[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013224343A - Heat storage material, and heat storage system - Google Patents

Heat storage material, and heat storage system Download PDF

Info

Publication number
JP2013224343A
JP2013224343A JP2012096020A JP2012096020A JP2013224343A JP 2013224343 A JP2013224343 A JP 2013224343A JP 2012096020 A JP2012096020 A JP 2012096020A JP 2012096020 A JP2012096020 A JP 2012096020A JP 2013224343 A JP2013224343 A JP 2013224343A
Authority
JP
Japan
Prior art keywords
heat storage
heat
nano
substance
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012096020A
Other languages
Japanese (ja)
Inventor
Yuka Yasue
由佳 安江
Masasuke Nakajima
雅祐 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012096020A priority Critical patent/JP2013224343A/en
Publication of JP2013224343A publication Critical patent/JP2013224343A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage material suitable for a heat storage system for a solar heat power generation, and a heat storage system.SOLUTION: A two-component heat storage material is used in a heat storage system whose heat storage temperature range is ≥250°C and ≤400°C, wherein a combination of a first substance and a second substance is composed of any one of CsNOand NaNO, LiNOand LiOH, LiNOand NaNO, KNOand NaNO, NaNOand RbNO, LiBr and LiOH, and LiBr and NaNO; and the composition of the first substance and the second substance has a solid phase ratio at a heat storage minimum temperature Tof ≥0.3 and ≤0.7, and a solid phase ratio at a heat storage maximum temperature Tof ≤0.1.

Description

本発明は、蓄熱材および蓄熱システムに関するものである。   The present invention relates to a heat storage material and a heat storage system.

近年注目を集める再生可能エネルギー関連技術として、太陽熱発電システムがある。太陽熱発電システムは、集熱エリアで太陽光を集光/集熱して水蒸気を生成し、生成した蒸気により蒸気タービンを回転させて発電を行うシステムである。   A solar power generation system is a renewable energy-related technology that has attracted attention in recent years. The solar thermal power generation system is a system that generates power by concentrating / collecting sunlight in a heat collection area to generate water vapor and rotating the steam turbine with the generated steam to generate power.

この太陽熱発電システムには、夜間や日射量が得られない時間帯の発電を補い出力電力の過渡的な変化をなくすために、蓄熱システムが備えられている。トラフ型太陽熱発電システム用の蓄熱システムでは、蓄熱温度範囲は250〜400℃とされているのが通常である。   This solar thermal power generation system is equipped with a heat storage system in order to compensate for power generation at night and in a time zone when the amount of solar radiation cannot be obtained and to eliminate a transient change in output power. In a heat storage system for a trough solar thermal power generation system, the heat storage temperature range is usually 250 to 400 ° C.

従来、このような蓄熱システムに用いられる蓄熱材としては、液体状態の溶融塩が用いられており、具体的には、ソーラーソルト(Solar Salt)と呼ばれる硝酸カリウム(KNO3)と硝酸ナトリウム(NaNO3)の混合物(質量分率0.4−0.6)が用いられている。 Conventionally, as a heat storage material used in such a heat storage system, a molten salt in a liquid state has been used. Specifically, potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ) called solar salt are used. ) (Mass fraction 0.4-0.6) is used.

しかし、ソーラーソルトのように顕熱を利用した蓄熱材では、潜熱を利用した蓄熱材と比べて蓄熱密度が小さいという問題がある。他方、潜熱を利用した蓄熱材では、固体の状態での熱伝導率が低いため、強制対流による熱交換が可能な液体顕熱蓄熱材を用いた場合と比較して伝熱効率が悪く、熱交換器が大きくなるなどの問題がある。   However, a heat storage material using sensible heat such as a solar salt has a problem that the heat storage density is smaller than that of a heat storage material using latent heat. On the other hand, in the heat storage material using latent heat, the heat conductivity in the solid state is low, so the heat transfer efficiency is poor compared to the case of using the liquid sensible heat storage material that can exchange heat by forced convection. There is a problem that the vessel becomes large.

そこで、強制対流による熱交換が可能で伝熱効率の低下を抑制できる潜熱蓄熱材として、スラリ状の蓄熱材が提案されている(例えば特許文献1,2参照)。   Therefore, a slurry-like heat storage material has been proposed as a latent heat storage material that can exchange heat by forced convection and suppress a decrease in heat transfer efficiency (see, for example, Patent Documents 1 and 2).

特開2007−204517号公報JP 2007-204517 A 特開2007−254697号公報JP 2007-254697 A

しかしながら、上述のように250〜400℃の蓄熱温度範囲で用いられ、かつ従来の蓄熱材と同等以上の蓄熱性能を有する太陽熱発電用の蓄熱システムに適したスラリ状の蓄熱材は、従来提案されていなかった。   However, as described above, a slurry-like heat storage material suitable for use in a heat storage system for solar power generation that is used in a heat storage temperature range of 250 to 400 ° C. and has a heat storage performance equal to or higher than that of a conventional heat storage material has been proposed. It wasn't.

本発明は上記事情に鑑み為されたものであり、太陽熱発電用の蓄熱システムに適した蓄熱材および蓄熱システムを提供することを目的とする。   This invention is made | formed in view of the said situation, and aims at providing the thermal storage material and thermal storage system suitable for the thermal storage system for solar thermal power generation.

