type linear evaporation source characterized in that, in order to maintain the same deposition rate between the upper part and the lower part, the interval between the upper emission ports is narrower than the interval between the lower emission ports.
請求項1または請求項5において、
上部と下部の蒸着速度を同じく維持するために上部と下部の放出口の間隔を一定に維持しながら、上部放出口の大きさが下部放出口の大きさより大きいことを特徴とする側面放出型線状蒸発源。
In claim 1 or claim 5,
Side emission line characterized in that the size of the upper outlet is larger than the size of the lower outlet while keeping the distance between the upper and lower outlets constant to maintain the same upper and lower deposition rates. Vapor source.
真空蒸着システムの線状蒸発源製造方法において、
PBN坩堝を準備する段階と、
上記PBN坩堝の外部表面にPGを蒸着して第1発熱層を形成する段階と、
上記PBN坩堝の側面に所定大きさの多数個の放出口を形成する段階と、
上記PBN坩堝の外部表面に形成された上記第1発熱層に加熱に適合なパターンを形成する段階を含む側面放出型線状蒸発源製造方法。
In the linear evaporation source manufacturing method of the vacuum deposition system,
Preparing a PBN crucible;
Depositing PG on the outer surface of the PBN crucible to form a first heat generating layer;
Forming a plurality of discharge ports of a predetermined size on the side surface of the PBN crucible;
A side-emission type linear evaporation source manufacturing method including a step of forming a pattern suitable for heating on the first heat generating layer formed on the outer surface of the PBN crucible.
請求項12において、
上記PBN坩堝の上側開口部を覆うためのPBN蓋体を準備する段階と、
上記PBN蓋体の外部表面にPGを蒸着して第2発熱層を形成する段階と、
上記PBN蓋体の外部表面に形成された第2発熱層に加熱に適合なパターンを形成する段階を更に含む側面放出型線状蒸発源製造方法。
In claim 12,
Preparing a PBN lid for covering the upper opening of the PBN crucible;
Depositing PG on the outer surface of the PBN lid to form a second heat generating layer;
A method for manufacturing a side emission type linear evaporation source, further comprising the step of forming a pattern suitable for heating on a second heat generating layer formed on the outer surface of the PBN lid.
真空蒸着システムの線状蒸発源製造方法において、
PBN坩堝を準備する段階と、
上記PBN坩堝の側面に所定大きさの多数個の放出口を形成する段階と、
上記PBN坩堝の内部及び外部表面にPGを蒸着して上記PBN坩堝の外部表面に第1発熱層と内部表面に第1保護膜を形成する段階と、
上記PBN坩堝外部表面に形成された第1発熱層に加熱に適合なパターンを形成する段階と、
上記第1発熱層と第1保護膜を電気的に絶縁させる絶縁部を形成する段階を含む側面放出型線状蒸発源製造方法。
In the linear evaporation source manufacturing method of the vacuum deposition system,
Preparing a PBN crucible;
Forming a plurality of discharge ports of a predetermined size on the side surface of the PBN crucible;
Depositing PG on the inside and outside surfaces of the PBN crucible to form a first heat generating layer on the outside surface of the PBN crucible and a first protective film on the inside surface;
Forming a pattern suitable for heating on the first exothermic layer formed on the outer surface of the PBN crucible;
A side-emission type linear evaporation source manufacturing method including a step of forming an insulating portion that electrically insulates the first heat generating layer from the first protective film.
請求項14において、
上記PBN坩堝を覆い、蒸発のための放出口が形成されたPBN蓋体を準備する段階と、
上記PBN蓋体の内部及び外部表面にPGを蒸着して上記PBN蓋体の外部表面に第2発熱層と内部表面に第2保護膜を形成する段階と、
上記PBN蓋体の外部表面に形成された上記第2発熱層に加熱に適合なパターンを形成する段階と、
上記第2発熱層と上記第2保護膜を電気的に絶縁させるための絶縁部を形成する段階を更に含む側面放出型線状蒸発源製造方法。
In claim 14,
Providing a PBN lid that covers the PBN crucible and has an outlet for evaporation;
Depositing PG on the inside and outside surfaces of the PBN lid and forming a second heat generating layer on the outside surface of the PBN lid and a second protective film on the inside surface;
