[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013219884A - Position controller - Google Patents

Position controller Download PDF

Info

Publication number
JP2013219884A
JP2013219884A JP2012087103A JP2012087103A JP2013219884A JP 2013219884 A JP2013219884 A JP 2013219884A JP 2012087103 A JP2012087103 A JP 2012087103A JP 2012087103 A JP2012087103 A JP 2012087103A JP 2013219884 A JP2013219884 A JP 2013219884A
Authority
JP
Japan
Prior art keywords
command value
speed
frequency
notch
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012087103A
Other languages
Japanese (ja)
Other versions
JP5919070B2 (en
Inventor
Tomohiro Shibata
知宏 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2012087103A priority Critical patent/JP5919070B2/en
Publication of JP2013219884A publication Critical patent/JP2013219884A/en
Application granted granted Critical
Publication of JP5919070B2 publication Critical patent/JP5919070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Multiple Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a position/speed controller for synchronously driving one shaft such as a feed shaft or a main shaft of a machine tool by means of a plurality of motors, the controller stably operating a control object having a different resonance frequency for each work without causing mechanical vibration.SOLUTION: The position controller for controlling one shaft by means of a plurality of motors includes: a position controller for calculating a speed command value on the basis of a position command value and a position detection value of the motor; a speed controller for calculating a torque command value on the basis of the speed command value and a speed detection value calculated by the position detector; notch filters 8m and 8s for reducing a frequency component around a notch frequency from the torque command value; a position command error generator 15 for generating a position command error in the position command value; and a resonance frequency computing unit 16 for determining the notch frequency of the notch filter on the basis of the position command error, and each torque command value of the plurality of motors.

Description

本発明は、複数のモータで1軸を同期駆動する位置制御装置に関する。   The present invention relates to a position control device that drives one axis synchronously with a plurality of motors.

工作機械の送り軸や主軸を複数のモータで1軸を同期駆動する位置制御装置において、制御対象を高精度で動作させ、かつ、機械振動を抑えるために各種の試みがなされている。制御系のゲインを大きく設定することにより、高精度で動作させることができるが、機械振動が発生しやすくなる。機械振動を抑えるためには、トルク指令にフィルタを付加し、制御対象の共振周波数に相当する指令成分を低減することで、加振力が除去できる。その結果、機械振動を抑えた制御対象の制御が可能となる。しかし、旋盤の対向した主軸等においては、ワーク毎にねじれ剛性が異なり、加工形状によっては、加工に伴いワークのねじれ剛性が変化することにより、制御対象の共振周波数が変化し、前記フィルタ定数と共振周波数がずれ、機械振動が発生してしまう課題がある。   Various attempts have been made to operate a controlled object with high accuracy and to suppress machine vibration in a position control device that synchronously drives one axis of a feed axis and a main axis of a machine tool with a plurality of motors. By setting the gain of the control system large, it is possible to operate with high accuracy, but mechanical vibration is likely to occur. In order to suppress the mechanical vibration, the excitation force can be removed by adding a filter to the torque command and reducing the command component corresponding to the resonance frequency to be controlled. As a result, it is possible to control the controlled object while suppressing mechanical vibration. However, the torsional rigidity of the lathes facing each other varies depending on the workpiece, and depending on the machining shape, the torsional stiffness of the workpiece changes with machining, so that the resonance frequency of the controlled object changes, and the filter constant There is a problem that the resonance frequency shifts and mechanical vibration occurs.

図3に機械振動を抑えるための従来技術の制御ブロック図を示す。図3中のマスター側制御系20mとスレーブ側制御系20sは同一要素であるため、それぞれの構成要素の記号末尾に記号mとsを付し、スレーブ側制御系20sの構成説明は省略する。位置指令演算器1は、同期した位置指令Pcm、Pcsをそれぞれの位置制御系へ出力する。前記位置指令Pcmとモータ11mに取り付けられた位置検出器10mの位置検出値Pmmの偏差を減算器2mにより求め、位置偏差Pdifmを出力する。位置偏差比例演算器3mは、前記位置偏差と位置ループゲインKpを乗算し、速度指令Vcmを出力する。微分器13mは、位置検出値Pmmを微分しモータの速度検出値Vmmを出力する。前記速度指令Vcmとモータの速度検出値Vmmの偏差を減算器4mにより求め、速度偏差として出力する。該速度偏差と速度ループ比例ゲインPvと速度ループ積分ゲインIvに基づき速度偏差比例演算器5mと速度偏差積分演算器6mがそれぞれ速度偏差比例成分と速度偏差積分成分を出力し、加算器7mが速度偏差比例成分と速度偏差積分成分を加算しトルク指令Tcmを出力する。ノッチフィルタ8mは、前記トルク指令Tcmからノッチ周波数ωNを中心とする周波数成分を低減する。図3中の記号9mはトルク指令をフィルタリングする各種のフィルタ部と電流制御部を示す。   FIG. 3 shows a control block diagram of the prior art for suppressing mechanical vibration. Since the master side control system 20m and the slave side control system 20s in FIG. 3 are the same elements, the symbols m and s are added to the end of the symbols of the respective components, and the description of the configuration of the slave side control system 20s is omitted. The position command calculator 1 outputs synchronized position commands Pcm and Pcs to the respective position control systems. A deviation between the position command Pcm and the position detection value Pmm of the position detector 10m attached to the motor 11m is obtained by a subtractor 2m, and a position deviation Pdifm is output. The position deviation proportional calculator 3m multiplies the position deviation by the position loop gain Kp and outputs a speed command Vcm. The differentiator 13m differentiates the position detection value Pmm and outputs a motor speed detection value Vmm. A deviation between the speed command Vcm and the detected speed value Vmm of the motor is obtained by a subtractor 4m and output as a speed deviation. Based on the speed deviation, speed loop proportional gain Pv, and speed loop integral gain Iv, the speed deviation proportional calculator 5m and the speed deviation integral calculator 6m output a speed deviation proportional component and a speed deviation integral component, respectively, and an adder 7m The deviation proportional component and the speed deviation integral component are added to output a torque command Tcm. The notch filter 8m reduces a frequency component centered on the notch frequency ωN from the torque command Tcm. A symbol 9m in FIG. 3 indicates various filter units and a current control unit for filtering the torque command.

主軸12mと主軸12sで結合されたワーク14が共振周波数ωrで振動すると、前記トルク指令Tcmに共振周波数ωrが現れる。FFT演算器17は、前記トルク指令Tcmを入力とし、公知のFFT処理により前記トルク指令Tcmに含まれる周波数成分のうち最もパワースペクトルの大きい周波数を共振周波数ωrとして出力する。ノッチフィルタ部8m,9mはノッチ周波数ωNを共振周波数ωrに一致させることにより、前記トルク指令Tcmおよびトルク指令Tcsに含まれる共振周波数成分が低減されるため、結果、加振力が低減され、制御対象の機械振動を抑えることができる。   When the workpiece 14 coupled by the main shaft 12m and the main shaft 12s vibrates at the resonance frequency ωr, the resonance frequency ωr appears in the torque command Tcm. The FFT calculator 17 receives the torque command Tcm, and outputs a frequency having the largest power spectrum as a resonance frequency ωr among frequency components included in the torque command Tcm by a known FFT process. The notch filter units 8m and 9m make the notch frequency ωN coincident with the resonance frequency ωr, thereby reducing the resonance frequency component included in the torque command Tcm and the torque command Tcs. As a result, the excitation force is reduced and the control is performed. The target mechanical vibration can be suppressed.

図3に示した従来技術において、FFT演算器17で共振周波数成分を求めるためには、一定の時間、トルク指令Tcmをサンプリングする必要があるため、機械振動が発生する前に、制御対象の共振周波数を設定することはできない。機械振動がワーク加工中に発生した場合は、ワークが損傷を受けることもあった。   In the prior art shown in FIG. 3, in order to obtain the resonance frequency component by the FFT calculator 17, it is necessary to sample the torque command Tcm for a certain period of time, so that the resonance of the controlled object is generated before the mechanical vibration occurs. The frequency cannot be set. If mechanical vibration occurred during workpiece machining, the workpiece could be damaged.

本発明の位置制御装置は、位置指令値に基づき複数のモータで1軸を同期して制御する位置制御装置であって、前記位置指令値と位置検出器で検出された前記モータの位置検出値とに基づいて、速度指令値を算出する位置制御器と、前記速度指令値と前記位置検出器から算出される速度検出値とに基づいて、トルク指令値を算出する速度制御器と、前記トルク指令値からノッチ周波数を中心とする周波数成分を低減するノッチフィルタと、前記位置指令値に位置指令誤差を発生させる位置指令誤差発生器と、前記位置指令誤差と複数のモータのそれぞれのトルク指令値とに基づいて、前記ノッチフィルタのノッチ周波数を決定する共振周波数演算器と、を備えたことを特徴とする。   A position control device according to the present invention is a position control device that controls a single axis in synchronization with a plurality of motors based on a position command value, the position command value and a position detection value of the motor detected by a position detector. A speed controller that calculates a speed command value, a speed controller that calculates a torque command value based on the speed command value and a speed detection value calculated from the position detector, and the torque A notch filter that reduces a frequency component centered on a notch frequency from the command value, a position command error generator that generates a position command error in the position command value, and each torque command value of the position command error and a plurality of motors And a resonance frequency calculator for determining a notch frequency of the notch filter.

なお、モータが二つの場合には、二つのモータの位置指令の誤差をΔPc、トルク指令の誤差をΔTc、各モータが駆動する軸のイナーシャをJm,Jsとした場合、前記ノッチ周波数ωNは、


の式に基づいて算出されることが望ましい。
When there are two motors, when the error of the position command of the two motors is ΔPc, the error of the torque command is ΔTc, and the inertia of the shaft driven by each motor is Jm, Js, the notch frequency ωN is


It is desirable to calculate based on the following formula.

本発明の位置制御装置によれば、共振周波数演算器は機械振動が発生する前にノッチ周波数を中心とする周波数成分を低減するノッチフィルタのノッチ周波数を可変させる。その結果、トルク指令に含まれる共振周波数成分が低減され、加振力が小さくなり、振動を抑えることができる。   According to the position control apparatus of the present invention, the resonance frequency calculator varies the notch frequency of the notch filter that reduces the frequency component centered on the notch frequency before mechanical vibration occurs. As a result, the resonance frequency component included in the torque command is reduced, the excitation force is reduced, and vibration can be suppressed.

本発明の実施例である位置制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the position control apparatus which is an Example of this invention. 共振周波数演算器の構成を示すブロック図である。It is a block diagram which shows the structure of a resonance frequency calculator. 従来技術を示すブロック図である。It is a block diagram which shows a prior art.

本発明の実施例である位置制御装置について説明する。従来例と同一要素には同一符号を付しており説明は省略する。位置制御装置の制御ブロック図を図1に示す。位置指令演算器1は、位置指令Pcmを位置指令誤差発生器15に出力する。位置指令誤差発生器15は、ノッチ周波数ωNの更新を行わない切削動作中などにおいては、位置指令演算器1から出力された位置指令Pcmを、位置指令Pcm,Pcsとして、マスター側位置制御系20mおよびスレーブ側位置制御系20sに出力する。   A position control apparatus according to an embodiment of the present invention will be described. The same elements as those of the conventional example are denoted by the same reference numerals, and description thereof is omitted. A control block diagram of the position control device is shown in FIG. The position command calculator 1 outputs the position command Pcm to the position command error generator 15. The position command error generator 15 uses the position command Pcm output from the position command calculator 1 as the position commands Pcm and Pcs during a cutting operation in which the notch frequency ωN is not updated. And output to the slave side position control system 20s.

ノッチ周波数ωNの更新を行うタイミング、具体的には、切削に関係のない早送り時等のタイミング時、位置指令誤差発生器15は、スレーブ側位置制御系20sに誤差を含んだ位置指令を出力する。具体的には、位置指令誤差発生器15は、マスター側位置制御系20mには位置指令演算器1から出力された位置指令Pcmを、スレーブ側位置制御系20sには前記位置指令Pcmに対して位置指令誤差ΔPc分オフセットさせた式1の位置指令Pcsを出力する。なお、位置指令誤差ΔPcは、経験的に予め設定される値である。
Pcs=Pcm−ΔPc ・・・(式1)
At the timing of updating the notch frequency ωN, specifically, at the timing of rapid feed not related to cutting, the position command error generator 15 outputs a position command including an error to the slave side position control system 20s. . Specifically, the position command error generator 15 outputs the position command Pcm output from the position command calculator 1 to the master side position control system 20m and the position command Pcm to the slave side position control system 20s. The position command Pcs of Expression 1 offset by the position command error ΔPc is output. The position command error ΔPc is a value that is empirically set in advance.
Pcs = Pcm−ΔPc (Formula 1)

共振周波数演算器16は、マスター側制御系20mで演算されるマスター側位置制御系トルク指令値Tcmとスレーブ側制御系20sで演算されるスレーブ側位置制御系トルク指令値Tcsと前記位置誤差ΔPcより、主軸12mと主軸12sで結合されたワーク14の共振周波数ωrを演算し、マスター側ノッチフィルタ部とスレーブ側ノッチフィルタ部のノッチ周波数ωNを共振周波数ωrへ変更する。   The resonance frequency calculator 16 is based on the master side position control system torque command value Tcm calculated by the master side control system 20m, the slave side position control system torque command value Tcs calculated by the slave side control system 20s, and the position error ΔPc. Then, the resonance frequency ωr of the workpiece 14 coupled by the main shaft 12m and the main shaft 12s is calculated, and the notch frequency ωN of the master side notch filter portion and the slave side notch filter portion is changed to the resonance frequency ωr.

具体的に、共振周波数演算器16の構成の一例を図2に示す。減算器161は、前記マスター側位置制御系トルク指令値Tcmおよび前記スレーブ側制御系トルク指令値Tcsから、トルク指令誤差ΔTcを演算する。旋盤の対向した主軸が、前記トルク指令誤差ΔTcを前記位置指令誤差ΔPcで除算した値である剛性のバネで、マスター軸イナーシャJmとスレーブ側イナーシャJsが結合されたと仮定し、2慣性系でモデリングすれば系の共振周波数ωrは、下記式2で示される。共振周波数演算器16は、式2に基づいて共振周波数ωrを演算し、マスター側ノッチフィルタとスレーブ側ノッチフィルタのノッチ周波数ωNを共振周波数ωrへ変更する。前記演算およびノッチ周波数ωNの変更は、ワークや前記マスター軸イナーシャJm、スレーブ側イナーシャJsが変わるたびに実施する。なお、ワークは、加工に伴い、形状が変化、ひいては、共振周波数ωrが変化していく。したがって、同じワークを加工している途中でも(ワークの交換はされていなくても)、早送り実行時などの非切削動作時に、ノッチ周波数ωNの更新を行うことが望ましい。

Specifically, an example of the configuration of the resonance frequency calculator 16 is shown in FIG. The subtractor 161 calculates a torque command error ΔTc from the master side position control system torque command value Tcm and the slave side control system torque command value Tcs. Assuming that the main spindle opposed to the lathe is a rigid spring that is the value obtained by dividing the torque command error ΔTc by the position command error ΔPc, the master axis inertia Jm and the slave side inertia Js are combined. In this case, the resonance frequency ωr of the system is expressed by the following formula 2. The resonance frequency calculator 16 calculates the resonance frequency ωr based on Equation 2, and changes the notch frequency ωN of the master side notch filter and the slave side notch filter to the resonance frequency ωr. The calculation and the change of the notch frequency ωN are performed every time the workpiece, the master axis inertia Jm, and the slave side inertia Js change. Note that the shape of the workpiece changes with machining, and consequently the resonance frequency ωr changes. Therefore, it is desirable to update the notch frequency ωN during non-cutting operations such as when fast-forwarding is performed even while the same workpiece is being machined (even if the workpiece is not replaced).

ノッチ周波数ωNをワークごとに異なる共振周波数ωrへ変更することで、前記マスター側トルク指令Tcmおよびスレーブ側トルク指令Tcsに含まれる共振周波数成分が低減されるため、結果、加振力が低減され、制御対象の機械振動を抑えることができる。実際には、ワークごとに異なる共振周波数の真値ωr’と前記共振周波数演算器16により設定されるノッチ周波数ωNが完全一致していなくても、前記ノッチフィルタ部はノッチ周波数近傍のゲインも低減させるため、共振周波数の変化による振動を抑制することができる。   By changing the notch frequency ωN to a different resonance frequency ωr for each workpiece, the resonance frequency component included in the master side torque command Tcm and the slave side torque command Tcs is reduced, and as a result, the excitation force is reduced, Mechanical vibration to be controlled can be suppressed. Actually, even if the true value ωr ′ of the resonance frequency different for each workpiece and the notch frequency ωN set by the resonance frequency calculator 16 do not completely match, the notch filter unit also reduces the gain near the notch frequency. Therefore, vibration due to a change in resonance frequency can be suppressed.

1 位置指令演算器、2m,2s 減算器、3m,3s 位置偏差比例演算器、4m,4s 減算器、5m,5s 速度ループ比例ゲイン、6m,6s 速度ループ積分ゲイン、7m,7s 加算器、8m,8s ノッチフィルタ部、9m,9s 各種フィルタ部,電流制御部、10m,10s モータ位置検出器、11m,11s モータ、12m,12s 制御対象、13m,13s 微分器、14 ワーク、15 位置指令誤差発生器、16 共振周波数演算器、161 減算器、162 除算器、163 定数、164 乗算器、165 平方根演算器、17 FFT演算器、20m マスター側位置制御系、20s スレーブ側位置制御系。   1 position command computing unit, 2m, 2s subtractor, 3m, 3s position deviation proportional computing unit, 4m, 4s subtractor, 5m, 5s speed loop proportional gain, 6m, 6s speed loop integral gain, 7m, 7s adder, 8m , 8s Notch filter unit, 9m, 9s Various filter units, Current control unit, 10m, 10s Motor position detector, 11m, 11s Motor, 12m, 12s Control target, 13m, 13s Differentiator, 14 Workpiece, 15 Position command error generation , 16 resonance frequency calculator, 161 subtractor, 162 divider, 163 constant, 164 multiplier, 165 square root calculator, 17 FFT calculator, 20m master side position control system, 20s slave side position control system.

Claims (2)

位置指令値に基づき複数のモータで1軸を同期して制御する位置制御装置であって、
前記位置指令値と位置検出器で検出された前記モータの位置検出値とに基づいて、速度指令値を算出する位置制御器と、
前記速度指令値と前記位置検出器から算出される速度検出値とに基づいて、トルク指令値を算出する速度制御器と、
前記トルク指令値からノッチ周波数を中心とする周波数成分を低減するノッチフィルタと、
前記位置指令値に位置指令誤差を発生させる位置指令誤差発生器と、
前記位置指令誤差と複数のモータのそれぞれのトルク指令値とに基づいて、前記ノッチフィルタのノッチ周波数を決定する共振周波数演算器と、
を備えたことを特徴とする位置制御装置。
A position control device that controls one axis synchronously with a plurality of motors based on a position command value,
A position controller that calculates a speed command value based on the position command value and a position detection value of the motor detected by a position detector;
A speed controller that calculates a torque command value based on the speed command value and a speed detection value calculated from the position detector;
A notch filter that reduces a frequency component centered on a notch frequency from the torque command value;
A position command error generator for generating a position command error in the position command value;
A resonance frequency calculator for determining a notch frequency of the notch filter based on the position command error and a torque command value of each of a plurality of motors;
A position control device comprising:
請求項1に記載の位置制御装置であって、
前記モータは、二つであり、当該二つのモータの位置指令の誤差をΔPc、トルク指令の誤差をΔTc、各モータが駆動する軸のイナーシャをJm,Jsとした場合、
前記ノッチ周波数ωNは、


の式に基づいて算出されることを特徴とする位置制御装置。
The position control device according to claim 1,
The number of the motors is two. When the error of the position command of the two motors is ΔPc, the error of the torque command is ΔTc, and the inertia of the shaft driven by each motor is Jm, Js.
The notch frequency ωN is


A position control device that is calculated based on the following formula.
JP2012087103A 2012-04-06 2012-04-06 Position control device Active JP5919070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012087103A JP5919070B2 (en) 2012-04-06 2012-04-06 Position control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012087103A JP5919070B2 (en) 2012-04-06 2012-04-06 Position control device

Publications (2)

Publication Number Publication Date
JP2013219884A true JP2013219884A (en) 2013-10-24
JP5919070B2 JP5919070B2 (en) 2016-05-18

Family

ID=49591385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012087103A Active JP5919070B2 (en) 2012-04-06 2012-04-06 Position control device

Country Status (1)

Country Link
JP (1) JP5919070B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170208A (en) * 2014-03-07 2015-09-28 国立大学法人 東京大学 Control device, control method and control program
JP2016068171A (en) * 2014-09-29 2016-05-09 川崎重工業株式会社 Robot control device and control method
CN109874404A (en) * 2016-09-29 2019-06-11 松下知识产权经营株式会社 Control device of electric motor and method of motor control
CN110326213A (en) * 2017-03-10 2019-10-11 欧姆龙株式会社 Evaluating apparatus, evaluation method and control device
WO2020045975A1 (en) * 2018-08-31 2020-03-05 두산공작기계 주식회사 Apparatus and method for controlling resonance suppression of machine tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158654A (en) * 1987-05-29 1989-06-21 Hitachi Ltd Method and device for controlling tape transfer between reels
JP2000278990A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd Motor controlling device
JP2000358390A (en) * 1999-06-11 2000-12-26 Canon Inc Servo control device of motor
JP2001273037A (en) * 2000-03-27 2001-10-05 Fanuc Ltd Servo control unit
JP2003052188A (en) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd Controller for motor
JP2004120963A (en) * 2002-09-27 2004-04-15 Okuma Corp Servo controller
JP2006190074A (en) * 2005-01-06 2006-07-20 Yaskawa Electric Corp Synchronization control apparatus
JP2009106034A (en) * 2007-10-22 2009-05-14 Fanuc Ltd Control device for motor with learning control function

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158654A (en) * 1987-05-29 1989-06-21 Hitachi Ltd Method and device for controlling tape transfer between reels
JP2000278990A (en) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd Motor controlling device
JP2000358390A (en) * 1999-06-11 2000-12-26 Canon Inc Servo control device of motor
JP2001273037A (en) * 2000-03-27 2001-10-05 Fanuc Ltd Servo control unit
JP2003052188A (en) * 2001-08-03 2003-02-21 Matsushita Electric Ind Co Ltd Controller for motor
JP2004120963A (en) * 2002-09-27 2004-04-15 Okuma Corp Servo controller
JP2006190074A (en) * 2005-01-06 2006-07-20 Yaskawa Electric Corp Synchronization control apparatus
JP2009106034A (en) * 2007-10-22 2009-05-14 Fanuc Ltd Control device for motor with learning control function

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170208A (en) * 2014-03-07 2015-09-28 国立大学法人 東京大学 Control device, control method and control program
US9457467B2 (en) 2014-03-07 2016-10-04 The University Of Tokyo Control device, control method and control program
JP2016068171A (en) * 2014-09-29 2016-05-09 川崎重工業株式会社 Robot control device and control method
CN109874404A (en) * 2016-09-29 2019-06-11 松下知识产权经营株式会社 Control device of electric motor and method of motor control
CN109874404B (en) * 2016-09-29 2022-04-22 松下知识产权经营株式会社 Motor control device and motor control method
CN110326213A (en) * 2017-03-10 2019-10-11 欧姆龙株式会社 Evaluating apparatus, evaluation method and control device
EP3595168A4 (en) * 2017-03-10 2020-12-23 Omron Corporation Evaluation device, evaluation method and control device
US11121659B2 (en) 2017-03-10 2021-09-14 Omron Corporation Evaluation device, evaluation method and control device
CN110326213B (en) * 2017-03-10 2023-02-21 欧姆龙株式会社 Evaluation device, evaluation method, and control device
WO2020045975A1 (en) * 2018-08-31 2020-03-05 두산공작기계 주식회사 Apparatus and method for controlling resonance suppression of machine tool
US11899420B2 (en) 2018-08-31 2024-02-13 Dn Solutions Co., Ltd. Apparatus and method for controlling resonance suppression of machine tool

Also Published As

Publication number Publication date
JP5919070B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
US9886022B2 (en) Numerical control device
US10353374B2 (en) Servo controller, control method, and computer-readable recording medium for machine tool used for oscillating cutting
JP5919070B2 (en) Position control device
JP6243260B2 (en) Spindle motor control device
US9772619B2 (en) Motor control device
US8680805B2 (en) Control device that drives one driven object by two motors
JP5863860B2 (en) Servo controller that reduces interference between axes during machining
JP5815784B2 (en) Servo controller for reducing synchronization error in synchronous machining
JP2017182336A5 (en)
JP6290619B2 (en) Motor control device
JP6653542B2 (en) Motor control device
JPWO2013140679A1 (en) Trajectory control device
CN106020111A (en) Parameter Setting Method for Positioning Apparatus and Positioning Apparatus
JP5642828B2 (en) Synchronous control device for synchronizing two axes with each other
JP2014123188A (en) Distribution control device and distribution control method
CN105897069B (en) Motor control device
JP2015143969A (en) Machine tool control device, machine tool control method, and program
JP5832382B2 (en) Numerical controller
JP5886717B2 (en) Iterative learning position controller
JP6391489B2 (en) Motor control device
JP2016190305A (en) Parameter setting method of positioner, parameter setting device, and positioner having the parameter setting device
JP5890275B2 (en) High-speed synchronous axis position controller
US11671035B2 (en) Method for operating a system comprising at least two mechanically coupled asynchronous motors, computer program containing an implementation of the method and system operating in accordance with the method
JP5063981B2 (en) Electric motor position control device
JP2014233147A (en) Motor control system and motor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5919070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150