(詳細な説明)
本発明の種々な実施形態は、被酸化性化合物の液相部分酸化に関する。そのような酸化は、1つ以上の撹拌反応器に収容される多相反応媒体の液相中で実施できる。好適な撹拌反応器には、例えば、気泡撹拌式反応器(例えば、気泡塔反応器)、機械撹拌式反応器(例えば、連続撹拌槽反応器)、及び流動撹拌式反応器(例えば、ジェット反応器)がある。1つ以上の実施形態において、液相酸化は、少なくとも1つの気泡塔反応器を利用して実施できる。
本明細書では、用語「気泡塔反応器」は、反応媒体の撹拌が、反応媒体を通る気泡の上方への動きにより主に与えられる、多相反応媒体中で化学反応を促進するための反応器を表すものとする。本明細書では、用語「撹拌」は、流体の流れ及び/又は混合を起こす反応媒体中に消散される仕事を表すものとする。本明細書では、用語「大部分」、「主に」、及び「圧倒的に」は、50パーセント超を意味するものとする。本明細書では、用語「機械的攪拌」は、反応媒体に対する、又は反応媒体内の、剛性又は柔軟性の要素(複数可)の物理的な動きにより起こされる反応媒体の撹拌を表すものとする。例えば、機械的攪拌は、反応媒体中に位置する内部スターラー、パドル、バイブレーター、又は音響振動板の回転、振動(oscillation)、及び/又は振動(vibration)により提供することができる。本明細書では、用語「流動撹拌」は、反応媒体中の1種以上の流体の高速注入及び/又は再循環により起こる反応媒体の撹拌を表すものとする。例えば、流動撹拌は、ノズル、イジェクター、及び/又はエダクターにより提供できる。
種々の実施形態において、機械的攪拌及び/又は流動撹拌により与えられる、酸化の間の気泡塔反応器中の反応媒体の撹拌の一部は、約40パーセント未満、約20パーセント未満、又は5パーセント未満でよい。さらに、酸化の間に多相反応媒体に与えられる機械的攪拌及び/又は流動撹拌の量は、反応媒体1立方メートルあたり約3キロワット未満、1立方メートルあたり約2キロワット未満、又は1立方メートルあたり1キロワット未満でよい。
図1を参照すると、気泡塔反応器20は、反応セクション24及び解放セクション(disengagement section)26を有する容器シェル22を含むように表されている。反応セクション24は反応領域28を画定しており、解放セクション26は解放領域30を画定している。圧倒的に液相の供給流は、原料入口32a、b、c、dより反応領域28に導入できる。圧倒的に気相の酸化剤流は、反応領域28の下部に位置する酸化剤スパージャー34により反応領域28に導入できる。液相供給流と気相酸化剤流とは、反応領域28内で協同的に多相反応媒体36を形成する。種々の実施形態において、多相反応媒体36は、液相及び気相を含みうる。他の種々の実施形態において、多相反応媒体36は、固相、液相、及び気相成分を有する三相媒体を含みうる。反応媒体36の固相成分は、反応媒体36の液相中で実施された酸化反応の結果反応領域28内で沈殿することがある。気泡塔反応器20は、反応領域28の底部付近に位置するスラリー出口38及び解放領域30の頂部付近に位置する気体出口40を含む。反応媒体36の液相及び固相成分を含むスラリー流出物は、スラリー出口38により反応領域28から抜き出すことができ、圧倒的に気体の流出物は、気体出口40により解放領域30から抜き出すことができる。
原料入口32a、b、c、dにより気泡塔反応器20に導入された液相供給流は、被酸化性化合物、溶媒、及び触媒システムを含みうる。
液相供給流中に存在する被酸化性化合物は、少なくとも1つのヒドロカルビル基を含みうる。種々の実施形態において、被酸化性化合物は芳香族化合物であることがある。さらに、被酸化性化合物は、少なくとも1つの結合したヒドロカルビル基、又は少なくとも1つの結合した置換ヒドロカルビル基、又は少なくとも1つの結合したヘテロ原子、又は少なくとも1つの結合したカルボン酸官能基(−COOH)を持つ芳香族化合物でよい。1つ以上の実施形態において、被酸化性化合物は、少なくとも1つの結合したヒドロカルビル基又は少なくとも1つの結合した置換ヒドロカルビル基を持つ芳香族化合物でよいが、結合した各基は1〜5の炭素原子を含む。さらに、被酸化性化合物は、ちょうど2つの結合した基を有する芳香族化合物でよく、結合した各基はちょうど1つの炭素原子を含み、メチル基及び/又は置換メチル基及び/又は最大で1つのカルボン酸基からなる。被酸化性化合物として使用するための好適な化合物の例には、p−キシレン、m−キシレン、p−トルアルデヒド、m−トルアルデヒド、p−トルイル酸、m−トルイル酸、及び/又はアセトアルデヒドがあるが、これらに限定されない。1つ以上の実施形態において、被酸化性化合物はp−キシレンである。
本明細書で定義される「ヒドロカルビル基」は、水素原子又は他の炭素原子にのみ結合している少なくとも1つの炭素原子である。本明細書で定義される「置換ヒドロカルビル基」は、少なくとも1つのヘテロ原子及び少なくとも1つの水素原子に結合している少なくとも1つの炭素原子である。本明細書で定義される「ヘテロ原子」は、炭素原子及び水素原子以外の全原子である。本明細書で定義される芳香族化合物は芳香族環を含む。そのような芳香族化合物は、少なくとも6つの炭素原子を含むことができ、種々の実施形態において、環の部分として炭素原子のみを有することがある。そのような芳香環の好適な例には、ベンゼン、ビフェニル、ターフェニル、ナフタレン、及び他の炭素系縮合芳香族環があるが、これらに限定されない。
液相供給流中に存在する被酸化性化合物が通常固体(すなわち、標準的な温度及び圧力で固体である)の化合物である場合、被酸化性化合物は、反応領域28に導入されるときに溶媒に実質的に溶解できる。大気圧での被酸化性化合物の沸点は、少なくとも約50℃、約80〜約400℃の範囲、又は125〜155℃の範囲になりうる。液相原料中に存在する被酸化性化合物の量は、約2〜約40重量パーセントの範囲、約4〜約20重量パーセントの範囲、又は6〜15重量パーセントの範囲になりうる。
液相原料に存在する被酸化性化合物が、2種以上の異なる被酸化性化学物質を含みうることが言及される。これらの2種以上の異なる化学物質は、液相供給流中で混合して供給しても、複数の供給流中で別々に供給してもよい。例えば、p−キシレン、m−キシレン、p−トルアルデヒド、p−トルイル酸、及びアセトアルデヒドを含む被酸化性化合物は、単一の入口により反応器に供給しても、複数の別々な入口により供給してもよい。
液相供給流中に存在する溶媒は、酸成分及び水成分を含みうる。溶媒は、液相供給流中に、約60〜約98重量パーセントの範囲で、約80〜約96重量パーセントの範囲で、又は85〜94重量パーセントの範囲で存在しうる。溶媒の酸成分は、主に、1〜6つの炭素原子、又は2つの炭素原子を有する有機低分子量モノカルボン酸でありうる。種々の実施形態において、溶媒の酸成分は主に酢酸である。酸成分は、溶媒の少なくとも約75重量パーセント、溶媒の少なくとも約80重量パーセント、又は溶媒の85〜98重量パーセントを構成することがあり、残部は水又は主に水である。気泡塔反応器20に導入される溶媒は、例えば、p−トルアルデヒド、テレフタルアルデヒド、4−カルボキシベンズアルデヒド(「4−CBA)」、安息香酸、p−トルイル酸、p−トルイルアルデヒド、α−ブロモ−p−トルイル酸、イソフタル酸、フタル酸、トリメリト酸、多環芳香族、及び/又は浮遊粒子などの不純物を少量含むことがある。種々の実施形態において、気泡塔反応器20に導入される溶媒中の不純物の総量は、約3重量パーセント未満になりうる。
液相供給流中に存在する触媒システムは、被酸化性化合物の酸化(部分酸化を含む)を促進できる均一な液相触媒システムでよい。種々の実施形態において、触媒系は、少なくとも1種の多価遷移金属を含むことがある。1つ以上の実施形態において、多価遷移金属は、コバルトを含むことがある。さらに、触媒システムは、コバルト及び臭素を含むことがある。さらに、触媒システムは、コバルト、臭素、及びマンガンを含むことがある。
触媒システムにコバルトが存在する場合、液相供給流中に存在するコバルトの量は、反応媒体36の液相中のコバルト濃度が、約300〜約6,000重量百万分率(「ppmw)」の範囲、約700〜約4,200ppmwの範囲、又は1,200〜3,000ppmwの範囲に維持されるようなものでよい。触媒システムに臭素が存在する場合、液相供給流中に存在する臭素の量は、反応媒体36の液相中の臭素濃度が、約300〜約5,000ppmwの範囲、約600〜約4,000ppmwの範囲、又は900〜3,000ppmwの範囲に維持されるようなものでよい。触媒システムにマンガンが存在する場合、液相供給流中に存在するマンガンの量は、反応媒体36の液相中のマンガン濃度が、約20〜約1,000ppmwの範囲、約40〜約500ppmwの範囲、又は50〜200ppmwの範囲に維持されるようなものでよい。
上記に提供された反応媒体36の液相中のコバルト、臭素、及び/又はマンガンの濃度は、時間平均及び体積平均基準で表される。本明細書では、用語「時間平均」は、少なくとも100秒の連続的な期間にわたって等しくとられた少なくとも10の測定値の平均を表すものとする。本明細書では、用語「体積平均」は、特定の体積全体にわたる均一な3次元間隔でとられた少なくとも10の測定値の平均を表すものとする。
反応領域28に導入される触媒システムにおけるコバルトと臭素の重量比(Co:Br)は、約0.25:1〜約4:1の範囲、約0.5:1〜約3:1の範囲、又は0.75:1〜2:1の範囲でよい。反応領域28に導入される触媒システムにおけるコバルトとマンガンの重量比(Co:Mn)は、約0.3:1〜約40:1の範囲、約5:1〜約30:1の範囲、又は10:1〜25:1の範囲でよい。
気泡塔反応器20に導入される液相供給流は、例えば、トルエン、エチルベンゼン、p−トルアルデヒド、テレフタルアルデヒド、4−CBA、安息香酸、p−トルイル酸、p−トルイルアルデヒド、α−ブロモ−p−トルイル酸、イソフタル酸、フタル酸、トリメリト酸、多環芳香族、及び/又は浮遊粒子などの不純物を少量含むことがある。気泡塔反応器20がテレフタル酸の製造に使用される場合、m−キシレン及びo−キシレンも考えられる不純物である。種々の実施形態において、気泡塔反応器20に導入される液相供給流中の不純物の総量は、約3重量パーセント未満になりうる。
図1は、被酸化性化合物、溶媒、及び触媒システムが混合されて、単一の供給流として気泡塔反応器20に導入される実施形態を表すが、代わりとなる実施形態において、被酸化性化合物、溶媒、及び触媒は、別々に気泡塔反応器20に導入できる。例えば、純粋なp−キシレン流を、溶媒及び触媒の入口(複数可)とは別な入口により気泡塔反応器20に供給することが可能である。
酸化剤スパージャー34により気泡塔反応器20に導入される圧倒的に気相の酸化剤流は、分子状酸素(O2)を含む。種々の実施形態において、酸化剤流は、約5〜約40モルパーセントの範囲の分子状酸素、約15〜約30モルパーセントの範囲の分子状酸素、又は18〜24モルパーセントの範囲の分子状酸素を含む。酸化剤流の残部は、酸化に対して不活性である、窒素などの気体又は複数種の気体から主に構成されうる。1つ以上の実施形態において、酸化剤流は、分子状酸素及び窒素から基本的になりうる。種々の実施形態において、酸化剤流は、約21モルパーセントの分子状酸素及び約78〜約81モルパーセントの窒素を含む乾燥空気でよい。他の実施形態において、気相酸化剤は富化された空気でよく、25モルパーセント、30モルパーセント、35モルパーセント、40モルパーセント、50モルパーセント、55モルパーセント、60モルパーセント、70モルパーセント、又は80モルパーセントの分子状酸素を含みうる。さらに他の実施形態において、酸化剤流は実質的に純粋な酸素を含みうる。