Forming a pattern suitable for heating on the second heat generating layer formed on the outer surface of the PBN lid;
A method of manufacturing a side-emission linear evaporation source, further comprising forming an insulating part for electrically insulating the second heat generating layer and the second protective film.
真空蒸着システムの線状蒸発源製造方法において、
PBN坩堝を準備する段階と、
上記PBN坩堝の外部表面にPGを蒸着して第1発熱層を形成する段階と、
上記PBN坩堝の外部表面に形成された上記第1発熱層に加熱に適合なパターンを形成する段階と、
PBN放出部を準備する段階と、
上記PBN放出部の外部表面にPGを蒸着して第2発熱層を形成する段階と、
上記PBN放出部の外部表面に形成された上記第2発熱層に加熱に適合なパターンを形成する段階と、
上記PBN放出部の側面に所定大きさの放出口を形成する段階を含む側面放出型線状蒸発源製造方法。
In the linear evaporation source manufacturing method of the vacuum deposition system,
Preparing a PBN crucible;
Depositing PG on the outer surface of the PBN crucible to form a first heat generating layer;
Forming a pattern suitable for heating on the first heat generating layer formed on the outer surface of the PBN crucible;
Preparing a PBN discharge section;
Depositing PG on the outer surface of the PBN emitting portion to form a second heat generating layer;
Forming a pattern suitable for heating on the second heat generating layer formed on the outer surface of the PBN emitting portion;
A side emission type linear evaporation source manufacturing method including a step of forming an emission port of a predetermined size on a side surface of the PBN emission part.
請求項16において、
上記PBN放出部の内部及び外部表面にPGを蒸着して上記PBN放出部の外部表面に第2発熱層と内部表面に第2保護膜を形成する段階と、
上記PBN放出部の外部表面に形成された上記第2発熱層に加熱に適合なパターンを形成する段階と、
上記第2発熱層と上記第2保護膜を電気的に絶縁させるための絶縁部を形成する段階を更に含む側面放出型線状蒸発源製造方法。
In claim 16,
Depositing PG on the inside and outside surfaces of the PBN emitting portion to form a second heat generating layer on the outside surface of the PBN emitting portion and a second protective film on the inside surface;
Forming a pattern suitable for heating on the second heat generating layer formed on the outer surface of the PBN emitting portion;
A method of manufacturing a side-emission linear evaporation source, further comprising forming an insulating part for electrically insulating the second heat generating layer and the second protective film.
請求項1ないし請求項11記載の側面放出型線状蒸発源の中何れか1つを含む線状蒸発器。   12. A linear evaporator comprising any one of the side emission type linear evaporation sources according to claim 1. 請求項18において、
上記線状蒸発器は、真空フランジ及び電源供給用電極を含み、上記電源供給用電極を支持台にして、上記線状蒸発源が上記真空フランジに装着されることを特徴とする線状蒸発器。
In claim 18,
The linear evaporator includes a vacuum flange and a power supply electrode, and the linear evaporation source is attached to the vacuum flange with the power supply electrode as a support base. .
請求項19において、
上記電源供給用電極は、上記PBN坩堝に形成された側面放出口から所定距離離れた位置に配置されることを特徴とする線状蒸発器。
In claim 19,
The linear evaporator according to claim 1, wherein the power supply electrode is disposed at a position spaced apart from a side discharge port formed in the PBN crucible.
JP2013514091A 2010-06-10 2010-07-30 Side emission type linear evaporation source, manufacturing method thereof, and linear evaporator Expired - Fee Related JP5732531B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020100054881A KR101265067B1 (en) 2010-06-10 2010-06-10 Linear effusion cell with side orifice array, the method of manufacturing linear effusion cell with side orifice array and evaporator
KR10-2010-0054881 2010-06-10
PCT/KR2010/005031 WO2011155661A1 (en) 2010-06-10 2010-07-30 Linear effusion cell, method of manufacturing the same and evaporator using the same