本発明は上記目的を達成するために創案されたものであり、蓄熱温度範囲が250℃以上400℃以下である蓄熱システムに用いられる2成分の蓄熱材であって、第1物質と第2物質の組み合わせが、CsNO3とNaNO3、LiNO3とLiOH、LiNO3とNaNO3、KNO3とNaNO3、NaNO3とRbNO3、LiBrとLiOH、LiBrとNaNO3、のいずれかからなり、前記第1物質と前記第2物質の組成を、蓄熱最低温度Tminにおける固相率が0.3以上0.7以下であり、かつ、蓄熱最高温度Tmaxにおける固相率が0.1以下となる組成に設定した蓄熱材である。 The present invention was devised to achieve the above object, and is a two-component heat storage material used in a heat storage system having a heat storage temperature range of 250 ° C. or more and 400 ° C. or less, and includes a first substance and a second substance. A combination of CsNO 3 and NaNO 3 , LiNO 3 and LiOH, LiNO 3 and NaNO 3 , KNO 3 and NaNO 3 , NaNO 3 and RbNO 3 , LiBr and LiOH, LiBr and NaNO 3 , The composition of one substance and the second substance has a solid phase ratio of 0.3 to 0.7 at the minimum heat storage temperature T min and a solid phase ratio of 0.1 or less at the maximum heat storage temperature T max . It is a heat storage material set to the composition.

また、本発明は、2成分の蓄熱材を用いた蓄熱温度範囲が250℃以上400℃以下である蓄熱システムであって、前記蓄熱材として、第1物質と第2物質の組み合わせが、CsNO3とNaNO3、LiNO3とLiOH、LiNO3とNaNO3、KNO3とNaNO3、NaNO3とRbNO3、LiBrとLiOH、LiBrとNaNO3、のいずれかからなり、前記第1物質と前記第2物質の組成を、蓄熱最低温度Tminにおける固相率が0.3以上0.7以下であり、かつ、蓄熱最高温度Tmaxにおける固相率が0.1以下となる組成に設定したものを用いた蓄熱システムである。 The present invention is also a heat storage system having a heat storage temperature range of 250 ° C. or more and 400 ° C. or less using a two-component heat storage material, wherein the combination of the first substance and the second substance is CsNO 3 as the heat storage material. And NaNO 3 , LiNO 3 and LiOH, LiNO 3 and NaNO 3 , KNO 3 and NaNO 3 , NaNO 3 and RbNO 3 , LiBr and LiOH, LiBr and NaNO 3 , and the first substance and the second The composition of the substance is set so that the solid phase ratio at the heat storage minimum temperature T min is 0.3 or more and 0.7 or less and the solid phase ratio at the heat storage maximum temperature T max is 0.1 or less. This is the heat storage system used.

本発明によれば、太陽熱発電用の蓄熱システムに適した蓄熱材および蓄熱システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the thermal storage material and thermal storage system suitable for the thermal storage system for solar thermal power generation can be provided.

本発明で蓄熱材として用いるCsNO3−NaNO3の平衡状態図である。An equilibrium state diagram of CsNO 3 -NaNO 3 used as a heat storage material in the present invention. 本発明で蓄熱材として用いるLiNO3−LiOHの平衡状態図である。It is an equilibrium diagram of LiNO 3 —LiOH used as a heat storage material in the present invention. 本発明で蓄熱材として用いるLiNO3−NaNO3の平衡状態図である。An equilibrium state diagram of LiNO 3 -NaNO 3 used as a heat storage material in the present invention. 本発明で蓄熱材として用いるKNO3−NaNO3の平衡状態図である。An equilibrium state diagram of KNO 3 -NaNO 3 used as a heat storage material in the present invention. 本発明で蓄熱材として用いるNaNO3−RbNO3の平衡状態図である。An equilibrium state diagram of NaNO 3 -RbNO 3 used as a heat storage material in the present invention. 本発明で蓄熱材として用いるLiBr−LiOHの平衡状態図である。It is an equilibrium diagram of LiBr-LiOH used as a heat storage material in the present invention. 本発明で蓄熱材として用いるLiBr−NaNO3の平衡状態図である。It is an equilibrium diagram of LiBr-NaNO 3 used as a heat storage material in the present invention. 本発明において蓄熱材として用いる各第1物質と第2物質の組み合わせについて、Tmin〜Tmax間の蓄熱量ΔHを推算および計測により求めた結果を示す図である。For each combination of the first substance and the second substance used as a heat storage material in the present invention, it is a diagram showing a result obtained by estimating and measuring the heat storage amount ΔH between T min through T max. 本発明において蓄熱材として用いるLiNO3−LiOH、LiNO3−NaNO3、NaNO3−RbNO3、およびLiBr−LiOHにおける、温度TとエンタルピーHの関係を示す図である。LiNO 3 -LiOH used as a heat storage material in the present invention, LiNO 3 -NaNO 3, NaNO 3 -RbNO 3, and the LiBr-LiOH, is a diagram showing the relationship between the temperature T and enthalpy H. (a),(b)は、本発明の一実施の形態に係る蓄熱システムを示す概略構成図である。(A), (b) is a schematic block diagram which shows the thermal storage system which concerns on one embodiment of this invention.

以下、本発明の実施の形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本実施の形態に係る蓄熱材は、蓄熱温度範囲が250℃以上400℃以下である蓄熱システムに用いられる2成分の蓄熱材であって、第1物質と第2物質の組み合わせが、CsNO3とNaNO3、LiNO3とLiOH、LiNO3とNaNO3、KNO3とNaNO3、NaNO3とRbNO3、LiBrとLiOH、LiBrとNaNO3、のいずれかからなり、第1物質と第2物質の組成を、蓄熱最低温度Tminにおける固相率が0.3以上0.7以下であり、かつ、蓄熱最高温度Tmaxにおける固相率が0.1以下となる組成に設定したものである。 The heat storage material according to the present embodiment is a two-component heat storage material used in a heat storage system having a heat storage temperature range of 250 ° C. or more and 400 ° C. or less, and the combination of the first substance and the second substance is CsNO 3 and It consists of any one of NaNO 3 , LiNO 3 and LiOH, LiNO 3 and NaNO 3 , KNO 3 and NaNO 3 , NaNO 3 and RbNO 3 , LiBr and LiOH, LiBr and NaNO 3 , and the composition of the first substance and the second substance The solid phase ratio at the lowest heat storage temperature T min is 0.3 or more and 0.7 or less, and the solid phase ratio at the maximum heat storage temperature T max is 0.1 or less.

以下、第1物質と第2物質の組み合わせをハイフンで区切って、第1物質−第2物質として表示する。本実施の形態で蓄熱材として用いるCsNO3−NaNO3、LiNO3−LiOH、LiNO3−NaNO3、KNO3−NaNO3、NaNO3−RbNO3、LiBr−LiOH、LiBr−NaNO3の平衡状態図を図1〜7にそれぞれ示す。 Hereinafter, the combination of the first substance and the second substance is separated by a hyphen and is displayed as the first substance-second substance. Equilibrium state diagram of CsNO 3 —NaNO 3 , LiNO 3 —LiOH, LiNO 3 —NaNO 3 , KNO 3 —NaNO 3 , NaNO 3 —RbNO 3 , LiBr—LiOH, LiBr—NaNO 3 used as a heat storage material in the present embodiment Are shown in FIGS.

ここでは、Tmax=400℃、Tmin=250℃に設定する場合を説明する。但し、図6に示すLiBr−LiOHの共晶点は267℃であり、また図7に示すLiBr−NaNO3における[Liquid+NaNO3(S2)]相と[Liquid+NaBr(s)+NaNO3(S2)]相の相平衡温度は278℃であるため、この2つの組み合わせについては、Tmax=400℃、Tmin=280℃とする。図1〜7に示すように、各第1物質−第2物質の組み合わせにおいて、Tmin〜Tmaxの蓄熱温度範囲に固液共存相が存在することが確認できる。 Here, a case where T max = 400 ° C. and T min = 250 ° C. will be described. However, the eutectic point of LiBr—LiOH shown in FIG. 6 is 267 ° C., and the [Liquid + NaNO3 (S2)] phase and [Liquid + NaBr (s) + NaNO3 (S2) in LiBr—NaNO 3 shown in FIG. )] Since the phase equilibrium temperature of the phases is 278 ° C., T max = 400 ° C. and T min = 280 ° C. for these two combinations. As shown in Figures 1-7, the first material - a combination of the second material, it can be confirmed that the solid-liquid coexisting phase in the heat storage temperature range of T min through T max is present.

蓄熱最低温度Tminにおける固相率を0.3以上とするのは、固相率が0.3未満になると十分な蓄熱量を確保できないためである。また、蓄熱最低温度Tminにおける固相率を0.7以下とするのは、固相率が0.7を超えると、殆ど固体と見分けがつかない状態となり、流動性が確保できなくなるためである。 The reason why the solid phase rate at the minimum heat storage temperature T min is 0.3 or more is that when the solid phase rate is less than 0.3, a sufficient amount of heat storage cannot be secured. In addition, the solid phase rate at the minimum heat storage temperature T min is 0.7 or less because if the solid phase rate exceeds 0.7, it becomes almost indistinguishable from solid and fluidity cannot be secured. is there.

ここでは、蓄熱最低温度Tminにおける固相率を0.3以上0.7以下としたが、蓄熱密度を向上させ、かつ流動性を確保するという観点からは、蓄熱最低温度Tminにおける固相率は、0.5以上0.6以下とすることがより望ましい。なお、蓄熱最低温度Tminにおける固相率の上限値、下限値は適用する蓄熱システムの要求に応じて適宜変更可能である。 Here, the solid phase ratio at the minimum heat storage temperature T min is set to 0.3 or more and 0.7 or less, but from the viewpoint of improving the heat storage density and ensuring fluidity, the solid phase ratio at the minimum heat storage temperature T min is set. The rate is more preferably 0.5 or more and 0.6 or less. In addition, the upper limit value and lower limit value of the solid phase rate at the heat storage minimum temperature T min can be appropriately changed according to the requirements of the heat storage system to be applied.

また、ここでは蓄熱最高温度Tmaxにおける固相率を0.1以下としているが、潜熱による蓄熱量を大きくする観点からは、蓄熱最高温度Tmaxにおける固相率はなるべく0に近いことが望ましい。 Here, the solid phase rate at the maximum heat storage temperature T max is 0.1 or less, but from the viewpoint of increasing the amount of heat storage due to latent heat, the solid phase rate at the maximum heat storage temperature T max is preferably as close to 0 as possible. .

例えば、図2のLiNO3−LiOHでは、蓄熱最低温度Tminにおける固相率を0.5以上0.6以下とするには、第2物質であるLiOHの組成をモル分率で0.781<x0<0.825とすればよいことが分かる。ここでは、第2物質であるLiOHの組成をモル分率で0.800(質量分率で0.581)とした。 For example, in the case of LiNO 3 —LiOH in FIG. 2, in order to set the solid fraction at the minimum heat storage temperature T min to 0.5 or more and 0.6 or less, the composition of the second substance, LiOH, is 0.781 in terms of molar fraction. It can be seen that <x 0 <0.825. Here, the composition of the second substance, LiOH, was 0.800 in terms of molar fraction (0.581 in terms of mass fraction).

同様に、以下の説明では、図1のCsNO3−NaNO3では第2物質であるNaNO3の組成をモル分率で0.902(質量分率で0.801)とした場合、図3のLiNO3−NaNO3では第2物質であるNaNO3の組成をモル分率で0.877(質量分率で0.898)とした場合、図4のKNO3−NaNO3では第2物質であるNaNO3の組成をモル分率で0.786(質量分率で0.755)とした場合、図5のNaNO3−RbNO3では第2物質であるRbNO3の組成をモル分率で0.105(質量分率で0.169)とした場合、図6のLiBr−LiOHでは第2物質であるLiOHの組成をモル分率で0.621(質量分率で0.311)とした場合、図7のLiBr−NaNO3では第2物質であるNaNO3の組成をモル分率で0.964(質量分率で0.963)とした場合、について説明する。これらの組成は、いずれも上述の固相率の条件を満たすものである。 Similarly, in the following description, in the case of CsNO 3 —NaNO 3 in FIG. 1, when the composition of NaNO 3 as the second substance is 0.902 in molar fraction (0.801 in mass fraction), FIG. In LiNO 3 —NaNO 3 , when the composition of NaNO 3 , which is the second substance, is 0.877 in molar fraction (0.898 in mass fraction), KNO 3 —NaNO 3 in FIG. 4 is the second substance. When the composition of NaNO 3 is 0.786 in terms of molar fraction (0.755 in terms of mass fraction), the composition of RbNO 3 that is the second substance in NaNO 3 —RbNO 3 in FIG. In the case of 105 (0.169 in mass fraction), in the case of LiBr-LiOH in FIG. 6, when the composition of LiOH as the second substance is 0.621 in molar fraction (0.311 in mass fraction), Figure 7 LiBr-NaNO of NaNO 3 are the 3 second material If a 0.964 (0.963 in mass fraction) at the adult mole fraction, will be described. All of these compositions satisfy the above-mentioned conditions of the solid phase ratio.

これらの各第1物質と第2物質の組み合わせについて、Tmin〜Tmax間の蓄熱量(エンタルピーの変化量)ΔHを推算および計測により求めた。結果を表1および図8に示す。 Combinations of these and the first material the second material, was determined by estimating and measuring the T min heat storage amount between through T max (enthalpy variation) [Delta] H. The results are shown in Table 1 and FIG.

なお、表1および図8における蓄熱量ΔHの推算値は、一般的な熱物性推算ソフトを用いて推算した値である。また、蓄熱量ΔHの計測方法に示す断熱型は、断熱型比熱測定装置による比熱を計測してTmin〜Tmax間の蓄熱量(エンタルピーの変化量)を求める方法である。蓄熱量ΔHの計測方法に示すDSCは、DSC(示差走査熱量測定)装置で比熱を計測してTmin〜Tmax間の蓄熱量(エンタルピーの変化量)を求める方法である。比熱計測は概ね(固相線−20℃)〜(液相線+20℃)の温度範囲で行ったため、液相では、計測した液相の比熱の平均値を用い、比熱を一定と仮定して液相線から400℃までのエンタルピーの変化量を求めた。 In addition, the estimated value of the heat storage amount ΔH in Table 1 and FIG. 8 is a value estimated using general thermophysical property estimation software. In addition, the heat insulation type shown in the method for measuring the heat storage amount ΔH is a method of obtaining the heat storage amount (enthalpy change amount) between T min and T max by measuring the specific heat by the heat insulation type specific heat measuring device. The DSC shown in the method for measuring the heat storage amount ΔH is a method for obtaining the heat storage amount (enthalpy change amount) between T min and T max by measuring the specific heat with a DSC (Differential Scanning Calorimetry) device. Since the specific heat measurement was generally performed in the temperature range of (solid phase line −20 ° C.) to (liquid phase line + 20 ° C.), in the liquid phase, the average specific heat of the measured liquid phase was used and the specific heat was assumed to be constant. The amount of change in enthalpy from the liquidus to 400 ° C. was determined.

また、本発明との比較のため、従来より用いられているソーラーソルトについても、Tmax=400℃、Tmin=250℃とした場合の蓄熱量を推算した。結果を表1および図8に併せて示す。ここで計測値は公知のデータを引用した。 In addition, for comparison with the present invention, the heat storage amount when T max = 400 ° C. and T min = 250 ° C. was also estimated for the conventionally used solar salt. The results are shown in Table 1 and FIG. Here, the measured values are quoted from known data.

表1および図8に示すように、従来より用いられているソーラーソルトの蓄熱量ΔHは、推算値で235[J/g]、計測値では234[J/g]であった。これに対して、本発明の蓄熱材の蓄熱量ΔHは、少なくとも推算値で299[J/g]以上、計測値で310[J/g]以上となっており、いずれの組み合わせにおいても、ソーラーソルトの蓄熱量を上回っていることがわかる。   As shown in Table 1 and FIG. 8, the heat storage amount ΔH of the conventionally used solar salt was 235 [J / g] as an estimated value and 234 [J / g] as a measured value. On the other hand, the heat storage amount ΔH of the heat storage material of the present invention is at least an estimated value of 299 [J / g] or more and a measurement value of 310 [J / g] or more. It can be seen that the amount of heat stored in the salt is exceeded.

図9に、LiNO3−LiOH、LiNO3−NaNO3、NaNO3−RbNO3、およびLiBr−LiOHの4つの組み合わせにおける、温度TとエンタルピーH(計測値)の関係(H−T線図)を示す。図9のH−T線図の傾きが変化する温度が図1〜7の平衡状態図における液相線温度に相当している。なお、図9では、ソーラーソルトにおけるH−T線図も併せて示している。 FIG. 9 shows the relationship (HT diagram) between temperature T and enthalpy H (measured value) in four combinations of LiNO 3 —LiOH, LiNO 3 —NaNO 3 , NaNO 3 —RbNO 3 , and LiBr—LiOH. Show. The temperature at which the slope of the HT diagram of FIG. 9 changes corresponds to the liquidus temperature in the equilibrium diagrams of FIGS. In addition, in FIG. 9, the HT diagram in a solar salt is also shown collectively.

図9からも分かるように、本発明の蓄熱材では、スラリ状態で使用する温度領域があることで、ソーラーソルトの顕熱のみの蓄熱よりも蓄熱量が大きくなっている。なお、LiBr−LiOHについては、蓄熱最低温度Tminを280℃と高く設定しているにもかかわらず、ソーラーソルトの顕熱のみの蓄熱よりも蓄熱量が大きくなっていることがわかる。 As can be seen from FIG. 9, in the heat storage material of the present invention, the heat storage amount is larger than the heat storage of only the sensible heat of the solar salt due to the temperature region used in the slurry state. Note that the LiBr-LiOH, despite the heat storage minimum temperature T min is set as high as 280 ° C., it can be seen that the heat storage amount is larger than the heat storage of only sensible heat of solar salt.

以上説明したように、本実施の形態に係る蓄熱材では、第1物質と第2物質の組み合わせが、CsNO3とNaNO3、LiNO3とLiOH、LiNO3とNaNO3、KNO3とNaNO3、NaNO3とRbNO3、LiBrとLiOH、LiBrとNaNO3、のいずれかからなり、第1物質と第2物質の組成を、蓄熱最低温度Tminにおける固相率が0.3以上0.7以下であり、かつ、蓄熱最高温度Tmaxにおける固相率が0.1以下となる組成に設定している。 As described above, in the heat storage material according to the present embodiment, the combination of the first substance and the second substance is CsNO 3 and NaNO 3 , LiNO 3 and LiOH, LiNO 3 and NaNO 3 , KNO 3 and NaNO 3 , It consists of NaNO 3 and RbNO 3 , LiBr and LiOH, LiBr and NaNO 3 , and the composition of the first substance and the second substance has a solid phase ratio of 0.3 to 0.7 at the lowest heat storage temperature T min . And the composition is such that the solid phase ratio at the maximum heat storage temperature T max is 0.1 or less.

これにより、250〜400℃の蓄熱温度範囲で流動性を持ったスラリ状態で用いることが可能であり、潜熱が利用でき流動性のある蓄熱材を実現することができる。その結果、顕熱のみを利用するソーラーソルト等の従来の蓄熱材と比較して蓄熱性能を向上させることが可能となり、太陽熱発電用の蓄熱システムに適した蓄熱材を実現することができる。   Thereby, it is possible to use in a slurry state having fluidity in a heat storage temperature range of 250 to 400 ° C., and it is possible to realize a fluid heat storage material that can utilize latent heat. As a result, it is possible to improve the heat storage performance as compared with conventional heat storage materials such as solar salt using only sensible heat, and it is possible to realize a heat storage material suitable for a heat storage system for solar thermal power generation.

次に、本発明の蓄熱材を用いた蓄熱システムの一例を図10により説明する。なお、図10(a),(b)に示す蓄熱システム100aおよび蓄熱システム100bは、あくまで一例であり、本発明の蓄熱材を用いる蓄熱システムの構成はこれらに限定されない。   Next, an example of a heat storage system using the heat storage material of the present invention will be described with reference to FIG. In addition, the thermal storage system 100a and the thermal storage system 100b shown to FIG. 10 (a), (b) are an example to the last, and the structure of the thermal storage system using the thermal storage material of this invention is not limited to these.

図10(a)に示す蓄熱システム100aは、熱源101からの熱を本発明の蓄熱材Sに蓄熱して、その熱を熱負荷102に放熱するものである。また、蓄熱システム100aは、熱源101の熱を蓄熱材Sに蓄熱するための蓄熱熱交換器103と、その熱を熱負荷102に放熱するための放熱熱交換器104を、蓄熱材Sを貯留する蓄熱槽105の外部に設置する構成となっている。   A heat storage system 100a shown in FIG. 10A stores heat from the heat source 101 in the heat storage material S of the present invention, and radiates the heat to the heat load 102. The heat storage system 100 a stores the heat storage material S, the heat storage heat exchanger 103 for storing heat of the heat source 101 in the heat storage material S, and the heat dissipation heat exchanger 104 for radiating the heat to the heat load 102. The heat storage tank 105 is configured to be installed outside.

蓄熱槽105には、蓄熱槽105の熱源側出口105aから圧送ポンプ106により圧送した蓄熱材Sを、蓄熱熱交換器103を介して熱源側入口105bに戻す蓄熱ライン107と、蓄熱槽105の熱負荷側出口105cから圧送ポンプ108により圧送した蓄熱材Sを、放熱熱交換器104を介して熱負荷側入口105dに戻す放熱ライン109と、が接続されている。   In the heat storage tank 105, the heat storage line 107 that returns the heat storage material S pumped by the pressure pump 106 from the heat source side outlet 105 a of the heat storage tank 105 to the heat source side inlet 105 b via the heat storage heat exchanger 103, and the heat of the heat storage tank 105 A heat radiation line 109 is connected to return the heat storage material S pumped from the load side outlet 105c by the pressure pump 108 to the heat load side inlet 105d via the heat radiation heat exchanger 104.

蓄熱槽105に貯留された蓄熱材Sは、圧送ポンプ106によって熱源101に接続した蓄熱熱交換器103に送られることによって蓄熱した状態で蓄熱槽105に戻り、また、圧送ポンプ108によって熱負荷102に接続した放熱熱交換器104に送られることによって放熱した状態で蓄熱槽105に戻る。   The heat storage material S stored in the heat storage tank 105 is returned to the heat storage tank 105 in a state where the heat is stored by being sent to the heat storage heat exchanger 103 connected to the heat source 101 by the pressure feed pump 106, and the heat load 102 is obtained by the pressure feed pump 108. It returns to the thermal storage tank 105 in the state thermally radiated by being sent to the radiative heat exchanger 104 connected to the.

蓄熱システム100aでは、熱源101で加熱された熱源用熱媒体を圧送ポンプ110により蓄熱熱交換器103に導入し、蓄熱熱交換器103にて熱源用熱媒体と蓄熱材Sとの間で熱交換させることにより、熱源101の熱を蓄熱材Sに伝えるようにしているが、熱源101が熱を出力するための出力用の熱交換器を備えるヒートポンプ等である場合には、その熱交換器を蓄熱熱交換器103として用いるようにしても良い。   In the heat storage system 100a, the heat source heat medium heated by the heat source 101 is introduced into the heat storage heat exchanger 103 by the pressure pump 110, and the heat storage heat exchanger 103 exchanges heat between the heat source heat medium and the heat storage material S. In this case, the heat of the heat source 101 is transmitted to the heat storage material S. When the heat source 101 is a heat pump or the like including an output heat exchanger for outputting heat, the heat exchanger is The heat storage heat exchanger 103 may be used.

また、蓄熱システム100aでは、熱負荷102から排出された熱負荷用熱媒体を圧送ポンプ111により放熱熱交換器104に送り、放熱熱交換器104にて蓄熱材Sと熱負荷用熱媒体との間で熱交換させ、加熱された熱負荷用熱媒体を熱負荷102に導入することで、蓄熱材Sの熱を熱負荷102に伝えるようにしている。   Further, in the heat storage system 100a, the heat load heat medium discharged from the heat load 102 is sent to the radiant heat exchanger 104 by the pump pump 111, and the radiant heat exchanger 104 uses the heat storage material S and the heat load heat medium. The heat of the heat storage material S is transmitted to the heat load 102 by exchanging heat between them and introducing the heated heat load heat medium into the heat load 102.

なお、本実施の形態に係る蓄熱材を用いる蓄熱システムとしては、図10(b)に示すような、蓄熱槽105の内部に熱交換器112を設置する構成の蓄熱システム100bとすることもできる。   In addition, as a heat storage system using the heat storage material which concerns on this Embodiment, it can also be set as the heat storage system 100b of the structure which installs the heat exchanger 112 inside the heat storage tank 105 as shown in FIG.10 (b). .

図10(b)の蓄熱システム100bでは、蓄熱材Sを貯留する蓄熱槽105の内部に、蓄熱槽105の入口105eから熱媒体を導入して出口105fまで通流させる螺旋状の熱媒体用流路が熱交換器112として設けられる。入口105eから導入された熱媒体は、螺旋状の熱媒体用流路からなる熱交換器112を通流する間に蓄熱材Sと熱交換し、蓄熱槽105の出口105fに至る。   In the heat storage system 100b of FIG. 10B, a spiral heat medium flow that introduces a heat medium from the inlet 105e of the heat storage tank 105 to the outlet 105f into the heat storage tank 105 that stores the heat storage material S. A path is provided as the heat exchanger 112. The heat medium introduced from the inlet 105 e exchanges heat with the heat storage material S while flowing through the heat exchanger 112 including the spiral heat medium flow path, and reaches the outlet 105 f of the heat storage tank 105.