さらに図1を参照すると、気泡塔反応器20は、反応媒体36の上部表面44より上に位置する還流分配器42を備えていてよい。還流分配器42は、当分野に公知の任意の液滴形成手段により圧倒的に液相の還流流の液滴を解放領域30に導入するように操作可能である。種々の実施形態において、還流分配器42は、反応媒体36の上部表面44に向けて下向きに液滴の飛沫を作ることができる。この液滴の下向きの飛沫は、解放領域30の最大水平断面積の少なくとも約50パーセント、少なくとも約75パーセント、又は少なくとも90パーセントに作用する(すなわち、関与する、又は影響する)ことができる。この下向きの液体還流飛沫は、反応媒体36での、又はその上での発泡の防止に役立ち、気体出口40に向かって流れる上向きに動く気体に同伴される液体又はスラリー液滴の解放も助けることができる。さらに、液体還流は、気体出口40により解放領域30から抜き出される気体状流出物において出る粒子及び沈殿するかもしれない化合物(例えば、溶解した安息香酸、p−トルイル酸、4−CBA、テレフタル酸、及び触媒金属塩)の量を減らすのに役立つことがある。さらに、解放領域30への還流液滴の導入は、蒸留作用により、気体出口40により抜き出される気体状流出物の組成の調整に利用できる。
還流分配器42により気泡塔反応器20に導入される液体還流流は、原料入口32a、b、c、dにより気泡塔反応器20に導入される液相供給流の溶媒成分と同じ、又はほとんど同じ組成を有しうる。そのため、液体還流流は、酸成分及び水を含みうる。還流流の酸成分は、1〜6つの炭素原子、又は2つの炭素原子を有する低分子量有機モノカルボン酸でありうる。種々の実施形態において、還流流の酸成分は酢酸でありうる。さらに、酸成分は、還流流の少なくとも約75重量パーセント、還流流の少なくとも約80重量パーセント、又は還流流の85〜98重量パーセントの範囲を構成することがあり、残部は水又は主に水である。還流流は、典型的には、液相供給流中の溶媒と同じ、又は実質的に同じ組成を有しうるので、この記載が反応器へ導入される「総溶媒」のことをいう場合、そのような「総溶媒」は、還流流及び供給流の溶媒部分の両方を含むものとする。
気泡塔反応器20中の液相酸化の間に、原料、酸化剤、及び還流流は、実質的に連続的に反応領域28に導入されうる一方で、気体及びスラリー流出物流は、実質的に連続的に反応領域28から抜き出される。本明細書では、用語「実質的に連続的に」は、中断が10分未満である少なくとも10時間の期間を意味するものとする。酸化の間、被酸化性化合物(例えば、p−キシレン)は、少なくとも約8,000キログラム毎時の速度で、約15,000〜約20,000キログラム毎時の範囲、約22,000〜約150,000キログラム毎時の範囲、又は30,000〜100,000キログラム毎時の範囲の速度で実質的に連続的に反応領域28に導入されうる。流入する原料、酸化剤、及び還流流の流量は実質的に定常になりうるが、一実施形態は、混合及び物質移動を向上させるために、流入する原料、酸化剤、及び/又は還流流をパルス状にすることを企図することがここで言及される。流入する原料、酸化剤、及び/又は還流流がパルス状に導入される場合、それらの流量は、本明細書に記載された定常状態流量の約0〜約500パーセント以内で、本明細書に記載された定常状態流量の約30〜約200パーセント以内で、又は本明細書に記載された定常状態流量の80〜120パーセント以内で変動することがある。
気泡塔酸化反応器20における平均空時反応速度(average space−time rate of reaction)(「STR」)は、単位時間あたり反応媒体36の単位体積あたりに供給される被酸化性化合物の質量(例えば、1時間あたり1立方メートルあたり供給されるp−キシレンのキログラム)と定義される。従来の使用法では、生成物に転化しない被酸化性化合物の量は、STR計算の前に供給流中の被酸化性化合物の量から差し引かれるのが典型的であろう。しかし、本明細書に言及される被酸化性化合物(例えば、p−キシレン)の多くでは転化率及び収率は典型的には高く、この用語を上述のとおり本明細書中で定義するのが簡便である。とりわけ資本費用及び運転インベントリー(operating inventory)の理由で、反応は高STRで実施できる。しかし、STRを増加させながら反応を実施すると、部分酸化の質又は収率に影響を与えることがある。気泡塔反応器20は、被酸化性化合物(例えば、p−キシレン)のSTRが、1時間あたり1立方メートルあたり約25キログラム(「kg/m3/時」)〜約400kg/m3/時の範囲、約30kg/m3/時〜約250kg/m3/時の範囲、約35kg/m3/時〜約150kg/m3/時の範囲、又は40kg/m3/時〜100kg/m3/時の範囲である場合に特に有用になりうる。
気泡塔酸化反応器20中の酸素−STRは、単位時間あたり反応媒体36の単位体積あたり消費される分子状酸素の重量(例えば、1時間あたり1立方メートルあたり消費される分子状酸素のキログラム)と定義される。とりわけ資本費用及び溶媒の酸化消耗の理由で、反応は、高酸素−STRで実施できる。しかし、酸素−STRを増加させながら反応を実施すると、最後には部分酸化の質又は収率を低下させる。理論には拘束されないが、これは、おそらく、界面表面での気相から液体中へ、そしてそこからバルク液体へ移動する分子状酸素の移動速度に関連するようである。酸素−STRが高すぎると、おそらく、反応媒体のバルク液相中の溶存酸素含有量が低くなりすぎる。
全体的平均酸素STRは、本明細書において、単位時間あたり反応媒体36の全体積において消費される全酸素の重量(例えば、1時間あたり1立方メートルあたり消費される分子状酸素のキログラム)と定義される。気泡塔反応器20は、全体的平均酸素STRが、約25kg/m3/時〜約400kg/m3/時の範囲、約30kg/m3/時〜約250kg/m3/時の範囲、約35kg/m3/時〜約150kg/m3/時の範囲、又は40kg/m3/時〜100kg/m3/時の範囲である場合に、特に有用になりうる。
気泡塔反応器20における酸化の間、全溶媒(原料及び還流流の両方からの)質量流量と反応領域28に入る被酸化性化合物の質量流量との比は、約2:1〜約50:1の範囲、約5:1〜約40:1の範囲、又は7.5:1〜25:1の範囲に維持できる。種々の実施形態において、供給流の一部として導入される溶媒の質量流量と還流流の一部として導入される溶媒の質量流量との比は、約0.5:1〜還流流の流れが零の範囲、約0.5:1〜約4:1の範囲、約1:1〜約2:1の範囲、又は1.25:1〜1.5:1の範囲に維持できる。
気泡塔反応器20における液相酸化の間、酸化剤流は、化学量論的酸素要求量を幾分超える分子状酸素を与える量で気泡塔反応器20に導入できる。特定の被酸化性化合物と共に最良の結果のために要求される過剰な分子状酸素の量は、液相酸化の全体的な経済的側面に影響する。気泡塔反応器20における液相酸化の間、酸化剤流の質量流量と反応器20に入る被酸化性有機化合物(例えば、p−キシレン)の質量流量との比は、約0.5:1〜約20:1の範囲、約1:1〜約10:1の範囲、又は2:1〜6:1の範囲に維持できる。
さらに図1を参照すると、気泡塔反応器20に導入される原料、酸化剤、及び還流流は、多相反応媒体36の少なくとも一部を協同的に形成できる。反応媒体36は、固相、液相、及び気相を含む三相の媒体になりうる。上述のとおり、被酸化性化合物(例えば、p−キシレン)の酸化は、圧倒的に反応媒体36の液相中で起こりうる。そのため、反応媒体36の液相は、溶存酸素及び被酸化性化合物を含みうる。気泡塔反応器20中で起こる酸化反応の発熱性により、原料入口32a、b、c、dにより導入される溶媒の一部(例えば、酢酸及び水)が沸騰/気化する。そのため、反応器20中の反応媒体36の気相は、主に気化した溶媒及び酸化剤流の未溶解で未反応の部分から形成されることがある。
特定の従来技術酸化反応器は、反応媒体の加熱又は冷却に熱交換チューブ/フィンを利用する。しかし、そのような熱交換構造は、本明細書に記載の本発明の反応器及びプロセスにおいて望ましくないことがある。そのため、種々の実施形態において、気泡塔反応器20は、反応媒体36と接触する表面を実質的に含まず、1平方メートルあたり30,000ワットを超える時間平均熱流束を示すように設計できる。さらに、種々の実施形態において、反応媒体36の時間平均反応熱の約50パーセント未満、約30パーセント未満、又は10パーセント未満が熱交換表面により除去される。
反応媒体36の液相中の溶存酸素の濃度は、気相からの物質移動の速度と液相内の反応性消費速度との間の動的釣り合いである(すなわち、それは、供給気相における分子状酸素の分圧により単純に設定されるわけでないが、これは溶存酸素の供給速度における一因子であり、溶存酸素の上限濃度に影響する)。溶存酸素の量は場所によって変動し、気泡界面付近では高い。全体的には、溶存酸素の量は、反応媒体36の異なる領域における供給要因と要求要因のバランスに依存する。時間的に、溶存酸素の量は、化学的消費速度に関連して気液混合の均一性に依存する。反応媒体36の液相中の溶存酸素の需給に適切に適合するような設計において、反応媒体36の液相中の時間平均及び体積平均の酸素濃度は、約1ppmモル(ppm molar)超、約4〜約1,000ppmモルの範囲、約8〜約500ppmモルの範囲、又は12〜120ppmモルの範囲に維持できる。
気泡塔反応器20中で実施される液相酸化反応は、固体を生成させる沈殿反応のことがある。種々の実施形態において、気泡塔反応器20中で実施される液相酸化は、反応領域28に導入される被酸化性化合物(例えば、p−キシレン)の少なくとも約10重量パーセント、少なくとも約50重量パーセント、又は少なくとも90重量パーセントに、反応媒体36中で固体の化合物(例えば、粗テレフタル酸粒子)を形成させることがある。1つ以上の実施形態において、反応媒体36中の固体の総量は、時間平均及び体積平均基準で、約3重量パーセント超、約5〜約40重量パーセントの範囲、約10〜約35重量パーセントの範囲、又は15〜30重量パーセントの範囲になりうる。種々の実施形態において、気泡塔反応器20中で製造される酸化生成物(例えば、テレフタル酸)のかなりの部分は、反応媒体36の液相に溶解したままではなく、反応媒体36中で固体として存在することがある。反応媒体36に存在する固相酸化生成物の量は、反応媒体36中の全酸化生成物(固相及び液相)の少なくとも約25重量パーセント、反応媒体36中の全酸化生成物の少なくとも約75重量パーセント、又は反応媒体36中の全酸化生成物の少なくとも95重量パーセントになりうる。反応媒体36中の固体の量に関して先に与えられた数値範囲は、実質的に連続的な期間にわたる気泡塔20の実質的に定常状態の運転に当てはまり、気泡塔反応器20の運転開始、運転停止、又は最適以下の運転には当てはまらない。反応媒体36中の固体の量は重量法により決定される。この重量法において、スラリーの代表的な部分が反応媒体から抜き出され、秤量される。反応媒体中に存在する全体的な固液の分割を効果的に維持する状態で、遊離の液体が、沈殿した固体の損失が事実上無く、初期の液体部分の約10パーセント未満が固体のその部分に残存する状態で、沈降又は濾過により固体から除かれる。固体に残存する液体は、固体の昇華が事実上無く、蒸発乾固される。固体の残存部分が秤量される。固体の部分の重量とスラリーの元の部分の重量との比が、典型的にはパーセントで表される、固体の分率である。
気泡塔反応器20中で実施される沈殿反応は、反応媒体36に接触する特定の剛性構造の表面に汚損(すなわち、固体の蓄積)を起こすことがある。そのため、一実施形態において、気泡塔反応器20は、反応領域28に内部熱交換、撹拌、又はバッフル構造を実質的に全く含まないように設計されることがあるが、その理由は、そのような構造は汚損しやすいからである。反応領域28中に内部構造がある場合、かなりな量の上向きの平面状表面を含む外部表面を有する内部構造を避けることが望ましいが、その理由は、そのような上向きの平面状表面は非常に汚損しやすいからである。そのため、内部構造が反応領域28に存在する場合、水平からの傾きが約15度未満である実質的に平面状の表面により形成されるのは、そのような内部構造の上向き露出外部総表面積の約20パーセント未満でなくてはならない。この種の構成を持つ内部構造は、本明細書において「非汚染」構成を有すると称される。
