JP2013214064A - Film, device including film, electrophotographic photoreceptor, process cartridge and electrophotographic device - Google Patents
Film, device including film, electrophotographic photoreceptor, process cartridge and electrophotographic device Download PDFInfo
- Publication number
- JP2013214064A JP2013214064A JP2013057564A JP2013057564A JP2013214064A JP 2013214064 A JP2013214064 A JP 2013214064A JP 2013057564 A JP2013057564 A JP 2013057564A JP 2013057564 A JP2013057564 A JP 2013057564A JP 2013214064 A JP2013214064 A JP 2013214064A
- Authority
- JP
- Japan
- Prior art keywords
- hardness
- film
- gpa
- high hardness
- convex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
本発明は、新規な構造を有する膜および該膜を有する装置に関する。また、本発明は、表面層として該膜を有する電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置に関する。 The present invention relates to a membrane having a novel structure and an apparatus having the membrane. The present invention also relates to an electrophotographic photosensitive member having the film as a surface layer, and a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
従来から部材の表面に特定の形状を設けることで摩擦を制御する技術が知られている。例えば、工業用機械材料の分野においては、特許文献1に記載されているように、軸受部材の表面に凸形状を設けることで、接触部材である軸との摩擦を低減させる技術がある。 Conventionally, a technique for controlling friction by providing a specific shape on the surface of a member is known. For example, in the field of industrial mechanical materials, as described in Patent Document 1, there is a technique for reducing friction with a shaft that is a contact member by providing a convex shape on the surface of a bearing member.
また、特許文献3に記載されているように、磁気ヘッドのスライダー面にハニカム形状のテクスチュアを設けることで摩擦力を低減させる技術がある。 Further, as described in Patent Document 3, there is a technique for reducing the frictional force by providing a honeycomb-shaped texture on the slider surface of the magnetic head.
また、有機機能部材への応用として、特許文献2には、電子写真感光体や中間転写体などのトナー像担持体の表面(外周面)に凹凸形状を設けることで、表面に残留したトナーに対する高いクリーニング性と、接触部材であるクリーニングブレードの巻き込み(ブレード捲れ)の抑制とを両立する技術が開示されている。 In addition, as an application to an organic functional member, Patent Document 2 discloses that an uneven shape is provided on the surface (outer peripheral surface) of a toner image carrier such as an electrophotographic photosensitive member or an intermediate transfer member, so that the toner remaining on the surface is protected. A technique is disclosed that achieves both high cleaning performance and suppression of entrainment of a cleaning blade that is a contact member (blade curling).
また、特許文献4には、電子写真感光体の表面を滑らかな曲面の凸部を有する凹凸面とすることでクリーニングブレードの反転などを抑制する技術が開示されている。 Patent Document 4 discloses a technique for suppressing the reversal of the cleaning blade and the like by making the surface of the electrophotographic photosensitive member an uneven surface having smooth curved protrusions.
さらに、摩擦を制御する他の技術として、部材に潤滑剤を含有させる技術も知られている。 Furthermore, as another technique for controlling friction, a technique for incorporating a lubricant into a member is also known.
しかしながら、表面に凹凸形状を有する部材は、接触部材との長期間の接触により、凹凸形状の摩耗が発生することがある。長期間の使用によって、部材の表面の凹凸形状が摩耗し、無くなっていくことで、部材の表面の摩擦係数が大きくなっていく。 However, a member having a concavo-convex shape on the surface may cause concavo-convex wear due to long-term contact with the contact member. The unevenness on the surface of the member is worn and removed by long-term use, and the coefficient of friction on the surface of the member increases.
本発明の目的は、長期間の使用によっても、表面の凹凸形状が無くなっていくことによる摩擦係数の増大が起きにくい膜および該膜を有する装置を提供することにある。また、本発明は、表面層として該膜を有する電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することにある。 An object of the present invention is to provide a film and an apparatus having the film that are less likely to increase in the coefficient of friction due to the disappearance of the irregular shape on the surface even after long-term use. Another object of the present invention is to provide an electrophotographic photosensitive member having the film as a surface layer, and a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
本発明は、硬度の異なる第1部分および第2部分を有し、該第1部分の連続剛性測定法による硬度(H1[GPa])が0.01〜3GPaであり、該第1部分の連続剛性測定法による硬度(H1[GPa])に対する該第2部分の連続剛性測定法による硬度(H2[GPa])の比の値(H2/H1)が1.2〜30である膜であって、
該膜の表面が該第1部分で構成される面および該第2部分で構成される面を有し、
該第1部分および該第2部分がそれぞれ連続して該膜の膜厚方向に該膜の膜厚の75%以上延在しており、
該膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、該第2部分で構成される面の面積率が10〜80%であって、かつ、該第1部分で構成される面および該第2部分で構成される面の合計の面積率が50%以上である
ことを特徴とする膜である。
The present invention has a first portion and a second portion having different hardness, and the hardness (H 1 [GPa]) of the first portion measured by a continuous stiffness measurement method is 0.01 to 3 GPa, The ratio (H 2 / H 1 ) of the ratio of hardness (H 2 [GPa]) of the second portion to the hardness (H 1 [GPa]) of the second portion relative to the hardness (H 1 [GPa]) of the continuous stiffness measurement method is 1.2 to 30 A film,
The surface of the membrane has a surface composed of the first portion and a surface composed of the second portion;
Each of the first portion and the second portion continuously extends in the film thickness direction of the film by 75% or more of the film thickness;
In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the membrane, the area ratio of the surface constituted by the second portion is 10 to 80%, and the first portion is constituted. The total area ratio of the surface formed by the second portion and the surface formed by the second portion is 50% or more.
また、本発明は、上記膜を含む部材、および、該膜の表面と相対速度をもって接触しうる接触部材を有することを特徴とする装置である。 Moreover, this invention is an apparatus characterized by having the member containing the said film | membrane and the contact member which can contact with the surface of this film | membrane with a relative speed.
また、本発明は、表面層として上記膜を有することを特徴とする電子写真感光体である。 The present invention also provides an electrophotographic photoreceptor having the above film as a surface layer.
また、本発明は、電子写真感光体と、該電子写真感光体の表面をクリーニングするためのクリーニング手段とを一体に支持し、電子写真装置本体に着脱自在であるプロセスカートリッジにおいて、該電子写真感光体が、上記電子写真感光体であり、該クリーニング手段が、該電子写真感光体の表面に接触しうるクリーニングブレードを有することを特徴とするプロセスカートリッジである。 The present invention also provides an electrophotographic photosensitive member in a process cartridge that integrally supports an electrophotographic photosensitive member and a cleaning unit for cleaning the surface of the electrophotographic photosensitive member and is detachable from the main body of the electrophotographic apparatus. The process cartridge is characterized in that the body is the electrophotographic photosensitive member, and the cleaning means has a cleaning blade capable of contacting the surface of the electrophotographic photosensitive member.
また、本発明は、電子写真感光体、帯電手段、露光手段、現像手段、転写手段、および、該電子写真感光体の表面をクリーニングするためのクリーニング手段を有する電子写真装置において、該電子写真感光体が、上記電子写真感光体であり、該クリーニング手段が、該電子写真感光体の表面に接触しうるクリーニングブレードを有することを特徴とする電子写真装置である。 The present invention also provides an electrophotographic photosensitive member comprising an electrophotographic photosensitive member, a charging unit, an exposing unit, a developing unit, a transferring unit, and a cleaning unit for cleaning the surface of the electrophotographic photosensitive member. The electrophotographic apparatus is characterized in that the body is the electrophotographic photosensitive member, and the cleaning means has a cleaning blade capable of contacting the surface of the electrophotographic photosensitive member.
本発明の膜においては、第2部分よりも第1部分が低硬度であり、摩耗しやすくなっていることで、使用により、第1部分が凹部となり、第2部分が凸部となるため、膜の表面における接触部材と接触する面積を減らすことができる。そのため、接触部材との摩擦を低減することが可能である。そして、使用により、低硬度の第1部分が高硬度の第2部分と比較してより削れることによって、長期間使用しても、第1部分と第2部分の高低差がほぼ一定の第2部分を凸部とした凹凸形状を維持することが可能となる。これにより、膜の表面の小さい摩擦係数を長期間維持することが可能となる。 In the film of the present invention, the first part has a lower hardness than the second part and is easy to wear, so that the first part becomes a concave part and the second part becomes a convex part by use. The area in contact with the contact member on the surface of the membrane can be reduced. Therefore, it is possible to reduce friction with the contact member. In addition, the first portion having a low hardness is more sharpened by use than the second portion having a high hardness, so that the difference in height between the first portion and the second portion is substantially constant even when used for a long time. It becomes possible to maintain the concavo-convex shape with the portion as a convex portion. This makes it possible to maintain a small coefficient of friction on the film surface for a long period of time.
図1は、本発明の膜の例を膜の表面の真上方向から見た図であり、図2は、断面方向から見た図である。また、図3は、本発明の膜の例を使用し、凹凸形状が形成された状態を断面方向から見た図である。図1〜3中、10は膜の第2部分であり、11は膜の第1部分である。また、図2および3中の膜の上側が接触部材と接触する表面である。 FIG. 1 is a view of an example of the film of the present invention as viewed from directly above the surface of the film, and FIG. 2 is a view as viewed from a cross-sectional direction. Moreover, FIG. 3 is the figure which looked at the state in which the uneven | corrugated shape was formed from the cross-sectional direction using the example of the film | membrane of this invention. 1-3, 10 is the 2nd part of a film | membrane, 11 is a 1st part of a film | membrane. Moreover, the upper side of the film | membrane in FIG. 2 and 3 is the surface which contacts a contact member.
膜の第1部分11は第2部分10に比べて低硬度であるため、膜を接触部材と相対速度をもって接触させて使用することによって、第1部分11が第2部分10と比較してより削れ、図3のように、第2部分10を凸部、第1部分11を凹部とした凹凸形状ができる。これによって、膜の接触部材との接触面積が減少することで摩擦を低減することができる。そして、第2部分10が摩耗した分、第1部分11は速やかに削れることで、膜の表面の凹凸形状は維持され続けるため、長期間使用しても、凹凸形状を維持することが可能となる。そのため、膜の表面の小さい摩擦係数を維持することが可能となる。
Since the
また、第1部分11の屈折率が第2部分10の屈折率と同程度になるように材料に選択することで、光散乱による外観の変化を抑制することができるため好ましい。この場合、光学部材ならば、解像度低下を抑制することができるため、本発明を好適に用いることのできる分野としては、電子写真分野が挙げられる。
In addition, it is preferable to select the material so that the refractive index of the
また、例えば図4のように、膜の表面において、第1部分411で構成される面が第2部分410で構成される面に取り囲まれているようにすることもできる。図4は、本発明の膜の別の例を膜の表面の真上方向から見た図である。図4のように、膜の表面において第1部分411で構成される面が第2部分410で構成される面に取り囲まれていることにより、使用によって凹部となる第1部分411(第1部分411で構成される面)が凸部となる第2部分410に囲まれた閉空間を成すようになり、膜と接触部材との間で空気を閉じ込めることができるようになる。そのため、圧縮空気による反発力が生じやすくなる。この反発力によって、荷重圧力(膜と接触部材との接触圧力)が減少し、接触部材との摩擦をさらに低減させることが可能である。ここで、閉空間とは、膜が接触部材と接触したときに凹部と接触部材によって形成される閉じられた空間を意味する。
Further, for example, as shown in FIG. 4, the surface constituted by the
本発明の膜を作製する方法としては、例えば、アクリレート、不飽和ポリエステル、エポキシ、オキセタン、ビニルエーテルなどの紫外線硬化性樹脂または電子線硬化性樹脂のモノマー(ならびに必要に応じて後述の潤滑剤)で形成した樹脂膜に対して、フォトマスクまたは電子線マスクを介して紫外線または電子線を照射して樹脂膜中の架橋密度を変えることで、各部分に硬度差をつけ、第1部分および第2部分を形成する方法が挙げられる。 As a method for producing the film of the present invention, for example, an ultraviolet curable resin such as acrylate, unsaturated polyester, epoxy, oxetane, vinyl ether, or a monomer of an electron beam curable resin (and a lubricant described later if necessary) is used. By irradiating the formed resin film with ultraviolet rays or electron beams through a photomask or electron beam mask to change the crosslink density in the resin film, a hardness difference is given to each part, and the first part and the second part A method of forming a part is mentioned.
紫外線硬化性樹脂や電子線硬化性樹脂のモノマーとしては、例えば、以下の化合物が挙げられる。 Examples of the monomer of the ultraviolet curable resin or the electron beam curable resin include the following compounds.
また、マイクロメートルオーダー、さらにはナノメートルオーダーレベルの微細で、多数のロッドなどが一定の方向を向いている真鍮製などのマイクロ剣山に、(必要に応じて後述の潤滑剤を含有する)ポリカーボネート、ポリアリレート、ポリスチレン、ポリエチレンなどの樹脂溶液を流し込み、乾燥させることでも作製することができる。 In addition, polycarbonate (containing lubricant as described below if necessary) on micro swords made of brass, etc., which are fine in the order of micrometers or even nanometers, with many rods pointing in a certain direction. It can also be produced by pouring a resin solution such as polyarylate, polystyrene or polyethylene and drying.
また、例えば図5〜7のように、膜に潤滑剤を含有させることもできる。図5は、本発明の膜のさらに別の例を膜の表面の真上方向から見た図であり、図6は、本発明の膜のさらに別の例を断面方向から見た図である。また、図7は、本発明の膜のさらに別の例を使用し、凹凸形状が形成され、凹部に潤滑性のある摩耗粉が溜まった状態を断面方向から見た図である。図6および7中の膜の上側が接触部材と接触する表面である。図5および6のように、膜が潤滑剤512を含有していることにより、使用によって膜の表面が摩耗すると、図7のように、膜の表面には潤滑性のある摩耗粉513が生じる。そして、潤滑性のある摩耗粉513は、第2部分510を凸部、第1部分511を凹部とした凹凸形状の凹部に溜まるため、摩擦系から流出しにくく、摩擦系に長期間存在することになる。そのため、膜の表面の摩擦係数はさらに小さくなり、その小さい摩擦係数を長期間維持することが可能となる。凹部に溜まった潤滑性のある摩耗粉によって接触部材との摩擦をより低減するという観点からも、膜の表面において、第1部分で構成される面は第2部分で構成される面に取り囲まれていることが好ましい。第1部分で構成される面が第2部分で構成される面に取り囲まれていることにより、使用によって凹部となる第1部分(第1部分で構成される面)が凸部となる第2部分に囲まれた閉空間を成すようになり、この閉空間に潤滑性のある摩耗粉が溜まるようにすることによって、摩耗粉の摩耗系からの流出をさらに抑制することができるようになる。また、潤滑剤512は、第1部分511および第2部分510の少なくとも一方に含有されていることが好ましい。
Further, for example, as shown in FIGS. 5 to 7, the film may contain a lubricant. FIG. 5 is a view of still another example of the film of the present invention viewed from directly above the surface of the film, and FIG. 6 is a view of still another example of the film of the present invention viewed from the cross-sectional direction. . Moreover, FIG. 7 is the figure which used the other example of the film | membrane of this invention, and was the figure which looked at the state where uneven | corrugated shape was formed and lubricous abrasion powder collected in the recessed part from the cross-sectional direction. The upper side of the membrane in FIGS. 6 and 7 is the surface in contact with the contact member. As shown in FIGS. 5 and 6, when the surface of the film is worn by use because the film contains the
膜に含有させる潤滑剤としては、固体潤滑剤または半固体潤滑剤であることが好ましい。 The lubricant contained in the film is preferably a solid lubricant or a semisolid lubricant.
固体潤滑剤としては、例えば、フッ素原子含有化合物の重合体や、マイカ、タルクなどの層状酸化物や、グラファイトなどの層状炭化水素化合物や、二硫化モリブデンなどの金属硫化物や、シリコーンや、メラミンシアヌレートや、チッ化ホウ素などの粒子が挙げられる。フッ素原子含有化合物としては、例えば、四フッ化エチレン、三フッ化塩化エチレン、六フッ化エチレンプロピレン、フッ化ビニル、フッ化ビニリデン、二フッ化塩化エチレンなどが挙げられる。これらの中でも、固体潤滑剤としては、四フッ化エチレンの重合体の粒子、すなわち、ポリテトラフルオロエチレン粒子が好ましい。 Examples of solid lubricants include polymers of fluorine atom-containing compounds, layered oxides such as mica and talc, layered hydrocarbon compounds such as graphite, metal sulfides such as molybdenum disulfide, silicone, and melamine Examples of the particles include cyanurate and boron nitride. Examples of the fluorine atom-containing compound include ethylene tetrafluoride, ethylene trifluoride chloride, hexafluoroethylene propylene, vinyl fluoride, vinylidene fluoride, and ethylene difluoride chloride. Among these, as the solid lubricant, polymer particles of ethylene tetrafluoride, that is, polytetrafluoroethylene particles are preferable.
潤滑剤が粒子である場合、その平均粒径は0.01〜10μmであることが好ましい。 When the lubricant is particles, the average particle diameter is preferably 0.01 to 10 μm.
半固体潤滑剤としては、例えば、フッ素グリース(増ちょう剤:ポリテトラフルオロエチレンなど、基油:パーフロロポリエーテルなど)、シリコーングリース(増ちょう剤:リチウム石鹸など、基油:フェニルメチルポリシロキサン、ジメチルポリシロキサンなど)、フルオロシリコーングリース(増ちょう剤:リチウム石鹸など、基油:フルオロシリコーンなど)、エステルグリース(増ちょう剤:ウレア、リチウム石鹸など)、ペンタフェニルエーテル・テトラフェニルエーテルなどのポリフェニルエーテルを基油とするポリフェニルエーテル系グリース(増ちょう剤:ベントナイトなど)などが挙げられる。 Examples of semi-solid lubricants include fluorine grease (thickener: polytetrafluoroethylene, base oil: perfluoropolyether, etc.), silicone grease (thickener: lithium soap, etc.), base oil: phenylmethylpolysiloxane. , Dimethylpolysiloxane, etc.), fluorosilicone grease (thickener: lithium soap, etc.), base oil: fluorosilicone, etc., ester grease (thickener: urea, lithium soap, etc.), pentaphenyl ether, tetraphenyl ether, etc. Examples include polyphenyl ether-based grease (thickener: bentonite, etc.) based on polyphenyl ether.
膜中の潤滑剤の含有量は、膜の全体積に対して20体積%以下であることが好ましい。膜中の潤滑剤の量を多くするほど、紫外線や電子線の照射などによって膜に硬度差をつけることが難しくなる傾向がある。これらの潤滑剤は1種のみ用いてもよく、2種以上用いてもよく、また、潤滑剤の分散剤とともに用いてもよい。 The lubricant content in the film is preferably 20% by volume or less with respect to the total volume of the film. As the amount of lubricant in the film increases, it tends to be difficult to make a difference in hardness by irradiation with ultraviolet rays or electron beams. These lubricants may be used alone or in combination of two or more and may be used together with a lubricant dispersant.
潤滑剤の大きさは、第2部分のサイズ以下であることが好ましい。潤滑剤のサイズが大きいほど、紫外線や電子線の照射などによって膜に硬度差をつけることが難しくなる傾向がある。 The size of the lubricant is preferably equal to or smaller than the size of the second portion. The larger the size of the lubricant, the more difficult it is to make a hardness difference in the film by irradiation with ultraviolet rays or electron beams.
また、接触面積を減らして摩擦を低減させるという観点から、第1部分および第2部分の形状としては、任意の形状を選択することができるが、上記使用によって第1部分が凹部になり、第2部分が凸部になったときの形状としては、例えば、ホール型、ピラー型、ライン&スペース(L&S)型、スクエア型、ハニカム型などが挙げられる。これらの中でも、上述のように、閉空間に閉じ込めた空気によって接触部材との摩擦を低減させる場合や、潤滑性のある摩耗粉を閉空間に留めて摩耗粉の摩耗系からの流出を抑制する場合は、膜の表面を真上から見たときの閉空間の形状としては、ホール型、スクエア型、ハニカム型などが挙げられる。これらの中でも、ハニカム型が好ましい。 In addition, from the viewpoint of reducing the contact area and reducing the friction, any shape can be selected as the shape of the first part and the second part. Examples of the shape when the two portions are convex include a hole type, a pillar type, a line & space (L & S) type, a square type, and a honeycomb type. Among these, as described above, when the friction with the contact member is reduced by the air confined in the closed space, or the wear powder with lubricity is retained in the closed space to suppress the outflow of the wear powder from the wear system. In this case, examples of the shape of the closed space when the surface of the film is viewed from directly above include a hole type, a square type, and a honeycomb type. Among these, a honeycomb type is preferable.
本発明においては、上記のとおり、膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分で構成される面の面積率は10〜80%でなければならないが、摩擦低減により効果的であり、摩耗もしにくくなるという観点から、20〜70%であることが好ましい。第2部分で構成される面の面積率が10%未満では、接触部材との接触面積が小さくなることで、凸部になった第2部分が接触部材の荷重に耐え切れずに破壊されやすくなる。第2部分で構成される面の面積率が80%超では、接触部材との接触面積が大きくなることで、摩擦低減効果が十分に得られず、摩擦係数が大きくなる。 In the present invention, as described above, the area ratio of the surface constituted by the second portion must be 10 to 80% in a square region having a side of 1 mm arranged at an arbitrary position on the surface of the film. From the viewpoint of being effective in reducing friction and being less likely to wear, the content is preferably 20 to 70%. When the area ratio of the surface constituted by the second part is less than 10%, the contact area with the contact member becomes small, so that the second part that has become a protrusion is not easily able to withstand the load of the contact member and is easily destroyed. Become. When the area ratio of the surface constituted by the second portion is more than 80%, the contact area with the contact member is increased, so that the friction reduction effect cannot be sufficiently obtained and the friction coefficient is increased.
また、本発明においては、上記のとおり、膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第1部分で構成される面および第2部分で構成される面の合計の面積率は50%以上でなければならないが、90%以上であることが好ましく、100%であることがより好ましい。第1部分で構成される面および第2部分で構成される面の合計の面積率が50%未満では、第1部分を凹部とし、第2部分を凸部とした凹凸形状によって、膜の表面の小さい摩擦係数を長期間維持するという効果が乏しくなる。 Further, in the present invention, as described above, in a square region having a side of 1 mm arranged at an arbitrary position on the surface of the film, the total of the surface composed of the first portion and the surface composed of the second portion. The area ratio must be 50% or more, preferably 90% or more, and more preferably 100%. When the total area ratio of the surface composed of the first part and the surface composed of the second part is less than 50%, the surface of the film is formed by the concavo-convex shape in which the first part is a recess and the second part is a protrusion. The effect of maintaining a small coefficient of friction for a long time becomes poor.
また、本発明においては、上記のとおり、第1部分の連続剛性測定法による硬度(H1[GPa])に対する第2部分の連続剛性測定法による硬度(H2[GPa])の比の値(H2/H1)は1.2〜30でなければならないが、第1部分と第2部分の高低差をより適度に維持するためには、1.5〜30であることが好ましい。第1部分の連続剛性測定法による硬度(H1[GPa])に対する第2部分の連続剛性測定法による硬度(H2[GPa])の比の値(H2/H1)が1.2未満では、第1部分と第2部分の摩耗速度に十分な差が出ないため、第1部分と第2部分の高低差を十分に得ることができず、摩擦低減効果が十分に得られない。第1部分の連続剛性測定法による硬度(H1[GPa])に対する第2部分の連続剛性測定法による硬度(H2[GPa])の比の値(H2/H1)が30超では、第1部分と第2部分の高低差が大きくなることで、凸部になった第2部分が接触部材の荷重に耐え切れずに破壊されやすくなる。 In the present invention, as described above, the value of the ratio of the hardness (H 2 [GPa]) of the second portion to the hardness (H 1 [GPa]) of the first portion to the hardness (H 1 [GPa]) of the second portion of the first portion. (H 2 / H 1 ) must be 1.2 to 30, but is preferably 1.5 to 30 in order to more appropriately maintain the height difference between the first portion and the second portion. The value (H 2 / H 1 ) of the ratio of the hardness (H 2 [GPa]) of the second part to the hardness (H 1 [GPa]) of the first part to the hardness (H 1 [GPa]) of the second part is 1.2. If it is less than 1, the difference in wear rate between the first part and the second part is not sufficient, so that the height difference between the first part and the second part cannot be sufficiently obtained, and the friction reducing effect cannot be sufficiently obtained. . When the value (H 2 / H 1 ) of the ratio of the hardness (H 2 [GPa]) of the second part to the hardness (H 1 [GPa]) of the first part to the hardness (H 1 [GPa]) of the second part is more than 30 The height difference between the first portion and the second portion is increased, so that the second portion that is a convex portion is not easily able to withstand the load of the contact member and is easily destroyed.
また、本発明においては、上記のとおり、第1部分の連続剛性測定法による硬度(H1[GPa])は、0.01〜3GPaである。第1部分の連続剛性測定法による硬度(H1[GPa])が0.01GPa以上であれば、第1部分と第2部分の高低差が適度に維持される。第1部分の連続剛性測定法による硬度(H1[GPa])が3GPa以下であれば、上記使用によって第2部分が適度に凸部になる。 In the present invention, as described above, the hardness by a continuous rigidity measuring method of the first portion (H 1 [GPa]) is 0.01~3GPa. If the hardness (H 1 [GPa]) of the first portion measured by the continuous stiffness measurement method is 0.01 GPa or more, the difference in height between the first portion and the second portion is appropriately maintained. If the hardness (H 1 [GPa]) by the continuous stiffness measurement method of the first part is 3 GPa or less, the second part becomes a moderately convex part by the above use.
また、本発明においては、上記のとおり、第1部分および第2部分がそれぞれ連続して膜の膜厚方向に膜の膜厚の75%以上延在していなければならないが、第1部分を凹部とし、第2部分を凸部とした凹凸形状をより長く維持するためには、90%以上延在していることが好ましく、さらには、第1部分および第2部分はそれぞれ膜を貫通している(=膜の膜厚の100%延在している)ことがより好ましい。膜の膜厚の75%未満では、第1部分を凹部とし、第2部分を凸部とした凹凸形状を長期間維持しにくくなる。
膜の膜厚は、1〜100μmであることが好ましい。
In the present invention, as described above, the first portion and the second portion must continuously extend in the film thickness direction by 75% or more of the film thickness. In order to maintain a concave / convex shape with the second part as a convex part, it is preferable to extend 90% or more, and further, the first part and the second part each penetrate the film. (= Extending 100% of the film thickness). If the film thickness is less than 75% of the film thickness, it is difficult to maintain a concavo-convex shape with the first portion as a recess and the second portion as a protrusion for a long period of time.
The film thickness is preferably 1 to 100 μm.
上記使用によって第1部分がスペース状の凹部になり、第2部分がライン状の凸部になったときの第1部分および第2部分のサイズは、それぞれ、0.1〜50μmであることが好ましい。ここで、第2部分のサイズとは、ライン&スペース型ではライン部の幅、ホール型ではホール径、ピラー型ではピラー径、ハニカム型では対向する頂点間距離を用いることができる。また、その他の形状であっても、例えば、表面における第2部分の連続領域において、最も狭い幅の距離を用いることができる。 The size of the first part and the second part when the first part becomes a space-like concave part and the second part becomes a line-like convex part by the above use is 0.1 to 50 μm, respectively. preferable. Here, the size of the second portion can be the width of the line portion in the line & space type, the hole diameter in the hole type, the pillar diameter in the pillar type, or the distance between the opposing vertices in the honeycomb type. Even in other shapes, for example, the narrowest distance can be used in the continuous region of the second portion on the surface.
また、膜の表面において第1部分で構成される面が第2部分で構成される面に取り囲まれているようにする場合、使用によって凸部となる第2部分に囲まれた閉空間の最長径は、閉じ込めた空気によって接触部材との摩擦を低減させるという観点から、0.1〜100μmであることが好ましい。ここで、閉空間の最長径とは、例えば、閉空間の形状が円状のホール型である場合はホールの直径であり、閉空間の形状がハニカム型である場合は対向する頂点間距離のうち最も長い距離である。その他の形状であっても、例えば、閉空間を挟む2本の平行線を引いたとき、これらの平行線の距離が最も長くなる場合の距離が閉空間の最長径である。 In addition, when the surface constituted by the first portion is surrounded by the surface constituted by the second portion on the surface of the film, the most of the closed space surrounded by the second portion which becomes a convex portion by use. The major axis is preferably 0.1 to 100 μm from the viewpoint of reducing friction with the contact member by trapped air. Here, the longest diameter of the closed space is, for example, the diameter of the hole when the shape of the closed space is a circular hole type, and the distance between the opposing vertices when the shape of the closed space is a honeycomb type. The longest distance. Even in other shapes, for example, when two parallel lines sandwiching the closed space are drawn, the distance when the distance between these parallel lines is the longest is the longest diameter of the closed space.
これらの値(サイズ)は、例えば、(株)ニレコ製の画像解析装置(商品名:LuzexAP)などの画像解析装置で簡便に算出することができる。 These values (sizes) can be easily calculated by an image analysis apparatus such as an image analysis apparatus (trade name: LuzexAP) manufactured by Nireco Corporation.
本発明において、膜の各種硬度は、特に断りがない場合、連続剛性測定法による硬度を意味する。連続剛性測定法による硬度は、超微小硬度計を用い、連続剛性測定法に従って測定することができる。そのように測定された第1部分の連続剛性測定法による硬度をH1[GPa]とし、第2部分の連続剛性測定法による硬度をH2[GPa]とする。ここで、連続剛性測定法とは、押しこみ試験中に圧子を微小振動させ、振動に対する応答振幅、位相差を時間の関数として取得し、押しこみ深さの連続的変化に対応して、除荷時の初期勾配を連続的に算出する方法である。具体的な測定方法は、試料に対して、正三角錐圧子(Berkovich圧子)を用いて押し込み負荷/除荷試験を行い、荷重−押しこみ深さ線図を取得する方法である。 In the present invention, the various hardnesses of the film mean hardnesses by a continuous stiffness measurement method unless otherwise specified. The hardness by the continuous stiffness measurement method can be measured according to the continuous stiffness measurement method using an ultra-micro hardness meter. The hardness measured by the continuous stiffness measurement method of the first part so measured is H 1 [GPa], and the hardness of the second part measured by the continuous stiffness measurement method is H 2 [GPa]. Here, the continuous stiffness measurement method means that the indenter is microvibrated during the indentation test, the response amplitude and phase difference with respect to the vibration are obtained as a function of time, and it is removed corresponding to the continuous change in the indentation depth. This is a method of continuously calculating the initial gradient at loading. A specific measurement method is a method of performing an indentation load / unloading test on a sample using a regular triangular pyramid indenter (Berkovich indenter) and obtaining a load-indentation depth diagram.
上記第1部分で構成される面や第2部分で構成される面の面積率は、試料に垂直方向の微小振動を加え、表面の粘弾性の違いによって変化するカンチレバーのたわみ振幅を検出することにより、粘弾性像を得ることができ、これにより第2部分の面積率を算出することができる。 The area ratio of the surface composed of the first part and the surface composed of the second part is to detect the deflection amplitude of the cantilever that changes due to the difference in viscoelasticity of the surface by applying a minute vibration in the vertical direction to the sample. Thus, a viscoelastic image can be obtained, whereby the area ratio of the second portion can be calculated.
本発明を好適に用いられる分野として、電子写真分野がある。電子写真感光体の電荷輸送層や保護層などの表面層(最外層)において、本発明の膜を好適に用いることができる。その場合、接触部材としては、クリーニングブレードなどが挙げられる。クリーニングブレードにはウレタンゴム製部材が一般的に用いられる。 The field in which the present invention is preferably used includes the field of electrophotography. The film of the present invention can be suitably used in a surface layer (outermost layer) such as a charge transport layer or a protective layer of an electrophotographic photoreceptor. In that case, a cleaning blade etc. are mentioned as a contact member. A member made of urethane rubber is generally used for the cleaning blade.
本発明を好適に用いられるその他の分野としては、自動車の機能部品が挙げられる。例えば、ワイパーや開閉可能な窓ガラスの、雨や雪が摺擦ですり抜けないよう、接触部材が相対速度を持って接触している面に、本発明の膜を用いたり、ワイパーや窓ガラスと接触する部材側に本発明の膜を用いたりすることができる。 Other fields in which the present invention is preferably used include functional parts of automobiles. For example, the film of the present invention is used on the surface of the wiper or the window glass that can be opened and closed so that rain and snow do not slip through the surface. The film of the present invention can be used on the side of the member to be used.
以下、電子写真感光体の材料、層構成などについて説明する。 Hereinafter, the material and layer structure of the electrophotographic photoreceptor will be described.
電子写真感光体は、支持体および支持体上に形成された感光層を有するものが一般的である。 An electrophotographic photoreceptor generally has a support and a photosensitive layer formed on the support.
感光層は、電荷輸送物質と電荷発生物質を同一の層に含有する単層型感光層であってもよいし、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型(機能分離型)感光層であってもよい。電子写真特性の観点からは、積層型感光層が好ましい。また、積層型感光層には、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層と、支持体側から電荷輸送層、電荷発生層の順に積層した逆層型感光層がある。電子写真特性の観点からは、順層型感光層が好ましい。また、電荷発生層や電荷輸送層自体をそれぞれ積層構成とすることができる。 The photosensitive layer may be a single-layer type photosensitive layer containing a charge transport material and a charge generation material in the same layer, or a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material. It may be a laminated type (functionally separated type) photosensitive layer separated. From the viewpoint of electrophotographic characteristics, a laminated photosensitive layer is preferable. The laminated photosensitive layer has a normal layer type photosensitive layer laminated in the order of the charge generation layer and the charge transport layer from the support side, and a reverse layer type photosensitive layer laminated in the order of the charge transport layer and the charge generation layer from the support side. is there. From the viewpoint of electrophotographic characteristics, a normal layer type photosensitive layer is preferred. Further, the charge generation layer and the charge transport layer itself can each have a laminated structure.
支持体としては、導電性を有していればよく(導電性支持体)、例えば、アルミニウム、アルミニウム合金、ステンレス鋼などの金属製(合金製)の支持体を用いることができる。また、真空蒸着によって形成したアルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金などの被膜を有する金属製支持体やプラスチック製支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子を含有させたプラスチック製支持体や紙製支持体や、導電性結着樹脂製の支持体などを用いることもできる。また、支持体の形状としては、円筒状、ベルト状などが挙げられるが、円筒状が好ましい。 As the support, it is only necessary to have conductivity (conductive support), and for example, a support made of metal (made of alloy) such as aluminum, aluminum alloy, and stainless steel can be used. Further, a metal support or a plastic support having a coating such as aluminum, aluminum alloy, indium oxide-tin oxide alloy formed by vacuum deposition can be used. Further, a plastic support or paper support containing conductive particles such as carbon black, tin oxide particles, titanium oxide particles, silver particles, a support made of conductive binder resin, or the like can also be used. . In addition, examples of the shape of the support include a cylindrical shape and a belt shape, and a cylindrical shape is preferable.
支持体と感光層(電荷発生層、電荷輸送層)または後述の下引き層との間には、レーザー光などの散乱による干渉縞の抑制や、支持体の傷の被覆などを目的とした、導電層を設けてもよい。 Between the support and the photosensitive layer (charge generation layer, charge transport layer) or the undercoat layer described later, for the purpose of suppressing interference fringes due to scattering of laser light or the like, covering the scratches on the support, A conductive layer may be provided.
導電層は、カーボンブラック、金属粒子、金属酸化物粒子などの導電性粒子を結着樹脂および溶剤とともに分散処理することによって得られる導電層用塗布液を塗布し、得られた塗膜を乾燥および/または硬化させることによって形成することができる。 The conductive layer is obtained by applying a conductive layer coating solution obtained by dispersing conductive particles such as carbon black, metal particles, and metal oxide particles together with a binder resin and a solvent, and drying and drying the obtained coating film. It can be formed by curing.
導電層に用いられる結着樹脂としては、例えば、フェノール樹脂、ポリウレタン、ポリアミド、ポリイミド、ポリアミドイミド、ポリアミド酸、ポリビニルアセタール、エポキシ樹脂、アクリル樹脂、メラミン樹脂、ポリエステルなどが挙げられる。 Examples of the binder resin used for the conductive layer include phenol resin, polyurethane, polyamide, polyimide, polyamideimide, polyamic acid, polyvinyl acetal, epoxy resin, acrylic resin, melamine resin, and polyester.
導電層用塗布液に用いられる溶剤としては、例えば、アルコール、スルホキシド、ケトン、エーテル、エステル、脂肪族ハロゲン化炭化水素、ハロゲン化芳香族化合物、芳香族化合物などの有機溶剤が挙げられる。 Examples of the solvent used in the conductive layer coating solution include organic solvents such as alcohols, sulfoxides, ketones, ethers, esters, aliphatic halogenated hydrocarbons, halogenated aromatic compounds, and aromatic compounds.
導電層の膜厚は、1〜40μmであることが好ましく、2〜20μmであることがより好ましい。 The film thickness of the conductive layer is preferably 1 to 40 μm, and more preferably 2 to 20 μm.
また、支持体または導電層と感光層(電荷発生層、電荷輸送層)との間には、感光層の接着性改良、支持体からの電荷注入性改良、感光層の電気的破壊に対する保護などを目的とした、バリア機能や接着機能を有する下引き層を設けてもよい。 In addition, between the support or conductive layer and the photosensitive layer (charge generation layer, charge transport layer), improvement of adhesion of the photosensitive layer, improvement of charge injection from the support, protection against electrical breakdown of the photosensitive layer, etc. For this purpose, an undercoat layer having a barrier function or an adhesive function may be provided.
下引き層は、樹脂(結着樹脂)を溶剤に溶解させることによって得られる下引き層用塗布液を塗布し、得られた塗膜を乾燥および/または硬化させることによって形成することができる。 The undercoat layer can be formed by applying an undercoat layer coating solution obtained by dissolving a resin (binder resin) in a solvent, and drying and / or curing the obtained coating film.
下引き層に用いられる樹脂としては、例えば、アクリル樹脂、アリル樹脂、アルキッド樹脂、エチルセルロース樹脂、エチレン−アクリル酸コポリマー、エポキシ樹脂、カゼイン樹脂、シリコーン樹脂、ゼラチン樹脂、フェノール樹脂、ブチラール樹脂、ポリアクリレート、ポリアセタール、ポリアミドイミド、ポリアミド、ポリアリルエーテル、ポリイミド、ポリウレタン、ポリエステル、ポリエチレン、ポリカーボネート、ポリスチレン、ポリスルホン、ポリビニルアルコール、ポリブタジエン、ポリプロピレン、ユリア樹脂などが挙げられる。 Examples of the resin used for the undercoat layer include acrylic resin, allyl resin, alkyd resin, ethyl cellulose resin, ethylene-acrylic acid copolymer, epoxy resin, casein resin, silicone resin, gelatin resin, phenol resin, butyral resin, polyacrylate. , Polyacetal, polyamideimide, polyamide, polyallyl ether, polyimide, polyurethane, polyester, polyethylene, polycarbonate, polystyrene, polysulfone, polyvinyl alcohol, polybutadiene, polypropylene, urea resin and the like.
また、酸化アルミニウムなどの材料を用いて下引き層を形成してもよい。 Further, the undercoat layer may be formed using a material such as aluminum oxide.
下引き層用塗布液に用いられる溶剤としては、例えば、アルコール、スルホキシド、ケトン、エーテル、エステル、脂肪族ハロゲン化炭化水素、芳香族化合物などが挙げられる。 Examples of the solvent used in the coating solution for the undercoat layer include alcohols, sulfoxides, ketones, ethers, esters, aliphatic halogenated hydrocarbons, and aromatic compounds.
下引き層の膜厚は、0.05〜7μmであることが好ましく、0.1〜2μmであることがより好ましい。 The thickness of the undercoat layer is preferably 0.05 to 7 μm, and more preferably 0.1 to 2 μm.
電子写真感光体に用いられる電荷発生物質としては、例えば、モノアゾ、ジスアゾ、トリスアゾなどのアゾ顔料や、金属フタロシアニン、非金属フタロシアニンなどのフタロシアニン顔料や、インジゴ、チオインジゴなどのインジゴ顔料や、ペリレン酸無水物、ペリレン酸イミドなどのペリレン顔料や、アンスラキノン、ピレンキノンなどの多環キノン顔料や、スクワリリウム色素や、ピリリウム塩およびチアピリリウム塩や、トリフェニルメタン色素や、セレン、セレン−テルル、アモルファスシリコンなどの無機物質や、キナクリドン顔料や、アズレニウム塩顔料や、シアニン染料や、キサンテン色素や、キノンイミン色素や、スチリル色素や、硫化カドミウムや、酸化亜鉛などが挙げられる。これら電荷発生物質は1種のみ用いてもよく、2種以上用いてもよい。 Examples of the charge generating material used in the electrophotographic photoreceptor include azo pigments such as monoazo, disazo, and trisazo, phthalocyanine pigments such as metal phthalocyanine and nonmetal phthalocyanine, indigo pigments such as indigo and thioindigo, and perylene acid anhydride. , Perylene pigments such as perylene imide, polycyclic quinone pigments such as anthraquinone and pyrenequinone, squarylium dyes, pyrylium and thiapyrylium salts, triphenylmethane dyes, selenium, selenium-tellurium, amorphous silicon, etc. Examples include inorganic substances, quinacridone pigments, azurenium salt pigments, cyanine dyes, xanthene dyes, quinoneimine dyes, styryl dyes, cadmium sulfide, and zinc oxide. These charge generation materials may be used alone or in combination of two or more.
感光層が積層型感光層である場合、電荷発生層に用いられる結着樹脂としては、例えば、アクリル樹脂、アリル樹脂、アルキッド樹脂、エポキシ樹脂、ジアリルフタレート樹脂、シリコーン樹脂、スチレン−ブタジエンコポリマー、フェノール樹脂、ブチラール樹脂、ベンザール樹脂、ポリアクリレート、ポリアセタール、ポリアミドイミド、ポリアミド、ポリアリルエーテル、ポリアリレート、ポリイミド、ポリウレタン、ポリエステル、ポリエチレン、ポリカーボネート、ポリスチレン、ポリスルホン、ポリビニルアセタール、ポリブタジエン、ポリプロピレン、メタクリル樹脂、ユリア樹脂、塩化ビニル−酢酸ビニルコポリマー、酢酸ビニル樹脂などが挙げられる。これらの中でも、ブチラール樹脂が好ましい。これらは、単独、混合または共重合体として、1種または2種以上用いることができる。 When the photosensitive layer is a laminated photosensitive layer, examples of the binder resin used for the charge generation layer include acrylic resins, allyl resins, alkyd resins, epoxy resins, diallyl phthalate resins, silicone resins, styrene-butadiene copolymers, phenols. Resin, butyral resin, benzal resin, polyacrylate, polyacetal, polyamideimide, polyamide, polyallyl ether, polyarylate, polyimide, polyurethane, polyester, polyethylene, polycarbonate, polystyrene, polysulfone, polyvinyl acetal, polybutadiene, polypropylene, methacrylic resin, urea Resin, vinyl chloride-vinyl acetate copolymer, vinyl acetate resin and the like. Among these, a butyral resin is preferable. These may be used alone or in combination as a mixture or copolymer.
電荷発生層は、電荷発生物質を結着樹脂および溶剤とともに分散処理することによって得られる電荷発生層用塗布液を塗布し、得られた塗膜を乾燥および/または硬化させることによって形成することができる。分散方法としては、例えば、ホモジナイザー、超音波分散機、ボールミル、サンドミル、ロールミル、振動ミル、アトライター、液衝突型高速分散機などを用いた方法が挙げられる。電荷発生物質と結着樹脂との割合は、1:0.5〜1:4(質量比)の範囲が好ましい。 The charge generation layer may be formed by applying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent, and drying and / or curing the obtained coating film. it can. Examples of the dispersion method include a method using a homogenizer, an ultrasonic disperser, a ball mill, a sand mill, a roll mill, a vibration mill, an attritor, a liquid collision type high-speed disperser, and the like. The ratio between the charge generating material and the binder resin is preferably in the range of 1: 0.5 to 1: 4 (mass ratio).
電荷発生層用塗布液に用いられる溶剤としては、例えば、アルコール、スルホキシド、ケトン、エーテル、エステル、脂肪族ハロゲン化炭化水素、ハロゲン化芳香族化合物、芳香族化合物などの有機溶剤が挙げられる。 Examples of the solvent used in the charge generation layer coating solution include organic solvents such as alcohols, sulfoxides, ketones, ethers, esters, aliphatic halogenated hydrocarbons, halogenated aromatic compounds, and aromatic compounds.
電荷発生層の膜厚は、0.001〜6μmであることが好ましく、0.01〜2μmであることがより好ましい。 The thickness of the charge generation layer is preferably 0.001 to 6 μm, and more preferably 0.01 to 2 μm.
また、電荷発生層には、種々の増感剤、酸化防止剤、紫外線吸収剤、可塑剤などを必要に応じて添加することもできる。 In addition, various sensitizers, antioxidants, ultraviolet absorbers, plasticizers, and the like can be added to the charge generation layer as necessary.
電子写真感光体に用いられる電荷輸送物質としては、例えば、トリアリールアミン化合物、ヒドラゾン化合物、スチリル化合物、スチルベン化合物、ピラゾリン化合物、オキサゾール化合物、チアゾール化合物、トリアリールメタン化合物などが挙げられる。これら電荷輸送物質は1種のみ用いてもよく、2種以上用いてもよい。 Examples of the charge transport material used in the electrophotographic photoreceptor include triarylamine compounds, hydrazone compounds, styryl compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, and triarylmethane compounds. These charge transport materials may be used alone or in combination of two or more.
感光層が積層型感光層である場合、電荷輸送層に用いられる結着樹脂としては、例えば、アクリル樹脂、アクリロニトリル樹脂、アリル樹脂、アルキッド樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、フェノキシ樹脂、ブチラール樹脂、ポリアクリルアミド、ポリアセタール、ポリアミドイミド、ポリアミド、ポリアリルエーテル、ポリアリレート、ポリイミド、ポリウレタン、ポリエステル、ポリエチレン、ポリカーボネート、ポリスチレン、ポリスルホン、ポリビニルブチラール、ポリフェニレンオキシド、ポリブタジエン、ポリプロピレン、メタクリル樹脂、ユリア樹脂、塩化ビニル樹脂、酢酸ビニル樹脂などが挙げられる。これらの中でも、ポリアリレート、ポリカーボネートが好ましい。これらは、単独、混合または共重合体として、1種または2種以上用いることができる。 When the photosensitive layer is a laminated photosensitive layer, examples of the binder resin used for the charge transport layer include acrylic resin, acrylonitrile resin, allyl resin, alkyd resin, epoxy resin, silicone resin, phenol resin, phenoxy resin, and butyral. Resin, polyacrylamide, polyacetal, polyamideimide, polyamide, polyallyl ether, polyarylate, polyimide, polyurethane, polyester, polyethylene, polycarbonate, polystyrene, polysulfone, polyvinyl butyral, polyphenylene oxide, polybutadiene, polypropylene, methacrylic resin, urea resin, chloride A vinyl resin, a vinyl acetate resin, etc. are mentioned. Among these, polyarylate and polycarbonate are preferable. These may be used alone or in combination as a mixture or copolymer.
電荷輸送層は、電荷輸送物質と結着樹脂を溶剤に溶解させることによって得られる電荷輸送層用塗布液を塗布し、得られた塗膜を乾燥および/または硬化させることによって形成することができる。電荷輸送物質と結着樹脂との割合は、2:1〜1:2(質量比)の範囲が好ましい。 The charge transport layer can be formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent, and drying and / or curing the obtained coating film. . The ratio between the charge transport material and the binder resin is preferably in the range of 2: 1 to 1: 2 (mass ratio).
電荷輸送層用塗布液に用いられる溶剤としては、例えば、アセトン、メチルエチルケトンなどのケトン、酢酸メチル、酢酸エチルなどのエステル、トルエン、キシレンなどの芳香族炭化水素、1,4−ジオキサン、テトラヒドロフランなどのエーテル、クロロベンゼン、クロロホルム、四塩化炭素などのハロゲン原子で置換された炭化水素などが挙げられる。 Examples of the solvent used in the charge transport layer coating solution include ketones such as acetone and methyl ethyl ketone, esters such as methyl acetate and ethyl acetate, aromatic hydrocarbons such as toluene and xylene, 1,4-dioxane, and tetrahydrofuran. Examples thereof include hydrocarbons substituted with halogen atoms such as ether, chlorobenzene, chloroform, and carbon tetrachloride.
電荷輸送層の膜厚は、5〜30μmであることが好ましく、6〜25μmであることがより好ましい。 The thickness of the charge transport layer is preferably 5 to 30 μm, and more preferably 6 to 25 μm.
また、電荷輸送層には、酸化防止剤、紫外線吸収剤、可塑剤などを必要に応じて添加することもできる。 In addition, an antioxidant, an ultraviolet absorber, a plasticizer, and the like can be added to the charge transport layer as necessary.
感光層が単層型感光層である場合、該単層型感光層は、上記電荷発生物質および上記電荷輸送物質を上記結着樹脂および上記溶剤とともに分散処理することによって得られる単層型感光層用塗布液を塗布し、得られた塗膜を乾燥および/または硬化させることによって形成することができる。 When the photosensitive layer is a single-layer type photosensitive layer, the single-layer type photosensitive layer is obtained by dispersing the charge generating substance and the charge transporting substance together with the binder resin and the solvent. It can form by apply | coating the coating liquid for coating and drying and / or hardening the obtained coating film.
また、感光層上には、該感光層を保護することを目的とした保護層を設けてもよい。保護層は、上述した各種結着樹脂を溶剤に溶解させることによって得られる保護層用塗布液を塗布し、得られた塗膜を乾燥および/または硬化させることによって形成することができる。 Further, a protective layer may be provided on the photosensitive layer for the purpose of protecting the photosensitive layer. The protective layer can be formed by applying a protective layer coating solution obtained by dissolving the above-described various binder resins in a solvent, and drying and / or curing the obtained coating film.
保護層の膜厚は、0.01〜10μmであることが好ましく、0.1〜7μmであることがより好ましい。 The thickness of the protective layer is preferably 0.01 to 10 μm, and more preferably 0.1 to 7 μm.
上記各層用の塗布液を塗布する際には、例えば、浸漬コーティング法(浸漬塗布法)、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法などの塗布方法を用いることができる。 When applying the coating liquid for each layer, for example, a coating method such as a dip coating method (a dip coating method), a spray coating method, a spinner coating method, a roller coating method, a Meyer bar coating method, a blade coating method, or the like is used. be able to.
接触部材であるクリーニングブレードを電子写真感光体の表面に強く押し当てることで、残留トナーのクリーニングを行うことが一般的であるが、強く押し当てていることで、電子写真感光体の回転トルクが大きくなる。また、電子写真感光体の表面に形成した凹凸形状の破壊(特に凸部の破壊)が起こりやすい。 It is common to clean the residual toner by strongly pressing the cleaning blade, which is a contact member, against the surface of the electrophotographic photosensitive member. However, by strongly pressing, the rotational torque of the electrophotographic photosensitive member is reduced. growing. In addition, the concavo-convex shape formed on the surface of the electrophotographic photosensitive member (particularly, the convex portion is easily broken).
本発明の膜を電子写真感光体の表面層に用いることで、摩擦を低減することができるため、電子写真感光体の回転トルクを減らすことができる。また、電子写真感光体の表面の凹凸形状を長期間維持することができることから、小さい摩擦係数での接触の維持が可能となり、クリーニングブレードの巻き込み(ブレード捲れ)を抑制することができる。 By using the film of the present invention for the surface layer of the electrophotographic photosensitive member, friction can be reduced, so that the rotational torque of the electrophotographic photosensitive member can be reduced. In addition, since the uneven shape on the surface of the electrophotographic photosensitive member can be maintained for a long period of time, it is possible to maintain contact with a small coefficient of friction, and to prevent the cleaning blade from being caught (blade twisting).
図12に、本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の一例を示す。 FIG. 12 shows an example of a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
図12において、本発明の円筒状の電子写真感光体1201は、軸1202を中心に矢印方向に所定の周速度で回転駆動される。
In FIG. 12, a cylindrical electrophotographic
回転駆動される電子写真感光体1201の表面(周面)は、帯電手段1203により正または負の電位に帯電され、次いで、露光手段(不図示)から出力される露光光(画像露光光)1204を受ける。こうして電子写真感光体1201の表面には、目的の画像に対応した静電潜像が形成されていく。帯電手段としては、例えば、コロトロン、スコロトロンなどを用いたコロナ帯電手段や、ローラー、ブラシ、フィルムなどを用いた接触帯電手段などが挙げられる。また、帯電手段に印加する電圧は、直流電圧のみであってもよいし、交流電圧を重畳した直流電圧であってもよい。また、露光手段としては、例えば、スリット露光、レーザービーム走査露光などが挙げられる。
The surface (circumferential surface) of the electrophotographic
電子写真感光体1201の表面に形成された静電潜像は、現像手段1205のトナーにより現像されてトナー画像となる。現像方式としては、磁性または非磁性の一成分または二成分トナーを接触または非接触させて現像する方式が挙げられる。トナーとしては、例えば、懸濁重合、乳化重合などによる重合トナーや、機械式粉砕法や球形化処理などによって球形化処理されたトナーなどが挙げられる。トナーの重量平均粒径は4〜7μmであることが好ましく、トナーの平均円形度は0.95〜0.99であることが好ましい。
The electrostatic latent image formed on the surface of the electrophotographic
電子写真感光体1201の表面に形成されたトナー画像は、転写手段1206によって、転写材(紙など)1207に順次転写されていく。転写材1207は、転写材供給手段(不図示)から電子写真感光体1201と転写手段1206との間(当接部)に電子写真感光体1201の回転と同期して取り出されて給送される。
The toner image formed on the surface of the electrophotographic
トナー画像が転写された転写材1207は、電子写真感光体1201の表面から分離されて定着手段1208へ導入されて像定着を受けることにより、画像形成物(プリント、コピー)として電子写真装置外へプリントアウトされる。
The
トナー画像転写後の電子写真感光体1201の表面は、クリーニング手段に備わるクリーニングブレード1209によって転写残トナーの除去を受けた後、前露光手段(不図示)からの前露光光1210により除電処理され、繰り返し画像形成に使用される。
After the toner image is transferred, the surface of the electrophotographic
上述の電子写真感光体1201、帯電手段1203、現像手段1205、転写手段1206、クリーニング手段(クリーニングブレード1209)などから選択される構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを電子写真装置本体に対して着脱自在に構成してもよい。図12では、電子写真感光体1201と、帯電手段1203、現像手段1205およびクリーニングブレード1209とを一体に支持してカートリッジ化して、電子写真装置本体のレールなどの案内手段1212を用いて電子写真装置本体に着脱自在なプロセスカートリッジ1211としている。
Among the components selected from the above-described electrophotographic
以下に、具体的な実施例を挙げて本発明をさらに詳細に説明する。ただし、本発明は、これらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to these.
(1)硬度の測定
上記連続剛性測定法による硬度の測定には、MTSシステムズ(株)製の超微小硬度計(商品名:Nano Indenter DCM)を用いた。使用圧子は、ダイヤモンド製正三角錐圧子であり、室温(25℃)・大気中にて、連続剛性測定法による硬度の測定を行った。
(1) Measurement of hardness For the measurement of hardness by the above-mentioned continuous stiffness measurement method, an ultrafine hardness meter (trade name: Nano Indenter DCM) manufactured by MTS Systems Co., Ltd. was used. The working indenter was a diamond regular triangular pyramid indenter, and the hardness was measured by a continuous stiffness measurement method at room temperature (25 ° C.) and in the air.
(2)第2部分の面積率の算出
上記第2部分で構成される面の面積率は、エスアイアイ・ナノテクノロジー(株)製の走査型プローブ顕微鏡(商品名:S−image)を用いて算出した。
(2) Calculation of area ratio of second part The area ratio of the surface constituted by the second part is determined by using a scanning probe microscope (trade name: S-image) manufactured by SII Nanotechnology. Calculated.
(3)膜の作製
(実施例1−1)
シリコンウエハーの上に、信越化学工業(株)製のネガ型フォトレジスト材料である感光性シリコーンポリマー(商品名:SINR−3170PX)をスピンナーコートし、塗膜を形成した。次いで、塗膜に対して紫外線照射を2回行った。1回目の紫外線照射は塗膜の全面に対して行い、2回目の紫外線照射時に、ライン幅:4μm、スペース幅:4μmのフォトマスクを用いて照射を行った。1回目と2回目の紫外線照射量と紫外線照射時間は、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.5となるように、および、第1部分(低硬度部分)の硬度が約0.15GPaとなるように調整した。その後、塗膜を2分間90℃で乾燥させた。乾燥して得られた膜の膜厚は17μmであった。
(3) Production of membrane (Example 1-1)
A photosensitive silicone polymer (trade name: SINR-3170PX), which is a negative photoresist material manufactured by Shin-Etsu Chemical Co., Ltd., was spinner coated on a silicon wafer to form a coating film. Subsequently, ultraviolet irradiation was performed twice with respect to the coating film. The first ultraviolet irradiation was performed on the entire surface of the coating film, and at the second ultraviolet irradiation, irradiation was performed using a photomask having a line width of 4 μm and a space width of 4 μm. The amount of UV irradiation and the time of UV irradiation for the first and second times are such that the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.5. And it adjusted so that the hardness of a 1st part (low-hardness part) might be set to about 0.15 GPa. Thereafter, the coating film was dried at 90 ° C. for 2 minutes. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は51%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 51%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例1−2)
第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.2となるように、および、第1部分(低硬度部分)の硬度が約0.15GPaとなるように1回目と2回目の紫外線照射量と紫外線照射時間を調整した以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は16μmであった。
(Example 1-2)
The ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.2, and the hardness of the first part (low hardness part) is about 0. A film was obtained in the same manner as in Example 1-1 except that the first and second ultraviolet irradiation amounts and the ultraviolet irradiation time were adjusted to 15 GPa. The film thickness obtained by drying was 16 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は53%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.2であり、第1部分(低硬度部分)の硬度は0.16GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 53%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.2, and the first part (low hardness) The hardness of the (hardness part) was 0.16 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例1−3)
縦100mm×横100mm×厚さ0.75mmのアルミニウム板の上に、下記組成の電荷輸送層用塗布液をマイヤーバーコートし、得られた塗膜を乾燥させることによって、膜厚20μmの電荷輸送層を形成した。
(Example 1-3)
On a 100 mm long x 100 mm wide x 0.75 mm thick aluminum plate, a charge transport layer coating solution having the following composition is coated with a Meyer bar, and the resulting coating is dried, thereby transporting the charge with a thickness of 20 μm. A layer was formed.
・電荷輸送層用塗布液
ビスフェノールZ型のポリカーボネート:10質量部
下記構造式(101)で示される化合物(電荷輸送物質):9質量部
-Coating liquid for charge transport layer Bisphenol Z type polycarbonate: 10 parts by mass Compound (charge transport material) represented by the following structural formula (101): 9 parts by mass
クロロベンゼン:100質量部
次に、上記電荷輸送層の上に、下記組成の表面層用塗布液をスプレーコートすることによって、膜厚5μmの塗膜を得た。
Chlorobenzene: 100 parts by mass Next, a coating film having a film thickness of 5 μm was obtained by spray coating a coating solution for a surface layer having the following composition on the charge transport layer.
・表面層用塗布液
上記構造式(28)で示される化合物(電荷輸送性構造を有するラジカル重合性化合物):10質量部
トリメチロールプロパントリアクリレート:10質量部
2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(光重合開始剤、商品名:IRGACURE651、BASF社製):1質量部
クロロベンゼン:100質量部
次いで、塗膜に対して紫外線照射を2回行った。1回目の紫外線照射は塗膜の全面に対して行い、2回目の紫外線照射時に、ライン幅:4μm、スペース幅:4μmのフォトマスクを用いて照射を行った。1回目と2回目の紫外線照射量と紫外線照射時間は、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約10となるように、および、第1部分(低硬度部分)の硬度が約0.15GPaとなるように調整した。その後、塗膜を2分間90℃で乾燥させた。乾燥して得られた表面層(膜)の膜厚は5μmであった。
-Surface layer coating solution Compound represented by the above structural formula (28) (radical polymerizable compound having a charge transporting structure): 10 parts by weight Trimethylolpropane triacrylate: 10 parts by weight 2,2-dimethoxy-1,2 -Diphenylethane-1-one (photopolymerization initiator, trade name: IRGACURE651, manufactured by BASF): 1 part by mass Chlorobenzene: 100 parts by mass Next, the coating film was irradiated with ultraviolet rays twice. The first ultraviolet irradiation was performed on the entire surface of the coating film, and at the second ultraviolet irradiation, irradiation was performed using a photomask having a line width of 4 μm and a space width of 4 μm. The amount of UV irradiation and the time of UV irradiation for the first time and the second time are such that the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 10, and The first part (low hardness part) was adjusted to have a hardness of about 0.15 GPa. Thereafter, the coating film was dried at 90 ° C. for 2 minutes. The film thickness of the surface layer (film) obtained by drying was 5 μm.
得られた表面層(膜)の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は51%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた表面層(膜)について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は8.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained surface layer (film), the area ratio of the surface constituted by the second portion (high hardness portion) is 51%, The total area ratio of the surface composed of the portion (low hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained surface layer (film) was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 8.6. The hardness of one part (low hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例1−4)
縦100mm×横100mm×厚さ0.75mmのアルミニウム板の上に、下記組成の電荷輸送層用塗布液をマイヤーバーコートし、得られた塗膜を乾燥させることによって、膜厚20μmの電荷輸送層を形成した。
(Example 1-4)
On a 100 mm long x 100 mm wide x 0.75 mm thick aluminum plate, a charge transport layer coating solution having the following composition is coated with a Meyer bar, and the resulting coating is dried, thereby transporting the charge with a thickness of 20 μm. A layer was formed.
・電荷輸送層用塗布液
ビスフェノールZ型のポリカーボネート:10質量部
上記構造式(101)で示される化合物(電荷輸送物質):9質量部
クロロベンゼン:100質量部
次に、上記電荷輸送層の上に、下記組成の表面層用塗布液をスプレーコートすることによって、膜厚5μmの塗膜を得た。
-Coating liquid for charge transport layer Bisphenol Z-type polycarbonate: 10 parts by weight Compound (charge transport material) represented by the above structural formula (101): 9 parts by weight Chlorobenzene: 100 parts by weight Next, on the charge transport layer A coating film having a film thickness of 5 μm was obtained by spray coating a surface layer coating solution having the following composition.
・表面層用塗布液
上記構造式(28)で示される化合物(電荷輸送性構造を有するラジカル重合性化合物):10質量部
メチルエチルケトン:100質量部
次いで、塗膜に対して電子線照射を2回行った。1回目の電子線照射は塗膜の全面に対して行い、2回目の電子線照射時に、ライン幅:4μm、スペース幅:4μmのメタルマスクを用いて照射を行った。電子線照射時は、窒素パージをし、加速電圧は30kVとした。1回目と2回目の電子線照射線量と電子線照射時間は、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約30となるように、および、第1部分(低硬度部分)の硬度が約0.15GPaとなるように調整した。その後、塗膜を2分間90℃で乾燥させた。乾燥して得られた表面層(膜)の膜厚は5μmであった。
-Surface layer coating solution Compound represented by the above structural formula (28) (radical polymerizable compound having a charge transporting structure): 10 parts by mass Methyl ethyl ketone: 100 parts by mass Next, the coating film was irradiated twice with an electron beam. went. The first electron beam irradiation was performed on the entire surface of the coating film, and during the second electron beam irradiation, irradiation was performed using a metal mask having a line width of 4 μm and a space width of 4 μm. At the time of electron beam irradiation, nitrogen purge was performed and the acceleration voltage was set to 30 kV. The first and second electron beam irradiation doses and electron beam irradiation times are such that the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 30. And it adjusted so that the hardness of a 1st part (low-hardness part) might be set to about 0.15 GPa. Thereafter, the coating film was dried at 90 ° C. for 2 minutes. The film thickness of the surface layer (film) obtained by drying was 5 μm.
得られた表面層(膜)の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた表面層(膜)について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は27.3であり、第1部分(低硬度部分)の硬度は0.15GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained surface layer (film), the area ratio of the surface constituted by the second portion (high hardness portion) is 50%, The total area ratio of the surface composed of the portion (low hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained surface layer (film) was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 27.3. The hardness of one part (low hardness part) was 0.15 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例1−5)
第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.5となるように、および、第1部分(低硬度部分)の硬度が約0.05GPaとなるように紫外線照射量と紫外線照射時間を調整した以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は15μmであった。
(Example 1-5)
The ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.5, and the hardness of the first part (low hardness part) is about 0. A film was obtained in the same manner as in Example 1-1 except that the ultraviolet irradiation amount and the ultraviolet irradiation time were adjusted so as to be 0.05 GPa. The film thickness obtained by drying was 15 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.5であり、低硬度部分の硬度は0.05GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 50%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.5, and the hardness of the low hardness part Was 0.05 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例1−6)
第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.7となるように、および、第1部分(低硬度部分)の硬度が約0.50GPaとなるように紫外線照射量と紫外線照射時間を調整した以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は16μmであった。
(Example 1-6)
The ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.7, and the hardness of the first part (low hardness part) is about 0. A film was obtained in the same manner as in Example 1-1 except that the ultraviolet irradiation amount and the ultraviolet irradiation time were adjusted to 50 GPa. The film thickness obtained by drying was 16 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は49%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.7であり、第1部分(低硬度部分)の硬度は0.51GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 49%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.7, and the first portion (low hardness) The hardness of the (hardness part) was 0.51 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例1−7)
2回目の紫外線照射時に、ライン幅:20μm、スペース幅:20μmのフォトマスクを用いた以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 1-7)
A film was obtained in the same manner as in Example 1-1 except that a photomask having a line width of 20 μm and a space width of 20 μm was used during the second ultraviolet irradiation. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は51%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.13GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 51%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.13 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例1−8)
2回目の紫外線照射時に、ライン幅:4μm、スペース幅:22.7μmのフォトマスクを用いた以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は16μmであった。
(Example 1-8)
A film was obtained in the same manner as in Example 1-1 except that a photomask having a line width of 4 μm and a space width of 22.7 μm was used during the second ultraviolet irradiation. The film thickness obtained by drying was 16 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は16%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.7であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 16%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.7, and the first portion (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例1−9)
2回目の紫外線照射時に、ライン幅:4μm、スペース幅:1.3μmのフォトマスクを用いた以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 1-9)
A film was obtained in the same manner as in Example 1-1 except that a photomask having a line width of 4 μm and a space width of 1.3 μm was used during the second ultraviolet irradiation. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は77%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.7であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 77%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.7, and the first portion (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例1−10)
表面層用塗布液における光重合開始剤の量を3質量部とし、かつ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.5となるように、第1部分(低硬度部分)の硬度が約0.15GPaとなるように、および、第2部分(高硬度部分)の膜の膜厚方向に延在している長さが約4μmとなるように紫外線照射量と紫外線照射時間を調整した以外は、実施例1−3と同様にして膜を得た。乾燥して得られた膜の膜厚は5μmであった。
(Example 1-10)
The amount of the photopolymerization initiator in the surface layer coating solution is 3 parts by mass, and the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.5. The length extending in the film thickness direction of the film of the second portion (high hardness portion) so that the hardness of the first portion (low hardness portion) is about 0.15 GPa A film was obtained in the same manner as in Example 1-3 except that the ultraviolet irradiation amount and the ultraviolet irradiation time were adjusted so as to be about 4 μm. The film thickness obtained by drying was 5 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)は膜を貫通しており、第2部分(高硬度部分)は膜の膜厚方向に膜の膜厚の75%延在していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 50%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. The first portion (low hardness portion) penetrated the film, and the second portion (high hardness portion) extended 75% of the film thickness in the film thickness direction.
(比較例1−1)
1回目の紫外線照射で膜の表面の硬度が約0.22GPaとなるように紫外線照射量と紫外線照射時間を調整し、かつ、2回目の紫外線照射を行わなかった以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Comparative Example 1-1)
Example 1-1, except that the ultraviolet irradiation amount and the ultraviolet irradiation time were adjusted so that the film surface hardness was about 0.22 GPa by the first ultraviolet irradiation, and the second ultraviolet irradiation was not performed. In the same manner, a film was obtained. The film thickness obtained by drying was 17 μm.
得られた膜について硬度を測定したところ、硬度の異なる第1部分および第2部分の存在は認められず、膜の表面の硬度は0.22GPaであった。 When the hardness of the obtained film was measured, the presence of the first portion and the second portion having different hardness was not recognized, and the hardness of the film surface was 0.22 GPa.
(比較例1−2)
1回目の紫外線照射で膜の表面の硬度が約0.15GPaとなるように紫外線照射量と紫外線照射時間を調整し、2回目の紫外線照射を行わなかった以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Comparative Example 1-2)
The same as Example 1-1, except that the ultraviolet irradiation amount and the ultraviolet irradiation time were adjusted so that the hardness of the film surface was about 0.15 GPa by the first ultraviolet irradiation, and the second ultraviolet irradiation was not performed. A film was obtained. The film thickness obtained by drying was 17 μm.
得られた膜について硬度を測定したところ、硬度の異なる第1部分および第2部分の存在は認められず、膜の表面の硬度は0.15GPaであった。 When the hardness of the obtained film was measured, the presence of the first part and the second part having different hardness was not recognized, and the hardness of the film surface was 0.15 GPa.
(比較例1−3)
中心に直径51mmの円形の空洞が空いている直径81mm、厚さ1mmのポリカーボネートの基板に対して、ライン幅:4μm、スペース幅:4μm、ラインとスペースの高低差:2μmのパターンを持つ縦85mm×横85mm×厚さ0.8mmのニッケル製のスタンパーモールドを用いて、ポリカーボネートの基板側を100℃に加熱し、スタンパーモールド側を190℃に加熱して、6500Nの荷重で5分間インプリントの処理を行い、スタンパーモールドのパターンをポリカーボネートの基板に転写して膜を得た。
(Comparative Example 1-3)
A 81 mm diameter, 1 mm thick polycarbonate substrate with a 51 mm diameter circular cavity in the center, line width: 4 μm, space width: 4 μm, height difference between lines and spaces: 85 mm vertically with a pattern of 2 μm X Using a stamper mold made of nickel with a width of 85 mm and a thickness of 0.8 mm, the substrate side of the polycarbonate is heated to 100 ° C, the stamper mold side is heated to 190 ° C, and imprinting is performed at a load of 6500 N for 5 minutes. The film was obtained by transferring the stamper mold pattern onto a polycarbonate substrate.
得られた膜について硬度を測定したところ、硬度の異なる第1部分および第2部分の存在は認められず、膜の表面の硬度は0.18GPaであった。 When the hardness of the obtained film was measured, the presence of the first part and the second part having different hardness was not recognized, and the hardness of the film surface was 0.18 GPa.
(比較例1−4)
2回目の紫外線照射時に、ライン幅:500μm、スペース幅:2000μm(2mm)のフォトマスクを用いた以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は19μmであった。
(Comparative Example 1-4)
A film was obtained in the same manner as in Example 1-1 except that a photomask having a line width of 500 μm and a space width of 2000 μm (2 mm) was used during the second ultraviolet irradiation. The film thickness obtained by drying was 19 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率が100%となる場合があった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.5であり、第1部分(低硬度部分)の硬度は0.19GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region with a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) may be 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.5, and the first portion (low hardness) The hardness of the (hardness part) was 0.19 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(比較例1−5)
第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.1となるように、および、第1部分(低硬度部分)の硬度が約0.15GPaとなるように紫外線照射量と紫外線照射時間を調整した以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は16μmであった。
(Comparative Example 1-5)
The value of the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.1, and the hardness of the first part (low hardness part) is about 0 A film was obtained in the same manner as in Example 1-1 except that the ultraviolet irradiation amount and the ultraviolet irradiation time were adjusted to 15 GPa. The film thickness obtained by drying was 16 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は51%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.1であり、第1部分(低硬度部分)の硬度は0.15GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 51%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.1, and the first portion (low hardness) The hardness of the (hardness part) was 0.15 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(比較例1−6)
第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約35となるように、および、第1部分(低硬度部分)の硬度が約0.15GPaとなるように紫外線照射量と紫外線照射時間を調整した以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は15μmであった。
(Comparative Example 1-6)
The ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 35, and the hardness of the first part (low hardness part) is about 0.15 GPa. A film was obtained in the same manner as in Example 1-1 except that the ultraviolet irradiation amount and the ultraviolet irradiation time were adjusted so that The film thickness obtained by drying was 15 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は51%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は34.5であり、第1部分(低硬度部分)の硬度は0.15GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 51%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 34.5, and the first portion (low hardness) The hardness of the (hardness part) was 0.15 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(比較例1−7)
2回目の紫外線照射時に、ライン幅:4μm、スペース幅:76μmのフォトマスクを用いた以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Comparative Example 1-7)
A film was obtained in the same manner as in Example 1-1 except that a photomask having a line width of 4 μm and a space width of 76 μm was used during the second ultraviolet irradiation. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は6%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.15GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 6%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.15 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(比較例1−8)
2回目の紫外線照射時に、ライン幅:4μm、スペース幅:0.7μmのフォトマスクを用いた以外は、実施例1−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Comparative Example 1-8)
A film was obtained in the same manner as in Example 1-1 except that a photomask having a line width of 4 μm and a space width of 0.7 μm was used during the second ultraviolet irradiation. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は85%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.15GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 85%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.15 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(比較例1−9)
表面層用塗布液における光重合開始剤を5質量部とし、かつ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.5となるように、第1部分(低硬度部分)の硬度が約0.15GPaとなるように、および、第2部分(高硬度部分)の膜の膜厚方向に延在している長さが約0.2μmとなるように紫外線照射量と紫外線照射時間を調整した以外は、実施例1−3と同様にして膜を得た。乾燥して得られた膜の膜厚は5μmであった。
(Comparative Example 1-9)
The photopolymerization initiator in the surface layer coating solution is 5 parts by mass, and the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.5. Thus, the length of the first portion (low hardness portion) is about 0.15 GPa and the length of the second portion (high hardness portion) extending in the film thickness direction is about 0. A film was obtained in the same manner as in Example 1-3, except that the ultraviolet irradiation amount and the ultraviolet irradiation time were adjusted to 2 μm. The film thickness obtained by drying was 5 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.7であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)は膜を貫通しており、第2部分(高硬度部分)は膜の膜厚方向に膜の膜厚の4%延在していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 50%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.7, and the first portion (low hardness) The hardness of the (hardness part) was 0.14 GPa. The first portion (low hardness portion) penetrates the film, and the second portion (high hardness portion) extends 4% of the film thickness in the film thickness direction.
(比較例1−10)
以下の溶液1および溶液2を、インクジェット塗布装置(商品名:PixelJet128、Trident社製)の2つの溶液タンクにそれぞれ充填した。このインクジェット塗布装置は、2つの液体吐出手段を有しており、2つの液体吐出手段は、それぞれ複数のノズルを有している。
(Comparative Example 1-10)
The following solution 1 and solution 2 were filled in two solution tanks of an inkjet coating apparatus (trade name: PixelJet128, manufactured by Trident), respectively. This ink jet coating apparatus has two liquid ejection means, and each of the two liquid ejection means has a plurality of nozzles.
−溶液1−
以下の成分を混合したものを溶液1とした。
-Solution 1
A solution 1 was prepared by mixing the following components.
・フルオロカーボンシロキサンゴム組成物(商品名:サイフェル610、信越化学工業(株)製):75質量%
・フッ素系溶剤(商品名:X−70−580、信越化学工業(株)製):25質量%
−溶液2−
以下の成分を混合したものを溶液2とした。
Fluorocarbonsiloxane rubber composition (trade name: Seifer 610, manufactured by Shin-Etsu Chemical Co., Ltd.): 75% by mass
Fluorine-based solvent (trade name: X-70-580, manufactured by Shin-Etsu Chemical Co., Ltd.): 25% by mass
-Solution 2-
A solution 2 was prepared by mixing the following components.
・フルオロカーボンシロキサンゴム組成物(商品名:サイフェル650、信越化学工業(株)製):75質量%
・フッ素系溶剤(商品名:X−70−580、信越化学工業(株)製):25質量%
上記2つの液体吐出手段のそれぞれ20個のノズルを使用し、ノズルの吐出面とポリイミド板(厚さ1mmの正方形板(縦100mm×横100mm))との間隔が10mmとなるように配置し、2つの液体吐出手段からそれぞれ溶液1および溶液2を、駆動周波数2.6kHz、液体吐出手段の移動速度450mm/分の条件で、溶液1および溶液2のそれぞれの幅が4μmのライン状となるように、かつ、溶液1のラインと溶液2のラインの間隔が密接するように、かつ、溶液1のラインおよび溶液2のラインがポリイミド板の一辺と平行となるように、ポリイミド板の一端から対向する他端まで吐出させた。この工程を繰り返すことで、溶液1のラインの幅が4μmで、溶液2のラインの幅が4μmで、溶液1のラインと溶液2のラインが密接に平行配置された、真上方向から見たときに図1に示すようなパターンを持つ塗膜をポリイミド板上に得た。その後、塗膜を30分間120℃で一次加熱し、次いで、120分間200℃で二次加熱した。加熱して得られたポリイミド板上の膜の膜厚は20μmであった。
Fluorocarbon siloxane rubber composition (trade name: Seifer 650, manufactured by Shin-Etsu Chemical Co., Ltd.): 75% by mass
Fluorine-based solvent (trade name: X-70-580, manufactured by Shin-Etsu Chemical Co., Ltd.): 25% by mass
20 nozzles of each of the two liquid discharge means are used, and the nozzle discharge surface and the polyimide plate (a square plate having a thickness of 1 mm (length 100 mm × width 100 mm)) are arranged to be 10 mm, The solution 1 and the solution 2 from the two liquid discharge means are respectively formed in a line shape with a width of 4 μm for each of the solution 1 and the solution 2 under the conditions of a driving frequency of 2.6 kHz and a moving speed of the liquid discharge means of 450 mm / min. And from one end of the polyimide plate so that the distance between the solution 1 line and the solution 2 line is close, and the solution 1 line and the solution 2 line are parallel to one side of the polyimide plate. The other end was discharged. By repeating this process, the line width of the solution 1 was 4 μm, the line width of the solution 2 was 4 μm, and the line of the solution 1 and the line of the solution 2 were closely arranged in parallel, as viewed from directly above. Occasionally, a coating film having a pattern as shown in FIG. 1 was obtained on a polyimide plate. Thereafter, the coating film was primarily heated at 120 ° C. for 30 minutes, and then secondarily heated at 200 ° C. for 120 minutes. The film thickness on the polyimide plate obtained by heating was 20 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は2.8であり、第1部分(低硬度部分)の硬度は0.00038GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 50%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 2.8, and the first part (low hardness) The hardness of the (hardness part) was 0.00038 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
実施例1−1〜1−10および比較例1−1〜1−10をまとめて表1に示す。 Examples 1-1 to 1-10 and Comparative Examples 1-1 to 1-10 are collectively shown in Table 1.
(実施例2−1)
シリコンウエハーの上に、信越化学工業(株)製のネガ型フォトレジスト材料である感光性シリコーンポリマー(商品名:SINR−3170PX)をスピンナーコートし、塗膜を形成した。次いで、塗膜に対して紫外線照射を2回行った。1回目の紫外線照射は塗膜の全面に対して行い、2回目の紫外線照射時に、正六角形の一辺の長さが10μm、壁の厚さが2μmのハニカム型のフォトマスクを用いて照射を行った。1回目と2回目の紫外線照射量と紫外線照射時間は、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.6になるように、および、第2部分(高硬度部分)の硬度が約0.22GPaとなるように調整した。その後、塗膜を2分間90℃で乾燥させた。乾燥して得られた膜の膜厚は17μmであった。
(Example 2-1)
A photosensitive silicone polymer (trade name: SINR-3170PX), which is a negative photoresist material manufactured by Shin-Etsu Chemical Co., Ltd., was spinner coated on a silicon wafer to form a coating film. Subsequently, ultraviolet irradiation was performed twice with respect to the coating film. The first UV irradiation is performed on the entire surface of the coating film, and the second UV irradiation is performed using a honeycomb type photomask having a regular hexagonal side length of 10 μm and a wall thickness of 2 μm. It was. The amount of UV irradiation and the time of UV irradiation for the first and second times are such that the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.6. And it adjusted so that the hardness of a 2nd part (high-hardness part) might be set to about 0.22 GPa. Thereafter, the coating film was dried at 90 ° C. for 2 minutes. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は23%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであり、第2部分(高硬度部分)の硬度は0.22GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 23%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa, and the hardness of the second part (high hardness part) was 0.22 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例2−2)
2回目の紫外線照射時に、正六角形の一辺の長さが10μm、壁の厚さが1μmのハニカム型のフォトマスクを用いた以外は、実施例2−1と同様にして膜を得た。乾燥して得られた膜の膜厚は18μmであった。
(Example 2-2)
A film was obtained in the same manner as in Example 2-1, except that a honeycomb type photomask having a regular hexagonal side length of 10 μm and a wall thickness of 1 μm was used during the second ultraviolet irradiation. The film thickness obtained by drying was 18 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は12%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.7であり、第1部分(低硬度部分)の硬度は0.14(0.135)GPaであり、第2部分(高硬度部分)の硬度は0.23GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 12%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.7, and the first portion (low hardness) The hardness of the (hardness part) was 0.14 (0.135) GPa, and the hardness of the second part (high hardness part) was 0.23 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例2−3)
2回目の紫外線照射時に、正六角形の一辺の長さが10μm、壁の厚さが6μmのハニカム型のフォトマスクを用いた以外は、実施例2−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 2-3)
A film was obtained in the same manner as in Example 2-1, except that a honeycomb type photomask having a regular hexagonal side length of 10 μm and a wall thickness of 6 μm was used during the second ultraviolet irradiation. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は69%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであり、第2部分(高硬度部分)の硬度は0.23GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 69%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa, and the hardness of the second part (high hardness part) was 0.23 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例2−4)
第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.2となるように、および、第2部分(高硬度部分)の硬度が約0.19GPaとなるように1回目と2回目の紫外線照射量と紫外線照射時間を調整した以外は、実施例2−1と同様にして膜を得た。乾燥して得られた膜の膜厚は16μmであった。
(Example 2-4)
The value of the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.2, and the hardness of the second part (high hardness part) is about 0 A film was obtained in the same manner as in Example 2-1, except that the UV irradiation amount and the UV irradiation time for the first and second times were adjusted to 19 GPa. The film thickness obtained by drying was 16 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は23%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.2であり、第1部分(低硬度部分)の硬度は0.15GPaであり、第2部分(高硬度部分)の硬度は0.18GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 23%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.2, and the first part (low hardness) The hardness of the (hardness part) was 0.15 GPa, and the hardness of the second part (high hardness part) was 0.18 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例2−5)
縦100mm×横100mm×厚さ0.75mmのアルミニウム板の上に、下記組成の電荷輸送層用塗布液をマイヤーバーコートし、得られた塗膜を乾燥させることによって、膜厚20μmの電荷輸送層を形成した。
(Example 2-5)
On a 100 mm long x 100 mm wide x 0.75 mm thick aluminum plate, a charge transport layer coating solution having the following composition is coated with a Meyer bar, and the resulting coating is dried, thereby transporting the charge with a thickness of 20 μm. A layer was formed.
ビスフェノールZ型のポリカーボネート:10質量部
上記構造式(101)で示される化合物(電荷輸送物質):9質量部
クロロベンゼン:100質量部
次に、上記電荷輸送層の上に、下記組成の表面層用塗布液をスプレーコートすることによって、膜厚5μmの塗膜を得た。
Bisphenol Z-type polycarbonate: 10 parts by mass Compound (charge transport material) represented by the above structural formula (101): 9 parts by mass Chlorobenzene: 100 parts by mass Next, on the charge transport layer, for the surface layer having the following composition A coating film having a thickness of 5 μm was obtained by spray coating the coating solution.
・表面層用塗布液
上記構造式(14)で示される化合物(電荷輸送性構造を有するラジカル重合性化合物):10質量部
トリメチロールプロパントリアクリレート:10質量部
光重合開始剤:1質量部
クロロベンゼン:100質量部
次いで、塗膜に対して紫外線照射を2回行った。1回目の紫外線照射は塗膜の全面に対して行い、2回目の紫外線照射時に、正六角形の一辺の長さが10μm、壁の厚さが2μmのハニカム型のフォトマスクを用いて照射を行った。1回目と2回目の紫外線照射量と紫外線照射時間は第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約30となるように、および、第2部分(高硬度部分)の硬度が約0.30GPaとなるように調整した。その後、塗膜を2分間90℃で乾燥させた。乾燥して得られた表面層(膜)の膜厚は5μmであった。
-Coating liquid for surface layer Compound represented by the above structural formula (14) (radical polymerizable compound having a charge transporting structure): 10 parts by mass Trimethylolpropane triacrylate: 10 parts by mass Photopolymerization initiator: 1 part by mass Chlorobenzene : 100 parts by mass Next, the coating film was irradiated with ultraviolet rays twice. The first UV irradiation is performed on the entire surface of the coating film, and the second UV irradiation is performed using a honeycomb type photomask having a regular hexagonal side length of 10 μm and a wall thickness of 2 μm. It was. The amount of UV irradiation and the time of UV irradiation for the first and second times are such that the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 30, and It adjusted so that the hardness of 2 part (high hardness part) might be set to about 0.30 GPa. Thereafter, the coating film was dried at 90 ° C. for 2 minutes. The film thickness of the surface layer (film) obtained by drying was 5 μm.
得られた表面層(膜)の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は23%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は26.8であり、第1部分(低硬度部分)の硬度は0.01(0.01044)GPaであり、第2部分(高硬度部分)の硬度は0.28GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained surface layer (film), the area ratio of the surface constituted by the second portion (high hardness portion) is 23%, The total area ratio of the surface composed of the portion (low hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 26.8, and the first portion (low hardness) The hardness of the (hardness part) was 0.01 (0.01044) GPa, and the hardness of the second part (high hardness part) was 0.28 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例2−6)
第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.4となるように、および、第2部分(高硬度部分)の硬度が約0.02GPaとなるように1回目と2回目の紫外線照射量と紫外線照射時間を調整した以外は、実施例2−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 2-6)
The value of the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.4, and the hardness of the second part (high hardness part) is about 0. A film was obtained in the same manner as in Example 2-1, except that the first and second ultraviolet irradiation amounts and the ultraviolet irradiation time were adjusted to 0.02 GPa. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は23%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.4であり、第1部分(低硬度部分)の硬度は0.01(0.014)GPaであり、第2部分(高硬度部分)の硬度は0.02GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 23%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.4, and the first portion (low hardness) The hardness of the (hardness part) was 0.01 (0.014) GPa, and the hardness of the second part (high hardness part) was 0.02 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例2−7)
縦100mm×横100mm×厚さ0.75mmのアルミニウム板の上に、下記組成の電荷輸送層用塗布液をマイヤーバーコートし、得られた塗膜を乾燥させることによって、膜厚20μmの電荷輸送層を形成した。
(Example 2-7)
On a 100 mm long x 100 mm wide x 0.75 mm thick aluminum plate, a charge transport layer coating solution having the following composition is coated with a Meyer bar, and the resulting coating is dried, thereby transporting the charge with a thickness of 20 μm. A layer was formed.
ビスフェノールZ型のポリカーボネート:10質量部
上記構造式(101)で示される化合物(電荷輸送物質):10質量部
クロロベンゼン:100質量部
次に、上記電荷輸送層の上に、下記組成の表面層用塗布液をスプレーコートすることによって、膜厚5μmの塗膜を得た。
Bisphenol Z-type polycarbonate: 10 parts by mass Compound (charge transport material) represented by the above structural formula (101): 10 parts by mass Chlorobenzene: 100 parts by mass Next, on the charge transport layer, for the surface layer having the following composition A coating film having a thickness of 5 μm was obtained by spray coating the coating solution.
電荷輸送性構造を有するラジカル重合性化合物(例示化合物No.9(上記構造式(9)で示される化合物)):10質量部
メチルエチルケトン:100質量部
次いで、塗膜に対して電子線照射を2回行った。1回目の電子線照射は塗膜の全面に対して行い、2回目の電子線照射時に、正六角形の一辺の長さが10μm、壁の厚さが2μmのハニカム型の電子線マスクを用いて照射を行った。電子線照射時は、窒素パージをし、加速電圧は30kVとした。1回目と2回目の電子線照射線量と電子線照射時間は、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.6となるように、および、第2部分(高硬度部分)の硬度が約5.00GPaとなるように調整した。その後、塗膜を2分間90℃で乾燥させた。乾燥して得られた表面層(膜)の膜厚は5μmであった。
Radical polymerizable compound having a charge transporting structure (Exemplary Compound No. 9 (compound represented by the above structural formula (9))): 10 parts by mass Methyl ethyl ketone: 100 parts by mass I went twice. The first electron beam irradiation is performed on the entire surface of the coating film, and at the time of the second electron beam irradiation, a honeycomb type electron beam mask having a regular hexagonal side length of 10 μm and a wall thickness of 2 μm is used. Irradiation was performed. At the time of electron beam irradiation, nitrogen purge was performed and the acceleration voltage was set to 30 kV. The first and second electron beam irradiation doses and electron beam irradiation times are such that the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.6. In addition, the hardness of the second portion (high hardness portion) was adjusted to be about 5.00 GPa. Thereafter, the coating film was dried at 90 ° C. for 2 minutes. The film thickness of the surface layer (film) obtained by drying was 5 μm.
得られた表面層(膜)の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は23%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.8であり、第1部分(低硬度部分)の硬度は2.69GPaであり、第2部分(高硬度部分)の硬度は4.84GPaであった。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained surface layer (film), the area ratio of the surface constituted by the second portion (high hardness portion) is 23%, The total area ratio of the surface composed of the portion (low hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.8, and the first portion (low hardness) The hardness of the (hardness part) was 2.69 GPa, and the hardness of the second part (high hardness part) was 4.84 GPa.
(実施例2−8)
2回目の紫外線照射時に、直径が0.2μm、中心間距離が0.4μmの円状のホール型のフォトマスクを用いた以外は、実施例2−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 2-8)
A film was obtained in the same manner as in Example 2-1, except that a circular hole-type photomask having a diameter of 0.2 μm and a center-to-center distance of 0.4 μm was used during the second ultraviolet irradiation. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は21%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.7であり、第1部分(低硬度部分)の硬度は0.13GPaであり、第2部分(高硬度部分)の硬度は0.22GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 21%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.7, and the first portion (low hardness) The hardness of the (hardness part) was 0.13 GPa, and the hardness of the second part (high hardness part) was 0.22 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例2−9)
2回目の紫外線照射時に、正六角形の一辺の長さが50μm、壁の厚さが10μmのハニカム型のフォトマスクを用いた以外は、実施例2−1と同様にして膜を得た。乾燥して得られた膜の膜厚は18μmであった。
(Example 2-9)
A film was obtained in the same manner as in Example 2-1, except that a honeycomb type photomask having a regular hexagonal side length of 50 μm and a wall thickness of 10 μm was used during the second ultraviolet irradiation. The film thickness obtained by drying was 18 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は23%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであり、第2部分(高硬度部分)の硬度は0.23GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 23%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa, and the hardness of the second part (high hardness part) was 0.23 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(比較例2−1)
塗膜の全面に対する1回目の紫外線照射を行わず、正六角形の一辺の長さが10μm、壁の厚さが2μmのハニカム型のフォトマスクを用いて紫外線照射を行った後に、紫外線を照射しなかった部分をエッチングした以外は、実施例2−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Comparative Example 2-1)
The first UV irradiation was not performed on the entire surface of the coating film, and the UV irradiation was performed using a honeycomb type photomask having a regular hexagonal side length of 10 μm and a wall thickness of 2 μm. A film was obtained in the same manner as in Example 2-1, except that the part that did not exist was etched. The film thickness obtained by drying was 17 μm.
また、得られた膜について硬度を測定したところ、硬度の異なる第1部分および第2部分の存在は認められず、膜の表面の硬度は0.24GPaであった。また、凹凸が認められ、凹凸の高低差は17μmであった。 Moreover, when the hardness was measured about the obtained film | membrane, presence of the 1st part and 2nd part from which hardness differs was not recognized, but the hardness of the surface of a film | membrane was 0.24 GPa. Further, irregularities were observed, and the height difference of the irregularities was 17 μm.
(比較例2−2)
2回目の紫外線照射時に、正六角形の一辺の長さが10μm、壁の厚さが0.5μmのハニカム型のフォトマスクを用いた以外は、実施例2−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Comparative Example 2-2)
A film was obtained in the same manner as in Example 2-1, except that a honeycomb-type photomask having a regular hexagonal side length of 10 μm and a wall thickness of 0.5 μm was used during the second ultraviolet irradiation. . The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は6%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであり、第2部分(高硬度部分)の硬度は0.23GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 6%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa, and the hardness of the second part (high hardness part) was 0.23 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(比較例2−3)
2回目の紫外線照射時に、正六角形の一辺の長さが10μm、壁の厚さが8μmのハニカム型のフォトマスクを用いた以外は、実施例2−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Comparative Example 2-3)
A film was obtained in the same manner as in Example 2-1, except that a honeycomb type photomask having a regular hexagonal side length of 10 μm and a wall thickness of 8 μm was used during the second ultraviolet irradiation. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は92%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.5であり、第1部分(低硬度部分)の硬度は0.15GPaであり、第2部分(高硬度部分)の硬度は0.22GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 92%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.5, and the first portion (low hardness) The hardness of the (hardness part) was 0.15 GPa, and the hardness of the second part (high hardness part) was 0.22 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(比較例2−4)
第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約40.0となるように、および、第2部分(高硬度部分)の硬度が約5.00GPaとなるように1回目と2回目の紫外線照射量と紫外線照射時間を調整した以外は、実施例2−1と同様にして膜を得た。乾燥して得られた膜の膜厚は16μmであった。
(Comparative Example 2-4)
The ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 40.0, and the hardness of the second part (high hardness part) is about 5 A film was obtained in the same manner as in Example 2-1, except that the UV irradiation amount and the UV irradiation time for the first and second times were adjusted to 0.000 GPa. The film thickness obtained by drying was 16 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は23%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は37.3であり、第1部分(低硬度部分)の硬度は0.13GPaであり、第2部分(高硬度部分)の硬度は4.85GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 23%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 37.3, and the first part (low hardness) The hardness of the (hardness part) was 0.13 GPa, and the hardness of the second part (high hardness part) was 4.85 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(比較例2−5)
表面層用塗布液における光重合開始剤を5質量部とし、かつ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.6となるように、第2部分(高硬度部分)の硬度が約0.22GPaとなるように、および、第2部分(高硬度部分)の膜の膜厚方向に延在している長さが約1μmとなるように1回目と2回目の紫外線照射量と紫外線照射時間を調整した以外は、実施例2−5と同様にして膜を得た。乾燥して得られた膜の膜厚は5μmであった。
(Comparative Example 2-5)
The photopolymerization initiator in the surface layer coating solution is 5 parts by mass, and the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.6. As described above, the length of the second portion (high hardness portion) is about 0.22 GPa and the length of the second portion (high hardness portion) extending in the film thickness direction is about 1 μm. A film was obtained in the same manner as in Example 2-5 except that the first and second ultraviolet irradiation amounts and the ultraviolet irradiation time were adjusted so that The film thickness obtained by drying was 5 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の表面面積率は23%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.5であり、第1部分(低硬度部分)の硬度は0.13GPaであり、第2部分(高硬度部分)の硬度は0.20GPaであった。また、第1部分(低硬度部分)は膜を貫通しており、第2部分(高硬度部分)は膜の膜厚方向に膜の膜厚の20%延在していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the surface area ratio of the surface constituted by the second portion (high hardness portion) is 23%, and the first portion (low The total area ratio of the surface composed of the (hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.5, and the first portion (low hardness) The hardness of the (hardness part) was 0.13 GPa, and the hardness of the second part (high hardness part) was 0.20 GPa. The first portion (low hardness portion) penetrated the film, and the second portion (high hardness portion) extended 20% of the film thickness in the film thickness direction.
(実施例3−1)
信越化学工業(株)製のネガ型フォトレジスト材料である感光性シリコーンポリマー(商品名:SINR−3170PX)に、潤滑剤としてのダイキン工業(株)製の平均粒径0.5μmのポリテトラフルオロエチレン(PTFE)粒子(商品名:ルブロンL−2)、および、東亜合成(株)製の界面活性剤(商品名:GF−300)を加えて混合液を得た。混合液中のポリテトラフルオロエチレン粒子の量(分散濃度)は10体積%になるようにした。これをシリコンウエハーの上にスピンナーコートし、得られた塗膜を2分間90℃で乾燥(前乾燥)させた。
(Example 3-1)
A photosensitive silicone polymer (trade name: SINR-3170PX), a negative photoresist material manufactured by Shin-Etsu Chemical Co., Ltd., and a polytetrafluoropolymer having an average particle size of 0.5 μm manufactured by Daikin Industries, Ltd. as a lubricant. Ethylene (PTFE) particles (trade name: Lubron L-2) and a surfactant (trade name: GF-300) manufactured by Toa Gosei Co., Ltd. were added to obtain a mixed solution. The amount (dispersion concentration) of polytetrafluoroethylene particles in the mixed solution was set to 10% by volume. This was spinner coated on a silicon wafer, and the resulting coating film was dried (pre-dried) at 90 ° C. for 2 minutes.
次いで、塗膜に対して紫外線照射を2回行った。1回目の紫外線照射は塗膜の全面に対して行い、2回目の紫外線照射時に、ライン幅:4.0μm、スペース幅:4.0μmのフォトマスクを用いて照射を行った。1回目と2回目の紫外線照射量と紫外線照射時間は、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.6となるように、および、第1部分(低硬度部分)の硬度が約0.14GPaとなるように調整した。その後、塗膜を2分間90℃で乾燥(後乾燥)させた。乾燥して得られた膜の膜厚は17μmであった。 Subsequently, ultraviolet irradiation was performed twice with respect to the coating film. The first ultraviolet irradiation was performed on the entire surface of the coating film, and at the second ultraviolet irradiation, irradiation was performed using a photomask having a line width of 4.0 μm and a space width of 4.0 μm. The amount of UV irradiation and the time of UV irradiation for the first and second times are such that the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.6. And it adjusted so that the hardness of a 1st part (low-hardness part) might be set to about 0.14 GPa. Thereafter, the coating film was dried (post-dried) at 90 ° C. for 2 minutes. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は51%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 51%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−2)
潤滑剤として平均粒径1.0μmのポリテトラフルオロエチレン粒子を用いた以外は、実施例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は16μmであった。
(Example 3-2)
A film was obtained in the same manner as in Example 3-1, except that polytetrafluoroethylene particles having an average particle diameter of 1.0 μm were used as the lubricant. The film thickness obtained by drying was 16 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は53%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.15GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 53%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.15 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−3)
潤滑剤として平均粒径4.0μmのポリテトラフルオロエチレン粒子を用いた以外は、実施例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 3-3)
A film was obtained in the same manner as in Example 3-1, except that polytetrafluoroethylene particles having an average particle diameter of 4.0 μm were used as the lubricant. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は40%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 40%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−4)
潤滑剤として平均粒径10μmのポリテトラフルオロエチレン粒子を用いた以外は、実施例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 3-4)
A film was obtained in the same manner as in Example 3-1, except that polytetrafluoroethylene particles having an average particle diameter of 10 μm were used as the lubricant. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は20%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 20%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−5)
ポリテトラフルオロエチレン粒子の分散濃度を1体積%とした以外は、実施例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 3-5)
A membrane was obtained in the same manner as in Example 3-1, except that the dispersion concentration of the polytetrafluoroethylene particles was 1% by volume. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は55%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 55%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−6)
ポリテトラフルオロエチレン粒子の分散濃度を5体積%とした以外は、実施例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 3-6)
A membrane was obtained in the same manner as in Example 3-1, except that the dispersion concentration of the polytetrafluoroethylene particles was 5% by volume. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 50%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−7)
ポリテトラフルオロエチレン粒子の分散濃度を20体積%とした以外は、実施例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 3-7)
A film was obtained in the same manner as in Example 3-1, except that the dispersion concentration of the polytetrafluoroethylene particles was 20% by volume. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は30%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 30%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−8)
フォトマスクとして直径4.0μmであるホール構造を有するフォトマスクを用いた以外は、実施例3−2と同様に膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 3-8)
A film was obtained in the same manner as in Example 3-2 except that a photomask having a hole structure with a diameter of 4.0 μm was used as the photomask. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は52%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.13GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 52%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.13 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−9)
フォトマスクとして最大頂点間距離が4.0μmのハニカム構造を有するフォトマスクを用いた以外は、実施例3−2と同様にして膜を得た。乾燥して得られた膜の膜厚は16μmであった。
(Example 3-9)
A film was obtained in the same manner as in Example 3-2 except that a photomask having a honeycomb structure with a maximum vertex distance of 4.0 μm was used as the photomask. The film thickness obtained by drying was 16 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は51%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface constituted by the second portion (high hardness portion) is 51%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−10)
潤滑剤としてコープケミカル(株)製の平均粒径0.5μmのマイカ粒子(商品名:MK−100)を用いた以外は、実施例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は16μmであった。
(Example 3-10)
A film was obtained in the same manner as in Example 3-1, except that mica particles (trade name: MK-100) having an average particle diameter of 0.5 μm manufactured by Coop Chemical Co., Ltd. were used as the lubricant. The film thickness obtained by drying was 16 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.7であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 50%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.7, and the first portion (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−11)
潤滑剤としてMARUKA社製の平均粒径0.5μmの窒化ホウ素(BN)粒子(商品名:AP−20S)を用いた以外は、実施例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 3-11)
A film was obtained in the same manner as in Example 3-1, except that boron nitride (BN) particles (trade name: AP-20S) manufactured by MARUKA having an average particle size of 0.5 μm were used. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.7であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 50%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second portion (high hardness portion) to the hardness of the first portion (low hardness portion) was 1.7, and the first portion (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−12)
潤滑剤として堺化学工業(株)製の平均粒径0.5μmのメラミンシアヌレート(MCN)粒子(商品名:MC−5F)を用いた以外は、実施例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 3-12)
A film was formed in the same manner as in Example 3-1, except that melamine cyanurate (MCN) particles (trade name: MC-5F) manufactured by Sakai Chemical Industry Co., Ltd. having an average particle diameter of 0.5 μm were used as the lubricant. Obtained. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 50%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−13)
潤滑剤として宇部日東化成(株)製の平均粒径0.5μmのシリカ粒子(商品名:ハイプレシカ)を用いた以外は、実施例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Example 3-13)
A film was obtained in the same manner as in Example 3-1, except that silica particles having an average particle size of 0.5 μm (trade name: High Plessica) manufactured by Ube Nitto Kasei Co., Ltd. were used as the lubricant. The film thickness obtained by drying was 17 μm.
得られた膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained film, the area ratio of the surface composed of the second portion (high hardness portion) is 50%, and the first portion (low hardness) The total area ratio of the surface composed of the portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−14)
縦100mm×横100mm×厚さ0.75mmのアルミニウム板の上に、下記組成の電荷輸送層用塗布液をマイヤーバーコートし、得られた塗膜を乾燥させることによって、膜厚20μmの電荷輸送層を形成した。
(Example 3-14)
On a 100 mm long x 100 mm wide x 0.75 mm thick aluminum plate, a charge transport layer coating solution having the following composition is coated with a Meyer bar, and the resulting coating is dried, thereby transporting the charge with a thickness of 20 μm. A layer was formed.
・電荷輸送層用塗布液
ビスフェノールZ型のポリカーボネート:10質量部
上記構造式(101)で示される化合物(電荷輸送物質):9質量部
クロロベンゼン:100質量部
次に、上記電荷輸送層上に、下記組成の表面層用塗布液をスプレーコートすることによって、膜厚5μmの塗膜を得た。
-Charge transport layer coating solution Bisphenol Z-type polycarbonate: 10 parts by mass Compound (charge transport material) represented by the above structural formula (101): 9 parts by mass Chlorobenzene: 100 parts by mass Next, on the charge transport layer, A coating film having a thickness of 5 μm was obtained by spray coating a coating solution for the surface layer having the following composition.
・表面層用塗布液
上記構造式(28)で示される化合物(電荷輸送性構造を有するラジカル重合性化合物):10質量部
トリメチロールプロパントリアクリレート:10質量部
ポリテトラフルオロエチレン粒子(平均粒径1.0μm):1質量部(10体積%相当)
東亜合成(株)製の界面活性剤(商品名:GF−300):0.05質量部
2.2−ジメトキシ−1.2−ジフェニルエタン−1−オン(光重合開始剤、商品名:IRGACURE651、BASF社製):1質量部
クロロベンゼン:100質量部
次いで、塗膜に対して紫外線照射を2回行った。1回目の紫外線照射は塗膜の全面に対して行い、2回目の紫外線照射時に、ライン幅:4.0μm、スペース幅:4.0μmのフォトマスクを用いて照射を行った。1回目と2回目の紫外線照射量と紫外線照射時間は、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.5となるように、および、第1部分(低硬度部分)の硬度が約0.15GPaとなるように調整した。その後、塗膜を2分間90℃で乾燥させた。乾燥して得られた表面層(膜)の膜厚は5μmであった。
-Surface layer coating liquid Compound represented by the above structural formula (28) (radical polymerizable compound having a charge transporting structure): 10 parts by mass Trimethylolpropane triacrylate: 10 parts by mass Polytetrafluoroethylene particles (average particle diameter) 1.0 μm): 1 part by mass (equivalent to 10% by volume)
Surfactant (trade name: GF-300) manufactured by Toa Gosei Co., Ltd .: 0.05 part by mass 2.2-dimethoxy-1.2-diphenylethane-1-one (photopolymerization initiator, trade name: IRGACURE651) , Manufactured by BASF): 1 part by mass Chlorobenzene: 100 parts by mass Next, the coating film was irradiated with ultraviolet rays twice. The first ultraviolet irradiation was performed on the entire surface of the coating film, and at the second ultraviolet irradiation, irradiation was performed using a photomask having a line width of 4.0 μm and a space width of 4.0 μm. The amount of UV irradiation and the time of UV irradiation for the first and second times are such that the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.5. And it adjusted so that the hardness of a 1st part (low-hardness part) might be set to about 0.15 GPa. Thereafter, the coating film was dried at 90 ° C. for 2 minutes. The film thickness of the surface layer (film) obtained by drying was 5 μm.
得られた表面層(膜)の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は51%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.14GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained surface layer (film), the area ratio of the surface constituted by the second portion (high hardness portion) is 51%, The total area ratio of the surface composed of the portion (low hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.14 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(実施例3−15)
縦100mm×横100mm×厚さ0.75mmのアルミニウム板の上に、下記組成の電荷輸送層用塗布液をマイヤーバーコートし、得られた塗膜を乾燥させることによって、膜厚20μmの電荷輸送層を形成した。
(Example 3-15)
On a 100 mm long x 100 mm wide x 0.75 mm thick aluminum plate, a charge transport layer coating solution having the following composition is coated with a Meyer bar, and the resulting coating is dried, thereby transporting the charge with a thickness of 20 μm. A layer was formed.
ビスフェノールZ型のポリカーボネート:10質量部
上記構造式(101)で示される化合物(電荷輸送物質):10質量部
クロロベンゼン:100質量部
次に、上記電荷輸送層上に、下記組成の表面層用塗布液をスプレーコートすることによって、膜厚5μmの塗膜を得た。
Bisphenol Z-type polycarbonate: 10 parts by mass Compound (charge transport material) represented by the above structural formula (101): 10 parts by mass Chlorobenzene: 100 parts by mass Next, a coating for a surface layer having the following composition is applied on the charge transport layer. By spray coating the liquid, a coating film having a thickness of 5 μm was obtained.
・表面層用塗布液
上記構造式(28)で示される化合物(電荷輸送性構造を有するラジカル重合性化合物):10質量部
ポリテトラフルオロエチレン粒子(平均粒径1.0μm):1質量部(10体積%相当)
東亜合成(株)製の界面活性剤(商品名:GF−300):0.05質量部
メチルエチルケトン:100質量部
次いで、塗膜に対して電子線照射を2回行った。1回目の電子線照射は塗膜の全面に対して行い、2回目の電子線照射時にライン幅:4.0μm、スペース幅:4.0μmの電子線マスク(メタルマスク)を用いた。電子線照射時は、窒素パージをし、加速電圧は30kVとした。1回目と2回目の電子線照射線量は、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値が約1.6となるように、および、第1部分(低硬度部分)の硬度が約0.15GPaとなるように調整した。その後、塗膜を2分間90℃で乾燥させた。乾燥して得られた表面層(膜)の膜厚は5μmであった。
-Surface layer coating solution Compound represented by the above structural formula (28) (radical polymerizable compound having a charge transporting structure): 10 parts by mass Polytetrafluoroethylene particles (average particle size: 1.0 μm): 1 part by mass ( 10 volume% equivalent)
Toa Gosei Co., Ltd. surfactant (trade name: GF-300): 0.05 parts by mass Methyl ethyl ketone: 100 parts by mass Next, the coating film was subjected to electron beam irradiation twice. The first electron beam irradiation was performed on the entire surface of the coating film, and an electron beam mask (metal mask) having a line width of 4.0 μm and a space width of 4.0 μm was used during the second electron beam irradiation. At the time of electron beam irradiation, nitrogen purge was performed and the acceleration voltage was set to 30 kV. The first and second electron beam irradiation doses are such that the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is about 1.6, and The hardness of one part (low hardness part) was adjusted to be about 0.15 GPa. Thereafter, the coating film was dried at 90 ° C. for 2 minutes. The film thickness of the surface layer (film) obtained by drying was 5 μm.
得られた表面層(膜)の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は50%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。また、得られた膜について硬度を測定したところ、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は1.6であり、第1部分(低硬度部分)の硬度は0.15GPaであった。また、第1部分(低硬度部分)および第2部分(高硬度部分)はともに膜を貫通していた。 In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the obtained surface layer (film), the area ratio of the surface constituted by the second portion (high hardness portion) is 50%, The total area ratio of the surface composed of the portion (low hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. Further, when the hardness of the obtained film was measured, the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) was 1.6, and the first part (low hardness) The hardness of the (hardness part) was 0.15 GPa. Further, both the first portion (low hardness portion) and the second portion (high hardness portion) penetrated the film.
(比較例3−1)
信越化学工業(株)製のネガ型フォトレジスト材料である感光性ポリイミドシリコーン(商品名:SPS−7750)に、潤滑剤としてのダイキン工業(株)製の平均粒径0.5μmのポリテトラフルオロエチレン粒子(商品名:ルブロンL−2)、および、東亜合成(株)製の界面活性剤(商品名:GF−300)を加えて混合液を得た。混合液中のポリテトラフルオロエチレン粒子の量(分散濃度)は10体積%になるようにした。これをシリコンウエハーの上にスピンナーコートし、得られた塗膜を2分間90℃で乾燥(前乾燥)させた。乾燥して得られた膜の膜厚は17μmであった。
(Comparative Example 3-1)
A photosensitive polyimide silicone (trade name: SPS-7750), a negative photoresist material manufactured by Shin-Etsu Chemical Co., Ltd., and a polytetrafluoropolymer having an average particle size of 0.5 μm manufactured by Daikin Industries, Ltd. as a lubricant. Ethylene particles (trade name: Lubron L-2) and a surfactant (trade name: GF-300) manufactured by Toa Gosei Co., Ltd. were added to obtain a mixed solution. The amount (dispersion concentration) of polytetrafluoroethylene particles in the mixed solution was set to 10% by volume. This was spinner coated on a silicon wafer, and the resulting coating film was dried (pre-dried) at 90 ° C. for 2 minutes. The film thickness obtained by drying was 17 μm.
得られた膜について硬度を測定したところ、硬度の異なる第1部分および第2部分の存在は認められず、膜の表面の硬度は0.14GPaであった。 When the hardness of the obtained film was measured, the presence of the first part and the second part having different hardness was not recognized, and the hardness of the film surface was 0.14 GPa.
(比較例3−2)
潤滑剤としてコープケミカル(株)製の平均粒径0.50μmのマイカ粒子(商品名:MK−100)を用いた以外は、比較例3−1と同様にして膜を得た。乾燥して得られた膜の膜厚は17μmであった。
(Comparative Example 3-2)
A film was obtained in the same manner as in Comparative Example 3-1, except that mica particles (trade name: MK-100) having an average particle diameter of 0.50 μm manufactured by Coop Chemical Co., Ltd. were used as the lubricant. The film thickness obtained by drying was 17 μm.
得られた膜について硬度を測定したところ、硬度の異なる第1部分および第2部分の存在は認められず、膜の表面の硬度は0.14GPaであった。 When the hardness of the obtained film was measured, the presence of the first part and the second part having different hardness was not recognized, and the hardness of the film surface was 0.14 GPa.
実施例3−1〜3−15および比較例3−1〜3−2をまとめて表2に示す。 Examples 3-1 to 3-15 and Comparative Examples 3-1 to 3-2 are collectively shown in Table 2.
(4)摩擦係数(動摩擦係数)の評価
膜の表面の摩擦係数の評価は、新東科学(株)製のトルク式摩擦抵抗測定機(商品名:TYPE:20)を用いて行った。測定機のターンテーブル(直径12.7mm)に測定対象の膜を設置し、厚さ3mm×幅1cm×長さ1cmのウレタンゴム製部材(JIS−A硬度:70度)を膜の円周端に24°(ゴム部材と膜が平行で接する場合を0°とする)の角度で従動方向(ウィズ方向)に当接させ、30g重の荷重をかけ、ターンテーブルに設置した膜(半径33mm)を回転数47.8rpmで回転させ、膜とウレタンゴム製部材との間にかかる力から、摩擦係数(動摩擦係数)を求めた。
(4) Evaluation of Friction Coefficient (Dynamic Friction Coefficient) Evaluation of the friction coefficient of the film surface was performed using a torque type frictional resistance measuring machine (trade name: TYPE: 20) manufactured by Shinto Kagaku Co., Ltd. A film to be measured is placed on a turntable (diameter 12.7 mm) of a measuring machine, and a urethane rubber member (JIS-A hardness: 70 degrees) having a thickness of 3 mm, a width of 1 cm, and a length of 1 cm is attached to the circumferential edge of the film. 24 ° (when the rubber member and the membrane are in parallel contact with each other, the angle is 0 °) in contact with the driven direction (with direction), a load of 30 g is applied, and the membrane installed on the turntable (radius 33 mm) Was rotated at a rotational speed of 47.8 rpm, and the friction coefficient (dynamic friction coefficient) was determined from the force applied between the membrane and the urethane rubber member.
摩擦係数(動摩擦係数)の値として、実施例1−1〜1−10および比較例1−1〜1−10に関しては、ウレタンゴム製部材を当接させて10時間または30時間回転させたときの値を用い、実施例2−1〜2−9、比較例2−1〜2−5、実施例3−1〜3−15および比較例3−1〜3−2に関しては、ウレタンゴム製部材を当接させて1時間または20時間回転させたときの値を用いた。 As Examples 1-1 to 1-10 and Comparative Examples 1-1 to 1-10 as the value of the friction coefficient (dynamic friction coefficient), the urethane rubber member was brought into contact with the member and rotated for 10 hours or 30 hours. With respect to Examples 2-1 to 2-9, Comparative Examples 2-1 to 2-5, Examples 3-1 to 3-15 and Comparative Examples 3-1 to 3-2, The value when the member was brought into contact and rotated for 1 hour or 20 hours was used.
(5)表面の凹凸形状の評価
膜の表面の凹凸形状の評価は、TENCOR社製の表面形状測定装置(商品名:TENCORP−10)を用いて行った。第2部分による凸部と第1部分による凹部のそれぞれの幅と凸部と凹部の高低差を評価した。
(5) Evaluation of surface unevenness The surface unevenness evaluation of the film was performed using a surface shape measuring device (trade name: TENCORP-10) manufactured by TENCOR. The width of each of the convex portion by the second portion and the concave portion by the first portion and the height difference between the convex portion and the concave portion were evaluated.
(6)スティックアンドスリップの評価
スティックアンドスリップの評価は、実施例1−1〜1−10および比較例1−1〜1−9に関して、新東科学(株)製のトルク式摩擦抵抗測定機(商品名:TYPE:20)を用いて行った。上記ウレタンゴム製部材を当接させて30時間回転させた後、上記ウレタンゴム製部材を膜の円周端に24°(ゴム部材と膜が平行で接する場合を0°とする)の角度で逆動方向(カウンター方向)に当接させ、30g重の荷重をかけ、ターンテーブルに設置した膜(半径33mm)回転数23.9rpm(遅い回転)、47.8rpm(速い回転)で回転させたときの上記ウレタンゴム製部材の挙動をスティックアンドスリップの評価に用いた。スティックアンドスリップの評価結果を、以下の3段階に分類した。
A:回転数23.9rpmおよび47.8rpmの回転で問題なく回転する挙動を示す。
B:回転数23.9rpmの回転では上記ウレタンゴム製部材が連続して飛び上がる挙動を示すが、回転数47.8rpmの回転では問題なく回転する挙動を示す。
C:回転数23.9rpmおよび47.8rpmの回転のどちらでも上記ウレタンゴム製部材が連続して飛び上がる挙動を示す。
(6) Evaluation of stick-and-slip Evaluation of stick-and-slip was performed with respect to Examples 1-1 to 1-10 and Comparative Examples 1-1 to 1-9. Torque friction resistance measuring machine manufactured by Shinto Kagaku Co., Ltd. (Product name: TYPE: 20). After rotating the urethane rubber member for 30 hours, the urethane rubber member is rotated at an angle of 24 ° to the circumferential end of the membrane (when the rubber member and the membrane are in parallel contact with each other, the angle is 0 °). Abutting in the reverse direction (counter direction), a load of 30 g was applied, and the film (radius 33 mm) placed on the turntable was rotated at 23.9 rpm (slow rotation) and 47.8 rpm (fast rotation). The behavior of the urethane rubber member was used for stick and slip evaluation. The evaluation results of stick and slip were classified into the following three stages.
A: The behavior of rotating without any problem at the rotation speeds of 23.9 rpm and 47.8 rpm is shown.
B: The rotation of the urethane rubber member shows a continuous jumping behavior at a rotation speed of 23.9 rpm, but a behavior of rotating without a problem at a rotation speed of 47.8 rpm.
C: The urethane rubber member continuously jumps up at both rotation speeds of 23.9 rpm and 47.8 rpm.
スティックアンドスリップは、低い摩擦係数では発生しにくく、高い摩擦係数で発生しやすい傾向がある。 Stick-and-slip is unlikely to occur with a low coefficient of friction and tends to occur with a high coefficient of friction.
(7)凸部の破壊の評価
膜の表面において凸部になった第2部分の破壊の評価は、実施例1−1〜1−10、比較例1−1〜1−10、実施例2−1〜2−9および比較例2−1〜2−5に関して、(株)キーエンス製の超深度形状測定顕微鏡(商品名:VK−9510)と(株)ニレコ製の画像解析装置(商品名:LuzexAP)を用いて行った。
(7) Evaluation of destruction of convex part Evaluation of the destruction of the 2nd part which became the convex part on the surface of a film | membrane is Example 1-1 to 1-10, Comparative example 1-1 to 1-10, Example 2 Regarding -1 to 2-9 and Comparative Examples 2-1 to 2-5, an ultra-deep shape measuring microscope (trade name: VK-9510) manufactured by Keyence Corporation and an image analysis apparatus (trade name) manufactured by Nireco Corporation : LuzexAP).
実施例1−1〜1−10および比較例1−1〜1−10に関しては、上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の凸部の破壊の評価結果を、以下の2段階に分類した。
A:一辺1mmの正方形1つあたり、凸部の形状が破壊された面積が凸部全体の面積の20%未満である。
C:一辺1mmの正方形1つあたり、凸部の形状が破壊された面積が凸部全体の面積の30%以上である。
For Examples 1-1 to 1-10 and Comparative Examples 1-1 to 1-10, the evaluation results of the destruction of the convex portions of the film after rotating the urethane rubber member for 30 hours, It was classified into the following two stages.
A: The area where the shape of the convex part was destroyed is less than 20% of the total area of the convex part per square of 1 mm on each side.
C: The area where the shape of the convex part was destroyed is 30% or more of the total area of the convex part per square with a side of 1 mm.
また、実施例2−1〜2−9および比較例2−1〜2−5に関しては、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の凸部の破壊の評価結果を、以下の3段階に分類した。 Moreover, regarding Examples 2-1 to 2-9 and Comparative Examples 2-1 to 2-5, the evaluation results of the destruction of the convex portions of the film after the urethane rubber member was brought into contact and rotated for 20 hours Were classified into the following three stages.
A:一辺1mmの正方形1つあたり、凸部の形状が破壊された面積が凸部全体の面積の10%未満である。 A: The area where the shape of the convex part was destroyed is less than 10% of the total area of the convex part per square with a side of 1 mm.
B:一辺1mmの正方形1つあたり、凸部の形状が破壊された面積が凸部全体の10%以上20%未満である。 B: The area where the shape of the convex part was destroyed is 10% or more and less than 20% of the whole convex part per square with a side of 1 mm.
C:一辺1mmの正方形1つあたり、凸部の形状が破壊された面積が凸部全体の20%以上である。 C: The area where the shape of the convex portion was destroyed is 20% or more of the entire convex portion per square with a side of 1 mm.
(8)評価結果その1
(実施例1−1)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.44であった。
(8) Evaluation result 1
(Example 1-1)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.25 μm, and the friction coefficient of the film surface was 0.44.
また、上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.24μmであり、膜の表面の摩擦係数は0.42であった。遅い回転および速い回転のどちらでもスティックアンドスリップは見られず、凸部の破壊も見られなかった。上記ウレタンゴム製部材を当接させて30時間回転させた後も表面の形状を維持し、低い摩擦係数を維持していることがわかった。 Further, when the surface of the film after rotating for 30 hours with the urethane rubber member in contact was confirmed and evaluated, a concave portion due to the 4 μm wide first portion and a convex portion due to the 4 μm wide second portion were observed. The height difference between the convex part and the concave part was 0.24 μm, and the friction coefficient of the film surface was 0.42. Neither stick-and-slip was observed in both the slow rotation and the fast rotation, and the protrusion was not broken. It was found that the surface shape was maintained and the low coefficient of friction was maintained even after the urethane rubber member was brought into contact and rotated for 30 hours.
(実施例1−2)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.18μmであり、膜の表面の摩擦係数は0.56であった。
(Example 1-2)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the portion and the recess was 0.18 μm, and the friction coefficient of the film surface was 0.56.
また、上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.19μmであり、膜の表面の摩擦係数は0.50であった。遅い回転および速い回転のどちらでもスティックアンドスリップは見られず、凸部の破壊も見られなかった。上記ウレタンゴム製部材を当接させて30時間回転させた後も表面の形状を維持し、低い摩擦係数を維持していたが、実施例1−1よりも高い摩擦係数となった。 Further, when the surface of the film after rotating for 30 hours with the urethane rubber member in contact was confirmed and evaluated, a concave portion due to the 4 μm wide first portion and a convex portion due to the 4 μm wide second portion were observed. The height difference between the convex part and the concave part was 0.19 μm, and the friction coefficient of the film surface was 0.50. Neither stick-and-slip was observed in both the slow rotation and the fast rotation, and the protrusion was not broken. Even after the urethane rubber member was brought into contact and rotated for 30 hours, the shape of the surface was maintained and a low coefficient of friction was maintained, but the coefficient of friction was higher than that of Example 1-1.
(実施例1−3)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.30μmであり、膜の表面の摩擦係数は0.49であった。
(Example 1-3)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.30 μm, and the friction coefficient of the film surface was 0.49.
また、上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.31μmであり、膜の表面の摩擦係数は0.52であった。遅い回転および速い回転のどちらでもスティックアンドスリップは見られず、凸部の破壊も見られなかった。上記ウレタンゴム製部材を当接させて30時間回転させた後も表面の形状を維持し、低い摩擦係数を維持していることがわかった。 Further, when the surface of the film after rotating for 30 hours with the urethane rubber member in contact was confirmed and evaluated, a concave portion due to the 4 μm wide first portion and a convex portion due to the 4 μm wide second portion were observed. The height difference between the convex portion and the concave portion was 0.31 μm, and the friction coefficient of the film surface was 0.52. Neither stick-and-slip was observed in both the slow rotation and the fast rotation, and the protrusion was not broken. It was found that the surface shape was maintained and the low coefficient of friction was maintained even after the urethane rubber member was brought into contact and rotated for 30 hours.
(実施例1−4)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.38μmであり、膜の表面の摩擦係数は0.68であった。
(Example 1-4)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.38 μm, and the friction coefficient of the film surface was 0.68.
また、上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.39であり、膜の表面の摩擦係数は0.73であった。遅い回転ではスティックアンドスリップが見られたが、速い回転ではスティックアンドスリップは見られなかった。また、凸部の破壊は見られなかった。上記ウレタンゴム製部材を当接させて10時間および30時間回転させた後の膜の表面の摩擦係数は、実施例1−1よりも高い摩擦係数となった。 Further, when the surface of the film after rotating for 30 hours with the urethane rubber member in contact was confirmed and evaluated, a concave portion due to the 4 μm wide first portion and a convex portion due to the 4 μm wide second portion were observed. The height difference between the convex part and the concave part was 0.39, and the friction coefficient of the film surface was 0.73. Stick and slip was observed at slow rotation, but no stick and slip was observed at high rotation. Moreover, the destruction of the convex part was not seen. The friction coefficient of the surface of the film after the urethane rubber member was brought into contact and rotated for 10 hours and 30 hours was higher than that of Example 1-1.
(実施例1−5)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.36μmであり、膜の表面の摩擦係数は0.62であった。
(Example 1-5)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.36 μm, and the friction coefficient of the film surface was 0.62.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.36μmであり、膜の表面の摩擦係数は0.68であった。遅い回転ではスティックアンドスリップが見られたが、速い回転ではスティックアンドスリップは見られなかった。また、凸部の破壊は見られなかった。上記ウレタンゴム製部材を当接させて10時間および30時間回転させた後の膜の表面の摩擦係数は、実施例1−1よりも高い摩擦係数となった。 When the surface of the film after the urethane rubber member was contacted and rotated for 30 hours was confirmed and evaluated, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.36 μm, and the friction coefficient of the film surface was 0.68. Stick and slip was observed at slow rotation, but no stick and slip was observed at high rotation. Moreover, the destruction of the convex part was not seen. The friction coefficient of the surface of the film after the urethane rubber member was brought into contact and rotated for 10 hours and 30 hours was higher than that of Example 1-1.
(実施例1−6)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.27μmであり、膜の表面の摩擦係数は0.61であった。
(Example 1-6)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.27 μm, and the friction coefficient of the film surface was 0.61.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.28μmであり、膜の表面の摩擦係数は0.66であった。遅い回転ではスティックアンドスリップが見られたが、速い回転ではスティックアンドスリップは見られなかった。また、凸部の破壊は見られなかった。上記ウレタンゴム製部材を当接させて10時間および30時間回転させた後の膜の表面の摩擦係数は、実施例1−1よりも高い摩擦係数となった。 When the surface of the film after the urethane rubber member was contacted and rotated for 30 hours was confirmed and evaluated, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.28 μm, and the friction coefficient of the film surface was 0.66. Stick and slip was observed at slow rotation, but no stick and slip was observed at high rotation. Moreover, the destruction of the convex part was not seen. The friction coefficient of the surface of the film after the urethane rubber member was brought into contact and rotated for 10 hours and 30 hours was higher than that of Example 1-1.
(実施例1−7)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、20μm幅の第1部分による凹部と20μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.51μmであり、膜の表面の摩擦係数は0.71であった。
(Example 1-7)
When the surface of the film after the urethane rubber member was contacted and rotated for 10 hours was confirmed and evaluated, a concave portion due to the first portion having a width of 20 μm and a convex portion due to the second portion having a width of 20 μm were recognized. The height difference between the part and the concave part was 0.51 μm, and the friction coefficient of the film surface was 0.71.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、20μm幅の第1部分による凹部と20μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.51μmであり、膜の表面の摩擦係数は0.70であった。遅い回転ではスティックアンドスリップが見られたが、速い回転ではスティックアンドスリップは見られなかった。また、凸部の破壊は見られなかった。上記ウレタンゴム製部材を当接させて10時間および30時間回転させた後の膜の表面の摩擦係数は、実施例1−1よりも高い摩擦係数となった。 When the surface of the film after rotating the urethane rubber member for 30 hours after contact was confirmed and evaluated, a concave portion due to the first portion having a width of 20 μm and a convex portion due to the second portion having a width of 20 μm were recognized. The height difference between the portion and the recess was 0.51 μm, and the friction coefficient of the film surface was 0.70. Stick and slip was observed at slow rotation, but no stick and slip was observed at high rotation. Moreover, the destruction of the convex part was not seen. The friction coefficient of the surface of the film after the urethane rubber member was brought into contact and rotated for 10 hours and 30 hours was higher than that of Example 1-1.
(実施例1−8)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、22.7μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.57μmであり、膜の表面の摩擦係数は0.53であった。
(Example 1-8)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the 22.7 μm wide first portion and a convex portion due to the 4 μm wide second portion were observed. The height difference between the convex part and the concave part was 0.57 μm, and the friction coefficient of the film surface was 0.53.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、22.7μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.58μmであり、膜の表面の摩擦係数は0.54であった。遅い回転および速い回転のどちらでもスティックアンドスリップは見られず、凸部の破壊も見られなかった。上記ウレタンゴム製部材を当接させて30時間回転させた後も表面の形状を維持し、低い摩擦係数を維持していることがわかった。 After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 30 hours, a concave portion due to the 22.7 μm wide first portion and a convex portion due to the 4 μm wide second portion were observed. The height difference between the convex portion and the concave portion was 0.58 μm, and the friction coefficient of the film surface was 0.54. Neither stick-and-slip was observed in both the slow rotation and the fast rotation, and the protrusion was not broken. It was found that the surface shape was maintained and the low coefficient of friction was maintained even after the urethane rubber member was brought into contact and rotated for 30 hours.
(実施例1−9)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、1.3μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.15μmであり、膜の表面の摩擦係数は0.75であった。
(Example 1-9)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion formed by a first portion having a width of 1.3 μm and a convex portion formed by a second portion having a width of 4 μm were recognized. The height difference between the convex part and the concave part was 0.15 μm, and the friction coefficient of the film surface was 0.75.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、1.3μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.16μmであり、膜の表面の摩擦係数は0.73であった。遅い回転ではスティックアンドスリップが見られたが、速い回転ではスティックアンドスリップは見られなかった。また、凸部の破壊は見られなかった。上記ウレタンゴム製部材を当接させて10時間および30時間回転させた後の膜の表面の摩擦係数は、実施例1−1よりも高い摩擦係数となった。 When the surface of the film after rotating for 30 hours with the urethane rubber member in contact was confirmed and evaluated, a concave portion due to the first portion having a width of 1.3 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the convex part and the concave part was 0.16 μm, and the friction coefficient of the film surface was 0.73. Stick and slip was observed at slow rotation, but no stick and slip was observed at high rotation. Moreover, the destruction of the convex part was not seen. The friction coefficient of the surface of the film after the urethane rubber member was brought into contact and rotated for 10 hours and 30 hours was higher than that of Example 1-1.
(実施例1−10)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.26μmであり、膜の表面の摩擦係数は0.45であった。
(Example 1-10)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.26 μm, and the friction coefficient of the film surface was 0.45.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の凹凸が認められ、凸部と凹部の高低差は0.26μmであり、膜の表面の摩擦係数は0.43であった。遅い回転および速い回転のどちらでもスティックアンドスリップは見られず、凸部の破壊も見られなかった。上記ウレタンゴム製部材を当接させて30時間回転させた後も表面の形状を維持し、低い摩擦係数を維持していることがわかった。 When the surface of the film after rotating for 30 hours with the urethane rubber member in contact was confirmed and evaluated, an unevenness of 4.0 μm width was observed, and the height difference between the convex part and the concave part was 0.26 μm. The coefficient of friction of the film surface was 0.43. Neither stick-and-slip was observed in both the slow rotation and the fast rotation, and the protrusion was not broken. It was found that the surface shape was maintained and the low coefficient of friction was maintained even after the urethane rubber member was brought into contact and rotated for 30 hours.
(比較例1−1)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、凹凸は認められず、膜の表面の摩擦係数は1.77であった。
(Comparative Example 1-1)
When the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours was confirmed and evaluated, no irregularities were observed and the coefficient of friction of the film surface was 1.77.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、やはり凹凸は認められず、膜の表面の摩擦係数は1.74であった。遅い回転および速い回転のどちらでもスティックアンドスリップが発生し、不安定な摩擦挙動が認められた。 When the surface of the film after the urethane rubber member was brought into contact with and rotated for 30 hours was confirmed and evaluated, no irregularities were observed, and the coefficient of friction of the film surface was 1.74. Stick-and-slip occurred in both slow and fast rotations, and unstable friction behavior was observed.
(比較例1−2)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、凹凸は認められず、膜の表面の摩擦係数は0.95であった。
(Comparative Example 1-2)
When the surface of the film after the urethane rubber member was contacted and rotated for 10 hours was confirmed and evaluated, irregularities were not observed and the coefficient of friction of the film surface was 0.95.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、やはり凹凸は認められず、膜の表面の摩擦係数は0.91であった。遅い回転および速い回転のどちらでもスティックアンドスリップが発生し、不安定な摩擦挙動が認められた。 When the surface of the film after the urethane rubber member was brought into contact with it and rotated for 30 hours was confirmed and evaluated, no irregularities were observed, and the coefficient of friction of the film surface was 0.91. Stick-and-slip occurred in both slow and fast rotations, and unstable friction behavior was observed.
(比較例1−3)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は1.68μmであり、膜の表面の摩擦係数は0.99であった。
(Comparative Example 1-3)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 1.68 μm, and the friction coefficient of the film surface was 0.99.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は1.05μmであり、上記ウレタンゴム製部材を当接させて30時間回転させたことにより、凸部が摩耗したことで、凹凸形状が無くなりつつあることがわかった。膜の表面の摩擦係数は1.24であった。遅い回転および速い回転のどちらでもスティックアンドスリップが発生し、不安定な摩擦挙動が認められ、凸部形状が破壊された面積が凸部全体の面積に対して41%見られた。 When the surface of the film after the urethane rubber member was contacted and rotated for 30 hours was confirmed and evaluated, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 1.05 μm, and it was found that the concave and convex shape was disappearing because the convex part was worn by rotating the urethane rubber member abutted for 30 hours. The coefficient of friction on the surface of the film was 1.24. Stick-and-slip occurred in both slow rotation and fast rotation, unstable friction behavior was observed, and the area where the convex shape was destroyed was found to be 41% of the total area of the convex.
(比較例1−4)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、2000μm幅の第1部分による凹部と500μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は1.89μmであり、膜の表面の摩擦係数は1.88であった。
(Comparative Example 1-4)
When the surface of the film after the urethane rubber member was contacted and rotated for 10 hours was confirmed and evaluated, a concave portion due to the first portion having a width of 2000 μm and a convex portion due to the second portion having a width of 500 μm were recognized. The height difference between the part and the concave part was 1.89 μm, and the friction coefficient of the film surface was 1.88.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、2000μm幅の第1部分による凹部と500μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は1.93μmであり、膜の表面の摩擦係数は1.86であった。遅い回転および速い回転のどちらでもスティックアンドスリップが発生し、不安定な摩擦挙動が認められた。凸部の破壊は見られなかった。 When the surface of the film after rotating for 30 hours with the urethane rubber member in contact was confirmed and evaluated, a concave portion due to the first portion having a width of 2000 μm and a convex portion due to the second portion having a width of 500 μm were recognized. The height difference between the part and the concave part was 1.93 μm, and the friction coefficient of the film surface was 1.86. Stick-and-slip occurred in both slow and fast rotations, and unstable friction behavior was observed. The destruction of the convex part was not seen.
(比較例1−5)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.11μmであり、膜の表面の摩擦係数は0.97であった。
(Comparative Example 1-5)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.11 μm, and the friction coefficient of the film surface was 0.97.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.10μmであり、膜の表面の摩擦係数は0.97であった。遅い回転および速い回転のどちらでもスティックアンドスリップが発生し、不安定な摩擦挙動が認められた。凸部の破壊は見られなかった。 When the surface of the film after the urethane rubber member was contacted and rotated for 30 hours was confirmed and evaluated, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.10 μm, and the friction coefficient of the film surface was 0.97. Stick-and-slip occurred in both slow and fast rotations, and unstable friction behavior was observed. The destruction of the convex part was not seen.
(比較例1−6)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.66μmであり、膜の表面の摩擦係数は0.99であった。
(Comparative Example 1-6)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.66 μm, and the friction coefficient of the film surface was 0.99.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、4μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.64μmであり、膜の表面の摩擦係数は0.92であった。遅い回転および速い回転のどちらでもスティックアンドスリップが発生し、不安定な摩擦挙動が認められた。凸部の破壊は見られなかった。 When the surface of the film after the urethane rubber member was contacted and rotated for 30 hours was confirmed and evaluated, a concave portion due to the first portion having a width of 4 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.64 μm, and the friction coefficient of the film surface was 0.92. Stick-and-slip occurred in both slow and fast rotations, and unstable friction behavior was observed. The destruction of the convex part was not seen.
(比較例1−7)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、76μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.77μmであり、膜の表面の摩擦係数は0.95であった。
(Comparative Example 1-7)
When the surface of the film after rotating for 10 hours with the urethane rubber member in contact was confirmed and evaluated, a concave portion due to the first portion having a width of 76 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the part and the concave part was 0.77 μm, and the friction coefficient of the film surface was 0.95.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、76μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.75μmであり、膜の表面の摩擦係数は1.23であった。遅い回転および速い回転のどちらでもスティックアンドスリップが発生し、不安定な摩擦挙動が認められ、凸部の形状が破壊された面積が凸部全体の面積に対して36%見られた。 When the surface of the film after rotating for 30 hours with the urethane rubber member in contact was confirmed and evaluated, a concave portion due to the first portion having a width of 76 μm and a convex portion due to the second portion having a width of 4 μm were recognized. The height difference between the portion and the recess was 0.75 μm, and the friction coefficient of the film surface was 1.23. Stick-and-slip occurred in both slow rotation and fast rotation, unstable friction behavior was observed, and the area where the shape of the convex portion was broken was found to be 36% with respect to the total area of the convex portion.
(比較例1−8)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、0.7μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.11μmであり、膜の表面の摩擦係数は1.05であった。
(Comparative Example 1-8)
After confirming and evaluating the surface of the film after the urethane rubber member was brought into contact with it and rotated for 10 hours, a concave portion formed by a first portion having a width of 0.7 μm and a convex portion formed by a second portion having a width of 4 μm were recognized. The height difference between the convex portion and the concave portion was 0.11 μm, and the friction coefficient of the film surface was 1.05.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、0.7μm幅の第1部分による凹部と4μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.13μmであり、膜の表面の摩擦係数は1.03であった。遅い回転および速い回転のどちらでもスティックアンドスリップが発生し、不安定な摩擦挙動が認められた。凸部の破壊は見られなかった。 After confirming and evaluating the surface of the film after rotating the urethane rubber member for 30 hours, a concave portion due to the 0.7 μm wide first portion and a convex portion due to the 4 μm wide second portion are recognized. The height difference between the convex portion and the concave portion was 0.13 μm, and the friction coefficient of the film surface was 1.03. Stick-and-slip occurred in both slow and fast rotations, and unstable friction behavior was observed. The destruction of the convex part was not seen.
(比較例1−9)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、凹凸は認められず、膜の表面の摩擦係数は1.06であった。
(Comparative Example 1-9)
When the surface of the film after the urethane rubber member was contacted and rotated for 10 hours was confirmed and evaluated, no irregularities were observed and the friction coefficient of the film surface was 1.06.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、やはり凹凸は認められず、膜の表面の摩擦係数は1.02であった。遅い回転および速い回転のどちらでもスティックアンドスリップが発生し、不安定な摩擦挙動が認められた。 When the surface of the film after the urethane rubber member was brought into contact with and rotated for 30 hours was confirmed and evaluated, no irregularities were observed, and the coefficient of friction of the film surface was 1.02. Stick-and-slip occurred in both slow and fast rotations, and unstable friction behavior was observed.
(比較例1−10)
上記ウレタンゴム製部材を当接させて10時間回転させた後の膜の表面を確認・評価したところ、凹凸は認められず、膜の表面の摩擦係数は1.90であった。
(Comparative Example 1-10)
When the surface of the film after the urethane rubber member was contacted and rotated for 10 hours was confirmed and evaluated, no irregularities were observed and the coefficient of friction of the film surface was 1.90.
上記ウレタンゴム製部材を当接させて30時間回転させた後の膜の表面を確認・評価したところ、やはり凹凸は認められず、膜の表面の摩擦係数は1.88であった。遅い回転および速い回転のどちらでもスティックアンドスリップが発生し、不安定な摩擦挙動が認められた。 When the surface of the film after the urethane rubber member was brought into contact with and rotated for 30 hours was confirmed and evaluated, no irregularities were observed, and the coefficient of friction of the film surface was 1.88. Stick-and-slip occurred in both slow and fast rotations, and unstable friction behavior was observed.
(実施例2−1)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは2μmであり、凸部と凹部の高低差は0.22μmであり、膜の表面の摩擦係数は0.44であった。
(Example 2-1)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the thickness of the wall is 2 μm, the height difference between the convex part and the concave part is 0.22 μm, and the friction coefficient of the film surface is 0.44. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.43であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の10%未満であった。 Further, when the surface of the film after rotating for 20 hours with the urethane rubber member in contact was confirmed and evaluated, honeycomb-shaped unevenness was observed, and the height difference between the protrusion and the recess was 0.25 μm. The coefficient of friction of the film surface was 0.43. The area where the shape of the convex portion was destroyed per 1 mm square was less than 10% of the total area of the convex portion.
(実施例2−2)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは1μmであり、凸部と凹部の高低差は0.33μmであり、膜の表面の摩擦係数は0.48であった。
(Example 2-2)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the thickness of the wall is 1 μm, the height difference between the convex part and the concave part is 0.33 μm, and the friction coefficient of the film surface is 0.48. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.34μmであり、膜の表面の摩擦係数は0.52であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の14%であった。 In addition, when the surface of the film after rotating for 20 hours with the urethane rubber member in contact was confirmed and evaluated, honeycomb-shaped irregularities were observed, and the height difference between the convex and concave portions was 0.34 μm. The coefficient of friction of the film surface was 0.52. The area where the shape of the convex portion was destroyed per square with a side of 1 mm was 14% of the total area of the convex portion.
(実施例2−3)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは6μmであり、凸部と凹部の高低差は0.11μmであり、膜の表面の摩擦係数は0.75であった。
(Example 2-3)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the thickness of the wall is 6 μm, the height difference between the convex portion and the concave portion is 0.11 μm, and the friction coefficient of the film surface is 0.75. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.12μmであり、膜の表面の摩擦係数は0.72であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の10%未満であった。 Further, when the surface of the film after rotating for 20 hours by contacting the urethane rubber member was confirmed and evaluated, honeycomb-shaped irregularities were observed, and the height difference between the convex and concave portions was 0.12 μm. The coefficient of friction of the film surface was 0.72. The area where the shape of the convex portion was destroyed per 1 mm square was less than 10% of the total area of the convex portion.
(実施例2−4)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは2μmであり、凸部と凹部の高低差は0.16μmであり、膜の表面の摩擦係数は0.81であった。
(Example 2-4)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the thickness of the wall is 2 μm, the height difference between the convex part and the concave part is 0.16 μm, and the friction coefficient of the film surface is 0.81. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.17μmであり、膜の表面の摩擦係数は0.81であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の12%であった。 Further, when the surface of the film after rotating for 20 hours with the urethane rubber member in contact was confirmed and evaluated, honeycomb-shaped unevenness was observed, and the height difference between the protrusion and the recess was 0.17 μm. The friction coefficient of the film surface was 0.81. The area where the shape of the convex portion was destroyed per square with a side of 1 mm was 12% of the total area of the convex portion.
(実施例2−5)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは2μmであり、凸部と凹部の高低差は0.24μmであり、膜の表面の摩擦係数は0.45であった。
(Example 2-5)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the thickness of the wall is 2 μm, the height difference between the convex part and the concave part is 0.24 μm, and the friction coefficient of the film surface is 0.45. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.34μmであり、膜の表面の摩擦係数は0.85であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の10%未満であった。 In addition, when the surface of the film after rotating for 20 hours with the urethane rubber member in contact was confirmed and evaluated, honeycomb-shaped irregularities were observed, and the height difference between the convex and concave portions was 0.34 μm. The coefficient of friction of the film surface was 0.85. The area where the shape of the convex portion was destroyed per 1 mm square was less than 10% of the total area of the convex portion.
(実施例2−6)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは2μmであり、凸部と凹部の高低差は0.16μmであり、膜の表面の摩擦係数は0.81であった。
(Example 2-6)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the thickness of the wall is 2 μm, the height difference between the convex part and the concave part is 0.16 μm, and the friction coefficient of the film surface is 0.81. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.16μmであり、膜の表面の摩擦係数は0.86であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の15%であった。 Further, when the surface of the film after rotating for 20 hours with the urethane rubber member in contact was confirmed and evaluated, honeycomb-shaped irregularities were observed, and the height difference between the convex and concave portions was 0.16 μm. The coefficient of friction of the film surface was 0.86. The area where the shape of the convex portion was destroyed per square with a side of 1 mm was 15% of the total area of the convex portion.
(実施例2−7)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは2μmであり、凸部と凹部の高低差は0.27μmであり、膜の表面の摩擦係数は0.53であった。
(Example 2-7)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the thickness of the wall is 2 μm, the height difference between the convex part and the concave part is 0.27 μm, and the friction coefficient of the film surface is 0.53. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.35μmであり、膜の表面の摩擦係数は0.88であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の10%未満であった。 Further, when the surface of the film after rotating for 20 hours with the urethane rubber member in contact was confirmed and evaluated, honeycomb-shaped irregularities were observed, and the height difference between the convex and concave portions was 0.35 μm. The coefficient of friction of the film surface was 0.88. The area where the shape of the convex portion was destroyed per 1 mm square was less than 10% of the total area of the convex portion.
(実施例2−8)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に直径が0.2μmであり、中心間距離が0.4μmである円状のホール型の凹凸が認められ、凸部と凹部の高低差は0.03μmであり、膜の表面の摩擦係数は0.85であった。
(Example 2-8)
When the surface of the film after rotating for 1 hour with the urethane rubber member in contact was confirmed and evaluated, a circular hole with a diameter of 0.2 μm on the surface and a center-to-center distance of 0.4 μm. Mold irregularities were observed, the height difference between the convex and concave portions was 0.03 μm, and the friction coefficient of the film surface was 0.85.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ホール型の凹凸が認められ、凸部と凹部の高低差は0.03μmであり、膜の表面の摩擦係数は0.84であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の10%未満であった。 Further, when the surface of the film after rotating for 20 hours by contacting the urethane rubber member was confirmed and evaluated, hole-shaped unevenness was observed, and the height difference between the protrusion and the recess was 0.03 μm. The coefficient of friction of the film surface was 0.84. The area where the shape of the convex portion was destroyed per 1 mm square was less than 10% of the total area of the convex portion.
(実施例2−9)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは50μmであり、壁の厚さは10μmであり、凸部と凹部の高低差は0.84μmであり、膜の表面の摩擦係数は0.83であった。
(Example 2-9)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon was 50 μm, the thickness of the wall was 10 μm, the height difference between the convex part and the concave part was 0.84 μm, and the friction coefficient of the film surface was 0.83. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.89μmであり、膜の表面の摩擦係数は0.86であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の15%であった。 Further, when the surface of the film after rotating for 20 hours by contacting the urethane rubber member was confirmed and evaluated, honeycomb-shaped unevenness was observed, and the height difference between the protrusion and the recess was 0.89 μm. The coefficient of friction of the film surface was 0.86. The area where the shape of the convex portion was destroyed per square with a side of 1 mm was 15% of the total area of the convex portion.
(比較例2−1)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは2μmであり、凸部と凹部の高低差は17μmであり、膜の表面の摩擦係数は0.78であった。
(Comparative Example 2-1)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon was 10 μm, the wall thickness was 2 μm, the height difference between the convex part and the concave part was 17 μm, and the friction coefficient of the film surface was 0.78.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は16μmであり、膜の表面の摩擦係数は0.92であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の23%であった。 In addition, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, honeycomb-shaped unevenness was observed, and the height difference between the protrusion and the recess was 16 μm. The surface friction coefficient was 0.92. The area where the shape of the convex portion was destroyed per square with a side of 1 mm was 23% of the total area of the convex portion.
(比較例2−2)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは0.5μmであり、凸部と凹部の高低差は0.35μmであり、膜の表面の摩擦係数は0.54であった。
(Comparative Example 2-2)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the wall thickness is 0.5 μm, the height difference between the convex part and the concave part is 0.35 μm, and the friction coefficient of the film surface is 0.54. there were.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.39μmであり、膜の表面の摩擦係数は0.94であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の27%であった。 Further, when the surface of the film after rotating for 20 hours by contacting the urethane rubber member was confirmed and evaluated, honeycomb-shaped unevenness was observed, and the height difference between the protrusion and the recess was 0.39 μm. The coefficient of friction of the film surface was 0.94. The area where the shape of the convex portion was destroyed per square of 1 mm on one side was 27% of the total area of the convex portion.
(比較例2−3)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは8μmであり、凸部と凹部の高低差は0.07μmであり、膜の表面の摩擦係数は0.96であった。
(Comparative Example 2-3)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the wall thickness is 8 μm, the height difference between the convex part and the concave part is 0.07 μm, and the friction coefficient of the film surface is 0.96. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.07μmであり、膜の表面の摩擦係数は0.95であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の10%未満であった。 Further, when the surface of the film after rotating for 20 hours by contacting the urethane rubber member was confirmed and evaluated, honeycomb-shaped unevenness was observed, and the height difference between the protrusion and the recess was 0.07 μm. The coefficient of friction of the film surface was 0.95. The area where the shape of the convex portion was destroyed per 1 mm square was less than 10% of the total area of the convex portion.
(比較例2−4)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは2μmであり、凸部と凹部の高低差は0.27μmであり、膜の表面の摩擦係数は0.49であった。
(Comparative Example 2-4)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the thickness of the wall is 2 μm, the height difference between the convex part and the concave part is 0.27 μm, and the friction coefficient of the film surface is 0.49. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、ハニカム形状の凹凸が認められ、凸部と凹部の高低差は0.42μmであり、膜の表面の摩擦係数は0.99であった。一辺1mmの正方形1つあたり、凸部の形状が破壊された面積は凸部全体の面積の10%未満であった。 Further, when the surface of the film after rotating for 20 hours by contacting the urethane rubber member was confirmed and evaluated, honeycomb-shaped irregularities were observed, and the height difference between the convex and concave portions was 0.42 μm. The coefficient of friction of the film surface was 0.99. The area where the shape of the convex portion was destroyed per 1 mm square was less than 10% of the total area of the convex portion.
(比較例2−5)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、表面に正六角形を凹部とし、それを取り囲む壁を凸部としたハニカム形状の凹凸が認められ、正六角形の一辺の長さは10μmであり、壁の厚さは2μmであり、凸部と凹部の高低差は0.22μmであり、膜の表面の摩擦係数は0.47であった。
(Comparative Example 2-5)
After confirming and evaluating the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact with the surface, honeycomb-shaped irregularities were recognized with a regular hexagonal recess on the surface and a wall surrounding it as a protrusion. The length of one side of the regular hexagon is 10 μm, the thickness of the wall is 2 μm, the height difference between the convex part and the concave part is 0.22 μm, and the friction coefficient of the film surface is 0.47. .
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、凹凸は認められず、膜の表面の摩擦係数は1.61であった。 Moreover, when the surface of the film | membrane after making the said urethane rubber member contact | abut and rotating for 20 hours was confirmed and evaluated, the unevenness | corrugation was not recognized but the friction coefficient of the film | membrane surface was 1.61.
(摩擦係数の値の分類)
実施例1−1〜1−10および比較例1−1〜1−9に関しては、摩擦係数の値を、以下の3段階に分類した。
A:上記ウレタンゴム製部材を当接させて10時間または30時間回転させた後の膜の表面の摩擦係数の値が0.60以下である。
B:上記ウレタンゴム製部材を当接させて10時間または30時間回転させた後の膜の表面の摩擦係数の値が0.61以上0.80以下である。
C:上記ウレタンゴム製部材を当接させて10時間または30時間回転させた後の膜の表面の摩擦係数の値が0.81以上である。
(Classification of friction coefficient values)
Regarding Examples 1-1 to 1-10 and Comparative Examples 1-1 to 1-9, the friction coefficient values were classified into the following three stages.
A: The value of the coefficient of friction on the surface of the film after contacting the urethane rubber member and rotating for 10 hours or 30 hours is 0.60 or less.
B: The value of the coefficient of friction on the surface of the film after contacting the urethane rubber member and rotating for 10 hours or 30 hours is 0.61 or more and 0.80 or less.
C: The value of the coefficient of friction on the surface of the film after contacting the urethane rubber member and rotating for 10 hours or 30 hours is 0.81 or more.
また、実施例2−1〜1−9および比較例2−1〜2−5に関しては、摩擦係数の値を、以下の3段階に分類した。 For Examples 2-1 to 1-9 and Comparative Examples 2-1 to 2-5, the friction coefficient values were classified into the following three stages.
A:上記ウレタンゴム製部材を当接させて1時間または20時間回転させた後の膜の表面の摩擦係数の値が0.60以下である。 A: The value of the friction coefficient of the surface of the film after the urethane rubber member is brought into contact with and rotated for 1 hour or 20 hours is 0.60 or less.
B:上記ウレタンゴム製部材を当接させて1時間または20時間回転させた後の膜の表面の摩擦係数の値が0.61以上0.90以下である。 B: The value of the coefficient of friction on the surface of the film after contacting the urethane rubber member and rotating for 1 hour or 20 hours is 0.61 or more and 0.90 or less.
C:上記ウレタンゴム製部材を当接させて1時間または20時間回転させた後の膜の表面の摩擦係数の値が0.91以上である。 C: The value of the coefficient of friction on the surface of the film after the urethane rubber member is brought into contact and rotated for 1 hour or 20 hours is 0.91 or more.
以上をまとめて表3に示す。 The above is summarized in Table 3.
(9)評価結果その2
(実施例3−1)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.33であった。
(9) Evaluation result 2
(Example 3-1)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. As a result, the difference in height between the convex portion and the concave portion was 0.25 μm, and the friction coefficient of the film surface was 0.33.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.24μmであり、膜の表面の摩擦係数は0.33であった。凹凸形状の凹部を確認したところ、摩耗粉(潤滑剤を含有する膜が摩耗することによって発生した、潤滑性のある摩耗粉のこと。以下同じ。)が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex part and the concave part was 0.24 μm, and the friction coefficient of the film surface was 0.33. When the concave and convex portions were confirmed, it was confirmed that the wear powder (the wear powder with lubricity generated by the abrasion of the film containing the lubricant. The same applies hereinafter) is accumulated in the concave portion with an optical microscope. I was able to confirm.
(実施例3−2)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.22μmであり、膜の表面の摩擦係数は0.32であった。
(Example 3-2)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. As a result, the difference in height between the convex part and the concave part was 0.22 μm, and the friction coefficient of the film surface was 0.32.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.21μmであり、膜の表面の摩擦係数は0.27であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex part and the concave part was 0.21 μm, and the friction coefficient of the film surface was 0.27. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−3)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.28μmであり、膜の表面の摩擦係数は0.37であった。
(Example 3-3)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. As a result, the difference in height between the convex portion and the concave portion was 0.28 μm, and the friction coefficient of the film surface was 0.37.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.24μmであり、膜の表面の摩擦係数は0.35であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex part and the concave part was 0.24 μm, and the friction coefficient of the film surface was 0.35. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−4)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.23μmであり、膜の表面の摩擦係数は0.35であった。
(Example 3-4)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. As a result, the difference in height between the convex portion and the concave portion was 0.23 μm, and the friction coefficient of the film surface was 0.35.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.23μmであり、膜の表面の摩擦係数は0.35であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex part and the concave part was 0.23 μm, and the friction coefficient of the film surface was 0.35. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−5)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.27μmであり、膜の表面の摩擦係数は0.65であった。
(Example 3-5)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. The height difference between the convex part and the concave part was 0.27 μm, and the friction coefficient of the film surface was 0.65.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.26μmであり、膜の表面の摩擦係数は0.64であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex part and the concave part was 0.26 μm, and the friction coefficient of the film surface was 0.64. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−6)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.53であった。
(Example 3-6)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. The difference in height between the convex and concave portions was 0.25 μm, and the friction coefficient of the film surface was 0.53.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.50であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex part and the concave part was 0.25 μm, and the friction coefficient of the film surface was 0.50. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−7)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.26μmであり、膜の表面の摩擦係数は0.26であった。
(Example 3-7)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. The height difference between the convex part and the concave part was 0.26 μm, and the friction coefficient of the film surface was 0.26.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.26であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex part and the concave part was 0.25 μm, and the friction coefficient of the film surface was 0.26. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−8)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、直径4.0μmでホール形状が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.32であった。
(Example 3-8)
When the surface of the film after rotating for 1 hour with the urethane rubber member in contact was confirmed and evaluated, a hole shape was observed with a diameter of 4.0 μm, and the height difference between the convex part and the concave part was 0.25 μm. The friction coefficient of the film surface was 0.32.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、直径4.0μmのホール形状が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.22であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after rotating for 20 hours by contacting the urethane rubber member was confirmed and evaluated, a hole shape having a diameter of 4.0 μm was observed, and the height difference between the convex part and the concave part was 0.00. The friction coefficient of the film surface was 0.22. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−9)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、最大対頂点距離が4.0μmのハニカム形状が認められ、凸部と凹部の高低差は0.24μmであり、膜の表面の摩擦係数は0.32であった。
(Example 3-9)
When the surface of the membrane after rotating for 1 hour with the urethane rubber member in contact was confirmed and evaluated, a honeycomb shape with a maximum apex distance of 4.0 μm was observed, and the difference in height between the convex and concave portions was It was 0.24 μm, and the friction coefficient of the film surface was 0.32.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、最大対頂点距離が3.9μmのハニカム形状が認められ、凸部と凹部の高低差は0.24μmであり、膜の表面の摩擦係数は0.20であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after rotating for 20 hours with the urethane rubber member in contact was confirmed and evaluated, a honeycomb shape with a maximum apex distance of 3.9 μm was observed, and the height of the convex and concave portions was The difference was 0.24 μm, and the friction coefficient of the film surface was 0.20. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−10)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.26μmであり、膜の表面の摩擦係数は0.35であった。
(Example 3-10)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. The height difference between the convex part and the concave part was 0.26 μm, and the friction coefficient of the film surface was 0.35.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.2μm幅の第1部分による凹部と3.8μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.26μmであり、膜の表面の摩擦係数は0.31であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was contacted and rotated for 20 hours was confirmed and evaluated, the concave portion formed by the first portion having a width of 4.2 μm and the convex portion formed by the second portion having a width of 3.8 μm. The height difference between the convex part and the concave part was 0.26 μm, and the friction coefficient of the film surface was 0.31. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−11)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.26μmであり、膜の表面の摩擦係数は0.52であった。
(Example 3-11)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. As a result, the difference in height between the convex part and the concave part was 0.26 μm, and the friction coefficient of the film surface was 0.52.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.1μm幅の第1部分による凹部と3.9μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.47であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was contacted and rotated for 20 hours was confirmed and evaluated, the concave portion formed by the first portion having a width of 4.1 μm and the convex portion formed by the second portion having a width of 3.9 μm. The height difference between the convex part and the concave part was 0.25 μm, and the friction coefficient of the film surface was 0.47. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−12)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.32であった。
(Example 3-12)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. The difference in height between the convex and concave portions was 0.25 μm, and the friction coefficient of the film surface was 0.32.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.28であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex part and the concave part was 0.25 μm, and the friction coefficient of the film surface was 0.28. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−13)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.42であった。
(Example 3-13)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. As a result, the difference in height between the convex part and the concave part was 0.25 μm, and the friction coefficient of the film surface was 0.42.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.38であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex portion and the concave portion was 0.25 μm, and the friction coefficient of the film surface was 0.38. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−14)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.32であった。
(Example 3-14)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. The difference in height between the convex and concave portions was 0.25 μm, and the friction coefficient of the film surface was 0.32.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.27であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex part and the concave part was 0.25 μm, and the friction coefficient of the film surface was 0.27. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(実施例3−15)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.32であった。
(Example 3-15)
After confirming and evaluating the surface of the film after the urethane rubber member was contacted and rotated for 1 hour, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion were found. The difference in height between the convex and concave portions was 0.25 μm, and the friction coefficient of the film surface was 0.32.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、4.0μm幅の第1部分による凹部と4.0μm幅の第2部分による凸部が認められ、凸部と凹部の高低差は0.25μmであり、膜の表面の摩擦係数は0.28であった。凹凸形状の凹部を確認したところ、摩耗粉が凹部に溜まっていることを光学顕微鏡で確認することができた。 Further, when the surface of the film after the urethane rubber member was brought into contact with and rotated for 20 hours was confirmed and evaluated, a concave portion formed by a 4.0 μm wide first portion and a convex portion formed by a 4.0 μm wide second portion. The height difference between the convex part and the concave part was 0.25 μm, and the friction coefficient of the film surface was 0.28. When the concave and convex portions were confirmed, it was confirmed with an optical microscope that the abrasion powder accumulated in the concave portions.
(比較例3−1)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、凹凸は認められず、膜の表面の摩擦係数は0.33であった。
(Comparative Example 3-1)
When the surface of the film after the urethane rubber member was contacted and rotated for 1 hour was confirmed and evaluated, no irregularities were observed, and the coefficient of friction of the film surface was 0.33.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、やはり凹凸は認められず、膜の表面の摩擦係数は0.52であった。摺擦による摩耗粉の発生は確認できたが、すぐに摩擦系からなくなってしまった。 Further, when the surface of the film after the urethane rubber member was contacted and rotated for 20 hours was confirmed and evaluated, no irregularities were observed, and the coefficient of friction of the film surface was 0.52. The generation of abrasion powder due to rubbing was confirmed, but it immediately disappeared from the friction system.
(比較例3−2)
上記ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面を確認・評価したところ、凹凸は認められず、膜の表面の摩擦係数は0.35であった。
(Comparative Example 3-2)
When the surface of the film after the urethane rubber member was brought into contact with it and rotated for 1 hour was confirmed and evaluated, irregularities were not recognized and the coefficient of friction of the film surface was 0.35.
また、上記ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面を確認・評価したところ、やはり凹凸は認められず、膜の表面の摩擦係数は0.53であった。摺擦による摩耗粉の発生は確認できたが、すぐに摩擦系からなくなってしまった。 Further, when the surface of the film after the urethane rubber member was contacted and rotated for 20 hours was confirmed and evaluated, no irregularities were observed, and the coefficient of friction of the film surface was 0.53. The generation of abrasion powder due to rubbing was confirmed, but it immediately disappeared from the friction system.
摩耗粉の摩耗系からの流出による摩擦係数の増大を抑える効果の指標として、以下のように定義される低減率を用いて評価した。低減率が0%未満である場合、使用によって、摩擦係数の増大が起きていることを意味する。 As an index of the effect of suppressing the increase in the coefficient of friction due to the outflow of the wear powder from the wear system, evaluation was made using a reduction rate defined as follows. When the reduction rate is less than 0%, it means that an increase in the coefficient of friction occurs due to use.
低減率={(ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面の摩擦係数−ウレタンゴム製部材を当接させて20時間回転させた後の膜の表面の摩擦係数)÷ウレタンゴム製部材を当接させて1時間回転させた後の膜の表面の摩擦係数}×100
以上をまとめて表4に示す。
Reduction rate = {(Friction coefficient of film surface after rotating urethane rubber member for 1 hour-Friction coefficient of film surface after rotating urethane rubber member for 20 hours after contact) ) ÷ Friction coefficient of film surface after rotating urethane rubber member for one hour} × 100
The above is summarized in Table 4.
(電子写真感光体作製用のフォトマスク)
以下のとおり電子写真感光体作製用のフォトマスクを準備した。なお、スクエア型のニッケルメッシュ/平織りタイプステンレス鋼メッシュにおける線幅および開孔サイズは図8に示すとおりであり、ハニカム型のニッケルメッシュにおける線幅および開孔サイズは図9に示すとおりである。
(Photomask for producing electrophotographic photosensitive member)
A photomask for preparing an electrophotographic photosensitive member was prepared as follows. In addition, the line width and the opening size in the square type nickel mesh / plain weave type stainless steel mesh are as shown in FIG. 8, and the line width and the opening size in the honeycomb type nickel mesh are as shown in FIG.
〈電子写真感光体作製用のフォトマスク1〉
線幅が10μmであり、開孔サイズが6μmであり、開孔率が14%であるスクエア型のニッケルメッシュ(商品名:#1500、(株)くればぁ製)を電子写真感光体作製用のフォトマスク1とした。
<Photomask 1 for producing electrophotographic photosensitive member>
A square-shaped nickel mesh (trade name: # 1500, manufactured by Kuraba Co., Ltd.) having a line width of 10 μm, an aperture size of 6 μm, and an aperture ratio of 14% is used for producing an electrophotographic photoreceptor. The photomask 1 was obtained.
〈電子写真感光体作製用のフォトマスク2〜5〉
表5に示す線幅、開孔サイズおよび開孔率を有するスクエア型のニッケルメッシュをそれぞれ電子写真感光体作製用のフォトマスク2〜5とした。
<Photomasks 2 to 5 for producing an electrophotographic photosensitive member>
Square-shaped nickel meshes having the line width, hole size, and hole area ratio shown in Table 5 were used as photomasks 2 to 5 for producing an electrophotographic photosensitive member, respectively.
〈電子写真感光体作製用のフォトマスク6〜8〉
表5に示す線幅、開孔サイズおよび開孔率を有するハニカム型のニッケルメッシュをそれぞれ電子写真感光体作製用のフォトマスク6〜8とした。
<Photomasks 6 to 8 for producing electrophotographic photosensitive member>
The honeycomb type nickel meshes having the line width, the hole size and the hole area ratio shown in Table 5 were used as photomasks 6 to 8 for producing an electrophotographic photosensitive member, respectively.
〈電子写真感光体作製用のフォトマスク9〉
厚さ40μmの透明樹脂膜(商品名:ゼオノアフィルムZF14−040、(株)オプテス製)の表面をコロナ処理により親水化した後、上記フォトマスク1をこの透明樹脂膜上に被せ、厚さ100nmの金蒸着を施すことで、スクエア型のパターン(蒸着した金パターンの面積率:64%)を作製した。これを電子写真感光体作製用のフォトマスク9とした。フォトマスク9の蒸着した金パターンの面積率は64%である。また、フォトマスク9のスクエア型のパターンのサイズ(図8の開孔サイズに対応)は15μmである。
<Photomask 9 for producing electrophotographic photosensitive member>
The surface of a transparent resin film (trade name: ZEONOR film ZF14-040, manufactured by Optes Co., Ltd.) having a thickness of 40 μm is hydrophilized by corona treatment, and then the photomask 1 is placed on the transparent resin film to a thickness of 100 nm. The square pattern (area ratio of the deposited gold pattern: 64%) was produced by performing the gold deposition. This was designated as a photomask 9 for producing an electrophotographic photosensitive member. The area ratio of the gold pattern deposited on the photomask 9 is 64%. The size of the square pattern of the photomask 9 (corresponding to the aperture size in FIG. 8) is 15 μm.
〈電子写真感光体作製用のフォトマスク10〜16〉
電子写真感光体作製用のフォトマスク9の作製において、金蒸着の際に透明樹脂膜上に被せたフォトマスクを上記フォトマスク2〜8にした以外は同様にしてスクエア型のパターンを作製した。これらをそれぞれ電子写真感光体作製用のフォトマスク10〜16とした。フォトマスク10の蒸着した金パターンの面積率は36%であり、フォトマスク11の蒸着した金パターンの面積率は46%であり、フォトマスク12の蒸着した金パターンの面積率は64%であり、フォトマスク13の蒸着した金パターンの面積率は78%であり、フォトマスク14の蒸着した金パターンの面積率は34%であり、フォトマスク15の蒸着した金パターンの面積率は23%であり、フォトマスク16の蒸着した金パターンの面積率は62%である。また、フォトマスク10のスクエア型のパターンのサイズ(図8の開孔サイズに対応)は15μmであり、フォトマスク11のスクエア型のパターンのサイズ(図8の開孔サイズに対応)は17μmであり、フォトマスク12のスクエア型のパターンのサイズ(図8の開孔サイズに対応)は25μmであり、フォトマスク13のスクエア型のパターンのサイズ(図8の開孔サイズに対応)は45μmであり、フォトマスク14のハニカム型のパターンのサイズ(図9の開孔サイズに対応)は16μmであり、フォトマスク15のハニカム型のパターンのサイズ(図9の開孔サイズに対応)は16μmであり、フォトマスク16のハニカム型のパターンのサイズ(図9の開孔サイズに対応)は21μmである。
<
In the production of the photomask 9 for producing an electrophotographic photosensitive member, a square pattern was produced in the same manner except that the photomasks 2 to 8 were used as the photomask covered on the transparent resin film at the time of gold deposition. These were designated as
〈電子写真感光体作製用のフォトマスク101〉
線幅が1000μmであり、開孔サイズが1500μmであり、開孔率が36%であるスクエア型の平織りタイプステンレス鋼メッシュを電子写真感光体作製用のフォトマスク101とした。
<Photomask 101 for Electrophotographic Photoconductor Preparation>
A square-type plain weave type stainless steel mesh having a line width of 1000 μm, an aperture size of 1500 μm, and an aperture ratio of 36% was used as a photomask 101 for producing an electrophotographic photosensitive member.
〈電子写真感光体作製用のフォトマスク102〉
線幅が18μmであり、開孔サイズが7μmであり、開孔率が8%であるスクエア型のニッケルメッシュ(商品名:#1000、(株)くればぁ製)を電子写真感光体作製用のフォトマスク102とした。
<Photomask 102 for Electrophotographic Photoconductor Preparation>
A square-shaped nickel mesh (trade name: # 1000, manufactured by Kuraba Co., Ltd.) with a line width of 18 μm, an aperture size of 7 μm, and an aperture ratio of 8% is used for producing an electrophotographic photoreceptor. The photomask 102 was obtained.
〈電子写真感光体作製用のフォトマスク103〉
線幅が4.5μmであり、開孔サイズが46.5μmであり、開孔率が83%であるスクエア型のニッケルメッシュ(商品名:#500、(株)くればぁ製)を電子写真感光体作製用のフォトマスク103とした。
<Photomask 103 for producing electrophotographic photosensitive member>
Electrophotography of a square nickel mesh (trade name: # 500, manufactured by Kuraba Co., Ltd.) with a line width of 4.5 μm, an aperture size of 46.5 μm, and an aperture ratio of 83%. A photomask 103 for producing a photoconductor was obtained.
〈電子写真感光体作製用のフォトマスク104〜106〉
電子写真感光体作製用のフォトマスク9の作製において、金蒸着の際に透明樹脂膜上に被せたフォトマスクを上記フォトマスク101〜103にした以外は同様にしてスクエア型のパターンを作製した。これらをそれぞれ電子写真感光体作製用のフォトマスク104〜106とした。フォトマスク104の蒸着した金パターンの面積率は22%であり、フォトマスク105の蒸着した金パターンの面積率は8%であり、フォトマスク106の蒸着した金パターンの面積率は83%である。また、フォトマスク104のスクエア型のパターンのサイズ(図8の開孔サイズに対応)は1500μmであり、フォトマスク105のスクエア型のパターンのサイズ(図8の開孔サイズに対応)は7μmであり、フォトマスク106のスクエア型のパターンのサイズ(図8の開孔サイズに対応)は46.5μmである。
<Photomasks 104 to 106 for producing an electrophotographic photosensitive member>
In producing the photomask 9 for producing the electrophotographic photosensitive member, a square pattern was produced in the same manner except that the photomasks 101 to 103 were used as the photomasks covered on the transparent resin film at the time of gold deposition. These were designated as photomasks 104 to 106 for producing an electrophotographic photosensitive member. The area ratio of the gold pattern deposited on the photomask 104 is 22%, the area ratio of the gold pattern deposited on the photomask 105 is 8%, and the area ratio of the gold pattern deposited on the photomask 106 is 83%. . Further, the size of the square pattern of the photomask 104 (corresponding to the opening size of FIG. 8) is 1500 μm, and the size of the square pattern of the photomask 105 (corresponding to the opening size of FIG. 8) is 7 μm. In addition, the size of the square pattern of the photomask 106 (corresponding to the aperture size in FIG. 8) is 46.5 μm.
(電子写真感光体)
〈電子写真感光体1〉
直径30mm、長さ357.5mm、厚さ0.75mmのアルミニウムシリンダーを支持体(導電性支持体)とした。
(Electrophotographic photoreceptor)
<Electrophotographic photoreceptor 1>
An aluminum cylinder having a diameter of 30 mm, a length of 357.5 mm, and a thickness of 0.75 mm was used as a support (conductive support).
次に、ポリアミド(商品名:アミランCM8000、東レ(株)製)のメタノールに溶解させることによって、下引き層用塗布液(ポリアミド5質量%含有)を調製した。この下引き層用塗布液を支持体上に浸漬塗布し、得られた塗膜を乾燥させることによって、膜厚が0.5μmの下引き層を形成した。 Next, the undercoat layer coating solution (containing 5% by mass of polyamide) was prepared by dissolving in polyamide (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) in methanol. This undercoat layer coating solution was dip-coated on a support, and the resulting coating film was dried to form an undercoat layer having a thickness of 0.5 μm.
次に、CuKαの特性X線回折におけるブラッグ角(2θ±0.2°)の7.4°および28.2°に強いピークを有するヒドロキシガリウムフタロシアニン結晶(電荷発生物質)3.5質量部、ポリビニルブチラール(商品名:エスレックBX−1、積水化学工業(株)製)1質量部、および、シクロヘキサノン120質量部を、直径1mmのガラスビーズを用いたサンドミルに入れ、3時間分散処理し、その後、これに酢酸エチル120質量部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を10分間100℃で乾燥させることによって、膜厚が0.15μmの電荷発生層を形成した。 Next, 3.5 parts by mass of a hydroxygallium phthalocyanine crystal (charge generation material) having strong peaks at 7.4 ° and 28.2 ° of the Bragg angle (2θ ± 0.2 °) in the characteristic X-ray diffraction of CuKα, 1 part by weight of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 120 parts by weight of cyclohexanone are placed in a sand mill using glass beads having a diameter of 1 mm, followed by a dispersion treatment for 3 hours. Then, 120 parts by mass of ethyl acetate was added thereto to prepare a charge generation layer coating solution. This charge generation layer coating solution was dip-coated on the undercoat layer, and the resulting coating film was dried at 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.15 μm.
次に、実施例1−3と同様に調製した電荷輸送層用塗布液を電荷発生層上に浸漬塗布し、得られた塗膜を80分間125℃で乾燥させることによって、膜厚が20μmの電荷輸送層を形成した。このようにして得られた電子写真感光体を電子写真感光体1とした。電子写真感光体1は複数作製した。 Next, the charge transport layer coating solution prepared in the same manner as in Example 1-3 was dip-coated on the charge generation layer, and the obtained coating film was dried at 125 ° C. for 80 minutes, whereby the film thickness was 20 μm. A charge transport layer was formed. The electrophotographic photoreceptor thus obtained was designated as an electrophotographic photoreceptor 1. A plurality of electrophotographic photoreceptors 1 were produced.
〈電子写真感光体2〉
ジペンタエリスリトールヘキサアクリレート(商品名:カヤラッドDPHA、日本化薬(株)製)60質量部、分散処理前の平均粒径が0.03μmの酸化スズ粒子60質量部、光重合開始剤としての2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(商品名:IRGACURE651、BASF社製)20質量部、および、メタノール400質量部をサンドミルに入れ、66時間分散処理することによって、表面層用塗布液を調製した。この表面層用塗布液を電子写真感光体1の電荷輸送層上に浸漬塗布し、得られた塗膜にその硬度が約0.14GPaとなるように高圧水銀灯にて紫外線を照射することによって、表面層を形成した。このようにして得られた電子写真感光体を電子写真感光体2とした。電子写真感光体2は複数作製した。電子写真感光体2の表面の硬度はいずれも0.14GPaであり、表面層の膜厚はいずれも3μmであった。
<Electrophotographic photoreceptor 2>
60 parts by mass of dipentaerythritol hexaacrylate (trade name: Kayalad DPHA, manufactured by Nippon Kayaku Co., Ltd.), 60 parts by mass of tin oxide particles having an average particle size of 0.03 μm before dispersion treatment, 2 as a photopolymerization initiator , 2-dimethoxy-1,2-diphenylethane-1-one (trade name: IRGACURE 651, manufactured by BASF) 20 parts by mass and 400 parts by mass of methanol were placed in a sand mill and dispersed for 66 hours to obtain a surface layer. A coating solution was prepared. By dip-coating the coating solution for the surface layer on the charge transport layer of the electrophotographic photoreceptor 1, and irradiating the obtained coating film with ultraviolet rays with a high-pressure mercury lamp so that its hardness is about 0.14 GPa, A surface layer was formed. The electrophotographic photosensitive member thus obtained was designated as an electrophotographic photosensitive member 2. A plurality of electrophotographic photoreceptors 2 were produced. The surface hardness of each electrophotographic photosensitive member 2 was 0.14 GPa, and the film thickness of each surface layer was 3 μm.
〈電子写真感光体3〉
電子写真感光体2のうちの1つに対して、再度、表面に高圧水銀灯にて紫外線を照射し光硬化させた後に、1時間130℃でポストベーク処理をすることによって、電子写真感光体3を作製した。電子写真感光体3の表面の硬度は0.52GPaであり、表面層の膜厚は3μmであった。
<Electrophotographic photoreceptor 3>
One of the electrophotographic photoreceptors 2 is again subjected to photocuring by irradiating the surface with ultraviolet rays with a high-pressure mercury lamp, and then post-baking at 130 ° C. for 1 hour, whereby the electrophotographic photoreceptor 3 is obtained. Was made. The surface hardness of the electrophotographic photosensitive member 3 was 0.52 GPa, and the film thickness of the surface layer was 3 μm.
〈電子写真感光体4〉
電子写真感光体作製用のフォトマスク1を幅5cmに切り、図10(図10中、1001は電子写真感光体であり、1002はフォトマスクである。)に示すように、電子写真感光体2のうちの1つの表面に巻き付け、再度、高圧水銀灯にて紫外線を照射し、光硬化させた。次いで、巻き付けてあったフォトマスク1を剥がし取った後に、1時間130℃でポストベーク処理をすることによって、電子写真感光体4を作製した。電子写真感光体4の表面の硬度を測定したところ、第1部分(低硬度部分)の硬度は0.18GPaであり、第2部分(高硬度部分)の硬度は0.48GPaであり、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は2.7であった。電子写真感光体4の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は14%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。電子写真感光体4の表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。
<Electrophotographic photoreceptor 4>
A photomask 1 for producing an electrophotographic photosensitive member is cut into a width of 5 cm, and as shown in FIG. 10 (in FIG. 10, 1001 is an electrophotographic photosensitive member and 1002 is a photomask), the electrophotographic photosensitive member 2 is formed. It was wound around the surface of one of them, and again was irradiated with ultraviolet rays with a high-pressure mercury lamp and photocured. Next, after peeling off the wound photomask 1, post-baking treatment was performed at 130 ° C. for 1 hour to produce an electrophotographic photosensitive member 4. When the hardness of the surface of the electrophotographic photosensitive member 4 was measured, the hardness of the first portion (low hardness portion) was 0.18 GPa, and the hardness of the second portion (high hardness portion) was 0.48 GPa. The value of the ratio of the hardness of the second part (high hardness part) to the hardness of the part (low hardness part) was 2.7. In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the surface layer of the electrophotographic photosensitive member 4, the area ratio of the surface constituted by the second portion (high hardness portion) is 14%. The total area ratio of the surface composed of the portion (low hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. Both the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer of the electrophotographic photoreceptor 4 penetrated the surface layer.
〈電子写真感光体5〜9および101〜105〉
電子写真感光体4の作製において用いた電子写真感光体作製用のフォトマスク1を表6に示すフォトマスクに変更した以外は、電子写真感光体4と同様にして電子写真感光体5〜9および101〜105を作製した。電子写真感光体5〜9および101〜105の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域において第2部分(高硬度部分)で構成される面の面積率、ならびに、電子写真感光体5〜9および101〜105の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表6に示す。電子写真感光体5〜9および101〜105のいずれも、表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。電子写真感光体5〜9および101〜105のいずれも、表面の第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。
<Electrophotographic photoreceptors 5-9 and 101-105>
The electrophotographic photosensitive members 5 to 9 and the electrophotographic photosensitive member 4 are the same as the electrophotographic photosensitive member 4 except that the photomask 1 for producing the electrophotographic photosensitive member used in the production of the electrophotographic photosensitive member 4 is changed to the photomask shown in Table 6. 101-105 were produced. The area ratio of the surface composed of the second portion (high hardness portion) in a square region of 1 mm on a side arranged at an arbitrary position on the surface of the surface layers of the electrophotographic photoreceptors 5 to 9 and 101 to 105, and The hardness of the first part (low hardness part), the hardness of the second part (high hardness part), and the hardness of the first part (low hardness part) on the surfaces of the electrophotographic photosensitive members 5 to 9 and 101 to 105 Table 6 shows the value of the hardness ratio of the two parts (high hardness part). In each of the electrophotographic photosensitive members 5 to 9 and 101 to 105, both the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer penetrated the surface layer. In each of the electrophotographic photoreceptors 5 to 9 and 101 to 105, the total area ratio of the surface composed of the first portion (low hardness portion) and the surface composed of the second portion (high hardness portion) is 100%.
〈電子写真感光体10〉
ジペンタエリスリトールヘキサアクリレート(商品名:カヤラッドDPHA、日本化薬(株)製)60質量部、分散処理前の平均粒径が0.03μmの酸化スズ粒子60質量部、光重合開始剤としての2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(商品名:IRGACURE651、BASF社製)20質量部、メタノール400質量部をサンドミルに入れ、66時間分散処理することによって、表面層用塗布液を調製した。この表面層用塗布液を電子写真感光体1の電荷輸送層上に浸漬塗布し、得られた塗膜にその硬度が約0.31GPaとなるように高圧水銀灯にて紫外線を照射することによって、膜厚が3μmの表面層を形成し、電子写真感光体を得た。
<
60 parts by mass of dipentaerythritol hexaacrylate (trade name: Kayalad DPHA, manufactured by Nippon Kayaku Co., Ltd.), 60 parts by mass of tin oxide particles having an average particle size of 0.03 μm before dispersion treatment, 2 as a photopolymerization initiator , 2-Dimethoxy-1,2-diphenylethane-1-one (trade name: IRGACURE651, manufactured by BASF) 20 parts by mass and 400 parts by mass of methanol were placed in a sand mill and dispersed for 66 hours to apply for the surface layer. A liquid was prepared. By dip-coating the coating solution for the surface layer on the charge transport layer of the electrophotographic photoreceptor 1, and irradiating the obtained coating film with ultraviolet rays with a high-pressure mercury lamp so that its hardness is about 0.31 GPa, A surface layer having a thickness of 3 μm was formed to obtain an electrophotographic photosensitive member.
次に、電子写真感光体作製用のフォトマスク12を幅5cmに切り、図10に示すように、上記電子写真感光体の表面に巻き付け、再度、高圧水銀灯にて紫外線を照射し、光硬化させた。次いで、巻き付けてあったフォトマスク12を剥がし取った後に、1時間130℃でポストベーク処理をすることによって、電子写真感光体10を作製した。電子写真感光体10の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域における、第2部分(高硬度部分)で構成される面の面積率、ならびに、電子写真感光体10の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表6に示す。電子写真感光体10の表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。電子写真感光体10の表面の第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。
Next, the photomask 12 for producing the electrophotographic photosensitive member is cut into a width of 5 cm, wrapped around the surface of the electrophotographic photosensitive member as shown in FIG. 10, and again irradiated with ultraviolet rays with a high-pressure mercury lamp to be photocured. It was. Next, after the photomask 12 that had been wound was peeled off, the post-baking process was performed at 130 ° C. for 1 hour to produce the
〈電子写真感光体11〉
電子写真感光体2の作製において用いた表面層用塗布液を以下のように調製した表面層用塗布液に変更した以外は、電子写真感光体2と同様にして電子写真感光体11を作製した。電子写真感光体11は複数作製した。
<
An
ジペンタエリスリトールヘキサアクリレート(商品名:カヤラッドDPHA、日本化薬(株))60質量部、分散処理前の平均粒径が0.04μmの酸化スズ粒子60質量部、ポリテトラフルオロエチレン粒子(平均粒径0.18μm)50質量部、光重合開始剤としての2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(商品名:IRGACURE651、BASF社製)20質量部、および、メタノール400質量部をサンドミルに入れ、66時間分散処理することによって、表面層用塗布液を調製した。電子写真感光体11の表面の硬度は0.14GPaであり、表面層の膜厚は3μmであった。
60 parts by mass of dipentaerythritol hexaacrylate (trade name: Kayarad DPHA, Nippon Kayaku Co., Ltd.), 60 parts by mass of tin oxide particles having an average particle size of 0.04 μm before dispersion treatment, polytetrafluoroethylene particles (average particles) (Diameter 0.18 μm) 50 parts by mass, 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name: IRGACURE651, manufactured by BASF) as a photopolymerization initiator, and 400 parts by mass of methanol A portion was placed in a sand mill and dispersed for 66 hours to prepare a surface layer coating solution. The surface hardness of the
〈電子写真感光体12〉
電子写真感光体3の作製において用いた表面層用塗布液を以下のように調製した表面層用塗布液に変更した以外は、電子写真感光体3と同様にして電子写真感光体12を作製した。電子写真感光体12の表面の硬度は0.52GPaであり、表面層の膜厚は3μmであった。
<Electrophotographic photoreceptor 12>
An electrophotographic photoreceptor 12 was produced in the same manner as the electrophotographic photoreceptor 3, except that the surface layer coating solution used in the production of the electrophotographic photoreceptor 3 was changed to the surface layer coating solution prepared as follows. . The electrophotographic photosensitive member 12 had a surface hardness of 0.52 GPa and a surface layer thickness of 3 μm.
ジペンタエリスリトールヘキサアクリレート(商品名:カヤラッドDPHA、日本化薬(株)製)60質量部、分散処理前の平均粒径が0.04μmの酸化スズ粒子60質量部、ポリテトラフルオロエチレン粒子(平均粒径0.18μm)50質量部、光重合開始剤としての2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(商品名:IRGACURE651、BASF社製)20質量部、および、メタノール400質量部をサンドミルに入れ、66時間分散処理することによって、表面層用塗布液を調製した。 60 parts by mass of dipentaerythritol hexaacrylate (trade name: Kayarad DPHA, manufactured by Nippon Kayaku Co., Ltd.), 60 parts by mass of tin oxide particles having an average particle size of 0.04 μm before dispersion treatment, polytetrafluoroethylene particles (average 50 parts by mass of particle size 0.18 μm), 20 parts by mass of 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name: IRGACURE651, manufactured by BASF) as a photopolymerization initiator, and methanol 400 The coating solution for the surface layer was prepared by putting a mass part into a sand mill and carrying out a dispersion treatment for 66 hours.
〈電子写真感光体13〉
電子写真感光体作製用のフォトマスク1を幅5cmに切り、図10に示すように、電子写真感光体11のうちの1つの表面に巻き付け、再度、高圧水銀灯にて紫外線を照射し、光硬化させた。次いで、巻き付けてあったフォトマスクを剥がし取った後に、1時間130℃でポストベーク処理をすることによって、電子写真感光体13を作製した。電子写真感光体13の表面の硬度を測定したところ、第1部分(低硬度部分)の硬度は0.19GPaであり、第2部分(高硬度部分)の硬度は0.48GPaであり、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は2.5であった。電子写真感光体13の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は13%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。電子写真感光体13の表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。
<Electrophotographic photoreceptor 13>
A photomask 1 for producing an electrophotographic photosensitive member is cut into a width of 5 cm, wound around one surface of the electrophotographic
〈電子写真感光体14〜27〉
電子写真感光体13の作製において用いた電子写真感光体作製用のフォトマスク1を表7に示すフォトマスクに変更した以外は、電子写真感光体13と同様にして電子写真感光体14〜27を作製した。電子写真感光体14〜27の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域における、第2部分(高硬度部分)で構成される面の面積率、ならびに、電子写真感光体14〜27の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表7に示す。電子写真感光体14〜27のいずれも、表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。電子写真感光体14〜27のいずれも、表面の第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。
<Electrophotographic photoreceptors 14 to 27>
The electrophotographic photosensitive members 14 to 27 are formed in the same manner as the electrophotographic photosensitive member 13 except that the photomask 1 for producing the electrophotographic photosensitive member used in the production of the electrophotographic photosensitive member 13 is changed to the photomask shown in Table 7. Produced. The area ratio of the surface composed of the second portion (high hardness portion) in the square region with a side of 1 mm arranged at an arbitrary position on the surface of the surface layer of the electrophotographic photoreceptors 14 to 27, and electrophotographic photosensitive The hardness of the first portion (low hardness portion), the hardness of the second portion (high hardness portion), and the second portion (high hardness portion) relative to the hardness of the first portion (low hardness portion) of the surfaces of the bodies 14 to 27 Table 7 shows the hardness ratio values. In each of the electrophotographic photoreceptors 14 to 27, both the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer penetrated the surface layer. In each of the electrophotographic photoreceptors 14 to 27, the total area ratio of the surface constituted by the first portion (low hardness portion) and the surface constituted by the second portion (high hardness portion) was 100%. It was.
〈電子写真感光体28および29〉
電子写真感光体24の作製において、フォトマスクを巻き付けた後の紫外線の照射強度を上げて、電子写真感光体の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表7に示すようになるように変更した以外は、電子写真感光体24と同様にして電子写真感光体28および29を作製した。電子写真感光体28および29の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域における、第2部分(高硬度部分)で構成される面の面積率、ならびに、電子写真感光体28および29の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表7に示す。電子写真感光体28および29のいずれも、表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。電子写真感光体28および29のいずれも、表面の第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。
<Electrophotographic photoreceptors 28 and 29>
In the production of the electrophotographic photosensitive member 24, the irradiation intensity of the ultraviolet light after the photomask is wound is increased so that the hardness of the first portion (low hardness portion) and the second portion (high hardness portion) of the surface of the electrophotographic photosensitive member are increased. And the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is changed as shown in Table 7, except that the electrophotographic photosensitive member 24 is changed. In the same manner, electrophotographic photosensitive members 28 and 29 were produced. The area ratio of the surface composed of the second portion (high hardness portion) in the square region of 1 mm on a side arranged at an arbitrary position on the surface layer of the electrophotographic photosensitive members 28 and 29, and electrophotographic photosensitive The hardness of the first part (low hardness part), the hardness of the second part (high hardness part), and the second part (high hardness part) relative to the hardness of the first part (low hardness part) of the surfaces of the bodies 28 and 29 Table 7 shows the hardness ratio values. In each of the electrophotographic photoreceptors 28 and 29, both the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer penetrated the surface layer. In each of the electrophotographic photosensitive members 28 and 29, the total area ratio of the surface composed of the first portion (low hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. It was.