また、蓄熱システム100bでは、熱交換器112の入口105eと出口105fを熱源101に接続するか、あるいは熱負荷102に接続するかを切替可能な流路切替手段113を備えている。ここでは、流路切替手段113を入口側三方弁113aおよび出口側三方弁113bで構成し、熱交換器112を流通する熱媒体を蓄熱時には熱源101側に流し、放熱時には熱負荷102側に流すように各三方弁113a,113bを切換えるようにした。   Further, the heat storage system 100b includes a flow path switching unit 113 that can switch whether the inlet 105e and the outlet 105f of the heat exchanger 112 are connected to the heat source 101 or the heat load 102. Here, the flow path switching means 113 is composed of an inlet-side three-way valve 113a and an outlet-side three-way valve 113b, and the heat medium flowing through the heat exchanger 112 flows to the heat source 101 side during heat storage and flows to the heat load 102 side during heat dissipation. Thus, the three-way valves 113a and 113b are switched.

蓄熱システム100bでは、蓄熱槽105から導出された熱媒体は、熱源101を経て加熱された状態で蓄熱槽105に戻るか、または、熱負荷102を経て冷却された状態で蓄熱槽105に戻る。図10(b)では、熱媒体は熱源101または熱負荷102と直接に熱交換する。   In the heat storage system 100b, the heat medium led out from the heat storage tank 105 returns to the heat storage tank 105 in a state of being heated through the heat source 101, or returns to the heat storage tank 105 in a state of being cooled through the heat load 102. In FIG. 10B, the heat medium directly exchanges heat with the heat source 101 or the heat load 102.

図10(a),(b)では図示していないが、蓄熱システム100a,100bの蓄熱槽105には、蓄熱材Sを攪拌するための攪拌手段を備え、この攪拌手段により固液共存状態の蓄熱材Sを攪拌して、蓄熱材Sのスラリ化を行うことが望ましい。   Although not shown in FIGS. 10 (a) and 10 (b), the heat storage tank 105 of the heat storage systems 100a and 100b is provided with a stirring means for stirring the heat storage material S. It is desirable to stir the heat storage material S to make the heat storage material S into a slurry.

なお、上述の蓄熱システム100a,100bの構成は一例であり、例えば蓄熱システム100aと蓄熱システム100bを組み合わせた構成とすることも可能である。   In addition, the structure of the above-mentioned heat storage system 100a, 100b is an example, For example, it is also possible to set it as the structure which combined the heat storage system 100a and the heat storage system 100b.

本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

100a,100b 蓄熱システム
101 熱源
102 熱負荷
S 蓄熱材
100a, 100b Thermal storage system 101 Heat source 102 Thermal load S Thermal storage material

Claims (2)

蓄熱温度範囲が250℃以上400℃以下である蓄熱システムに用いられる2成分の蓄熱材であって、
第1物質と第2物質の組み合わせが、CsNO3とNaNO3、LiNO3とLiOH、LiNO3とNaNO3、KNO3とNaNO3、NaNO3とRbNO3、LiBrとLiOH、LiBrとNaNO3、のいずれかからなり、
前記第1物質と前記第2物質の組成を、蓄熱最低温度Tminにおける固相率が0.3以上0.7以下であり、かつ、蓄熱最高温度Tmaxにおける固相率が0.1以下となる組成に設定した
ことを特徴とする蓄熱材。
A two-component heat storage material used in a heat storage system having a heat storage temperature range of 250 ° C. or more and 400 ° C. or less,
The combination of the first substance and the second substance is CsNO 3 and NaNO 3 , LiNO 3 and LiOH, LiNO 3 and NaNO 3 , KNO 3 and NaNO 3 , NaNO 3 and RbNO 3 , LiBr and LiOH, LiBr and NaNO 3 , Consist of either
The composition of the first substance and the second substance is such that the solid phase ratio at the heat storage minimum temperature T min is 0.3 or more and 0.7 or less, and the solid phase ratio at the heat storage maximum temperature T max is 0.1 or less. A heat storage material characterized by having a composition which becomes
2成分の蓄熱材を用いた蓄熱温度範囲が250℃以上400℃以下である蓄熱システムであって、
前記蓄熱材として、
第1物質と第2物質の組み合わせが、CsNO3とNaNO3、LiNO3とLiOH、LiNO3とNaNO3、KNO3とNaNO3、NaNO3とRbNO3、LiBrとLiOH、LiBrとNaNO3、のいずれかからなり、
前記第1物質と前記第2物質の組成を、蓄熱最低温度Tminにおける固相率が0.3以上0.7以下であり、かつ、蓄熱最高温度Tmaxにおける固相率が0.1以下となる組成に設定したものを用いた
ことを特徴とする蓄熱システム。
A heat storage system in which a heat storage temperature range using a two-component heat storage material is 250 ° C. or more and 400 ° C. or less,
As the heat storage material,
The combination of the first substance and the second substance is CsNO 3 and NaNO 3 , LiNO 3 and LiOH, LiNO 3 and NaNO 3 , KNO 3 and NaNO 3 , NaNO 3 and RbNO 3 , LiBr and LiOH, LiBr and NaNO 3 , Consist of either
The composition of the first substance and the second substance is such that the solid phase ratio at the heat storage minimum temperature T min is 0.3 or more and 0.7 or less, and the solid phase ratio at the heat storage maximum temperature T max is 0.1 or less. A heat storage system characterized by using a composition set to be
JP2012096020A 2012-04-19 2012-04-19 Heat storage material, and heat storage system Pending JP2013224343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096020A JP2013224343A (en) 2012-04-19 2012-04-19 Heat storage material, and heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096020A JP2013224343A (en) 2012-04-19 2012-04-19 Heat storage material, and heat storage system

Publications (1)

Publication Number Publication Date
JP2013224343A true JP2013224343A (en) 2013-10-31

Family

ID=49594632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096020A Pending JP2013224343A (en) 2012-04-19 2012-04-19 Heat storage material, and heat storage system

Country Status (1)

Country Link
JP (1) JP2013224343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523284A (en) * 2014-07-16 2017-08-17 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Salt mixture
WO2020145106A1 (en) * 2019-01-07 2020-07-16 株式会社Ihi Vapor supply device and drying system
WO2024106296A1 (en) * 2022-11-16 2024-05-23 株式会社カネカ Cold storage material composition and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392956A (en) * 1977-01-21 1978-08-15 Westinghouse Electric Corp Heat exchanger of directtcontact heat accumulator type
JPH03282101A (en) * 1990-03-30 1991-12-12 Babcock Hitachi Kk Steam generating device
JP2006266637A (en) * 2005-03-25 2006-10-05 Jfe Engineering Kk Heat storage method and heat storage device
US20100258760A1 (en) * 2007-10-22 2010-10-14 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Thermal storage device and use of multicomponent systems
JP2011524966A (en) * 2008-02-22 2011-09-08 ダウ グローバル テクノロジーズ エルエルシー Thermal energy storage material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392956A (en) * 1977-01-21 1978-08-15 Westinghouse Electric Corp Heat exchanger of directtcontact heat accumulator type
JPH03282101A (en) * 1990-03-30 1991-12-12 Babcock Hitachi Kk Steam generating device
JP2006266637A (en) * 2005-03-25 2006-10-05 Jfe Engineering Kk Heat storage method and heat storage device
US20100258760A1 (en) * 2007-10-22 2010-10-14 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Thermal storage device and use of multicomponent systems
JP2011524966A (en) * 2008-02-22 2011-09-08 ダウ グローバル テクノロジーズ エルエルシー Thermal energy storage material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523284A (en) * 2014-07-16 2017-08-17 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Salt mixture
WO2020145106A1 (en) * 2019-01-07 2020-07-16 株式会社Ihi Vapor supply device and drying system
JPWO2020145106A1 (en) * 2019-01-07 2021-09-09 株式会社Ihi Steam supply and drying system
WO2024106296A1 (en) * 2022-11-16 2024-05-23 株式会社カネカ Cold storage material composition and use thereof

Similar Documents

Publication Publication Date Title
Algarni et al. Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster
Fernández et al. Development of new molten salts with LiNO3 and Ca (NO3) 2 for energy storage in CSP plants
Fopah-Lele et al. A review on the use of SrBr2· 6H2O as a potential material for low temperature energy storage systems and building applications
Saeed et al. A numerical investigation of a heat transfer augmentation finned pear-shaped thermal energy storage system with nano-enhanced phase change materials
Tehrani et al. Cyclic performance of cascaded and multi-layered solid-PCM shell-and-tube thermal energy storage systems: A case study of the 19.9 MWe Gemasolar CSP plant
Saranprabhu et al. Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage
Robak et al. Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications
Niedermeier et al. Assessment of thermal energy storage options in a sodium-based CSP plant
US20160115945A1 (en) Solar thermal energy storage system
Malan et al. Solar thermal energy storage in power generation using phase change material with heat pipes and fins to enhance heat transfer
Kuravi et al. Thermal energy storage for concentrating solar power plants
Nomura et al. High‐temperature latent heat storage technology to utilize exergy of solar heat and industrial exhaust heat
Cascetta et al. Thermocline vs. two‐tank direct thermal storage system for concentrating solar power plants: A comparative techno‐economic assessment
US20130284970A1 (en) Heat transfer medium for solar thermal systems
Vorbeck et al. Pilot application of phase change slurry in a 5 m3 storage
JP2013224343A (en) Heat storage material, and heat storage system
JP2008020177A (en) Heat storage system
Han et al. Effects of sodium chloride on the thermal behavior of oxalic acid dihydrate for thermal energy storage
Shank et al. Experimental study of a latent heat thermal energy storage system assisted by variable-length radial fins
JP2007225268A (en) Latent heat accumulator provided with heat exchanging function
Liang et al. Towards idealized thermal stratification in a novel phase change emulsion storage tank
JP4830572B2 (en) Latent heat storage material
Zhao et al. Study on the thermal performance of thermal energy storage and heating module based on a novel embedded heat pipe
CN107605557B (en) Organic Rankine cycle power generation system
Ling et al. Performance of a coil-pipe heat exchanger filled with mannitol for solar water heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160802