再び図1を参照すると、気泡塔反応器20の物理的構成は、不純物の生成を最低限にしながら、被酸化性化合物(例えば、p−キシレン)の最適化された酸化を与えるのに役立つ。種々の実施形態において、容器シェル22の細長い反応セクション24は、実質的に円筒状の本体46及び下部頭部48を含み得る。反応領域28の上端は、円筒状本体46の頂部を横切って延びる水平面50により画定される。反応領域28の下端52は、下部頭部48の最低内表面により画定される。典型的には、反応領域28の下端52は、スラリー出口38の開口部に近接して位置する。そのため、気泡塔反応器20内に画定される細長い反応領域28は、円筒状本体46の延長軸に沿って反応領域28の上端50から下端52まで測定される最大長さ「Lp」を有する。反応領域28の長さ「Lp」は、約10〜約100メートルの範囲、約20〜約75メートルの範囲、又は25〜50メートルの範囲になり得る。反応領域28は、円筒状本体46の最大内径に典型的には等しい最大直径(幅)「Dp」を有する。反応領域28の最大直径Dpは、約1〜約12メートルの範囲、約2〜約10メートルの範囲、約3.1〜約9メートルの範囲、又は4〜8メートルの範囲になりうる。1つ以上の実施形態において、反応領域28は、長さ対直径「Lp:Dp」比が、約6:1〜約30:1の範囲、約8:1〜約20:1の範囲、又は9:1〜15:1の範囲になりうる。
先に議論されたとおり、気泡塔反応器20の反応領域28は、多相反応媒体36を受け取る。反応媒体36は、反応領域28の下端52に一致する底端部及び上部表面44に位置する頂端部を有する。反応媒体36の上部表面44は、反応領域28の内容物が気相連続状態から液相連続状態に遷移する垂直方向の位置で反応領域28を切る水平面に沿って画定される。上部表面44は、反応領域28の内容物の薄い水平切片の局所時間平均ガスホールドアップが0.9である垂直方向の位置に位置することがある。
反応媒体36は、その上端と下端の間で測定される最大高さ「Hp」を有する。反応媒体36の最大幅「Wp」は、円筒状本体46の最大直径「Dp」と典型的には等しい。気泡塔反応器20における液相酸化の間、Hpは、Lpの約60〜約120パーセント、Lpの約80〜約110パーセント、又はLpの85〜100パーセントに維持することができる。種々の実施形態において、反応媒体36は、高さ対幅「Hp:Lp」比が、約3:1超、約7:1〜約25:1の範囲、約8:1〜約20:1の範囲、又は9:1〜15:1の範囲になりうる。本発明の一実施形態において、Lp及びDpに関して本明細書に与えられる種々の寸法又は比がHp及びWpにも当てはまるように、また逆もそうであるように、Lp=HpかつDp=Wpである。
本発明の実施形態により与えられる比較的高いLp:Dp及びHp:Wp比は、本発明のシステムのいくつかの重要な利点に貢献することができる。以下に詳細に議論されるとおり、高いLp:Dp及びHp:Wp比は、以下に議論される特定の他の特徴とともに、反応媒体36中の分子状酸素及び/又は被酸化性化合物(例えば、p−キシレン)の濃度における有利な垂直方向の勾配を促進することができる。従来の知識は、全体にわたり比較的均一な濃度を持つよく混合された反応媒体を好都合とするだろうが、それとは反対に、酸素及び/又は被酸化性化合物の濃度の垂直方向の多段化が、より効率よく経済的な酸化反応を促進することが発見された。反応媒体36の頂部付近で酸素及び被酸化性化合物の濃度を最低にすると、未反応の酸素及び未反応の被酸化性化合物を上部気体出口40により損失することを避けるのに役立つことがある。しかし、被酸化性化合物及び未反応の酸素の濃度が反応媒体36全体にわたって低い場合、酸化の速度及び/又は選択性が低下する。そのため、種々の実施形態において、分子状酸素及び/又は被酸化性化合物の濃度は、反応媒体36の頂部付近よりも反応媒体36の底部付近で著しく高くなりうる。
さらに、高いLp:Dp及びHp:Wp比により、反応媒体36の底部での圧力を、反応媒体36の頂部での圧力より著しく高くすることができる。この垂直方向の圧力勾配は、反応媒体36の高さ及び密度の結果である。この垂直方向の圧力勾配の利点の1つは、容器底部での高圧が、別な方法で浅い反応器において同等な温度及び頭頂圧力で達成されるであろうよりも、高い酸素溶解度及び物質移動を推進することである。そのため、酸化反応は、浅い容器中で要求されるだろうよりも低い温度で実施できる。気泡塔反応器20がp−キシレンを粗テレフタル酸(CTA)にする部分酸化に利用される場合、同じ又はより良い酸素物質移動速度と共により低い反応温度で運転する能力は、いくつかの利点を有する。例えば、p−キシレンの低温での酸化は、反応中に燃焼する溶媒の量を減らす。以下でさらに詳しく議論されるとおり、低温の酸化は、小さく、高表面積で、結合のゆるい、容易に溶解するCTA粒子の形成も支持し、それは、従来の高温酸化プロセスで製造される、大きく、低表面積で、密なCTA粒子よりも経済的な生成技術に付すことができる。
反応器20における酸化の間、反応媒体36の時間平均及び体積平均の温度は、約125〜約200℃の範囲、約140〜約180℃の範囲、又は150〜170℃の範囲に維持できる。反応媒体36より上の頭頂圧力は、約1〜約20バールゲージ圧(「barg」)の範囲、約2〜約12bargの範囲、又は4〜8bargの範囲に維持できる。反応媒体36の頂部と反応媒体36の底部の間の圧力差は、約0.4〜約5バールの範囲、約0.7〜約3バールの範囲、又は1〜2バールの範囲になりうる。反応媒体36より上の頭頂圧力は一般的に比較的一定の圧力に維持できるが、一実施形態は、頭頂圧力をパルス状にして、反応媒体36中の向上した混合及び/又は物質移動を促進することを企図する。頭頂圧力がパルス状になると、パルス状の圧力は、本明細書に述べられる定常状態頭頂圧力の約60〜約140パーセント、約85〜約115パーセント、又は95〜105パーセントになりうる。
反応領域28の高Lp:Dp比のさらなる利点は、反応媒体36の平均空塔速度の増加に貢献できることである。反応媒体36に関連して本明細書において使用される用語「空塔速度」及び「ガス空塔速度」は、反応器中のある高さでの反応媒体36の気相の体積流量を、その高さでの反応器の水平方向断面積で割ったものを表すものとする。反応領域28の高いLp:Dp比により与えられる空塔速度の増加は、局所混合を促進し、反応媒体36のガスホールドアップを増加させることができる。反応媒体36の4分の1の高さ、半分の高さ、及び/又は4分の3の高さでの反応媒体36の時間平均空塔速度は、約0.3メートル毎秒超、約0.8〜約5メートル毎秒の範囲、約0.9〜約4メートル毎秒の範囲、又は1〜3メートル毎秒の範囲になり得る。
さらに図1を参照すると、気泡塔反応器20の解放セクション26は、単に、反応セクション24のすぐ上に位置する容器シェル22の幅広の部分でよい。解放セクション26は、気相が反応媒体36の上部表面44より上に上がり気体出口40に近づくにつれ、気泡塔反応器20中で上向きに流れる気相の速度を低下させる。気相の上向き速度のこのような低下は、上向きに流れる気相中に同伴される液体及び/又は固体の除去を促進するのに役立ち、それにより、反応媒体36の液相中に存在する特定の成分の望ましくない損失を低減する。
解放セクション26は、概切頭円錐状遷移壁54、概円筒状の幅広い側壁56、及び上部頭部58を含むことができる。遷移壁54の狭い下部端は、反応セクション24の円筒状本体46の頂部に結合している。遷移壁54の幅広い上部端は、幅広い側壁56の底部に結合している。遷移壁54は、その狭い下部端から、垂直から約10〜約70度の範囲、垂直から約15〜約50度の範囲、又は垂直から15〜45度の範囲の角度で、上向きかつ外向きに延びることができる。幅広の側壁56は、反応セクション24の最大直径Dpよりも一般的に大きい最大直径「X」を有するが、反応セクション24の上部が、反応セクション24の全体的な最大直径よりも小さい直径を有する場合、Xは実際にはDpよりも小さくなることがある。種々の実施形態において、幅広の側壁56の直径と反応セクション24の最大直径との比「X:Dp」は、約0.8:1〜約4:1の範囲、又は1.1:1〜2:1の範囲になりうる。上部頭部58は、幅広の側壁56の頂部に結合している。上部頭部58は、気体を気体出口40により解放領域30から逃す中央の開口部を画定する概楕円形状頭部部材でよい。或いは、上部頭部58は、円錐を含むどのような形状でもよい。解放領域30は、反応領域28の頂部50から解放領域30の最上部分まで測定される最大高さ「Y」を有する。反応領域28の長さと解放領域30の高さとの比「Lp:Y」は、約2:1〜約24:1の範囲、約3:1〜約20:1の範囲、又は4:1〜16:1の範囲になりうる。
さらに図1を参照すると、運転の間、気相酸化剤(例えば、空気)は、酸化剤入口66a、b及び酸化剤スパージャー34により反応領域28に導入できる。酸化剤スパージャー34は、反応領域28への気相酸化剤の通過を可能にするどのような形状でも構成でもよい。例えば、酸化剤スパージャー34は、複数の酸化剤排出開口部を画定する環状又は多角形(例えば、八角形)環部材を含んでよい。種々の実施形態において、酸化剤排出開口部のいくつか又は全ては、気相酸化剤を全般的に下向きに排出するように構成されていてよい。酸化剤スパージャー34の具体的な構成にかかわらず、酸化剤スパージャーは、酸化剤排出開口部を通って反応領域中へ酸化剤流を排出することに関連する圧力低下を最小にするように、物理的に構成し、運転できる。そのような圧力低下は、酸化剤スパージャーの酸化剤入口66a、bでの流れ導管内の酸化剤流の時間平均静圧から、酸化剤流の半分がその垂直方向の位置より上に導入され、酸化剤流の半分がその垂直方向の位置より下に導入される高さでの反応領域の時間平均静圧を引いたものとして計算される。種々の実施形態において、酸化剤スパージャー34からの酸化剤流の排出に関連する時間平均圧力低下は、約0.3メガパスカル(「MPa」)未満、約0.2MPa未満、約0.1MPa未満、又は0.05MPa未満になりうる。
任意に、連続的又は間欠的な噴流を、酸化剤スパージャー34に液体(例えば、酢酸、水、及び/又はp−キシレン)により与えて、酸化剤スパージャーの固体による汚損を防止できる。そのような液体噴流が利用される場合、有効量の液体(すなわち、酸化剤流に当然存在するかもしれない少量の液滴ではない)を、毎日1分を超える少なくとも1期間、酸化剤スパージャーに通し、酸化剤開口部から出すことができる。液体が、連続的又は周期的に酸化剤スパージャー34から排出される場合、酸化剤スパージャーを通る液体の質量流量と酸化剤スパージャーを通る分子状酸素の質量流量との時間平均比は、約0.05:1〜約30:1の範囲、約0.1:1〜約2:1の範囲、又は0.2:1〜1:1の範囲になりうる。
多相反応媒体を収容する多くの従来型気泡塔反応器において、酸化剤スパージャー(又は、反応領域に酸化剤流を導入する他の機構)より下に位置する実質的に全ての反応媒体は、非常に低いガスホールドアップ値を有する。当分野に知られているとおり、「ガスホールドアップ」は、単に、気体状態にある多相媒体の体積分率である。媒体中の低ガスホールドアップの領域は、「非通気」領域とも称される。多くの従来型スラリー気泡塔反応器において、反応媒体の総体積のかなりの部分が、酸化剤スパージャー(又は、反応領域に酸化剤流を導入する他の機構)より下に位置している。そのため、従来型気泡塔反応器の底部に存在する反応媒体のかなりの部分は通気されていない。