Publications (2)

Publication Number Publication Date
JP2013529258A true JP2013529258A (en) 2013-07-18
JP5732531B2 JP5732531B2 (en) 2015-06-10

Family

ID=45098249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013514091A Expired - Fee Related JP5732531B2 (en) 2010-06-10 2010-07-30 Side emission type linear evaporation source, manufacturing method thereof, and linear evaporator

Country Status (3)

Country Link
JP (1) JP5732531B2 (en)
KR (1) KR101265067B1 (en)
WO (1) WO2011155661A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513910A (en) * 2015-07-13 2018-05-31 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Evaporation source
JP2018109240A (en) * 2018-02-26 2018-07-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Evaporation source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327732B1 (en) 2011-12-15 2013-11-11 현대자동차주식회사 Thermoelectric generator of vehicle
KR102285421B1 (en) 2015-01-26 2021-08-04 주식회사 만도 Coil assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053868A (en) * 1996-08-07 1998-02-24 Kao Corp Thin film forming device
JP2004197116A (en) * 2002-12-16 2004-07-15 Ge Speciality Materials Japan Kk Hearth liner for electron beam deposition
JP2006152441A (en) * 2004-12-01 2006-06-15 Samsung Sdi Co Ltd Vapor deposition source and vapor deposition system provided therewith
KR20060084042A (en) * 2005-01-17 2006-07-21 삼성에스디아이 주식회사 Vapor deposition source and evaporating apparatus and method for deposition using the same
JP2008001587A (en) * 2006-06-20 2008-01-10 Momentive Performance Materials Inc Multi-piece ceramic crucible and method for making thereof
WO2010019200A1 (en) * 2008-08-12 2010-02-18 Momentive Performance Materials Inc. Evaporator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585888A (en) * 1991-09-24 1993-04-06 Nec Corp Apparatus for emitting molecular beam
KR100889758B1 (en) * 2002-09-03 2009-03-20 삼성모바일디스플레이주식회사 Heating crucible of organic thin film forming apparatus
DE10256038A1 (en) * 2002-11-30 2004-06-17 Applied Films Gmbh & Co. Kg A steamer
EP1752555A1 (en) * 2005-07-28 2007-02-14 Applied Materials GmbH & Co. KG Vaporizing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053868A (en) * 1996-08-07 1998-02-24 Kao Corp Thin film forming device
JP2004197116A (en) * 2002-12-16 2004-07-15 Ge Speciality Materials Japan Kk Hearth liner for electron beam deposition
JP2006152441A (en) * 2004-12-01 2006-06-15 Samsung Sdi Co Ltd Vapor deposition source and vapor deposition system provided therewith
KR20060084042A (en) * 2005-01-17 2006-07-21 삼성에스디아이 주식회사 Vapor deposition source and evaporating apparatus and method for deposition using the same
JP2008001587A (en) * 2006-06-20 2008-01-10 Momentive Performance Materials Inc Multi-piece ceramic crucible and method for making thereof
WO2010019200A1 (en) * 2008-08-12 2010-02-18 Momentive Performance Materials Inc. Evaporator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513910A (en) * 2015-07-13 2018-05-31 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Evaporation source
TWI686490B (en) * 2015-07-13 2020-03-01 美商應用材料股份有限公司 Evaporation source, an evaporation source array having evaporation sources, method of operating the evaporation source array, and method of operating the evaporation source
JP2018109240A (en) * 2018-02-26 2018-07-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Evaporation source

Also Published As

Publication number Publication date
JP5732531B2 (en) 2015-06-10
KR20110135138A (en) 2011-12-16
WO2011155661A1 (en) 2011-12-15
KR101265067B1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
KR101263005B1 (en) Vapor deposition sources and method
KR100805531B1 (en) Evaporation source
KR100823508B1 (en) Evaporation source and organic matter sputtering apparatus with the same
KR101671489B1 (en) Evaporation source for organic material and vapor depositing apparatus including the same
KR100517255B1 (en) Linear type nozzle evaporation source for manufacturing a film of OLEDs
US20060169211A1 (en) Vapor deposition source and vapor deposition apparatus having the same
KR100703427B1 (en) Vapor deposition source and Vapor deposition apparatus having thereof
JP5732531B2 (en) Side emission type linear evaporation source, manufacturing method thereof, and linear evaporator
KR101084333B1 (en) Deposition source for manufacturing organic electroluminescence display panel and deposition apparatus having the same
KR100645689B1 (en) Linear type deposition source
US20100154710A1 (en) In-vacuum deposition of organic materials
TW200846483A (en) Evaporation tube evaporation apparatus with adapted evaporation characteristic
TW201317374A (en) Vacuum deposition device
JP2004315898A (en) Evaporation source in vapor deposition system
TW200532037A (en) Vapor deposition source with minimized condensation effects
JP2012521494A (en) Raw material supply unit, raw material supply method and thin film deposition apparatus
KR101153934B1 (en) Vacuum evaporating sources with heaters deposited directly on the surface of crucible, the method of manufacturing and evaporator
JP2015067850A (en) Vacuum evaporation system
KR100830302B1 (en) Evaporation source
CN114182208B (en) Evaporation source and evaporation equipment
KR20090047630A (en) Depositing source
KR101772621B1 (en) Downward Evaporation Apparatus And Downward Evaporation Deposition Apparatus
KR101128474B1 (en) Effusion cell with side orifice, the method of manufacturing effusion cell with side orifice and evaporator
KR100647585B1 (en) Effusion cell and method for depositing substrate with the effusion cell
JP2013067845A (en) Device for heating deposition material, vapor deposition apparatus, vapor deposition method and substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140421

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140428

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140527

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140626

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5732531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees