[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013227624A - Method of manufacturing high strength cold rolled steel sheet excellent in workability - Google Patents

Method of manufacturing high strength cold rolled steel sheet excellent in workability Download PDF

Info

Publication number
JP2013227624A
JP2013227624A JP2012100460A JP2012100460A JP2013227624A JP 2013227624 A JP2013227624 A JP 2013227624A JP 2012100460 A JP2012100460 A JP 2012100460A JP 2012100460 A JP2012100460 A JP 2012100460A JP 2013227624 A JP2013227624 A JP 2013227624A
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
range
continuous annealing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012100460A
Other languages
Japanese (ja)
Inventor
Kunihiro Senda
邦浩 千田
Hidenao Kawabe
英尚 川邉
Takeshi Yokota
毅 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012100460A priority Critical patent/JP2013227624A/en
Priority to MYPI2013000874A priority patent/MY180218A/en
Priority to RU2013113183/02A priority patent/RU2528579C1/en
Priority to ZA2013/02648A priority patent/ZA201302648B/en
Priority to BR102013009712-8A priority patent/BR102013009712B1/en
Publication of JP2013227624A publication Critical patent/JP2013227624A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet excellent in workability, especially shape fixability at press working and total elongation.SOLUTION: A steel slab has a composition that includes, by mass, C:0.05-0.12%, Si:at most 0.5%, Mn:2.0-4.0%, Ti:0.005-0.06%, Nb:0.005-0.08%, Al:at most 0.1%, and a remainder consisting of Fe and inevitable impurities, wherein the steel slab is used as a raw material. In a series of manufacturing processes, especially in a continuous annealing, an average temperature rise speed V, within a temperature range from 700°C to a steel sheet temperature T(°C) provided by the following formula (1) in a course of a temperature increase, is 0.3-8°C/s. The formula (1) is represented: T=0.98T, wherein Tis a highest attainment temperature (°C) of the steel sheet in the continuous annealing, and is in a range of at least Acpoint and less than Acpoint.

Description

本発明は、主としてシートフレーム等のシート部品やバンパー、インパクトビーム等の自動車部品に用いて好適な、加工性、特にプレス加工時の形状凍結性および全伸びに優れる高強度冷延鋼板の製造方法に関するものである。   The present invention is mainly used for seat parts such as a seat frame and automobile parts such as bumpers and impact beams, and is a method for producing a high-strength cold-rolled steel sheet excellent in workability, in particular, shape freezing property during press working and total elongation. It is about.

軽量化による自動車の燃費向上および衝突安全性確保のため、従来にも増して高い強度を有する薄鋼板の必要性が高まりつつあり、引張強さが780MPa以上、あるいはさらに980MPa以上の鋼板の使用頻度が高まっている。このような高強度鋼板は自動車の骨格部品や補強部品として用いられ、これらの部品はプレス加工により製造されることが一般的である。   In order to improve the fuel economy of automobiles and ensure collision safety by reducing the weight, the need for thin steel sheets with higher strength than ever is increasing, and the use frequency of steel sheets with a tensile strength of 780 MPa or more, or even 980 MPa or more. Is growing. Such high-strength steel plates are used as automobile frame parts and reinforcing parts, and these parts are generally manufactured by pressing.

プレス加工時における割れを防止する観点から、高強度鋼板には高い全伸びが必要とされている。具体的には、780MPa級の強度の鋼板では22%以上、より望ましくは24%以上、980MPa級の強度の鋼板では15%以上、より望ましくは17%以上の全伸びElが望まれている。   From the viewpoint of preventing cracking during pressing, high strength steel sheets are required to have high total elongation. Specifically, a total elongation El of 22% or more, more preferably 24% or more, and a steel sheet of 980 MPa class strength of 15% or more, more preferably 17% or more is desired for a steel plate having a strength of 780 MPa.

同時に、加工後のスプリングバックによる形状不良を防止する観点、すなわち形状凍結性の要求から、降伏強さが低い低降伏比高強度冷延鋼板が望まれる場合も多い。すなわち、引張強さに対する降伏強さの比である降伏比が低い鋼板である。ただし、降伏強さあるいは降伏比は低ければ低いほどよいわけではなく、部品の塑性変形を防止するために一定値以上の降伏強さを確保する必要がある。   At the same time, a low yield ratio high strength cold-rolled steel sheet with low yield strength is often desired from the viewpoint of preventing shape defects due to springback after processing, that is, the requirement for shape freezing. That is, the steel sheet has a low yield ratio, which is the ratio of the yield strength to the tensile strength. However, the lower the yield strength or the yield ratio, the better. It is necessary to ensure a yield strength of a certain value or more in order to prevent plastic deformation of the part.

したがって、低降伏比高強度冷延鋼板には、一定値以上の引張強さと一定範囲の降伏強さが必要とされ、日本鉄鋼連盟規格では、980MPa級(板厚1.0〜3.2mm)の冷延鋼板について、降伏強さYS:590〜930MPa(降伏比YR:0.60〜0.95)と規定されている。近年では、より良好な形状凍結性を確保する観点から、降伏比が0.90以下、あるいはさらに0.85以下の鋼板も必要とされている。   Therefore, a low yield ratio, high strength cold-rolled steel sheet requires a certain level of tensile strength and a certain range of yield strength. According to the Japan Iron and Steel Federation standard, 980 MPa class (sheet thickness 1.0-3.2 mm) cold-rolled For steel sheets, the yield strength is defined as YS: 590 to 930 MPa (yield ratio YR: 0.60 to 0.95). In recent years, a steel sheet having a yield ratio of 0.90 or less, or even 0.85 or less is required from the viewpoint of securing better shape freezing property.

このような低降伏比高強度冷延鋼板として、フェライトとマルテンサイトの2相からなるDP鋼板が適している。DP鋼板は、軟質のフェライト相(以下、α相ともいう)の中に硬質のマルテンサイト相が分散することで、高い強度と低い降伏比を実現している。しかしながら、高い強度と低い降伏比に加え、高い全伸びを同時に達成しようとすると、CやMnといった元素の添加量が高くなり溶接性の低下を招くという問題があった。   As such a low yield ratio high strength cold rolled steel sheet, a DP steel sheet composed of two phases of ferrite and martensite is suitable. DP steel sheet achieves high strength and low yield ratio by dispersing hard martensite phase in soft ferrite phase (hereinafter also referred to as α phase). However, in addition to high strength and low yield ratio, there is a problem that if high total elongation is simultaneously achieved, the additive amount of elements such as C and Mn is increased and weldability is lowered.

また、鋼中のSiの比率を高めることによっても、全伸びEl などの加工性が向上することが知られており、Si添加によって加工性を向上させている高強度鋼板も多い。ところが、鋼中のSiが増加すると鋼板表面に安定なSiO2が形成しやすくなり、化成処理性やめっき性が劣化する。これらを防止するために連続焼鈍で特別な処理を行う技術も提案されているが、設備コストの増加を招くなどの実用上の問題があった。 It is also known that workability such as total elongation El is improved by increasing the ratio of Si in the steel, and many high-strength steel sheets have improved workability by adding Si. However, when Si in steel increases, it becomes easy to form stable SiO 2 on the surface of the steel sheet, and chemical conversion treatment properties and plating properties deteriorate. In order to prevent these, a technique for performing a special treatment by continuous annealing has been proposed, but there have been practical problems such as an increase in equipment cost.

その他、たとえば特許文献1には、所定のPを添加するとともに、Ac1変態点(以下、単にAc1点という)から950℃の温度域の滞留時間とその後の冷却速度を規定することによる、延性および耐2次加工脆性の良好な低降伏比高張力薄鋼板の製造技術が開示されている。しかしながら、この技術では、780MPa以上の高い引張強さを得ようとすると鋼中へのP添加量を増やさざるをえず、十分な化成処理性が得られないという問題があった。 In addition, for example, Patent Document 1 includes adding predetermined P, and defining the residence time in the temperature range of 950 ° C. from the Ac 1 transformation point (hereinafter simply referred to as Ac 1 point) and the subsequent cooling rate. A technique for manufacturing a low-yield-ratio high-tensile steel sheet with good ductility and secondary work brittleness resistance is disclosed. However, with this technique, there is a problem that, if an attempt is made to obtain a high tensile strength of 780 MPa or more, the amount of P added to the steel must be increased, and sufficient chemical conversion treatment properties cannot be obtained.