気泡塔反応器中の酸化に付される反応媒体中の非通気領域の量を最小限にすると、特定の種類の望まれない不純物の生成を最小限にできることが発見された。反応媒体の非通気領域は、比較的少ない酸化剤の気泡を含む。この低体積の酸化剤の気泡は、反応媒体の液相に溶解するために利用可能な分子状酸素の量を低下させる。そのため、反応媒体の非通気領域にある液相は、比較的低濃度の分子酸素を有する。反応媒体のこれらの酸素欠乏、非通気領域は、所望の酸化反応よりも望まれない副反応を促進する傾向がある。例えば、p−キシレンが部分酸化されてテレフタル酸を形成する場合、反応媒体の液相中の不十分な酸素利用性は、特にフルオレノン及びアントラキノンとして知られる非常に望ましくない着色分子を含む、望ましくないほど大量の安息香酸及び結合した芳香族環の形成を起こすことがある。
1つ以上の実施形態によると、液相酸化は、低ガスホールドアップ値を有する反応媒体の体積分率が最小限であるように構成及び運転される気泡塔反応器において実施できる。非通気領域のこのような最小化は、反応媒体の体積全体を、均一な体積の2,000の別々な水平切片に理論上分割することにより定量化できる。最高及び最低の水平切片を除いて、各水平切片は、その側面で反応器の側壁に接し、その頂部及び底部で想像上の水平な面に接した別々の体積である。最高の水平切片は、その底部で想像上の水平な面に接し、その頂部で反応媒体の上部表面に接している。最低の水平切片は、その頂部で想像上の水平な面に接し、その底部で容器の下端に接している。反応媒体が、等しい体積の2,000の別々の水平切片に理論上分割されると、各水平切片の時間平均及び体積平均のガスホールドアップが決定できる。非通気領域の量を定量化するこの方法が利用される場合、時間平均及び体積平均のガスホールドアップが0.1未満である水平切片の数は、30未満、15未満、6未満、4未満、又は2未満になりうる。ガスホールドアップが0.2未満である水平切片の数は、80未満、40未満、20未満、12未満、又は5未満になりうる。また、ガスホールドアップが0.3未満である水平切片の数は、120未満、80未満、40未満、20未満、又は15未満になりうる。
さらに図1を参照すると、反応領域28中の下方に酸化剤スパージャー34を配置することが、反応媒体36中の非通気領域の量の低下を含む、いくつかの利点を与えることが発見された。反応媒体36の高さ「Hp」、反応領域28の長さ「Lp」、及び反応領域28の最大直径「Dp」を仮定すると、酸化剤流の大部分は、反応領域28の下端52の約0.025Hp、0.022Lp、及び/又は0.25Dp以内、反応領域28の下端52の約0.02Hp、0.018Lp、及び/又は0.2Dp以内、又は反応領域28の下端52の0.015Hp、0.013Lp、及び/又は0.15Dp以内に反応領域28に導入できる。
反応媒体36中の非通気領域(すなわち、低ガスホールドアップの領域)を最小限にすることにより与えられる利点に加え、反応媒体36全体のガスホールドアップを最大限にすることにより酸化を高められることが発見された。反応媒体36は、少なくとも約0.4、約0.6〜約0.9の範囲、又は0.65〜0.85の範囲の時間平均及び体積平均のガスホールドアップを有することがある。気泡塔反応器20のいくつかの物理的及び運転上の特性は、先に議論された高いガスホールドアップに貢献する。例えば、ある反応器の大きさ及び酸化剤流の流れに対して、反応領域28の高Lp:Dp比は、低い直径を生み出し、それは、反応媒体36中の空塔速度を増し、それは次にガスホールドアップを上昇させる。さらに、気泡塔の実際の直径及びLp:Dp比は、ある一定の空塔速度に対してすら平均ガスホールドアップに影響することが知られている。さらに、特に反応領域28の底部における非通気領域の最小限化は、ガスホールドアップ値の上昇に貢献する。さらに、気泡塔反応器の頭頂圧力及び機械的構成は、本明細書に開示される高い空塔速度及びガスホールドアップ値での運転安定性に影響を与えうる。
さらに図1を参照すると、反応媒体36において被酸化性化合物(例えば、p−キシレン)の分布の向上は、垂直方向に間隔のあいた複数の位置での液相供給流の反応領域28への導入により与えうることが発見された。種々の実施形態において、液相供給流は、少なくとも3つの原料開口部、又は少なくとも4つの原料開口部により反応領域28に導入できる。本明細書では、用語「原料開口部」は、液相供給流が反応媒体36との混合のために反応領域28に排出される開口部を表すものとする。1つ以上の実施形態において、原料開口部の少なくとも2つは、互いに、少なくとも約0.5Dp、少なくとも約1.5Dp、又は少なくとも3Dpだけ垂直方向に間隔があいていてよい。しかし、最も高い原料開口部は、最も低い酸化剤開口部から、約0.75Hp、0.65Lp、及び/又は8Dp以下;約0.5Hp、0.4Lp、及び/又は5Dp以下;又は0.4Hp、0.35Lp、及び/又は4Dp以下、垂直方向に間隔があいていてよい。
液相供給流を複数の垂直方向の位置から導入することが望ましいが、液相供給流の大部分が反応媒体36及び/又は反応領域28の下半分に導入されると、反応媒体36中の被酸化性化合物の分布が向上することも発見された。種々の実施形態において、液相供給流の少なくとも約75重量パーセント又は少なくとも90重量パーセントを、反応媒体36及び/又は反応領域28の下半分に導入できる。さらに、液相供給流の少なくとも約30重量パーセントを、酸化剤流が反応領域28に導入される最も低い垂直方向の位置の約1.5Dp以内で反応領域28に導入できる。酸化剤流が反応領域28に導入される最も低い垂直方向のこの位置は、典型的には酸化剤スパージャー34の底部である。しかし、酸化剤流を反応領域28に導入する種々の代替構成も種々の実施形態により企図される。1つ以上の実施形態において、液相原料の少なくとも約50重量パーセントを、酸化剤流が反応領域28に導入される最も低い垂直方向の位置の約2.5Dp以内に導入できる。他の実施形態において、液相供給流の少なくとも約75重量パーセントを、酸化剤流が反応領域28に導入される最も低い垂直方向の位置の約5Dp以内に導入できる。
各原料開口部は、原料が排出される開放部分を画定する。種々の実施形態において、全ての原料入口の累積開放部分の少なくとも約30パーセントは、酸化剤流が反応領域28に導入される最も低い垂直方向の位置の約1.5Dp以内に位置できる。他の実施形態において、全ての原料入口の累積開放部分の少なくとも約50パーセントは、酸化剤流が反応領域28に導入される最も低い垂直方向の位置の約2.5Dp以内に位置できる。さらに他の実施形態において、全ての原料入口の累積開放部分の少なくとも約75パーセントは、酸化剤流が反応領域28に導入される最も低い垂直方向の位置の約5Dp以内に位置できる。
さらに図1を参照すると、1つ以上の実施形態において、原料入口32a、b、c、dは、単純に、容器シェル22の片側に沿って垂直方向に並んだ一連の開口部であってよい。これらの原料開口部は、約7センチメートル未満、約0.25〜約5センチメートルの範囲、又は0.4〜2センチメートルの範囲の実質的に類似の直径を有しうる。気泡塔反応器20は、各原料開口部から出る液相供給流の流量を制御するシステムを備えていてよい。そのような流量制御システムは、原料入口32a、b、c、dのそれぞれに対して別々の流量制御バルブ74a、b、c、dを含みうる。さらに、気泡塔反応器20は、液相供給流の少なくとも一部を、少なくとも約2メートル毎秒、少なくとも約5メートル毎秒、少なくとも約6メートル毎秒、又は8〜20メートル毎秒の範囲の高い入口空塔速度で反応領域28に導入できるような流量制御システムを備えることもある。本明細書では、用語「入口空塔速度」は、原料開口部から出る供給流の時間平均体積流量を、原料開口部の面積で割ったものを表す。種々の実施形態において、供給流の少なくとも約50重量パーセントが、高い入口空塔速度で反応領域28に導入されうる。1つ以上の実施形態において、実質的に全ての供給流が、高い入口空塔速度で反応領域28に導入される。
ここで図2を参照すると、一次酸化反応器102及び二次酸化反応器104を含む反応器システム100が示されている。一次酸化反応器102は、図1に関連して先に記載された気泡塔反応器20と実質的に同様に構成及び運転することができる。
1つ以上の実施形態において、 一次酸化反応器102及び二次酸化反応器104は気泡塔反応器である。一次酸化反応器102は、一次反応容器106及び一次酸化剤スパージャー108を含むことができ、二次酸化反応器104は、二次酸化反応容器110及び下部酸化剤スパージャー112を含むことができる。以下で詳細に議論されるとおり、二次酸化反応器104は、任意に1つ以上の上部酸化剤スパージャーを含んでもよい。1つ以上の実施形態において、一次及び二次反応容器106及び110は、概円筒状構成を有するそれぞれの直立した側壁を、それぞれ含んでよい。二次反応容器110の直立した側壁の最大高さと一次反応容器106の直立した側壁の最大高さとの比は、約0.1:1〜約0.9:1の範囲、約0.2:1〜約0.8:1の範囲、又は0.3:1〜0.7:1の範囲になりうる。
一次反応容器106は、その中に一次反応領域116を画定し、二次反応容器110は、その中に二次反応領域118を画定する。種々の実施形態において、二次反応領域118と一次反応領域116の最大水平断面積の比は、約0.01:1〜約0.75:1の範囲、約0.02:1〜約0.5:1の範囲、又は0.04:1〜0.3:1の範囲になりうる。さらに、一次反応領域116と二次反応領域118の体積比は、約1:1〜約100:1の範囲、約4:1〜約50:1の範囲、又は8:1〜30:1の範囲になりうる。さらに、一次反応領域116は、垂直方向の最大高さと水平方向の最大直径との比が、約3:1〜約30:1の範囲、約6:1〜約20:1の範囲、又は9:1〜15:1の範囲になりうる。
図2に示されているとおり、二次反応領域118は、垂直方向の最大長さLs及び水平方向の最大直径Dsを有しうる。1つ以上の実施形態において、二次反応領域118は、垂直方向の最大長さと水平方向の最大直径との比「Ls:Ds」が、約14:1〜約28:1の範囲、約16:1〜約26:1の範囲、約18:1〜約24:1の範囲、約20:1〜約23:1の範囲、又は21:1〜22:1の範囲になりうる。種々の実施形態において、二次反応領域118のDsは、約0.1〜約5メートルの範囲、約0.3〜約4メートルの範囲、又は1〜3メートルの範囲になりうる。さらに、二次反応領域118のLsは、約1〜約100メートルの範囲、約3〜約50メートルの範囲、又は10〜40メートルの範囲になりうる。
図1に関連して先に記載された気泡塔反応器20と同様に、一次反応領域116は、垂直方向の最大長さLp及び水平方向の最大直径Dpを有する。種々の実施形態において、二次反応領域118の水平方向の最大直径と一次反応領域116の水平方向の最大直径との比「Ds:Dp」は、約0.05:1〜約0.8:1の範囲、約0.1:1〜約0.6:1の範囲、又は0.2:1〜0.5:1の範囲になりうる。さらに、二次反応領域118の垂直方向の最大長さと一次反応領域116の垂直方向の最大長さとの比「Ls:Lp」は、約0.03:1〜約1:1の範囲、約0.1:1〜約0.9:1の範囲、又は0.3:1〜0.8:1の範囲になりうる。
種々の実施形態において、二次酸化反応器104は、一次酸化反応器102と並んで位置しうる(すなわち、一次及び二次酸化反応器102と104の少なくとも一部が同じ高さを共有する)。上述のとおり、一次酸化反応器102の一次反応領域116は、最大直径Dpを有する。1つ以上の実施形態において、二次反応領域118の体積中心は、一次反応領域416の体積中心から、少なくとも約0.5Dp、0.75Dp、又は1.0Dp、かつ約30Dp未満、10Dp,又は3Dpだけ水平方向に離れている。
一次反応容器106及び付属装置に関して本明細書に明示された任意のパラメーター(例えば、高さ、幅、面積、体積、水平方向の相対的な配置、及び垂直方向の相対的な配置)は、一次反応容器106により画定される一次反応領域116にも当てはまると解釈され、逆もまた同じである。さらに、二次反応容器110及び付属装置に関して本明細書に明示された任意のパラメーターは、二次反応容器110により画定される二次反応領域118にも当てはまると解釈され、逆もまた同じである。
反応器システム100の正常な運転の間、反応媒体120を、最初に、一次酸化反応器102の一次反応領域116において酸化に付すことができる。次いで、反応媒体120aは一次反応領域116から抜き出され、管路105により二次反応領域118に移されうる。二次反応領域118において、反応媒体120bの液相及び/又は気相を、さらなる酸化に付すことができる。種々の実施形態において、一次反応領域116から抜き出される液相及び/又は気相の少なくとも約50、75、95、又は99重量パーセントが、二次反応領域116で処理されうる。頭頂ガスは二次酸化反応器104の上部気体出口を出て、管路107により一次酸化反応器102に戻されうる。反応媒体120bのスラリー相は、二次酸化反応器104の下部スラリー出口122を出て、その後さらなる下流処理に付されうる。
入口管路105は、どのような高さで一次酸化反応器102に結合してもよい。図2に示されていないが、望まれる場合、反応媒体120は、二次反応領域118に機械的にポンプで送ることができる。しかし、位置水頭(重力)を利用して、反応媒体120を一次反応領域116から、入口管路105を通して二次反応領域118に送ることもできる。したがって、入口管路105は、一端が、一次反応領域116の全高さ及び/又は体積の上部50、30、20、又は10パーセントに結合できる。他の種々の実施形態において、反応媒体120aが一次酸化反応器102を出て入口管路105に入るスラリー出口(図示せず)は、一次反応領域116の通常頂部及び通常底端部のそれぞれから、少なくとも0.1Lp、少なくとも0.2Lp、又は少なくとも0.3Lp離れていてよい。
種々の実施形態において、入口管路105の他の端は、二次反応領域118の全高さ及び/又は体積の上部30、20、10、又は5パーセントに位置するスラリー入口(図示せず)に流体流連通して結合できる。代わりの実施形態において、二次酸化反応器104のスラリー入口は、二次反応領域118の底部から、約0.3Ls〜約0.9Lsの範囲、約0.4Ls〜約0.8Lsの範囲、約0.5Ls〜約0.8Lsの範囲、又は0.55Ls〜0.6Lsの範囲の距離だけ離れた中間レベルスラリー入口になりうる。さらに、二次酸化反応器104のスラリー入口は、二次反応領域の底部から、約9Ds〜約15Dsの範囲、約10Ds〜約14Dsの範囲、又は11Ds〜13Dsの距離だけ離れていてよい。運転時、反応媒体120aの少なくとも一部を、中間レベルスラリー入口により二次反応領域118に導入できる。種々の実施形態において、二次反応領域118に導入された反応媒体120aの総量の少なくとも5体積パーセント、少なくとも10体積パーセント、少なくとも20体積パーセント、少なくとも30体積パーセント、少なくとも50体積パーセント、少なくとも75体積パーセント、又は100体積パーセントが、中間レベルスラリー入口により導入できる。
種々の実施形態において、入口管路105は、水平、実質的に水平、かつ/又は一次酸化反応器102から二次酸化反応器104に向かって下向きに傾斜していてよい。1つ以上の実施形態において、入口管路105は水平又は実質的に水平であり、直線又は実質的に直線でよい。したがって、1つ以上の実施形態において、一次酸化反応器102からのスラリー出口(図示せず)は、二次酸化反応器104のスラリー入口(図示せず)と同じ又は実質的に同じ垂直方向の高さでよい。
種々の実施形態において、出口管路107は二次酸化反応器104の任意の高さに結合してよい。種々の実施形態において、出口管路107は、入口管路105の結合高さより上で二次酸化反応器104に結合できる。さらに、出口管路107は、二次酸化反応器104の頂部に結合できる。出口管路107は、入口管路105の結合高さより上で一次酸化反応器102に結合できる。種々の実施形態において、出口管路107は、一次反応領域116の全高さ及び/又は体積の上部30、20、10、又は5パーセントに結合する。出口管路107は、水平、かつ/又は二次酸化反応器104から一次酸化反応器102に向かって上向きに傾斜していてよい。図2に示されていないが、出口管路107は、一次酸化反応器102の頂部から気体状流出物を抜き出す気体出口管路に直接結合してよい。
二次反応領域116の上部範囲は、一次反応領域118の上部範囲の上でも下でもよい。種々の実施形態において、一次反応領域116の上部範囲は、二次反応領域118の上部範囲の10メートル上から50メートル下以内、2メートル下から40メートル下、又は5メートル下から30メートル下になりうる。二次反応領域118の下部範囲は、一次反応領域116の下部範囲の上の高さでも下の高さでもよい。種々の実施形態において、一次反応領域116の下部範囲は、二次反応領域118の下部範囲の約40、20、5、又は2メートル以内の上か下の高さでよい。
下部スラリー出口122は、二次酸化反応器104のどのような高さから出てもよい。種々の実施形態において、下部スラリー出口122は、入口管路105の結合高さより下で二次酸化反応器104に結合できる。種々の実施形態において、下部スラリー出口122は、図2に示されるとおり、二次酸化反応器104の底部に結合する。
二次酸化反応器104は、追加の分子状酸素を二次反応領域118に排出できる少なくとも1つの酸化剤入口を含むことができる。1つ以上の実施形態において、二次酸化反応器104は、少なくとも1つの通常下部の酸化剤入口及び少なくとも1つの通常上部の酸化剤入口を含んでよい。種々の実施形態において、通常下部の酸化剤入口は、二次反応領域118の底部から、0.5Ls未満、0.4Ls未満、0.3Ls未満、又は0.2Ls未満だけ離れていてよい。さらに、通常上部の酸化剤入口は、二次反応領域118の底部から、少なくとも0.5Ls、少なくとも0.6Ls、少なくとも0.7Ls、少なくとも0.8Ls、又は少なくとも0.9Lsだけ離れていてよい。1つ以上の実施形態において、二次酸化反応器104は、それぞれ二次反応領域118の底部から、少なくとも0.5Ls、少なくとも0.55Ls、少なくとも0.6Ls、少なくとも0.7Ls、少なくとも0.8Ls、又は少なくとも0.9Lsだけ離れた、少なくとも2つの通常上部の酸化剤入口を含んでよい。さらに、上述のとおり、二次酸化反応器104は、入口管路105と流体流連通にあるスラリー入口を含んでよい。種々の実施形態において、通常上部の酸化剤入口は、二次酸化反応器104のスラリー入口から、0.4Ls未満、0.3Ls未満、0.2Ls未満、又は0.1Ls未満だけ離れていてよい。他の実施形態において、通常上部の酸化剤入口は、0.4Ls未満、0.3Ls未満、0.2Ls未満、又は0.1Ls未満だけ、スラリー入口より上に離れていてよい。
運転の間、二次反応領域118に導入される気相酸化剤の第一部分は、通常上部の酸化剤入口により導入でき、気相酸化剤の第二部分は、通常下部の酸化剤入口により導入できる。種々の実施形態において、通常上部の酸化剤入口により導入される気相酸化剤の第一部分は、二次反応領域118に導入される気相酸化剤の総体積の約5〜約49パーセントの範囲、約5〜約35パーセントの範囲、約10〜約20パーセントの範囲、又は10〜15パーセントの範囲を構成しうる。したがって、通常上部の酸化剤入口及び通常下部の酸化剤入口は、それらの間に、気相酸化剤を二次反応領域118に導入するための総解放領域を画定することができる。1つ以上の実施形態において、通常上部の酸化剤入口は、総解放領域の約5〜約49パーセントの範囲、総解放領域の約5〜約35パーセントの範囲、総解放領域の約10〜約20パーセントの範囲、又は総解放領域の10〜15パーセントの範囲を画定できる。
図2に示されるとおり、上述の下部酸化剤入口は、下部酸化剤スパージャー112を含んでよい。さらに、上述の上部酸化剤入口(複数可)は、1つ以上の上部酸化剤スパージャー114a、b、cを含んでよい。ここで図3を参照すると、二次酸化反応器104の断面が、線3−3に沿って示され、特に上部酸化剤スパージャー114aを示している。図3に見られるとおり、上部酸化剤スパージャー114aは、気相酸化剤を二次反応領域118に導入するための複数の酸化剤排出開口部124を含むことができる。示されてはいないが、上部酸化剤スパージャー114b及び114cのそれぞれも、複数の酸化剤排出開口部を含むことができる。同様に、下部酸化剤スパージャー112も、複数の酸化剤排出開口部を含むことができる。1つ以上の実施形態において、上部酸化剤スパージャー114a、b、cにより画定される酸化剤排出開口部の少なくとも50パーセント、少なくとも60パーセント、少なくとも70パーセント、少なくとも80パーセント、少なくとも90パーセント、少なくとも95パーセント、又は少なくとも99パーセントは、気相酸化剤を通常下向きの方向に排出するような向きにすることができる。本明細書では、用語「下向き」は、垂直の15°以内で、上部酸化剤スパージャー114a、b、cの通常下の面より下に延びる任意の方向を表すものとする。種々の実施形態において、下部酸化剤スパージャー112に位置する酸化剤排出開口部の少なくとも50パーセント、少なくとも60パーセント、少なくとも70パーセント、少なくとも80パーセント、少なくとも90パーセント、少なくとも95パーセント、又は少なくとも99パーセントは、気相酸化剤を、通常下向きの方向及び/又は垂直方向に下向きから角度45°又は角度およそ45°で排出するような向きにすることができる。
上述のとおり、二次反応領域118に導入される気相酸化剤の少なくとも一部と反応媒体120aは合わさり、反応媒体120bを形成できる。1つ以上の実施形態において、反応媒体120bが有する低酸素濃度の領域が最小限であることが望ましいことがある。低酸素含有量領域のこのような最小化は、反応媒体120bの体積全体を、均一な体積の20の別々な水平切片に理論上分割することにより定量化できる。最高及び最低の水平切片を除いて、各水平切片は、その側面で反応器の側壁に接し、その頂部及び底部で想像上の水平な面に接した別々の体積である。最高の水平切片は、その底部で想像上の水平な面に接し、その頂部で反応媒体の上部表面に接しているか、又は液体が充填された塔の場合容器の上端に接している。最低の水平切片は、その頂部で想像上の水平な面に接し、その底部で容器の下端に接している。種々の実施形態において、反応媒体120bの体積全体が、等しい体積の20の別々の水平切片に理論上分割されると、隣接した2つの水平切片のいずれも、合わせた時間平均及び体積平均の酸素含有量が7未満、8未満、9未満、又は10ppmw未満ではない。他の実施形態において、20の水平切片のいずれも、時間平均及び体積平均の酸素含有量が7未満、8未満、9未満、又は10ppmw未満ではない。
図2を再び参照すると、一般に、原料、酸化剤、及び還流流が一次酸化反応器102に導入される方法並びに一次酸化反応器102が運転される方法は、図1の気泡塔反応器20に関して先に記載されたものと実質的に同じである。しかし、一次酸化反応器102(図2)と気泡塔反応器20(図1)との間の1つの違いは、一次酸化反応器102は、反応媒体120aのスラリー相を下流処理のために一次反応容器106から直接排出させる出口を含まないことである。むしろ、一次酸化反応器102は、反応媒体120aのスラリー相を、反応器システム100から排出する前に、最初に二次酸化反応器104に通す必要がある。上述のとおり、二次酸化反応器104の二次反応領域118において、反応媒体120bはさらなる酸化に付され、反応媒体120bの液相及び/又は固相の精製を助ける。