特許文献2には、Tiを含む所定成分を含有する鋼スラブを用い、TiとSの比率を制御するとともに、フェライト−オーステナイトの二相域に保持する連続焼鈍を行う際に、所定の冷却速度で冷却することによる製造技術が開示されている。しかしながら、この技術では、高強度鋼板を製造するには高いSi添加量が必要なため、やはり化成処理性に劣るという問題があった。   Patent Document 2 uses a steel slab containing a predetermined component including Ti, controls the ratio of Ti and S, and performs a predetermined annealing rate when performing continuous annealing held in a two-phase region of ferrite-austenite. The manufacturing technique by cooling in is disclosed. However, this technique has a problem that it is inferior in chemical conversion treatment because a high Si addition amount is required to produce a high-strength steel sheet.

特許文献3には、加工性と形状凍結性の両立のため複合組織鋼板において集合組織を適正範囲とした鋼板が開示されている。しかしながら、実施例では全伸びElについては示されておらず、必ずしも所望の伸び特性が得られるとは考え難い。   Patent Document 3 discloses a steel sheet having a texture within an appropriate range in a composite structure steel sheet in order to achieve both workability and shape freezing property. However, in the examples, the total elongation El is not shown, and it is not necessarily considered that desired elongation characteristics can be obtained.

特許文献4には、集合組織とr値を制御する低降伏比高強度冷延鋼板およびその製造技術が開示されている。しかしながら、この技術では、高強度と高い全伸びを達成するには高いSi含有量が必要となるため、やはり化成処理性が劣るという問題があった。   Patent Document 4 discloses a low yield ratio high strength cold-rolled steel sheet for controlling the texture and the r value, and a manufacturing technique thereof. However, this technique has a problem that the chemical conversion processability is also inferior because a high Si content is required to achieve high strength and high total elongation.

特開昭58-22332号公報JP 58-22332 A 特開2002-69574号公報JP 2002-69574 A 特開2004-124123号公報JP 2004-124123 A 特開2005-256020号公報JP 2005-256020 JP

本発明は、上記問題を有利に解決するものであって、加工性、特にプレス加工時の形状凍結性および全伸びに優れ、さらには化成処理性や溶接性にも優れる高強度冷延鋼板の有利な製造方法を提供することを目的とする。   The present invention advantageously solves the above problems, and is excellent in workability, in particular, shape freezing and total elongation during press working, and also in high-strength cold-rolled steel sheets that are excellent in chemical conversion treatment and weldability. The object is to provide an advantageous production method.

さて、発明者らは、上記課題を解決するため鋭意検討した結果、以下の知見を得た。
(a)溶接性および化成処理性の観点から、CやSiの添加量を低減させたフェライト−マルテンサイト2相鋼においても、Mnの添加量を高め、同時にTiおよびNbを添加することで、十分な強度を得ることができる。
これは、Siの添加量を低減し、Mnの添加量を高めることでAc1点が低下するとともに、TiおよびNbを添加することで再結晶温度が高温化するため、再結晶開始前にα/γ変態が起こるためと考えられる。また、TiとNbを添加することで、析出強化による強度向上も達成されるためと考えられる。
(b)上記した成分組成の鋼について、連続焼鈍時の特定温度域における昇温速度、冷却速度およびこれらの関係を最適に制御し、さらに連続焼鈍時の鋼板の最高到達温度をAc1点以上、Ac3点未満の範囲とすることで、高い全伸びおよび低降伏比を同時に実現することができる。
本発明は上記の知見に立脚するものである。
As a result of intensive studies to solve the above problems, the inventors have obtained the following knowledge.
(a) From the viewpoint of weldability and chemical conversion property, in the ferrite-martensite dual phase steel in which the addition amount of C and Si is reduced, the addition amount of Mn is increased and simultaneously Ti and Nb are added. Sufficient strength can be obtained.
This is because the Ac 1 point is lowered by reducing the addition amount of Si and increasing the addition amount of Mn, and the recrystallization temperature is increased by adding Ti and Nb. This is probably because the / γ transformation occurs. Moreover, it is thought that the strength improvement by precipitation strengthening is also achieved by adding Ti and Nb.
(b) For steels with the above-mentioned composition, the temperature rise rate, cooling rate and their relationship in a specific temperature range during continuous annealing are optimally controlled, and the maximum temperature reached by the steel sheet during continuous annealing is at least Ac 1 point or more By setting the range to less than Ac 3 points, a high total elongation and a low yield ratio can be realized simultaneously.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.05〜0.12%、
Si:0.5%以下、
Mn:2.0〜4.0%、
Ti:0.005〜0.06%、
Nb:0.005〜0.08%および
Al:0.1%以下
を含有し、残部はFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、熱間圧延し、酸洗後、冷間圧延し、ついで連続焼鈍を施してから調質圧延を施すことからなる冷延鋼板の製造方法において、
該連続焼鈍の昇温過程における700℃から下記式(1)にて定める鋼板温度T1(℃)までの温度域での平均昇温速度V1を0.3〜8℃/sとし、
該連続焼鈍における最高到達温度TMをAc1点以上Ac3点未満の範囲とすることを特徴とする加工性に優れる高強度冷延鋼板の製造方法。

1=0.98TM ・・・(1)
ただし、TMは連続焼鈍での鋼板の最高到達温度(℃)である。
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.05 to 0.12%,
Si: 0.5% or less,
Mn: 2.0-4.0%
Ti: 0.005-0.06%,
Nb: 0.005-0.08% and
Al: A steel slab containing 0.1% or less, the balance being Fe and inevitable impurities, is hot-rolled, pickled, cold-rolled, and then subjected to temper rolling after continuous annealing. In the method of manufacturing a cold-rolled steel sheet comprising:
In the temperature increase process of the continuous annealing, the average temperature increase rate V 1 in the temperature range from 700 ° C. to the steel plate temperature T 1 (° C.) defined by the following formula (1) is 0.3 to 8 ° C./s,
A method for producing a high-strength cold-rolled steel sheet excellent in workability, characterized in that the maximum temperature T M in the continuous annealing is in the range of Ac 1 point or more and less than Ac 3 point.
T 1 = 0.98T M (1)
However, the T M is the maximum temperature of the steel sheet in the continuous annealing (° C.).

2.前記連続焼鈍の昇温過程において、300℃から少なくとも650℃までの温度域での平均昇温速度V0を下記式(2)で定める範囲とすることを特徴とする前記1に記載の加工性に優れる高強度冷延鋼板の製造方法。

2.0・V1 ≦ V0 ≦ 20・V1・・・(2)
2. 2. The workability as described in 1 above, wherein in the temperature raising process of the continuous annealing, an average temperature rising rate V 0 in a temperature range from 300 ° C. to at least 650 ° C. is set in a range defined by the following formula (2). For producing high-strength cold-rolled steel sheets with excellent resistance.
Record
2.0 ・ V 1 ≦ V 0 ≦ 20 ・ V 1 (2)

3.前記連続焼鈍の冷却過程において、前記最高到達温度TMから前記鋼板温度T1までの温度域での平均冷却速度V2を下記式(3)で示される範囲とし、
700℃から少なくとも400℃までの温度域における平均冷却速度V3を10〜80℃/sとすることを特徴とする前記1または2に記載の加工性に優れる高強度冷延鋼板の製造方法。

{0.5/(V1+0.3)}+0.3 ≦ V2 ≦ {3/(V1+1)}+0.7・・・(3)
3. In the cooling process of the continuous annealing, the average cooling rate V 2 in the temperature range from the maximum temperature T M to the steel plate temperature T 1 is set to a range represented by the following formula (3),
3. The method for producing a high-strength cold-rolled steel sheet having excellent workability according to 1 or 2 above, wherein an average cooling rate V3 in a temperature range from 700 ° C to at least 400 ° C is 10 to 80 ° C / s.
Record
{0.5 / (V 1 +0.3)} + 0.3 ≦ V 2 ≦ {3 / (V 1 +1)} + 0.7 (3)

4.前記鋼スラブが、さらに質量%で、
B:0.0005〜0.0030%、
Mo:0.05〜2%、
V:0.05〜0.5%および
Cr:0.01〜1%
のうちから選んだ一種または二種以上を含有することを特徴とする前記1乃至3のいずれかに記載の加工性に優れる高強度冷延鋼板の製造方法。
4). The steel slab is further mass%,
B: 0.0005 to 0.0030%,
Mo: 0.05-2%
V: 0.05-0.5% and
Cr: 0.01-1%
The method for producing a high-strength cold-rolled steel sheet having excellent workability as described in any one of 1 to 3 above, which comprises one or more selected from among the above.

本発明よれば、加工性、特にプレス加工時の形状凍結性および全伸びに優れ、さらに化成処理性や溶接性にも優れる高強度冷延鋼板を製造することができる。
そして、本発明により製造される高強度冷延鋼板は、主としてシートフレーム等のシート部品やバンパー、インパクトビーム等の自動車部品の材料として好適である。
According to the present invention, it is possible to produce a high-strength cold-rolled steel sheet that is excellent in workability, particularly shape freezing property and total elongation at the time of press working, and further excellent in chemical conversion property and weldability.
The high-strength cold-rolled steel sheet produced according to the present invention is suitable mainly as a material for seat parts such as a seat frame and automobile parts such as bumpers and impact beams.

1と全伸びElとの関係を示す図である。V 1 and is a diagram showing the relationship between the total elongation El. 1およびV0が全伸びElに及ぼす影響を示す図である。V 1 and V 0 is a diagram showing the effect on total elongation El. 1およびV2が全伸びElと降伏比YRに及ぼす影響を示す図である。V 1 and V 2 is a diagram showing the effect on yield ratio YR and total elongation El.

本発明で目標とする機械的特性は次の通りである。
引張強さTS:780MPa以上
降伏強さYS:TS 780MPa級 470〜740MPa
TS 980MPa級 590〜930MPa
ここで、降伏強さYSは0.2%耐力とする。
降伏比YR:0.60〜0.90、好ましくは0.60〜0.85
全伸びEl:TS 780MPa級 22%以上、好ましくは24%以上
TS 980MPa級 15%以上、好ましくは17%以上
The mechanical characteristics targeted by the present invention are as follows.
Tensile strength TS: 780MPa or more Yield strength YS: TS 780MPa class 470-740MPa
TS 980MPa class 590 ~ 930MPa
Here, the yield strength YS is 0.2% proof stress.
Yield ratio YR: 0.60-0.90, preferably 0.60-0.85
Total elongation El: TS 780 MPa class 22% or more, preferably 24% or more
TS 980MPa class 15% or more, preferably 17% or more

以下、本発明を具体的に説明する。
まず、成分組成を前記の範囲に限定した理由について説明する。なお、各元素の含有量の単位は、特に断りがない限り質量%とする。
C:0.05〜0.12%
Cは、鋼中にマルテンサイトや残留オーステナイトを形成させて組織強化を図るために必須の添加元素である。Cの添加量を増加させることで強度と伸びの両方を向上させることが可能であるが、添加量が0.05%に満たないとこのような効果が発現しない。一方、添加量が多いと溶接部が脆くなり溶接強度が低下する。したがって、C量は0.05〜0.12%の範囲とする。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition is limited to the above range will be described. The unit of the content of each element is mass% unless otherwise specified.
C: 0.05-0.12%
C is an additive element that is essential for strengthening the structure by forming martensite and retained austenite in the steel. It is possible to improve both strength and elongation by increasing the amount of C added, but such an effect does not appear unless the amount added is less than 0.05%. On the other hand, if the addition amount is large, the welded portion becomes brittle and the welding strength is lowered. Therefore, the C content is in the range of 0.05 to 0.12%.

Si:0.5%以下
Siの添加により強度と伸びを向上させることができる。フェライト−マルテンサイト2相鋼において、好ましくは0.1%以上のSi添加することで、固溶強化によりフェライト相が強化されるとともに、オーステナイト相(以下、γ相ともいう)中のC濃度が高まることで、マルテンサイト相が強化され高強度になるため、低降伏比が得られやすくなる。しかしながら、Si量が増加すると鋼板表面のSiO2形成量が増加し化成処理性が劣化する。Si量が0.5%以下であればこのような悪影響が小さく、設備コストの高い特別な設備を用いなくても化成処理性が良好な製品が得られる。また、Si量が高くなるとAc1点が高くなり、連続焼鈍中の再結晶がα単相域で完了するため、得られる強度が低下する。上記のような観点から、Si量は0.5%以下とする。なお、Si量が0.1%を下回ると強度が低下しやすいので、Si量は0.1%以上とすることが好ましい。
Si: 0.5% or less
The strength and elongation can be improved by adding Si. In ferrite-martensite two-phase steel, preferably by adding 0.1% or more of Si, the ferrite phase is strengthened by solid solution strengthening, and the C concentration in the austenite phase (hereinafter also referred to as γ phase) is increased. And, since the martensite phase is strengthened and becomes high strength, a low yield ratio is easily obtained. However, when the amount of Si increases, the amount of SiO 2 formed on the steel sheet surface increases and the chemical conversion treatment performance deteriorates. If the Si content is 0.5% or less, such adverse effects are small, and a product with good chemical conversion treatment properties can be obtained without using special equipment with high equipment costs. Further, when the Si amount is increased, the Ac 1 point is increased and recrystallization during continuous annealing is completed in the α single phase region, so that the obtained strength is decreased. From the above viewpoint, the Si content is 0.5% or less. Since the strength tends to decrease when the Si content is less than 0.1%, the Si content is preferably 0.1% or more.

Mn:2.0〜4.0%
Mnは鋼の焼入れ性を増す元素であり、添加量に応じてマルテンサイトの生成量を上げて強度を増加させる作用を有する。また、Mn量の増加に応じてAc1点が低下し、再結晶の完了以前にγ相への変態が開始するため、Si量の低減と同時に用いることで強度向上に寄与する。ここに、所望の強度を確保するために、Mn量は2.0%以上とする。一方、4.0%を超えて添加するとフェライト相の量が過少となり全伸びElが低下するだけでなく、溶接部の脆化を招くので、Mn量は4.0%以下とする。
Mn: 2.0-4.0%
Mn is an element that increases the hardenability of the steel, and has the effect of increasing the strength by increasing the amount of martensite produced according to the amount added. In addition, Ac 1 point decreases with increasing Mn content, and transformation to γ phase starts before recrystallization is completed, so it contributes to strength improvement by using it simultaneously with Si content reduction. Here, in order to ensure a desired strength, the amount of Mn is set to 2.0% or more. On the other hand, if added over 4.0%, the amount of ferrite phase becomes too small and not only the total elongation El decreases, but also the brittleness of the welded part is caused, so the Mn content is made 4.0% or less.

Ti:0.005〜0.06%、Nb:0.005〜0.08%
Tiは、およそ1000℃以下で鋼中にTiC、TiNまたはTi(C,N)等の析出物を形成し、またNbは、およそ1000℃以下で鋼中にNbC、NbNまたはNb(C,N)等の析出物を形成し、析出強化に寄与する。さらに、TiおよびNbの添加は、再結晶の開始温度を高温化させる作用を有するので、これによる強度の向上にも寄与する。ただし、このような析出強化はフェライト−マルテンサイト2相組織のうち、フェライト相の強化への寄与が大きいため、TiおよびNb析出物量が過剰となると降伏比を増加させる原因となり、さらには伸びや穴広げ性の劣化を招く。したがって、TiとNbの添加量を適正に制御することが重要である。
Ti: 0.005-0.06%, Nb: 0.005-0.08%
Ti forms precipitates such as TiC, TiN or Ti (C, N) in the steel at about 1000 ° C. or less, and Nb forms NbC, NbN or Nb (C, N in the steel at about 1000 ° C. or less. ) And the like, and contributes to precipitation strengthening. Furthermore, the addition of Ti and Nb has the effect of increasing the recrystallization start temperature, thereby contributing to the improvement of strength. However, such precipitation strengthening has a large contribution to the strengthening of the ferrite phase in the ferrite-martensite two-phase structure. Therefore, an excessive amount of Ti and Nb precipitates causes an increase in yield ratio, and further increases elongation. It causes deterioration of the hole expandability. Therefore, it is important to properly control the addition amounts of Ti and Nb.

本発明においては、このような析出温度と析出形態が異なるTiとNbを複合的に添加することで、加工性の確保と高強度化を同時に実現でき、このような作用を得るためには、Ti:0.005〜0.06%、Nb:0.005〜0.08%の範囲とする必要がある。なお、含有量がこれらを下回ると必要な強度が得られず、一方これらを上回ると降伏比および全伸びに悪影響を及ぼす。   In the present invention, by adding Ti and Nb with different precipitation temperatures and different precipitation forms, workability can be ensured and strength can be increased at the same time. It is necessary to set the range of Ti: 0.005 to 0.06% and Nb: 0.005 to 0.08%. If the content is below these, the required strength cannot be obtained, while if it exceeds these, the yield ratio and the total elongation are adversely affected.

Al:0.1%以下
Alは鋼の脱酸のために添加するとともに、フェライトを強化する作用を有する。しかしながら、0.1%を超えて添加すると粗大な介在物が増加して加工性の劣化を招くので、0.1%以下とする。
Al: 0.1% or less
Al is added for deoxidation of steel and has the effect of strengthening ferrite. However, if added over 0.1%, coarse inclusions increase and workability deteriorates, so the content is made 0.1% or less.

本発明では、上記した成分のほか、B、Mo、VおよびCrを適宜添加することができる。B、Mo、VおよびCrはいずれも、引張強さの向上に有効な成分であり、この観点から、B、Mo、VおよびCrは、それぞれB:0.0005〜0.0030%、Mo:0.05〜2%、V:0.05〜0.5%、Cr:0.01〜1%の範囲とすることが好ましい。   In the present invention, in addition to the components described above, B, Mo, V and Cr can be added as appropriate. B, Mo, V and Cr are all effective components for improving the tensile strength. From this viewpoint, B, Mo, V and Cr are B: 0.0005 to 0.0030% and Mo: 0.05 to 2%, respectively. V: 0.05 to 0.5%, Cr: 0.01 to 1% are preferable.

また、不純物として、Sは鋼中で非金属介在物として存在し、伸びフランジ成形時の応力集中源となるため、その含有量は極力低減することが望ましい。しかしながら、S量が0.005%以下であれば穴拡げ性にさほどの悪影響を及ぼさない。したがって、0.005%を上限として許容できる。より好ましくは0.002%以下である。   Further, as an impurity, S exists as a non-metallic inclusion in steel and becomes a stress concentration source at the time of stretch flange molding, so it is desirable to reduce its content as much as possible. However, if the amount of S is 0.005% or less, the hole expandability is not adversely affected. Therefore, 0.005% is allowable as the upper limit. More preferably, it is 0.002% or less.

Pは、組織の不均一を招くだけでなく、鋳造時の凝固偏析が顕著になり、内部割れや加工性の劣化を招くことになる。このような観点から、P量は0.05%以下とすることが好ましい。   P not only causes unevenness of the structure, but also causes solidification segregation during casting, leading to internal cracks and deterioration of workability. From such a viewpoint, the P content is preferably 0.05% or less.

NはTiと結合しやすく、TiNとして鋼中に固定されて無害化するが、過剰に含まれると高温で析出物が形成され、鋼中で粗大な析出物となって加工性を劣化させるので、0.0050%以下とすることが好ましい。   N is easy to bond with Ti and is fixed in steel as TiN and detoxified. However, if it is excessively contained, precipitates are formed at high temperatures, and it becomes coarse precipitates in steel and deteriorates workability. , 0.0050% or less is preferable.

次に、本発明の製造条件について説明する。
本発明では、上記のような成分組成に調整した鋼スラブを、所定温度に加熱し、熱間圧延したのち、コイルに巻き取り、必要に応じて巻き取り温度で保持する処理を行ったのち、酸洗して表面の酸化物を除去してから、冷間圧延して製品厚さとする。なお、熱間圧延や酸洗、冷間圧延については、常法に従って行えば良い。
Next, the manufacturing conditions of the present invention will be described.
In the present invention, the steel slab adjusted to the above component composition is heated to a predetermined temperature, hot-rolled, wound into a coil, and after being subjected to a treatment of holding at the winding temperature as necessary, After pickling to remove oxides on the surface, it is cold-rolled to the product thickness. In addition, what is necessary is just to perform in accordance with a conventional method about hot rolling, pickling, and cold rolling.

このようにして得られた冷延コイルを連続焼鈍する。この連続焼鈍の役割は、冷延組織を再結晶させて過剰な転位を解放しつつ組織の均一化を図るとともに、冷却過程では急冷処理による焼き入れでマルテンサイト相を鋼中に出現させて高い強度を達成するところにある。本発明では、前述したような成分組成と以下に示す連続焼鈍の条件を組み合わせることで、高強度、低降伏比に加え、高い全伸びを同時に達成することができる。   The cold-rolled coil thus obtained is continuously annealed. The role of this continuous annealing is high by recrystallizing the cold-rolled structure to release excessive dislocations and making the structure uniform, and in the cooling process, the martensite phase appears in the steel by quenching by quenching. It is about achieving strength. In the present invention, high total elongation can be achieved simultaneously in addition to high strength and low yield ratio by combining the component composition as described above and the conditions of continuous annealing shown below.

連続焼鈍における最高到達温度TM:Ac1点以上Ac3点未満
連続焼鈍では、焼鈍中の鋼板の最高到達温度TMを素材のAc1点以上Ac3点未満の範囲とする。これは、冷却過程に入る前に所定量のγ相を出現させ、この状態から焼入れることにより、焼鈍後にフェライト−マルテンサイト2相組織を得るためである。フェライト−マルテンサイト2相組織(DP組織)の場合、マルテンサイト相で高い強度が確保されるとともに、フェライト相が変形を担うことで高い全伸びが同時に達成される。最高到達温度TMがAc1点を下回るとγ相が不足して十分な強度が得られず、一方Ac3点を上回るとα相が不足して全伸びElが低下する。
Maximum attainment temperature T M in continuous annealing: Ac 1 point or more and less than Ac 3 point In continuous annealing, the maximum attainment temperature T M of the steel sheet during annealing is set in the range of Ac 1 point or more and less than Ac 3 point of the material. This is because a predetermined amount of γ phase appears before entering the cooling process, and by quenching from this state, a ferrite-martensite two-phase structure is obtained after annealing. In the case of a ferrite-martensite two-phase structure (DP structure), high strength is ensured in the martensite phase, and high total elongation is simultaneously achieved by the deformation of the ferrite phase. If the maximum temperature T M falls below the Ac 1 point, the γ phase is insufficient and sufficient strength cannot be obtained, while if it exceeds the Ac 3 point, the α phase becomes insufficient and the total elongation El decreases.

700℃から鋼板温度T1(℃)までの温度域での平均昇温速度V1:0.3〜8℃/s
ここに、鋼板温度T1は次式(1)
1=0.98TM ・・・(1)
で表される温度である。
ここで、鋼板温度T1を上記のように定義したのは次の理由による。
すなわち、700℃以上の昇温過程では、α相の再結晶を促進して軟質なα相の分散を適正化する必要がある。一方、TMに近づくにつれて、α相からγ相への変態が進行する傾向が強まる。このことから、α相の再結晶を促進するため、700℃からTMよりも若干低い温度の間では低い昇温速度に保つ必要がある。そこで、制御加熱温度範囲の上限として、T1を上記のように定義した。
Average heating rate V 1 in the temperature range from 700 ° C. to steel plate temperature T 1 (° C.): 0.3 to 8 ° C./s
Here, the steel plate temperature T 1 is expressed by the following equation (1).
T 1 = 0.98T M (1)
It is the temperature represented by.
Here, the steel plate temperature T 1 is defined as described above for the following reason.
That is, in the temperature rising process at 700 ° C. or higher, it is necessary to promote the recrystallization of the α phase and optimize the dispersion of the soft α phase. On the other hand, as the temperature approaches T M , the tendency of the transformation from the α phase to the γ phase proceeds. For this reason, in order to promote recrystallization of the α phase, it is necessary to maintain a low temperature increase rate between 700 ° C. and a temperature slightly lower than T M. Therefore, T 1 is defined as described above as the upper limit of the controlled heating temperature range.

本発明では、Si添加量を抑えMn添加量を増加させることでAc1点を低下させるとともに、TiやNbの添加によって回復・再結晶の開始温度を低下させることで、鋼中の転位が十分に高い状態でα/γ変態を起こさせ、高温保持中のγ相率を高くし、急速冷却の後に高いマルテンサイト相率を実現している。
高生産性が要求される連続焼鈍では短時間で焼鈍を終えるのが望ましく、このためには昇温速度は高く採るのが有効である。しかしながら、本発明のようにCやSiの添加量を制限した鋼をTiやNbで強化した場合には、昇温速度を一般的な値よりも低く設定することで全伸びElが改善されるとともに、強度も上昇することが判明した。
In the present invention, the Ac 1 point is lowered by suppressing the Si addition amount and increasing the Mn addition amount, and the dislocation in the steel is sufficiently achieved by lowering the recovery / recrystallization start temperature by adding Ti or Nb. The α / γ transformation is caused in a high state to increase the γ phase ratio during holding at a high temperature, and a high martensite phase ratio is realized after rapid cooling.
In continuous annealing, which requires high productivity, it is desirable to finish annealing in a short time. For this purpose, it is effective to increase the heating rate. However, when steel with limited amounts of addition of C and Si as in the present invention is strengthened with Ti or Nb, the total elongation El is improved by setting the rate of temperature rise to be lower than a general value. Along with this, it was found that the strength also increased.

図1に、C:0.08%、Si:0.3%、Mn:2.5%、P:0.01%、S:0.003%、Al:0.03%、N:0.0030%、Ti:0.02%、Nb:0.03%、残部Feの成分組成になる鋼(TS:780MPa級)について、TM:780℃、従ってT1:764.4℃の条件で、V1を0.1〜10℃/sの範囲で種々変化させ、製造した冷延鋼板の全伸びElについて調べた結果を示す。なお、300℃から少なくとも650℃までの温度域での平均昇温速度V0:3℃/s、最高到達温度TMから鋼板温度T1までの温度域での平均冷却速度V2:1.5℃/s、700℃から少なくとも400℃までの温度域における平均冷却速度V3:15℃/sとした。
同図より、V1が0.3〜8℃/sである場合、全伸びElが25%以上となり、安定的に高い全伸びが得られることがわかる。これに対し、V1が0.3〜8℃/sを逸脱する場合には、全伸びElが大幅に低下していることがわかる。
以上の結果に基づき、比較的高温域である700℃から上掲式(1)にて定める鋼板温度T1(℃)までの温度域での平均昇温速度V1を従来よりも遅く、具体的には0.3〜8℃/sとすることで、高強度、低降伏比と同時に、高い全伸びが得られることが究明されたのである。
In FIG. 1, C: 0.08%, Si: 0.3%, Mn: 2.5%, P: 0.01%, S: 0.003%, Al: 0.03%, N: 0.0030%, Ti: 0.02%, Nb: 0.03%, balance For steel (TS: 780 MPa class) with a component composition of Fe, V 1 was varied in the range of 0.1 to 10 ° C./s under the conditions of T M : 780 ° C., and therefore T 1 : 764.4 ° C. The result of having investigated about total elongation El of a rolled steel sheet is shown. In addition, the average temperature increase rate V 0 in the temperature range from 300 ° C. to at least 650 ° C .: 3 ° C./s, the average cooling rate V 2 in the temperature range from the maximum temperature T M to the steel plate temperature T 1 : 1.5 ° C. / s, average cooling rate V 3 in the temperature range from 700 ° C. to at least 400 ° C .: 15 ° C./s.
From the figure, it is understood that when V 1 is 0.3 to 8 ° C./s, the total elongation El is 25% or more, and a stable and high total elongation can be obtained. On the other hand, when V 1 deviates from 0.3 to 8 ° C./s, it can be seen that the total elongation El is significantly reduced.
Based on the above results, the average rate of temperature increase V 1 in the temperature range from 700 ° C., which is a relatively high temperature range, to the steel plate temperature T 1 (° C.) determined by the above formula (1) is slower than in the past. Specifically, it has been determined that by setting 0.3 to 8 ° C./s, a high total elongation can be obtained simultaneously with a high strength and a low yield ratio.

この理由は必ずしも明らかではないが、発明者らは次のように考えている。
すなわち、本発明の成分組成を有する鋼では、変態の開始温度が低いため、連続焼鈍中はγの生成サイトである転位などの格子欠陥が十分にある状態で変態が進行する。このようなγ相が一定量を確保された後は軟質なα相を適正に分散させる必要があるが、さらに高温域での昇温速度が速すぎると未変態α相の再結晶が起きにくくなる結果、α相の残存量が不足して、冷却後に軟質相が欠乏し伸びが低下する。このため、比較的高温域である700℃から鋼板温度T1(℃)までの温度域での平均昇温速度V1を従来よりも遅く、具体的には0.3〜8℃/sに制御することで、高い全伸びが得られると考えている。
The reason for this is not always clear, but the inventors consider as follows.
That is, in the steel having the component composition of the present invention, since the transformation start temperature is low, the transformation proceeds in a state where there are sufficient lattice defects such as dislocations, which are γ production sites, during continuous annealing. After a certain amount of such γ phase is secured, it is necessary to properly disperse the soft α phase. However, if the temperature rise rate is too high in the high temperature range, recrystallization of the untransformed α phase is difficult to occur. As a result, the residual amount of α phase is insufficient, the soft phase is insufficient after cooling, and the elongation is lowered. For this reason, the average rate of temperature increase V 1 in the temperature range from 700 ° C., which is a relatively high temperature range, to the steel plate temperature T 1 (° C.) is controlled slower than the prior art, specifically 0.3-8 ° C./s. We believe that high overall growth can be obtained.

300℃から少なくとも650℃までの温度域での平均昇温速度V0
2.0・V1 ≦ V0 ≦ 20・V1
また、700℃までの昇温速度が全伸びElに及ぼす影響についても検討した。その結果、300℃から少なくとも650℃までの温度域を適正な昇温速度で昇温させることによって、全伸びElの一層の改善が見られた。
Average heating rate V 0 in the temperature range from 300 ° C. to at least 650 ° C .:
2.0 ・ V 1 ≦ V 0 ≦ 20 ・ V 1
In addition, the effect of the heating rate up to 700 ° C on the total elongation El was also examined. As a result, a further improvement in the total elongation El was observed by raising the temperature range from 300 ° C. to at least 650 ° C. at an appropriate rate of temperature rise.

図2に、C:0.09%、Si:0.5%、Mn:3.2%、P:0.02%、S:0.002%、Al:0.05%、N:0.0030%、Ti:0.03%、Nb:0.08%、残部Feの成分組成になる鋼(TS:980MPa級)について、TM:800℃、従ってT1:784℃の条件で、V0およびV1を種々変化させ、製造した冷延鋼板の全伸びElについて調べた結果を示す。なお、最高到達温度TMから鋼板温度T1までの温度域での平均冷却速度V2:1℃/s、700℃から少なくとも400℃までの温度域における平均冷却速度V3:25℃/sとした。
同図より、V1が0.3〜8℃/sである場合には、いずれも15%以上の全伸びが得られることがわかる。また、V1に加え、V0が次式(2)
2.0・V1 ≦ V0 ≦ 20・V1・・・(2)
の範囲を満足する場合には、いずれも17%以上全伸びが得られることがわかる。
以上より、上記したV1の制御に加え、V0を上掲式(2)に定める範囲に制御することで、全伸びElを一層改善できることが判明した。
In FIG. 2, C: 0.09%, Si: 0.5%, Mn: 3.2%, P: 0.02%, S: 0.002%, Al: 0.05%, N: 0.0030%, Ti: 0.03%, Nb: 0.08%, balance For steel (TS: 980 MPa class) with a component composition of Fe, the total elongation El of the cold-rolled steel sheet produced by varying V 0 and V 1 under the conditions of T M : 800 ° C. and therefore T 1 : 784 ° C. The result of having investigated about is shown. The average cooling rate V 2 in the temperature range from the highest temperature T M to the steel plate temperature T 1 is 1 ° C./s, and the average cooling rate V 3 in the temperature range from 700 ° C. to at least 400 ° C. is 25 ° C./s. It was.
From the figure, it can be seen that when V 1 is 0.3 to 8 ° C./s, the total elongation of 15% or more is obtained in any case. In addition to V 1 , V 0 is expressed by the following formula (2)
2.0 ・ V 1 ≦ V 0 ≦ 20 ・ V 1 (2)
When the above range is satisfied, it can be seen that the total elongation is 17% or more.
From the above, it has been found that the total elongation El can be further improved by controlling V 0 within the range defined by the above equation (2) in addition to the above-described control of V 1 .

この理由は必ずしも明らかではないが、発明者らは、次のように考えている。
すなわち、300〜650℃は回復温度域にあたるため、その後の高温域での変態および再結晶の後に、均一な組織を得るためには、この回復温度域で適正な回復量とする必要があり、その適正な回復量はV0とV1とのバランスによって決定される。
このため、V0が2.0・V1を下回ると低温域での回復が過度に進み、再結晶が部分的に進行して組織が不均一化する一方、V0が20・V1を上回ると理想的な量よりも多く転位を含んだ状態で高温域での変態・再結晶が進行するので、この場合も組織が不均一となり、結果として全伸びElが低下すると考えている。
Although this reason is not necessarily clear, the inventors think as follows.
That is, since 300 to 650 ° C. corresponds to a recovery temperature range, it is necessary to set an appropriate recovery amount in this recovery temperature range in order to obtain a uniform structure after transformation and recrystallization in the subsequent high temperature range, The appropriate amount of recovery is determined by the balance between V 0 and V 1 .
For this reason, when V 0 is less than 2.0 · V 1 , recovery in the low temperature region proceeds excessively, and recrystallization proceeds partially to make the structure non-uniform, while when V 0 exceeds 20 · V 1 Since transformation and recrystallization in the high temperature region proceed with dislocations more than the ideal amount, the structure becomes non-uniform in this case as well, and as a result, the total elongation El is considered to decrease.

なお、650℃から700℃までの温度域については特に制限はなく、そのままの昇温速度で加熱しても、また変化させてもよい。   In addition, there is no restriction | limiting in particular about the temperature range from 650 degreeC to 700 degreeC, You may heat with the temperature increase rate as it is, or may change it.

最高到達温度TMから鋼板温度T1までの温度域での平均冷却速度V2
{0.5/(V1+0.3)}+0.3 ≦ V2 ≦ {3/(V1+1)}+0.7
次に、最高到達温度TMからの冷却速度が全伸びElに及ぼす影響についても検討した。その結果、最高到達温度TMから鋼板温度T1までの温度域を適正な冷却速度で冷却させることによって、全伸びElの改善に加え、降伏比をさらに低減できることを見出した。
Average cooling rate V 2 in the temperature range from maximum temperature T M to steel plate temperature T 1 :
{0.5 / (V 1 +0.3)} + 0.3 ≤ V 2 ≤ {3 / (V 1 +1)} + 0.7
Next, the effect of the cooling rate from the maximum temperature T M on the total elongation El was also examined. As a result, it was found that the yield ratio can be further reduced in addition to the improvement of the total elongation El by cooling the temperature range from the maximum temperature T M to the steel plate temperature T 1 at an appropriate cooling rate.

図3にC:0.08%、Si:0.3%、Mn:2.9%、P:0.01%、S:0.003%、Al:0.03%、N:0.0030%、Ti:0.02%、Nb:0.03%、Cr:0.2%、残部Feの成分組成になる鋼(TS:980MPa級)について、TM:780℃、従ってT1:764℃の条件で、V1およびV2を種々変化させ、製造した冷延鋼板の全伸びElおよび降伏比YRについて調べた結果を示す。なお、300℃から少なくとも650℃までの温度域での平均昇温速度V0:10℃/s、700℃から少なくとも400℃までの温度域における平均冷却速度V3:20℃/sとした。
同図より、V1が0.3〜8℃/sである場合には、いずれも15%以上の全伸びかつ0.60〜0.90の降伏比が得られることがわかる。また、V1に加え、V2が次式(3)
{0.5/(V1+0.3)}+0.3 ≦ V2 ≦ {3/(V1+1)}+0.7・・・(3)
の範囲を満足する場合には、17%以上の全伸びかつ0.60〜0.85の降伏比が得られており、V1に加え、V2を所定の範囲に制御することにより、さらに高い全伸びと低降伏比を同時に達成できることがわかる。
以上より、上記したV0およびV1の制御に加え、V2を上掲式(3)に定める範囲に制御することで、全伸びElの改善と降伏比のさらなる低減を同時に達成できることが判明した。
FIG. 3 shows C: 0.08%, Si: 0.3%, Mn: 2.9%, P: 0.01%, S: 0.003%, Al: 0.03%, N: 0.0030%, Ti: 0.02%, Nb: 0.03%, Cr: A cold-rolled steel sheet manufactured by varying V 1 and V 2 under the conditions of T M : 780 ° C. and therefore T 1 : 764 ° C. The result of having investigated about total elongation El and yield ratio YR of this is shown. The average temperature increase rate V 0 in the temperature range from 300 ° C. to at least 650 ° C. was 10 ° C./s, and the average cooling rate V 3 in the temperature range from 700 ° C. to at least 400 ° C. was 20 ° C./s.
From the figure, it can be seen that when V 1 is 0.3 to 8 ° C./s, a total elongation of 15% or more and a yield ratio of 0.60 to 0.90 can be obtained. In addition to V 1 , V 2 is expressed by the following formula (3)
{0.5 / (V 1 +0.3)} + 0.3 ≦ V 2 ≦ {3 / (V 1 +1)} + 0.7 (3)
When the above range is satisfied, a total elongation of 17% or more and a yield ratio of 0.60 to 0.85 are obtained. By controlling V 2 within a predetermined range in addition to V 1 , a higher total elongation can be obtained. It can be seen that a low yield ratio can be achieved simultaneously.
From the above, in addition to the above-described control of V 0 and V 1 , it has been found that by controlling V 2 within the range defined in the above equation (3), improvement in total elongation El and further reduction in yield ratio can be achieved simultaneously. did.

この理由は必ずしも明らかではないが、発明者らは次のように考えている。
すなわち、TMからT1までの温度域での冷却過程では、γ相からのα相の出現や未変態のα相の成長が起こる。また、上記したV1を遅くすることによってもα相の成長が促される。このため、V2が{0.5/(V1+0.3)}+0.3を下回るとα相の量が過剰となって強度が不足し、一方V2が{3/(V1+1)}+0.7を上回るとα相の量が不十分となり全伸びElが低下する。したがって、両者の効果が過剰とならない適正範囲とすることで、全伸びElが改善されるとともに、降伏比をさらに低減することができる。
The reason for this is not always clear, but the inventors consider as follows.
That is, in the cooling process in the temperature range from T M to T 1 , the appearance of the α phase from the γ phase and the growth of the untransformed α phase occur. Moreover, the growth of α phase is also promoted by slowing V 1 described above. For this reason, if V 2 falls below {0.5 / (V 1 +0.3)} + 0.3, the amount of α phase becomes excessive and the strength is insufficient, while V 2 becomes {3 / (V 1 +1)}. If it exceeds +0.7, the amount of α phase becomes insufficient, and the total elongation El decreases. Therefore, by setting the appropriate range in which both effects do not become excessive, the total elongation El can be improved and the yield ratio can be further reduced.

700℃から少なくとも400℃までの温度域における平均冷却速度V3:10〜80℃/s
また、T1まで冷却したあと、M点以下まで急冷することでγ相を生じた部分からのCの拡散が抑制され、硬質なマルテンサイトが生じて高い強度が確保される。そこで、かような制御冷却を行うべき温度域および冷却速度について検討した結果、700℃から少なくとも400℃までの温度域における平均冷却速度V3を10℃/s以上とすることが好ましいことが判明した。しかしながら、この冷却速度が80℃/sを超えると製品の形状が劣化する。このため、700℃から少なくとも400℃までの温度域における平均冷却速度V3は10〜80℃/sとすることが好ましい。
Average cooling rate V 3 in the temperature range from 700 ° C. to at least 400 ° C .: 10 to 80 ° C./s
In addition, after cooling to T 1 , rapid diffusion to below the M S point suppresses the diffusion of C from the portion where the γ phase is generated, and hard martensite is generated to ensure high strength. Therefore, as a result of examining the temperature range and the cooling rate at which such controlled cooling should be performed, it was found that it is preferable to set the average cooling rate V 3 in the temperature range from 700 ° C. to at least 400 ° C. to 10 ° C./s or more. did. However, when the cooling rate exceeds 80 ° C./s, the shape of the product deteriorates. For this reason, the average cooling rate V 3 in the temperature range from 700 ° C. to at least 400 ° C. is preferably 10 to 80 ° C./s.

ここに、制御冷却温度範囲を700℃から少なくとも400℃までの温度域に限定したのは、次の理由による。
すなわち、γ相からα相への変態が始まる温度が概ね700℃付近であり、またマルテンサイトが生成し始める温度が概ね400℃付近であるので、700℃から少なくとも400℃までの温度域の冷却速度を適正に制御することにより、適正量のマルテンサイトが確保されるからである。
Here, the reason why the controlled cooling temperature range is limited to a temperature range from 700 ° C. to at least 400 ° C. is as follows.
That is, the temperature at which transformation from the γ phase to the α phase begins is around 700 ° C, and the temperature at which martensite begins to form is around 400 ° C, so cooling in the temperature range from 700 ° C to at least 400 ° C. This is because an appropriate amount of martensite is secured by appropriately controlling the speed.

なお、400℃から室温までの温度域については特に制限はなく、そのままの冷却速度で冷却しても、また変化させてもよい。   The temperature range from 400 ° C. to room temperature is not particularly limited, and it may be cooled at the same cooling rate or may be changed.

さらに、連続焼鈍の急冷後、200〜400℃で30〜2000秒保持する焼戻し処理を加えることが好ましい。これにより、硬質なマルテンサイト相が焼戻されて全伸びElや穴広げ率λが向上する。
また、焼鈍の後、酸洗処理により表面の酸化層や異物の除去を行うことで化成処理性が向上する。また、圧下率:0.1〜2%程度のスキンパス圧延を施すことで降伏点伸びを抑制することができる。
Furthermore, it is preferable to add a tempering treatment that is maintained at 200 to 400 ° C. for 30 to 2000 seconds after the rapid annealing of the continuous annealing. Thereby, the hard martensite phase is tempered, and the total elongation El and the hole expansion ratio λ are improved.
Moreover, after annealing, a chemical conversion process property improves by removing the surface oxide layer and a foreign material by pickling process. Moreover, yield point elongation can be suppressed by performing skin pass rolling with a rolling reduction of about 0.1 to 2%.

表1に示す成分組成の鋼を溶製し、1250℃に加熱後、熱間圧延して3.5mmの熱延鋼板とした後、酸洗し、ついで冷間圧延により1.4mmの冷延鋼板とした。この冷延鋼板を表2−1及び表2−2中に示す条件で、加熱後、冷却し、250℃に到達後、250℃で240秒間保持する連続焼鈍を施してから、酸洗とスキンパス圧延を施して製品板とした。なお、表1中のAc1点及びAc3点はそれぞれ次式により求めた。
Ac1=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]
Ac3=910-203[%C]0.5+44.7[%Si]-30[%Mn]+700[%P]+400[%Al]+400[%Ti]
+104[%V]+32.5[%Mo]
ただし、[%M]は、M元素の含有量(質量%)を表す。
かくして得られた製品板から圧延方向と直角方向にJIS5号試験片を採取し、機械的特性を調査した。得られた結果を表2−1および表2−2に示す。
Steel with the composition shown in Table 1 is melted, heated to 1250 ° C, hot rolled to a 3.5 mm hot rolled steel sheet, pickled, and then cold rolled to a 1.4 mm cold rolled steel sheet. did. The cold-rolled steel sheet is heated and cooled under the conditions shown in Table 2-1 and Table 2-2. After reaching 250 ° C., it is subjected to continuous annealing that is held at 250 ° C. for 240 seconds, and then pickling and skin pass. Rolled into a product plate. In addition, Ac 1 point and Ac 3 point in Table 1 were calculated | required by following Formula, respectively.
Ac 1 = 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr]
Ac 3 = 910-203 [% C] 0.5 +44.7 [% Si] -30 [% Mn] +700 [% P] +400 [% Al] +400 [% Ti]
+104 [% V] +32.5 [% Mo]
However, [% M] represents the content (mass%) of the M element.
From the product plate thus obtained, JIS No. 5 specimens were sampled in the direction perpendicular to the rolling direction, and the mechanical properties were investigated. The obtained results are shown in Table 2-1 and Table 2-2.

Figure 2013227624
Figure 2013227624

Figure 2013227624
Figure 2013227624

Figure 2013227624
Figure 2013227624

表2−1および表2−2から明らかなように、本発明に従い得られた製品板はいずれも、引張強さが780MPa以上、降伏比が0.60〜0.90の範囲を満足するだけでなく、全伸びElは、引張強さ780MPa級では22%以上、980MPa級では15%以上であり、高強度、低降伏比かつ高い全伸びを同時に達成していることがわかる。また、得られた製品板はいずれも、化成処理性および溶接性にも優れていることが確認されている。
さらに、V0を前記(2)式の範囲、V2を前記(3)式の範囲およびV3を10〜80℃/sの範囲に制御した場合には、引張強さが780MPa級で24%以上、980MPa級で17%以上の全伸びを達成でき、かつ降伏比を0.60〜0.85まで低減できた。
一方、比較例はいずれも、引張強さ、降伏比および全伸びのいずれかが所望の特性を満足することができなかった。
As is apparent from Tables 2-1 and 2-2, all of the product plates obtained according to the present invention not only satisfy the range where the tensile strength is 780 MPa or more and the yield ratio is 0.60 to 0.90. The elongation El is 22% or more for the tensile strength of 780 MPa class and 15% or more for the 980 MPa class, indicating that high strength, low yield ratio and high total elongation are achieved at the same time. Moreover, it has been confirmed that all of the obtained product plates are excellent in chemical conversion treatment and weldability.
Further, when V 0 is controlled within the range of the above formula (2), V 2 is controlled within the range of the above formula (3), and V 3 is controlled within the range of 10 to 80 ° C./s, the tensile strength is 780 MPa class and 24 %, 980MPa class with 17% or more total elongation and yield ratio reduced to 0.60 ~ 0.85.
On the other hand, in any of the comparative examples, any of the tensile strength, the yield ratio, and the total elongation could not satisfy the desired characteristics.

Claims (4)

質量%で、
C:0.05〜0.12%、
Si:0.5%以下、
Mn:2.0〜4.0%、
Ti:0.005〜0.06%、
Nb:0.005〜0.08%および
Al:0.1%以下
を含有し、残部はFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、熱間圧延し、酸洗後、冷間圧延し、ついで連続焼鈍を施してから調質圧延を施すことからなる冷延鋼板の製造方法において、
該連続焼鈍の昇温過程における700℃から下記式(1)にて定める鋼板温度T1(℃)までの温度域での平均昇温速度V1を0.3〜8℃/sとし、
該連続焼鈍における最高到達温度TMをAc1点以上Ac3点未満の範囲とすることを特徴とする加工性に優れる高強度冷延鋼板の製造方法。

1=0.98TM ・・・(1)
ただし、TMは連続焼鈍での鋼板の最高到達温度(℃)である。
% By mass
C: 0.05 to 0.12%,
Si: 0.5% or less,
Mn: 2.0-4.0%
Ti: 0.005-0.06%,
Nb: 0.005-0.08% and
Al: A steel slab containing 0.1% or less, the balance being Fe and inevitable impurities, is hot-rolled, pickled, cold-rolled, and then subjected to temper rolling after continuous annealing. In the method of manufacturing a cold-rolled steel sheet comprising:
In the temperature increase process of the continuous annealing, the average temperature increase rate V 1 in the temperature range from 700 ° C. to the steel plate temperature T 1 (° C.) defined by the following formula (1) is 0.3 to 8 ° C./s,
A method for producing a high-strength cold-rolled steel sheet excellent in workability, characterized in that the maximum temperature T M in the continuous annealing is in the range of Ac 1 point or more and less than Ac 3 point.
T 1 = 0.98T M (1)
However, the T M is the maximum temperature of the steel sheet in the continuous annealing (° C.).
前記連続焼鈍の昇温過程において、300℃から少なくとも650℃までの温度域での平均昇温速度V0を下記式(2)で定める範囲とすることを特徴とする請求項1に記載の加工性に優れる高強度冷延鋼板の製造方法。

2.0・V1 ≦ V0 ≦ 20・V1・・・(2)
2. The processing according to claim 1, wherein in the temperature raising process of the continuous annealing, an average temperature rising rate V 0 in a temperature range from 300 ° C. to at least 650 ° C. is set in a range defined by the following formula (2). A method for producing a high-strength cold-rolled steel sheet having excellent properties.
Record
2.0 ・ V 1 ≦ V 0 ≦ 20 ・ V 1 (2)
前記連続焼鈍の冷却過程において、前記最高到達温度TMから前記鋼板温度T1までの温度域での平均冷却速度V2を下記式(3)で示される範囲とし、
700℃から少なくとも400℃までの温度域における平均冷却速度V3を10〜80℃/sとすることを特徴とする請求項1または2に記載の加工性に優れる高強度冷延鋼板の製造方法。

{0.5/(V1+0.3)}+0.3 ≦ V2 ≦ {3/(V1+1)}+0.7・・・(3)
In the cooling process of the continuous annealing, the average cooling rate V 2 in the temperature range from the maximum temperature T M to the steel plate temperature T 1 is set to a range represented by the following formula (3),
Method for producing a high strength cold rolled steel sheet having excellent workability according to claim 1 or 2 Average cooling rate V 3, characterized in that a 10 to 80 ° C. / s in the temperature range up to at least 400 ° C. from 700 ° C. .
Record
{0.5 / (V 1 +0.3)} + 0.3 ≦ V 2 ≦ {3 / (V 1 +1)} + 0.7 (3)
前記鋼スラブが、さらに質量%で、
B:0.0005〜0.0030%、
Mo:0.05〜2%、
V:0.05〜0.5%および
Cr:0.01〜1%
のうちから選んだ一種または二種以上を含有することを特徴とする請求項1乃至3のいずれかに記載の加工性に優れる高強度冷延鋼板の製造方法。
The steel slab is further mass%,
B: 0.0005 to 0.0030%,
Mo: 0.05-2%
V: 0.05-0.5% and
Cr: 0.01-1%
The method for producing a high-strength cold-rolled steel sheet having excellent workability according to any one of claims 1 to 3, comprising one or more selected from among the above.
JP2012100460A 2012-04-25 2012-04-25 Method of manufacturing high strength cold rolled steel sheet excellent in workability Pending JP2013227624A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012100460A JP2013227624A (en) 2012-04-25 2012-04-25 Method of manufacturing high strength cold rolled steel sheet excellent in workability
MYPI2013000874A MY180218A (en) 2012-04-25 2013-03-14 Method for manufacturing high strenght coll rolled steel sheet having excellent workability
RU2013113183/02A RU2528579C1 (en) 2012-04-25 2013-03-25 Production of high-strength controlled steel sheet of perfect machinability
ZA2013/02648A ZA201302648B (en) 2012-04-25 2013-04-12 Method for manufacturing high strength cold rolled steel sheet having excellent workability
BR102013009712-8A BR102013009712B1 (en) 2012-04-25 2013-04-19 METHOD FOR PRODUCING HIGH RESISTANCE COLD LAMINATED STEEL SHEET WITH EXCELLENT WORKING CAPACITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100460A JP2013227624A (en) 2012-04-25 2012-04-25 Method of manufacturing high strength cold rolled steel sheet excellent in workability

Publications (1)

Publication Number Publication Date
JP2013227624A true JP2013227624A (en) 2013-11-07

Family

ID=49675541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100460A Pending JP2013227624A (en) 2012-04-25 2012-04-25 Method of manufacturing high strength cold rolled steel sheet excellent in workability

Country Status (5)

Country Link
JP (1) JP2013227624A (en)
BR (1) BR102013009712B1 (en)
MY (1) MY180218A (en)
RU (1) RU2528579C1 (en)
ZA (1) ZA201302648B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550806A (en) * 2017-09-27 2019-04-02 鞍钢股份有限公司 Production method of 500 MPa-level low-yield-ratio bridge steel plate
CN110291217A (en) * 2017-02-15 2019-09-27 杰富意钢铁株式会社 High-strength steel sheet and its manufacturing method
CN112077165A (en) * 2020-08-31 2020-12-15 日照宝华新材料有限公司 Rolling method of 50Mn thin high-carbon cold-rolled steel sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017275A1 (en) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh High strength air hardening multiphase steel with excellent processing properties and method of making a strip of this steel
DE102014017273A1 (en) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh High strength air hardening multiphase steel with excellent processing properties and method of making a strip of this steel
DE102015111177A1 (en) * 2015-07-10 2017-01-12 Salzgitter Flachstahl Gmbh High strength multi-phase steel and method of making a cold rolled steel strip therefrom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2195504C2 (en) * 2000-11-24 2002-12-27 Открытое акционерное общество "Северсталь" Method for manufacture of strips from low-alloy niobium-vanadium steel
JP4189192B2 (en) * 2002-09-30 2008-12-03 新日本製鐵株式会社 Low yield ratio type high-strength cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof
JP4384523B2 (en) * 2004-03-09 2009-12-16 新日本製鐵株式会社 Low yield ratio type high-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
CN101418416B (en) * 2007-10-26 2010-12-01 宝山钢铁股份有限公司 Low welding crack sensitivity steel plate with yield strength of 800MPa grade and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291217A (en) * 2017-02-15 2019-09-27 杰富意钢铁株式会社 High-strength steel sheet and its manufacturing method
CN110291217B (en) * 2017-02-15 2021-04-20 杰富意钢铁株式会社 High-strength steel sheet and method for producing same
US11408058B2 (en) 2017-02-15 2022-08-09 Jfe Steel Corporation High-strength steel sheet and method for producing the same
CN109550806A (en) * 2017-09-27 2019-04-02 鞍钢股份有限公司 Production method of 500 MPa-level low-yield-ratio bridge steel plate
CN112077165A (en) * 2020-08-31 2020-12-15 日照宝华新材料有限公司 Rolling method of 50Mn thin high-carbon cold-rolled steel sheet
CN112077165B (en) * 2020-08-31 2022-08-09 日照宝华新材料有限公司 Rolling method of 50Mn thin high-carbon cold-rolled steel sheet

Also Published As

Publication number Publication date
RU2528579C1 (en) 2014-09-20
ZA201302648B (en) 2014-02-26
BR102013009712A2 (en) 2015-06-23
BR102013009712B1 (en) 2019-07-02
MY180218A (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP7238129B2 (en) 980 MPa class cold-rolled steel sheet with high hole expansion ratio and high elongation and method for producing the same
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
US11279986B2 (en) Cold-rolled high-strength steel having tensile strength of not less than 1500 MPA and excellent formability, and manufacturing method therefor
JP4673558B2 (en) Hot press molding method and automotive member excellent in productivity
US11319607B2 (en) High-strength high-tenacity steel plate with tensile strength of 800 MPa and production method therefor
KR101767780B1 (en) High strength cold rolled steel sheet having high yield ratio and method for manufacturing the same
US20200190612A1 (en) High strength cold-rolled steel sheet having excellent yield strength, ductility, and hole expandability, hot-dip galvanized steel sheet, and method for producing same
JP4530606B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
US10907230B2 (en) Ultra high-strength and high-ductility steel sheet having excellent yield ratio and manufacturing method therefor
KR20110119285A (en) Cold rolled steel sheet and zinc plated steel sheet having high strength and manufacturing method thereof
JP2013227624A (en) Method of manufacturing high strength cold rolled steel sheet excellent in workability
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP5280795B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP2004018911A (en) High-tensile strength cold-rolled steel plate having excellent elongation property and elongation-flanging property, and method for manufacturing the same
JP2019536906A (en) Ultra-high-strength steel sheet excellent in yield ratio and method for producing the same
JP4492105B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flangeability
CN113061808B (en) 780 MPa-grade cold-rolled light high-strength steel and preparation method thereof
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
KR20190022127A (en) Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same