p−キシレンが反応領域116に供給されるプロセスにおいて、一次反応領域116を出て二次反応領域118に入る反応媒体120aの液相は、典型的には少なくとも幾らかのp−トルイル酸を含む。種々の実施形態において、二次反応領域118に入るp−トルイル酸のかなりな部分が、二次反応領域118において酸化されうる。そのため、第二の反応領域118を出る反応媒体120bの液相中のp−トルイル酸の時間平均濃度は、二次反応領域118に入る反応媒体120a/bの液相中のp−トルイル酸の時間平均濃度未満になりうる。種々の実施形態において、二次反応領域118を出る反応媒体120bの液相中のp−トルイル酸の時間平均濃度は、二次反応領域118に入る反応媒体120a/bの液相中のp−トルイル酸の時間平均濃度の約50未満、10、又は5パーセントになりうる。第二の反応領域118に入る反応媒体120a/bの液相中のp−トルイル酸の時間平均濃度は、少なくとも約250ppmw、約500〜約6,000ppmwの範囲、又は1,000〜4,000ppmwの範囲になりうる。比較すると、二次反応領域118を出る反応媒体120bの液相中のp−トルイル酸の時間平均濃度は、約1,000未満、250、又は50ppmwになりうる。
反応媒体120bが二次酸化反応器104の二次反応領域118中で処理されるにつれ、反応媒体120bのガスホールドアップは、反応媒体120bのスラリー相が二次反応領域118を通って下向きに流れるのにつれて低下することがある。種々の実施形態において、二次反応領域118に入る反応媒体120a/bと二次反応領域118を出る反応媒体120bの時間平均ガスホールドアップの比は、少なくとも約2:1、10:1、又は25:1になりうる。さらに、二次反応領域118に入る反応媒体120a/bの時間平均ガスホールドアップは、約0.4〜約0.9の範囲、約0.5〜約0.8の範囲、又は0.55〜0.7の範囲になりうる。さらに、二次反応領域118を出る反応媒体120bの時間平均ガスホールドアップは、約0.1未満、0.05、又は0.02になりうる。1つ以上の実施形態において、一次反応領域116中の反応媒体120aと二次反応領域118中の反応媒体120bの時間平均ガスホールドアップの比は、約1:1を超え、約1.25:1〜約5:1の範囲、又は1.5:1〜4:1の範囲になることがあり、ここでガスホールドアップ値は、一次及び二次反応領域116及び118の任意の高さで、一次及び二次反応領域116及び118の任意の対応する高さで、一次及び/又は二次反応領域116及び118の1/4の高さで、一次及び/又は二次反応領域116及び118の1/2の高さで、一次及び/又は二次反応領域116及び118の3/4の高さで測定されるか、かつ/或いは、一次及び/又は二次反応領域116及び118の高さ全体にわたる平均値である。種々の実施形態において、一次反応領域116中の反応媒体120aの部分の時間平均ガスホールドアップは、約0.4〜約0.9の範囲、約0.5〜約0.8の範囲、又は0.55〜0.70の範囲になることがあり、ここでガスホールドアップは、一次反応領域116の任意の高さで、一次反応領域116の1/4の高さで、一次反応領域116の1/2の高さで、一次反応領域116の3/4の高さで測定されるか、かつ/或いは、一次反応領域116の高さ全体にわたる平均値である。さらに、二次反応領域118中の反応媒体120bの部分の時間平均ガスホールドアップは、約0.01〜約0.6の範囲、約0.03〜約0.3の範囲、又は0.08〜0.2の範囲になりことがあり、ここで、ガスホールドアップは、二次反応領域118の任意の高さ、二次反応領域118の1/4の高さで、二次反応領域118の1/2の高さで、二次反応領域118の3/4の高さで測定されるか、かつ/或いは、二次反応領域118の高さ全体にわたる平均値である。
反応媒体120の温度は、一次及び二次反応領域116及び118においておよそ同じでよい。種々の実施形態において、そのような温度は、約125〜約200℃の範囲、約140〜約180℃の範囲、又は150〜170℃の範囲になりうる。しかし、図4に関連して以下に詳細に記載されるものなど、一次反応領域116内で温度差が生じうる。種々の実施形態において、同じ規模の温度差が、二次反応領域118内にも、一次反応領域116と二次反応領域118との間にも存在しうる。これらの追加の温度勾配は、二次反応領域118で起こる化学反応、追加の酸化剤の二次反応領域118への導入、及び一次反応領域116の静圧に比較して二次反応領域118にある静圧に関連する。先に開示されたとおり、種々の実施形態において、気泡ホールドアップは、一次反応領域116において、二次反応領域118中よりも高くなることがある。そのため、一次反応領域116中の静圧は、二次反応領域118中よりも高くなることがある。この圧力差の規模は、液体又はスラリー密度の大きさ及び2つの反応領域の間の気泡ホールドアップの差に依存する。この圧力差の規模は、二次反応領域118の上部境界よりさらに下の高さでは増加する。
図2に見られるように、反応システム100に供給される総分子状酸素の一部は、下部酸化剤スパージャー112及び任意に1つ以上の上部酸化剤スパージャー114a、b、cにより、二次酸化反応器104の二次反応領域118に導入される。種々の実施形態において、反応器システム100に供給される総分子状酸素の大部分は一次反応領域116に導入され、残部が二次反応領域118に導入されることがある。1つ以上の実施形態において、反応器システム100に供給される総分子状酸素の少なくとも約70、90、95、又は98モルパーセントを、一次反応領域116に導入できる。さらに、一次反応領域116に導入される分子状酸素の量と二次反応領域118に導入される分子状酸素の量とのモル比は、少なくとも約2:1、約4:1〜約200:1の範囲、又は10:1〜100:1の範囲になりうる。溶媒及び/又は被酸化性化合物(例えば、p−キシレン)の一部が二次反応領域118に直接供給されることが可能ではあるが、種々の実施形態において、反応システム100に供給される溶媒及び/又は被酸化性化合物の総量の約10未満、5、又は1重量パーセントが、二次反応領域118に直接供給される。
一次反応容器106の一次反応領域116中の反応媒体120aの体積、滞留時間、及び空時速度(space time rate)は、種々の実施形態において、二次反応容器110の二次反応領域118中の反応媒体120bの体積、滞留時間、及び空時速度より著しく大きいことがある。したがって、反応器システム100に供給される被酸化性化合物(例えば、p−キシレン)の大部分は、一次反応領域116中で酸化されうる。種々の実施形態において、反応器システム100中で酸化される全被酸化性化合物の少なくとも約80、90、又は95重量パーセントは、一次反応領域116中で酸化されうる。
1つ以上の実施形態において、一次反応領域116中の反応媒体120aの時間平均ガス空塔速度は、少なくとも約0.2、0.4、0.8、又は1メートル毎秒になることがあるが、ここで、ガス空塔速度は、一次反応領域116の任意の高さ、一次反応領域116の1/4の高さ、一次反応領域116の1/2の高さ、一次反応領域116の3/4の高さで測定され、かつ/或いは、一次反応領域116の高さ全体にわたる平均値である。二次反応領域118中の反応媒体120bは、一次反応領域116中の反応媒体120aと同じガス空塔速度を有することがあるが、種々の実施形態において、二次反応領域118中の反応媒体120bの時間平均ガス空塔速度は、一次反応領域116中の反応媒体120aの時間平均ガス空塔速度未満になりうる。二次反応領域118中のガス空塔速度のこの低減は、例えば、一次反応領域116に比べて二次反応領域118における分子状酸素の要求量低下により可能になる。一次反応領域116中の反応媒体120aと二次反応領域118中の反応媒体120bの時間平均ガス空塔速度の比は、少なくとも約1.25:1、2:1、又は5:1になることがあるが、ここで、ガス空塔速度は、一次及び二次反応領域116及び118の任意の高さで、一次及び二次反応領域116及び118の任意の対応する高さで、一次及び/又は二次反応領域116及び118の1/4の高さで、一次及び/又は二次反応領域116及び118の1/2の高さで、一次及び/又は二次反応領域116及び118の3/4の高さで測定され、かつ/或いは、一次及び/又は二次反応領域116及び118の高さ全体にわたる平均値である。種々の実施形態において、二次反応領域118中の反応媒体120bの時間平均及び体積平均のガス空塔速度は、約0.2未満、0.1、又は0.06メートル毎秒になることがあるが、ここで、ガス空塔速度は、二次反応領域118の任意の高さで、二次反応領域118の1/4の高さで、二次反応領域118の1/2の高さで、二次反応領域118の3/4の高さで測定され、かつ/或いは、二次反応領域118の高さ全体の平均値である。このような低いガス空塔速度では、二次反応領域118中の反応媒体120bのスラリー相の下向きの流れを、押し出し流れに向かう方向に動かすことができる。例えば、p−キシレンの酸化によりTPAを形成する間に、p−トルイル酸の液相濃度の比較的垂直な勾配は、二次反応領域118において、一次反応領域116よりもはるかに大きくなりうる。これは、二次反応領域118が、液体とスラリー組成物との軸混合を有する気泡塔であっても起こる。二次反応領域118中の反応媒体120bのスラリー相(固体+液体)及び液相の時間平均空塔速度は、約0.2未満、0.1、又は0.06メートル毎秒になることがあるが、ここで、空塔速度は、二次反応領域118の任意の高さで、二次反応領域118の1/4の高さで、二次反応領域118の1/2の高さで、二次反応領域118の3/4の高さで測定され、かつ/或いは、二次反応領域118の高さ全体にわたる平均値である。
種々の実施形態において、二次反応領域118に位置する反応媒体120bの液相は、二次反応領域118中の質量平均滞留時間が、少なくとも約1分、約2〜約60分の範囲、又は5〜30分の範囲になりうる。
上述のとおり、図1に関連して先に記載された気泡塔反応器の特定の物理的特徴及び運転上の特徴は、処理される反応媒体の圧力、温度、及び反応物(すなわち、酸素及び被酸化性化合物)の濃度の垂直方向の勾配を与える。先に議論されたとおり、これらの垂直方向の勾配は、従来の酸化プロセスに比べてより効率的で経済的な酸化プロセスを与えることができるが、従来の酸化プロセスは、全体にわたって圧力、温度、及び反応物濃度が比較的均一である、よく混合された反応媒体を好都合とする。本発明の実施形態による酸化システムを利用することにより可能になる、酸素、被酸化性化合物(例えば、p−キシレン)、及び温度の垂直方向の勾配は、以下でより詳細に議論される。
図4を参照すると、気泡塔反応器における酸化の間に反応媒体に存在する反応物濃度勾配を定量化するために、反応媒体の体積全体を、等しい体積の30の別々な水平切片に理論上分割することができる。図4は、反応媒体を、等しい体積の30の別々な水平切片に分割する概念を表す。最高及び最低の水平切片を除いて、各水平切片は、その頂部及び底部で想像上の水平な面に接し、その側面で反応器の壁に接した別々の体積である。最高の水平切片は、その底部で想像上の水平な面に接し、その頂部で反応媒体の上部表面に接している。最低の水平切片は、その頂部で想像上の水平な面に接し、その底部で容器シェルの底部に接している。反応媒体が、等しい体積の30の別々の水平切片に理論上分割されると、各水平切片の時間平均及び体積平均の濃度が決定できる。30の全水平切片のうち最大濃度を有する別々な水平切片を、「C−max水平切片」と特定できる。C−max水平切片より上に位置し、C−max水平切片より上に位置する全水平切片のうち最低濃度を有する別々な水平切片を、「C−min水平切片」と特定できる。次いで、垂直方向の濃度勾配を、C−max水平切片の濃度とC−min水平切片の濃度との比として計算できる。
酸素濃度勾配の定量化に関して、反応媒体が等しい体積の30の別々の水平切片に理論上分割されると、30の全水平切片のうち最大酸素濃度を有する水平切片が、「O2−max水平切片」と特定され、O2−max水平切片より上に位置する水平切片のうち最低酸素濃度を有する水平切片が、「O2−min水平切片」と特定される。水平切片の酸素濃度が、反応媒体の気相中で、時間平均及び体積平均のモル湿量基準で測定される。種々の実施形態において、O2−max水平切片の酸素濃度とO2−min水平切片の酸素濃度との比は、約2:1〜約25:1の範囲、約3:1〜約15:1の範囲、又は4:1〜10:1の範囲になりうる。
典型的には、O2−max水平切片は反応媒体の底部付近に位置し、O2−min水平切片は反応媒体の頂部付近に位置するだろう。1つ以上の実施形態において、O2−min水平切片は、30の別々な水平切片のうち5の最上水平切片の1つになりうる。さらに、図4に示されるとおり、O2−min水平切片は、30の別々な水平切片のうち最上の切片になりうる。種々の実施形態において、O2−max水平切片は、30の別々な水平切片のうち10の最低水平切片の1つになりうる。さらに、O2−max水平切片は、30の別々な水平切片のうち5の最低水平切片の1つになりうる。例えば、図4は、O2−max水平切片を、反応器の底部から3番目の水平切片として表す。1つ以上の実施形態において、O2−min水平切片とO2−max水平切片との垂直方向の間隔は、少なくとも約2Wp、少なくとも約4Wp、又は少なくとも6Wpになりうる。さらに、O2−min水平切片とO2−max水平切片との間の垂直方向の間隔は、少なくとも約0.2Hp、少なくとも約0.4Hp、又は少なくとも0.6Hpになりうる。
O2−min水平切片の湿量基準の時間平均及び体積平均の酸素濃度は、約0.1〜約3モルパーセントの範囲、約0.3〜約2モルパーセントの範囲、又は0.5〜1.5モルパーセントの範囲になりうる。O2−max水平切片の時間平均及び体積平均の酸素濃度は、約4〜約20モルパーセントの範囲、約5〜約15モルパーセントの範囲、又は6〜12モルパーセントの範囲になりうる。気体出口より反応器から排出される気体流出物中の、乾量基準の時間平均酸素濃度は、約0.5〜約9モルパーセントの範囲、約1〜約7モルパーセントの範囲、又は1.5〜5モルパーセントの範囲になりうる。
酸素濃度は反応媒体の頂部に向かって著しく減衰するので、酸素要求量は反応媒体の頂部では低下することがある。反応媒体の頂部付近の酸素要求量のこのような低下は、被酸化性化合物(例えば、p−キシレン)の濃度の垂直方向の勾配を作ることにより達成できるが、この場合、被酸化性化合物の最低濃度は反応媒体の頂部付近に位置する。
被酸化性化合物(例えば、p−キシレン)の濃度勾配の定量化に関して、反応媒体が等しい体積の30の別々な水平切片に理論上分割されると、OC−max水平切片は、30の全水平切片のうち最大の被酸化性化合物濃度を持つものとして特定され、OC−min水平切片は、OC−max水平切片より上に位置する水平切片のうち最小の被酸化性化合物濃度を持つものとして特定される。水平切片の被酸化性化合物濃度は、液相中で、時間平均及び体積平均の質量分率基準で測定される。種々の実施形態において、OC−max水平切片の被酸化性化合物濃度とOC−min水平切片の被酸化性化合物濃度との比は、約5:1を超え、約10:1を超え、約20:1を超え、又は40:1〜1000:1の範囲になりうる。
典型的には、OC−max水平切片は反応媒体の底部付近に位置し、OC−min水平切片は反応媒体の頂部付近に位置するだろう。1つ以上の実施形態において、OC−min水平切片は、30の別々な水平切片のうち5の最上水平切片の1つになりうる。さらに、OC−min水平切片は、図4に示されるとおり、30の別々な水平切片の最上のものになりうる。種々の実施形態において、OC−max水平切片は、30の別々な水平切片のうち10の最低水平切片の1つになりうる。さらに、OC−max水平切片は、30の別々な水平切片のうち5の最低水平切片の1つになりうる。例えば、図4は、OC−max水平切片を、反応器の底部から5番目の水平切片として表している。種々の実施形態において、OC−min水平切片とOC−max水平切片との間の垂直方向の間隔は、少なくとも約2Wp(ここで、「Wp」は反応媒体の最大幅である)、少なくとも約4Wp、又は少なくとも6Wpになりうる。反応媒体の高さ「Hp」を仮定すると、OC−min水平切片とOC−max水平切片との間の垂直方向の間隔は、少なくとも約0.2Hp、少なくとも約0.4Hp、又は少なくとも0.6Hpになりうる。
OC−min水平切片の液相中の時間平均及び体積平均の被酸化性化合物(例えば、p−キシレン)濃度は、約5,000ppmw未満、約2,000ppmw未満、約400ppmw未満、又は1ppmw〜100ppmwの範囲になりうる。OC−max水平切片の液相中の時間平均及び体積平均の被酸化性化合物濃度は、約100ppmw〜約10,000ppmwの範囲、約200ppmw〜約5,000ppmwの範囲、又は500ppmw〜3,000ppmwの範囲になりうる。
気泡塔反応器は、被酸化性化合物の濃度に垂直方向の勾配を与えることができるが、1,000ppmwを超える液相中の被酸化性化合物濃度を有する反応媒体の体積パーセントを最小化させることもできる。種々の実施形態において、 1,000ppmwを超える液相中の被酸化性化合物濃度を有する反応媒体の時間平均体積パーセントは、約9パーセント未満、約6パーセント未満、又は3パーセント未満になりうる。さらに、2,500ppmwを超える液相中の被酸化性化合物濃度を有する反応媒体の時間平均体積パーセントは、約1.5パーセント未満、約1パーセント未満、又は0.5パーセント未満になりうる。さらに、10,000ppmwを超える液相中の被酸化性化合物濃度を有する反応媒体の時間平均体積パーセントは、約0.3パーセント未満、約0.1パーセント未満、又は0.03パーセント未満になりうる。また、25,000ppmwを超える液相中の被酸化性化合物濃度を有する反応媒体の時間平均体積パーセントは、約0.03パーセント未満、約0.015パーセント未満、又は0.007パーセント未満になりうる。発明者らは、高レベルの被酸化性化合物を有する反応媒体の体積が単一の隣接する体積にある必要はないことを言及する。多くの場合、気泡塔反応容器における無秩序な流動パターンが、高レベルの被酸化性化合物を有する反応媒体の、2つ以上の連続的だが分離した部分を同時に生み出す。時間平均化に利用される各場合において、全反応媒体の0.0001体積パーセントを超える、そのような連続的だが分離した全体積は加算され、液相中の高レベルの被酸化性化合物濃度を有する総体積が決定される。
先に議論された酸素及び被酸化性化合物の濃度勾配に加え、温度勾配が反応媒体に存在しうる。再び図4を参照すると、この温度勾配は、反応媒体を、等しい体積の30の別々な水平切片に理論上分割し、各切片の時間平均及び体積平均の温度を測定することにより、濃度勾配に類似な方法で定量化できる。次いで、15の最低水平切片のうち最低温度を持つ水平切片をT−min水平切片として特定でき、T−min水平切片より上に位置し、T−min水平切片より上の全切片のうち最大温度を有する水平切片をT−max水平切片として特定できる。種々の実施形態において、T−max水平切片の温度は、T−min水平切片の温度より少なくとも約1℃高く、T−min水平切片の温度より約1.25〜約12℃の範囲高く、又はT−min水平切片の温度より2〜8℃の範囲高くなりうる。T−max水平切片の温度は、約125〜約200℃の範囲、約140〜約180℃の範囲、又は150〜170℃の範囲になりうる。
典型的には、T−max水平切片は反応媒体の中心付近に位置し、T−min水平切片は反応媒体の底部付近に位置するだろう。種々の実施形態において、T−min水平切片は、15の最低水平切片のうち10の最低水平切片の1つになることがあり、又は15の最低水平切片のうち5の最低水平切片の1つになりうる。例えば、図4は、T−min水平切片を、反応器の底部から2番目の水平切片として表している。種々の実施形態において、T−max水平切片は、30の別々な水平切片のうち20の真ん中の水平切片の1つになることがあり、又は30の別々な水平切片のうち14の中央の水平切片の1つになりうる。例えば、図4は、T−max水平切片を反応器の底部から20番目の水平切片(すなわち、中央の10の水平切片の1つ)として表している。T−min水平切片とT−max水平切片との間の垂直方向の間隔は、少なくとも約2Wp、少なくとも約4Wp、又は少なくとも6Wpになりうる。T−min水平切片とT−max水平切片との間の垂直方向の間隔は、少なくとも約0.2Hp、少なくとも約0.4Hp、又は少なくとも0.6Hpになりうる。
先に議論されたとおり、反応媒体中に垂直方向の温度勾配が存在する場合、反応媒体の温度が最高である高い位置で反応媒体を抜き出すことが好都合であることがあり、特に抜き出された生成物がより高温で下流処理にさらに付される場合はそうである。そのため、図2に示されているとおり、反応媒体120が1つ以上の高い出口により反応領域から抜き出される場合、高い出口(複数可)は、T−max水平切片付近に位置することがある。種々の実施形態において、高い出口は、T−max水平切片の10の水平切片以内、T−max水平切片の5の水平切片以内、又はT−max水平切片の2の水平切片以内に位置することがある。
本明細書に記載される本発明の特徴の多くが、単一の酸化反応器を利用するシステムだけでなく、多数の酸化反応器システムで利用できることがここで言及される。さらに、本明細書に記載される本発明の特定の特徴は、気泡撹拌式反応器(すなわち、気泡塔反応器)だけでなく、機械撹拌式の酸化反応器及び/又は流動撹拌式の酸化反応器でも利用できる。例えば、発明者らは、反応媒体全体にわたる酸素濃度及び/又は酸素消費速度の多段化/多様化に関連する特定の利点を発見した。反応媒体中の酸素濃度/消費の多段化により実現する利点は、反応媒体の全体積が単一の容器に収容されていても、複数の容器に収容されていても実現できる。さらに、反応媒体中の酸素濃度/消費の多段化により実現する利点は、反応容器(複数可)が、機械撹拌式でも、流動撹拌式でも、及び/又は気泡撹拌式でも実現できる。
反応媒体中の酸素濃度/消費速度の多段化の程度を定量化する一方法は、反応媒体の別々な20パーセント連続体積を2つ以上比較することである。これらの20パーセント連続体積は、特定の形状により画定される必要はない。しかし、20パーセント連続体積のそれぞれは、反応媒体の隣接する体積で形成されなければならず(すなわち、それぞれの体積は「連続的」である)、20パーセント連続体積は互いに重なってはならない(すなわち、体積は「別々」である)。これらの別々な20パーセント連続体積は、同じ反応器に位置しても、複数の反応器に位置してもよい。図5を参照すると、気泡塔反応器は、第一の別々な20パーセント連続体積37及び第二の別々な20パーセント連続体積39を含む反応媒体を含むように示されている。
反応媒体中の酸素利用性の多段化は、気相中の最も豊富な酸素のモル分率を有する反応媒体の20パーセント連続体積に言及し、気相中の最も乏しい酸素のモル分率を有する反応媒体の20パーセント連続体積に言及することにより、定量化できる。最高濃度の酸素を含む反応媒体の別々な20パーセント連続体積の気相では、湿量基準で時間平均及び体積平均の酸素濃度が、約3〜約18モルパーセントの範囲、約3.5〜約14モルパーセントの範囲、又は4〜10モルパーセントの範囲になりうる。最低濃度の酸素を含む反応媒体の別々な20パーセント連続体積の気相では、湿量基準で時間平均及び体積平均の酸素濃度が、約0.3〜約5モルパーセントの範囲、約0.6〜約4モルパーセントの範囲、又は0.9〜3モルパーセントの範囲になりうる。さらに、反応媒体の最も欠乏した20パーセント連続体積に比べた、反応媒体の最も豊富な20パーセント連続体積における湿量基準の時間平均及び体積平均の酸素濃度の比は、約1.5:1〜約20:1の範囲、約2:1〜約12:1の範囲、又は3:1〜9:1の範囲になりうる。
反応媒体中の酸素消費濃度の多段化は、最初に上記で記載された酸素−STRの点で定量化できる。酸素−STRは、既に全体的な意味(すなわち、反応媒体全体の平均酸素−STRの観点から)で記載された。しかし、酸素−STRは、反応媒体全体にわたる酸素消費速度の多段化を定量化するために、局所的な意味(すなわち、反応媒体の一部)でも考察することができる。
発明者らは、反応媒体中の圧力及び反応媒体の気相中の分子状酸素のモル分率に関して本明細書に開示された望ましい勾配と全般的に調和して、反応媒体全体にわたって酸素−STRを変動させるのが有用になりうることを発見した。したがって、種々の実施形態において、反応媒体の第二の別々な20パーセント連続体積の酸素−STRに比べた、反応媒体の第一の別々な20パーセント連続体積の酸素−STRの比は、約1.5:1〜約20:1の範囲、約2:1〜約12:1の範囲、又は3:1〜9:1の範囲になりうる。一実施形態において、「第一の別々な20パーセント連続体積」は、「第二の別々な20パーセント連続体積」よりも、分子状酸素が最初に反応媒体に導入される位置の近くに位置できる。酸素−STRのこのような大きな勾配は、部分酸化反応媒体が気泡塔酸化反応器に収容されていようが、反応媒体の気相中の分子状酸素の圧力及び/又はモル分率に勾配が作られる他の種類の反応容器(例えば、酸化剤流のかなりな逆混合が垂直方向に配置された各撹拌領域内に起こることがあり、酸化剤流の逆混合の一部が隣接する垂直方向に配置された撹拌領域の間に起こることがあるにもかかわらず、酸化剤流が反応容器の下部付近の原料から全般的に上向きに上昇する、おそらくは全般的に水平なバッフルアセンブリーにより増大される、強力な輻流を有する複数のインペラーを利用することにより達成される複数の垂直に配置された撹拌領域を有する機械撹拌式容器)に収容されていようが、望ましくなることがある。すなわち、反応媒体の気相中の分子状酸素の圧力及び/又はモル分率に勾配が存在する場合、発明者らは、溶存酸素の化学的要求量に類似の勾配を作ることが望ましくなりうることを発見した。
局所酸素−STRを多様にする一方法は、被酸化性化合物を供給する位置を制御し、反応媒体の液相の混合を制御することにより、本明細書に開示される他の開示により被酸化性化合物の濃度の勾配を制御することである。局所酸素−STRを多様にする他の有用な手段には、局所温度の変動を起こし、触媒と溶媒成分の局所混合物を変えることにより(例えば、追加の気体を導入して、反応媒体の特定の部分に蒸発冷却を起こすことにより、かつ/又は多量の水を含む溶媒流を加えて、反応媒体の特定の部分で活性を低下させることにより)、反応活性の変化を起こすことがある。
ここで図6を参照すると、一次酸化反応器200a及び二次酸化反応器200bを含む酸化反応器システム200を利用する高純度テレフタル酸(「PTA」)を製造するプロセスが示されている。図6に示される構成において、初期のスラリーが一次酸化反応器200aから製造されて、その後精製システム202において精製に付されうるが、その二次酸化反応器200bが一部である。一次酸化反応器200aから抜き出される初期スラリーは、固体の粗テレフタル酸(「CTA」)粒子及び液体母液を含みうる。典型的には、初期スラリーは、約10〜約50重量パーセントの範囲の固体CTA粒子を含むことがあり、残部は液体母液である。一次酸化反応器200aから抜き出される初期スラリーに存在する固体CTA粒子は、少なくとも約400ppmwの4−カルボキシベンズアルデヒド(「4−CBA」)、少なくとも約800ppmwの4−CBA、又は1,000〜15,000ppmwの範囲の4−CBAを含みうる。
精製システム202は、一次酸化反応器200aから抜き出される初期スラリーを受け取り、4−CBA及びCTAに存在する他の不純物の濃度を低下させる。純度の上がった/精製されたスラリーを精製システム202から製造でき、分離システム204において分離・乾燥に付して、約400ppmw未満の4−CBA、約250ppmw未満の4−CBA、又は10〜200ppmwの範囲の4−CBAを含む純度の上がった固体テレフタル酸粒子を製造できる。
精製システム202は、二次酸化反応器200b、ダイジェスター(digester)206、及び単一の結晶器208を含む。二次酸化反応器200bにおいて、初期スラリーは、図2の二次酸化反応器104に関して先に記載されたものなどの条件で酸化に付される。二次酸化反応器200bを出たスラリーはダイジェスター206に導入される。ダイジェスター206において、一次酸化反応器200aに利用されたよりわずかに高い温度で、さらなる酸化反応を実施できる。
一次酸化反応器200aで製造されたCTA粒子の高い表面積、低い粒径、及び低い密度は、CTA粒子に捕捉されている特定の不純物を、ダイジェスター206におけるCTA粒子の完全な溶解を必要とせずに、ダイジェスター206における酸化に利用可能とする。そのため、ダイジェスター206中の温度は、多くの類似の従来技術プロセスよりも低くなりうる。ダイジェスター206中で実施されるさらなる酸化は、CTA中の4−CBA濃度を、少なくとも200ppmw、少なくとも約400ppmw、又は600〜6,000ppmwの範囲低下できる。ダイジェスター206中の消化温度は、反応器200aにおける一次酸化温度よりも少なくとも約10℃高く、反応器200aにおける一次酸化温度よりも約20〜約80℃高く、又は反応器200aにおける一次酸化温度よりも30〜50℃高くなりうる。消化温度(digestion temperature)は、約160〜約240℃の範囲、約180〜約220℃の範囲、又は190〜210℃の範囲になりうる。種々の実施形態において、ダイジェスター206から出た精製済み生成物は、分離システム204における分離の前に結晶器208における単一の結晶化工程しか必要としない。好適な二次酸化/消化技術は、米国特許第7,132,566号にさらに詳細に議論されており、その開示全体を引用により明確に本明細書に組み込む。
図6に示されるシステムにより製造されるテレフタル酸(例えば、PTA)は、平均粒径が少なくとも約40マイクロメートル(μm)、約50〜約2,000μmの範囲、60〜200μmの範囲であるPTA粒子からできていることがある。PTA粒子は、平均BET表面積が約0.25m2/g未満、約0.005〜約0.2m2/gの範囲、又は0.01〜0.18m2/gの範囲になりうる。図6に示されるシステムにより製造されるPTAはPET製造における原材料として使用するのに好適である。典型的には、PETは、テレフタル酸をエチレングリコールによりエステル化し、次いで重縮合することにより製造される。種々の実施形態において、本発明の実施形態により製造されたテレフタル酸は、全開示が引用により本明細書に組み込まれる米国特許第6,861,494号に記載されたパイプリアクターPETプロセスへの供給原料として利用できる。
本明細書に開示された形態を有するCTA粒子は、4−CBA含有量を低減する上述の酸化消化プロセスに特に有用になりうる。さらに、これらのCTA粒子は、粒子の溶解及び/又は化学反応を含む広範囲の他の後工程において利点を与えることがある。これらの追加の後工程には、少なくとも1つのヒドロキシル含有化合物との反応によるエステル化合物の形成、特にCTAとメタノールとの反応によるテレフタル酸ジメチル及び不純物エステルの形成;少なくとも1つのジオールとの反応によるエステルモノマー及び/又はポリマー化合物の形成、特にCTAとエチレングリコールとの反応によるポリエチレンテレフタレート(PET)の形成;並びに、より純度の高いテレフタル酸の再沈殿及び/又はカルボン酸基以外のカルボニル基の選択的化学還元を含むがこれらに限定されないさらなる処理を含むことがある、水、酢酸、及びN−メチル−2−ピロリドンを含むがこれらに限定されない溶媒への完全又は部分的な溶解があるが、これらに限定されない。特に、水を含む溶媒へのCTAの実質的な溶解、及びそれと組み合わせた、アルデヒド、特に4−CBA、フルオレノン、フェノン、及び/又はアントラキノンの量を減らす部分水素化が含まれる。
(定義)
下記は、定義された用語の排他的なリストであると意図されないことを理解されたい。他の定義は、例えば、文脈中で定義された用語の使用に伴う場合など、先行の記載に与えられていることがある。
本明細書では、用語「1つの(a、an)」及び「その(the)」は1つ以上を意味する。
本明細書では、2つ以上の項目のリストに使用される用語「及び/又は」は、列記された項目のいずれか1つがそれ自体で利用できるか、又は2つ以上の列記された項目の任意の組み合わせが利用できることを意味する。例えば、組成物が成分A、B、及び/又はCを含むと記載される場合、組成物は、Aのみ;Bのみ;Cのみ;AとBの組み合わせ;AとCの組み合わせ、BとCの組み合わせ;又はA、B、及びCの組み合わせを含みうる。
本明細書では、用語「含む(comprising)、(comprise)、(comprises)」は開放型の移行用語であって、その用語の前に記載された主題からその用語の後に記載される1つ以上の要素への移行に使用される用語であり、ここで移行用語の後に列記される要素又は複数の要素は、必ずしも主題を構成する唯一の要素ではない。
本明細書では、用語「有する(having)、(has)、(have)」は、上記の「含む(comprising)、(comprise)、(comprises)」と同じ開放型の意味を有する。
本明細書では、用語「含む(including)、(includes)、(include)」は、上記の「含む(comprising)、(comprise)、(comprises)」と同じ開放型の意味を有する。
(数値範囲)
本明細書は、本発明に関連する特定のパラメーターを定量化するために数値範囲を利用する。数値範囲が与えられる場合、そのような範囲が、その範囲の低い値のみを述べるクレーム構成要素並びにその範囲の高い値のみを述べるクレーム構成要素に対する文字上の支援を与えると解釈されるものとすることを理解されたい。例えば、10から100の開示された数値範囲は、「10を超える」(上限なし)を述べる請求項に対する文字上の支援及び「100未満」(下限なし)を述べる請求項に対する文字上の支援を与える。
本明細書は、本発明に関連する特定のパラメーターを定量化するために、具体的な数値範囲を利用するが、具体的な数値は、明らかには数値範囲の一部でない。本明細書に与えられる具体的な数値のそれぞれが、広い、中間の、及び狭い範囲に対する文字上の支援を与えると解釈されるものとすることを理解されたい。各具体的な数値に関連する広い範囲は、有意な二桁に丸めてある、その数値のプラスマイナス60パーセントの数値である。各具体的な数値に関連する中間の範囲は、有意な二桁に丸めてある、その数値のプラスマイナス30パーセントの数値である。各具体的な数値に関連する狭い範囲は、有意な二桁に丸めてある、その数値のプラスマイナス15パーセントの数値である。例えば、明細書が62°Fという具体的な温度を記載する場合、そのような記載は、25°F〜99°F(62°F±37°F)の広い数値範囲、43°F〜81°F(62°F±19°F)の中間の数値範囲、及び53°F〜71°F(62°F±9°F)の狭い数値範囲に対する文字上の支援を与える。これらの広い、中間の、及び狭い数値範囲は、具体的な数値に適用されるだけなく、これらの具体的な値の差にも適用されるべきである。そのため、明細書が第一の圧力110psia及び第二の圧力48psiaを記載する場合(62psiaの差)、これら2つの流れの間の圧力差の広い、中間の、狭い範囲は、それぞれ、25〜99psi、43〜81psi、及び53〜71psiであろう。
(開示される実施形態に限定されない請求項)
上述の本発明の形態は説明としてのみ利用されるものとし、本発明の範囲を解釈するのに限定的な意味に使用されないものとする。当業者ならば、本発明の趣旨から逸脱せずに、上述の例示的な実施形態の変更をなすことができるだろう。