〈電子写真感光体30〉
ジペンタエリスリトールヘキサアクリレート(商品名:カヤラッドDPHA、日本化薬(株)製)5質量部、および、例示化合物No.14(上記構造式(14)で示される化合物)20質量部を、エタノール60質量部/メチルエチルケトン15質量部の混合溶剤に溶解させることによって、表面層用塗布液を調製した。この表面層用塗布液を電子写真感光体1の電荷輸送層上に浸漬塗布し、得られた塗膜にその硬度が約0.20GPaとなるように電子線を照射することによって、表面層を形成した。このようにして得られた電子写真感光体を電子写真感光体30とした。電子写真感光体30は複数作製した。電子写真感光体30の表面の硬度はいずれも0.20GPaであり、表面層の膜厚はいずれも3μmであった。
<Electrophotographic photoreceptor 30>
5 parts by mass of dipentaerythritol hexaacrylate (trade name: Kayalad DPHA, manufactured by Nippon Kayaku Co., Ltd.) A coating solution for the surface layer was prepared by dissolving 20 parts by mass of 14 (compound represented by the above structural formula (14)) in a mixed solvent of 60 parts by mass of ethanol / 15 parts by mass of methyl ethyl ketone. This surface layer coating solution is dip-coated on the charge transport layer of the electrophotographic photoreceptor 1, and the resulting coating film is irradiated with an electron beam so that its hardness is about 0.20 GPa. Formed. The electrophotographic photosensitive member thus obtained was designated as an electrophotographic photosensitive member 30. A plurality of electrophotographic photoreceptors 30 were produced. The electrophotographic photosensitive member 30 had a surface hardness of 0.20 GPa and a surface layer thickness of 3 μm.
〈電子写真感光体31〉
電子写真感光体30の作製において、電子線の照射線量を上げ、その後、1時間120℃でポストベーク処理をすることによって、電子写真感光体31を作製した。電子写真感光体31の表面の硬度は0.75GPaであり、表面層の膜厚は3μmであった。
<Electrophotographic photoreceptor 31>
In the production of the electrophotographic photosensitive member 30, the electron beam irradiation dose was increased, and then post-baking treatment was performed at 120 ° C. for 1 hour, thereby producing the electrophotographic photosensitive member 31. The surface hardness of the electrophotographic photoreceptor 31 was 0.75 GPa, and the film thickness of the surface layer was 3 μm.
〈電子写真感光体32〉
電子写真感光体作製用のフォトマスク1を幅5cmに切り、図10に示すように、電子写真感光体30のうちの1つの表面に巻き付け、再度、電子線を照射し、電子線硬化させた。次いで、巻き付けてあったフォトマスクを剥がし取った後に、1時間120℃でポストベーク処理をすることによって、電子写真感光体32を作製した。電子写真感光体32の表面の硬度を測定したところ、第1部分(低硬度部分)の硬度は0.20GPaであり、第2部分(高硬度部分)の硬度は0.74GPaであり、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は3.7であった。電子写真感光体32の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は15%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。電子写真感光体32の表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。
<Electrophotographic photoreceptor 32>
The photomask 1 for producing an electrophotographic photosensitive member was cut into a width of 5 cm, wound around one surface of the electrophotographic photosensitive member 30 as shown in FIG. 10, and again irradiated with an electron beam to be cured with an electron beam. . Next, after the photomask that had been wound was peeled off, the post-baking process was performed at 120 ° C. for 1 hour to produce the electrophotographic photosensitive member 32. When the hardness of the surface of the electrophotographic photosensitive member 32 was measured, the hardness of the first portion (low hardness portion) was 0.20 GPa, and the hardness of the second portion (high hardness portion) was 0.74 GPa. The value of the ratio of the hardness of the second part (high hardness part) to the hardness of the part (low hardness part) was 3.7. In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the surface layer of the electrophotographic photosensitive member 32, the area ratio of the surface constituted by the second portion (high hardness portion) is 15%. The total area ratio of the surface composed of the portion (low hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. Both the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer of the electrophotographic photoreceptor 32 penetrated the surface layer.
〈電子写真感光体33〜39および201〜203〉
電子写真感光体32の作製において用いた電子写真感光体作製用のフォトマスク1を表8に示すフォトマスクに変更した以外は、電子写真感光体32と同様にして電子写真感光体33〜39および201〜203を作製した。電子写真感光体33〜39および201〜203の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域における、第2部分(高硬度部分)で構成される面の面積率、ならびに、電子写真感光体33〜39および201〜203の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表8に示す。電子写真感光体33〜39および201〜203のいずれも、表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。電子写真感光体33〜39および201〜203のいずれも、表面の第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。
<Electrophotographic photosensitive members 33 to 39 and 201 to 203>
The electrophotographic photosensitive members 33 to 39 and the electrophotographic photosensitive member 32 are the same as the electrophotographic photosensitive member 32 except that the photomask 1 for producing the electrophotographic photosensitive member used in the production of the electrophotographic photosensitive member 32 is changed to the photomask shown in Table 8. 201-203 were produced. The area ratio of the surface composed of the second part (high hardness part) in a square area of 1 mm on a side arranged at an arbitrary position on the surface of the surface layers of the electrophotographic photosensitive members 33 to 39 and 201 to 203, and The hardness of the first part (low hardness part), the hardness of the second part (high hardness part), and the hardness of the first part (low hardness part) of the surfaces of the electrophotographic photoreceptors 33 to 39 and 201 to 203 Table 8 shows the value of the hardness ratio of the second part (high hardness part). In each of the electrophotographic photoreceptors 33 to 39 and 201 to 203, the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer both penetrated the surface layer. In each of the electrophotographic photoreceptors 33 to 39 and 201 to 203, the total area ratio of the surface composed of the first portion (low hardness portion) and the surface composed of the second portion (high hardness portion) is 100%.
〈電子写真感光体40〉
電子写真感光体34の作製において、フォトマスクを巻き付けた後の電子線の照射線量を上げて、電子写真感光体の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表8に示すようになるように変更した以外は、電子写真感光体34と同様にして電子写真感光体40を作製した。電子写真感光体40の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域における、第2部分(高硬度部分)で構成される面の面積率、ならびに、電子写真感光体40の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表8に示す。電子写真感光体40の表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。電子写真感光体40の表面の第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。
<Electrophotographic photoreceptor 40>
In the production of the electrophotographic photosensitive member 34, the irradiation dose of the electron beam after the photomask is wound is increased so that the hardness of the first portion (low hardness portion) and the second portion (high hardness portion) of the surface of the electrophotographic photosensitive member are increased. ), And the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is changed so as to be as shown in Table 8. In the same manner as in Example 34, an electrophotographic photoreceptor 40 was produced. The area ratio of the surface composed of the second portion (high hardness portion) in a square area of 1 mm on a side arranged at an arbitrary position on the surface of the surface layer of the electrophotographic photoreceptor 40, and the electrophotographic photoreceptor 40 The hardness of the first part (low hardness part), the hardness of the second part (high hardness part), and the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) Table 8 shows the values. Both the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer of the electrophotographic photoreceptor 40 penetrated the surface layer. The total area ratio of the surface constituted by the first portion (low hardness portion) and the surface constituted by the second portion (high hardness portion) on the surface of the electrophotographic photoreceptor 40 was 100%.
〈電子写真感光体41〉
フッ素原子含有樹脂(商品名:GF−300、東亞合成(株)製)1.25質量部を、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)37.5質量部/1−プロパノール37.5質量部の混合溶剤に溶解させた後、潤滑剤としてのポリテトラフルオロエチレン粒子(商品名:ルブロンL−2、ダイキン工業(株)製)25質量部を加え、これを高圧分散機(商品名:マイクロフルイダイザーM−110EH、米Microfluidics社製)に入れ、58.8MPa(600kgf/cm2)の圧力で3回の分散処理を施すことによって、潤滑剤分散液を調製した。
<Electrophotographic photoreceptor 41>
1.25 parts by mass of fluorine atom-containing resin (trade name: GF-300, manufactured by Toagosei Co., Ltd.) was added to 1,1,2,2,3,3,4-heptafluorocyclopentane (trade name: Zeolora H , Manufactured by Nippon Zeon Co., Ltd.) 37.5 parts by mass / 1-propanol 37.5 parts by mass, and then dissolved in a polytetrafluoroethylene particle (trade name: Lubron L-2, Daikin) 25 parts by mass of Kogyo Co., Ltd.) was added, and this was placed in a high-pressure disperser (trade name: Microfluidizer M-110EH, manufactured by Microfluidics, USA), and 3 times at a pressure of 58.8 MPa (600 kgf / cm 2 ). A lubricant dispersion was prepared by performing the dispersion treatment.
次に、ジペンタエリスリトールヘキサアクリレート(商品名:カヤラッドDPHA、日本化薬(株)製)20質量部、例示化合物No.14(上記構造式(14)で示される化合物)80質量部、上記潤滑剤分散液45質量部、1,1,2,2,3,3,4−ヘプタフロオロシクロペンタン66.7質量部、および、1−プロパノール66.7質量部を混合し、攪拌した後、PTFE(ポリテトラフルオロエチレン)製の5μmメンブレンフィルターで加圧濾過を行うことによって、表面層用塗布液を調製した。この表面層用塗布液を用いて、電子写真感光体1の電荷輸送層上に浸漬塗布し、得られた塗膜にその硬度が約0.19GPaとなるように電子線を照射することによって、表面層を形成した。このようにして得られた電子写真感光体を電子写真感光体41とした。電子写真感光体41は複数作製した。電子写真感光体41の表面の硬度はいずれも0.19GPaであり、表面層の膜厚はいずれも3μmであった。 Next, 20 parts by mass of dipentaerythritol hexaacrylate (trade name: Kayalad DPHA, manufactured by Nippon Kayaku Co., Ltd.), Exemplified Compound No. 14 (compound represented by the above structural formula (14)) 80 parts by mass, 45 parts by mass of the lubricant dispersion, 1,6,2 parts by mass of 1,1,2,2,3,3,4-heptafluorocyclopentane Then, 66.7 parts by mass of 1-propanol were mixed and stirred, and then subjected to pressure filtration with a 5 μm membrane filter made of PTFE (polytetrafluoroethylene) to prepare a surface layer coating solution. By using this surface layer coating solution, dip-coating on the charge transport layer of the electrophotographic photoreceptor 1, and irradiating the resulting coating film with an electron beam so that its hardness is about 0.19 GPa, A surface layer was formed. The electrophotographic photoreceptor thus obtained was designated as an electrophotographic photoreceptor 41. A plurality of electrophotographic photoreceptors 41 were produced. The electrophotographic photosensitive member 41 had a surface hardness of 0.19 GPa and a surface layer thickness of 3 μm.
〈電子写真感光体42〉
電子写真感光体41の作製において、電子線の照射線量を上げ、その後、1時間120℃でポストベーク処理をすることによって、電子写真感光体42を作製した。電子写真感光体42の表面の硬度は0.74GPaであり、表面層の膜厚は3μmであった。
<Electrophotographic photoreceptor 42>
In the production of the electrophotographic photosensitive member 41, the electron beam irradiation dose was increased, and then post-baking treatment was performed at 120 ° C. for 1 hour, whereby the electrophotographic photosensitive member 42 was produced. The electrophotographic photosensitive member 42 had a surface hardness of 0.74 GPa and a surface layer thickness of 3 μm.
〈電子写真感光体43〉
電子写真感光体作製用のフォトマスク1を幅5cmに切り、図10に示すように、電子写真感光体41のうちの1つの表面に巻き付け、再度、電子線を照射し、電子線硬化させた。次いで、巻き付けてあったフォトマスクを剥がし取った後に、1時間120℃でポストベーク処理をすることによって、電子写真感光体43を作製した。電子写真感光体43の表面の硬度を測定したところ、第1部分(低硬度部分)の硬度は0.19GPaであり、第2部分(高硬度部分)の硬度は0.75GPaであり、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値は3.9であった。電子写真感光体43の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域において、第2部分(高硬度部分)で構成される面の面積率は13%であり、第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。電子写真感光体43の表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。
<Electrophotographic photoreceptor 43>
The photomask 1 for producing the electrophotographic photosensitive member was cut into a width of 5 cm, wound around one surface of the electrophotographic photosensitive member 41 as shown in FIG. 10, and again irradiated with an electron beam to be cured with an electron beam. . Next, after peeling off the wound photomask, post-baking treatment was performed at 120 ° C. for 1 hour to produce an electrophotographic photoreceptor 43. When the hardness of the surface of the electrophotographic photosensitive member 43 was measured, the hardness of the first portion (low hardness portion) was 0.19 GPa, and the hardness of the second portion (high hardness portion) was 0.75 GPa. The value of the ratio of the hardness of the second part (high hardness part) to the hardness of the part (low hardness part) was 3.9. In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the surface layer of the electrophotographic photosensitive member 43, the area ratio of the surface constituted by the second portion (high hardness portion) is 13%. The total area ratio of the surface composed of the portion (low hardness portion) and the surface composed of the second portion (high hardness portion) was 100%. Both the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer of the electrophotographic photosensitive member 43 penetrated the surface layer.
〈電子写真感光体44〜58、62および301〜303〉
電子写真感光体43の作製において用いた電子写真感光体作製用のフォトマスクを表9に示すフォトマスクに変更した以外は、電子写真感光体43と同様にして電子写真感光体44〜58、62および301〜303を作製した。電子写真感光体44〜58、62および301〜303の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域における、第2部分(高硬度部分)で構成される面の面積率、ならびに、電子写真感光体44〜58、62および301〜303の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表9に示す。電子写真感光体44〜58、62および301〜303のいずれも、表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。電子写真感光体44〜58、62および301〜303のいずれも、表面の第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。
<Electrophotographic photosensitive members 44 to 58, 62 and 301 to 303>
The electrophotographic photoreceptors 44 to 58, 62 are the same as the electrophotographic photoreceptor 43 except that the photomask for producing the electrophotographic photoreceptor used in the production of the electrophotographic photoreceptor 43 is changed to the photomask shown in Table 9. And 301-303 were prepared. Area ratio of the surface composed of the second portion (high hardness portion) in a square region of 1 mm on a side arranged at an arbitrary position on the surface of the surface layers of the electrophotographic photosensitive members 44 to 58, 62 and 301 to 303 And the hardness of the first portion (low hardness portion), the hardness of the second portion (high hardness portion), and the first portion (low hardness portion) of the surfaces of the electrophotographic photosensitive members 44 to 58, 62 and 301 to 303. Table 9 shows values of the ratio of the hardness of the second portion (high hardness portion) to the hardness of). In each of the electrophotographic photoreceptors 44 to 58, 62, and 301 to 303, the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer both penetrated the surface layer. Each of the electrophotographic photoreceptors 44 to 58, 62, and 301 to 303 has a total area of a surface composed of a first portion (low hardness portion) and a surface composed of a second portion (high hardness portion). The rate was 100%.
〈電子写真感光体59〉
ジペンタエリスリトールヘキサアクリレート(商品名:カヤラッドDPHA、日本化薬(株))10質量部、および、例示化合物No.27(上記構造式(27)で示される化合物)10質量部を、エタノール60質量部/メチルエチルケトン15質量部の混合溶剤に溶解させることによって、表面層用塗布液を調製した。この表面層用塗布液を電子写真感光体1の電荷輸送層上に浸漬塗布し、得られた塗膜にその硬度が約0.10GPaとなるように電子線を照射することによって、表面層を形成した。このようにして得られた電子写真感光体を電子写真感光体41−2とした。電子写真感光体41−2は複数作製した。電子写真感光体41−2の表面の硬度はいずれも0.10GPaであり、表面層の膜厚はいずれも3μmであった。
<Electrophotographic photoreceptor 59>
10 parts by mass of dipentaerythritol hexaacrylate (trade name: Kayalad DPHA, Nippon Kayaku Co., Ltd.) A coating solution for the surface layer was prepared by dissolving 10 parts by mass of 27 (compound represented by the above structural formula (27)) in a mixed solvent of 60 parts by mass of ethanol / 15 parts by mass of methyl ethyl ketone. This surface layer coating solution is dip-coated on the charge transport layer of the electrophotographic photoreceptor 1, and the resulting coating film is irradiated with an electron beam so that its hardness is about 0.10 GPa. Formed. The electrophotographic photoreceptor thus obtained was designated as an electrophotographic photoreceptor 41-2. A plurality of electrophotographic photoreceptors 41-2 were produced. The electrophotographic photoreceptor 41-2 had a surface hardness of 0.10 GPa and a surface layer thickness of 3 μm.
次に、電子写真感光体作製用のフォトマスク3を幅5cmに切り、図10に示すように、電子写真感光体41−2のうちの1つの表面に巻き付け、再度、電子線を照射し、電子線硬化させた。次いで、巻き付けてあったフォトマスクを剥がし取った後に、1時間120℃でポストベーク処理をすることによって、電子写真感光体59を作製した。電子写真感光体59の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域における、第2部分(高硬度部分)で構成される面の面積率、ならびに、電子写真感光体59の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表9に示す。電子写真感光体59の表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。電子写真感光体59の表面の第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。 Next, the photomask 3 for producing the electrophotographic photosensitive member is cut into a width of 5 cm, wound around one surface of the electrophotographic photosensitive member 41-2 as shown in FIG. 10, and again irradiated with an electron beam, Electron beam curing was performed. Next, after the photomask that had been wound was peeled off, a post-baking process was performed at 120 ° C. for 1 hour to produce an electrophotographic photoreceptor 59. The area ratio of the surface composed of the second portion (high hardness portion) in a square area of 1 mm on a side arranged at an arbitrary position on the surface of the surface layer of the electrophotographic photosensitive member 59, and the electrophotographic photosensitive member 59 The hardness of the first part (low hardness part), the hardness of the second part (high hardness part), and the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) Table 9 shows the values. Both the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer of the electrophotographic photoreceptor 59 penetrated the surface layer. The total area ratio of the surface composed of the first portion (low hardness portion) and the surface composed of the second portion (high hardness portion) on the surface of the electrophotographic photosensitive member 59 was 100%.
〈電子写真感光体60、61および63〉
電子写真感光体59の作製において、フォトマスクを巻き付けた後の電子線の照射線量を上げて、電子写真感光体の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表9に示すようになるように変更した以外は、電子写真感光体59と同様にして電子写真感光体60、61および63を作製した。電子写真感光体60、61および63の表面層の表面の任意の位置に配置された一辺1mmの正方形の領域における、第2部分(高硬度部分)で構成される面の面積率、ならびに、電子写真感光体60、61および63の表面の第1部分(低硬度部分)の硬度、第2部分(高硬度部分)の硬度、および、第1部分(低硬度部分)の硬度に対する第2部分(高硬度部分)の硬度の比の値を表9に示す。電子写真感光体60、61および63のいずれも、表面層の第1部分(低硬度部分)および第2部分(高硬度部分)はともに表面層を貫通していた。電子写真感光体60、61および63のいずれも、表面の第1部分(低硬度部分)で構成される面および第2部分(高硬度部分)で構成される面の合計の面積率は100%であった。
<Electrophotographic photoreceptors 60, 61 and 63>
In the production of the electrophotographic photosensitive member 59, the irradiation dose of the electron beam after winding the photomask is increased, and the hardness of the first portion (low hardness portion) and the second portion (high hardness portion) of the surface of the electrophotographic photosensitive member are increased. ), And the ratio of the hardness of the second part (high hardness part) to the hardness of the first part (low hardness part) is changed so as to be as shown in Table 9. In the same manner as in 59, electrophotographic photoreceptors 60, 61 and 63 were produced. The area ratio of the surface composed of the second portion (high hardness portion) in the square region with a side of 1 mm arranged at an arbitrary position on the surface layer of the electrophotographic photoreceptors 60, 61 and 63, and the electron The second part (the hardness of the first part (low hardness part), the hardness of the second part (high hardness part), and the hardness of the first part (low hardness part) of the surface of the photoconductor 60, 61 and 63 ( Table 9 shows the value of the hardness ratio of the high hardness portion. In each of the electrophotographic photoreceptors 60, 61 and 63, the first portion (low hardness portion) and the second portion (high hardness portion) of the surface layer both penetrated the surface layer. In each of the electrophotographic photoreceptors 60, 61, and 63, the total area ratio of the surface constituted by the first portion (low hardness portion) and the surface constituted by the second portion (high hardness portion) is 100%. Met.
〈電子写真感光体64〉
電子写真感光体3の表面を、ラッピングテープにより研磨し、Rz=0.5μmの状態に粗面化することによって、電子写真感光体64を作製した。
<Electrophotographic photoreceptor 64>
The surface of the electrophotographic photosensitive member 3 was polished with a wrapping tape and roughened to a state of Rz = 0.5 μm, whereby an electrophotographic photosensitive member 64 was produced.
〈電子写真感光体65〉
電子写真感光体31の表面を、ラッピングテープにより研磨し、Rz=0.5μmの状態に粗面化することによって、電子写真感光体65を作製した。
<Electrophotographic photoreceptor 65>
The surface of the electrophotographic photosensitive member 31 was polished with a wrapping tape and roughened to a state of Rz = 0.5 μm, whereby an electrophotographic photosensitive member 65 was produced.
〈電子写真感光体66〉
電子写真感光体1の表面に、表面に凹部を有する金属モールドに圧接させながら、電子写真感光体1を回転させることによって、表面に四角柱状の凸部(四角柱の底面:6μm×6μm、高さ0.2μm、一辺1mmの正方形の領域において四角柱が占める面積は14%)を形成した。これを電子写真感光体66とした。
<Electrophotographic photoreceptor 66>
By rotating the electrophotographic photosensitive member 1 while pressing the surface of the electrophotographic photosensitive member 1 against a metal mold having a concave portion on the surface, a rectangular columnar convex portion (the bottom surface of the rectangular column: 6 μm × 6 μm, high The area occupied by the quadrangular prism in a square region having a thickness of 0.2 μm and a side of 1 mm was 14%). This was designated as an electrophotographic photosensitive member 66.
(実施例4−1〜4−6および比較例4−1〜4−8)
電子写真感光体2〜10および101〜105の評価を行った。
(Examples 4-1 to 4-6 and Comparative Examples 4-1 to 4-8)
The electrophotographic photoreceptors 2 to 10 and 101 to 105 were evaluated.
〈クリーニングブレードの状態の評価〉
電子写真感光体2〜10および101〜105を、キヤノン(株)製のモノクロ複写機のGP−215(商品名)に装着し、温度30℃/湿度80%RHの環境下で、10000枚の画像を出力し、電子写真感光体に接触(当接)するクリーニングブレード(ウレタンゴム製のブレード)の状態(ブレード捲れ、ブレード鳴き)を評価した。なお、評価に使用したモノクロ複写機のGP−215(商品名)は、電子写真感光体の表面をクリーニングするためのクリーニング手段を有し、このクリーニング手段が電子写真感光体の表面に接触するクリーニングブレードを有する複写機である。
<Evaluation of the condition of the cleaning blade>
The electrophotographic photosensitive members 2 to 10 and 101 to 105 are mounted on a GP-215 (trade name) of a monochrome copying machine manufactured by Canon Inc., and 10,000 sheets are printed in an environment of a temperature of 30 ° C./humidity of 80% RH. An image was output and the state of the cleaning blade (blade made of urethane rubber) that contacted (contacted) the electrophotographic photosensitive member (blade curling and blade squeal) was evaluated. Note that GP-215 (trade name) of the monochrome copying machine used for the evaluation has a cleaning means for cleaning the surface of the electrophotographic photosensitive member, and the cleaning means comes into contact with the surface of the electrophotographic photosensitive member. A copier having a blade.
ブレード捲れ、ブレード鳴きともに、10000枚の画像を出力するまでにブレード捲れ、ブレード鳴きが発生した場合をB、発生しなかった場合をAとする。 For both the blade whirl and the blade squeal, B is the case where the blade squeezes and the blade squeaks before outputting 10,000 images, and A is the case where the blade squeaks.
〈摩擦係数の評価〉
上記の10000枚の画像を出力後、新東科学(株)製の表面性測定機(商品名:Type14FW)を用い、垂直荷重30g、摺擦速度100mm/minの条件で、図11に示すように、ウレタンゴム製のブレード(ウレタンブレード)を電子写真感光体に対して26°傾けて当接させ、垂直荷重を加えた摩擦係数を測定した。図11中、3aは電子写真感光体であり、3bはウレタンゴム製のブレード(ウレタンブレード)であり、3cは電子写真感光体の留め具である。
<Evaluation of friction coefficient>
As shown in FIG. 11 after outputting the above 10,000 images, using a surface property measuring machine (trade name: Type 14FW) manufactured by Shinto Kagaku Co., Ltd. under conditions of a vertical load of 30 g and a rubbing speed of 100 mm / min. Then, a blade made of urethane rubber (urethane blade) was brought into contact with the electrophotographic photosensitive member at an angle of 26 °, and a friction coefficient was measured by applying a vertical load. In FIG. 11, 3a is an electrophotographic photosensitive member, 3b is a urethane rubber blade (urethane blade), and 3c is a fastener for the electrophotographic photosensitive member.
〈摩耗量の評価〉
上記の10000枚の画像を出力後、(株)キーエンス製の超深度形状測定顕微鏡(商品名:VK−9510)と(株)ニレコ製の画像解析装置(商品名:LuzexAP)を用いて電子写真感光体の表面の摩耗量を測定した。
<Evaluation of wear amount>
After outputting the above 10,000 images, electrophotography using an ultra-deep shape measuring microscope (trade name: VK-9510) manufactured by Keyence Corporation and an image analyzer (trade name: LuzexAP) manufactured by Nireco Corporation. The amount of wear on the surface of the photoreceptor was measured.
実施例4−1〜4−6および比較例4−1〜4−8の結果を表10に示す。 Table 10 shows the results of Examples 4-1 to 4-6 and Comparative examples 4-1 to 4-8.
実施例4−1〜4−6では、第1部分の硬度に対する第2部分の硬度の比の値が1.2〜30の範囲にあり、第2部分で構成される面の面積率が10〜80%の範囲にあるため、10000枚の画像を出力後も低い摩擦係数となっていた。 In Examples 4-1 to 4-6, the value of the ratio of the hardness of the second part to the hardness of the first part is in the range of 1.2 to 30, and the area ratio of the surface constituted by the second part is 10 Since it is in the range of ˜80%, the coefficient of friction was low even after outputting 10,000 images.
比較例4−1および4−2では、第1部分および第2部分が形成されていないため、第1部分と第2部分の高低差による摩擦低減効果が得られなかった。 In Comparative Examples 4-1 and 4-2, since the first part and the second part were not formed, the friction reduction effect due to the height difference between the first part and the second part could not be obtained.
比較例4−3では、第1部分の硬度に対する第2部分の硬度の比の値が1.2未満であるため、第1部分と第2部分の高低差を十分に得ることができず、摩擦低減効果が十分に得られなかった。 In Comparative Example 4-3, since the value of the ratio of the hardness of the second part to the hardness of the first part is less than 1.2, the level difference between the first part and the second part cannot be sufficiently obtained, A sufficient friction reducing effect was not obtained.
比較例4−5では、第2部分で構成される面の面積率が10%未満であるため、接触部材であるクリーニングブレードとの接触面積が小さくなることで、凸部になった第2部分が接触部材の荷重に耐え切れずに破壊されやすくなり、摩擦低減効果が十分に得られなかった。 In Comparative Example 4-5, since the area ratio of the surface formed by the second portion is less than 10%, the contact area with the cleaning blade that is the contact member is reduced, so that the second portion that is a convex portion However, it could not withstand the load of the contact member and was easily destroyed, and the friction reduction effect was not sufficiently obtained.
比較例4−6および4−8では、第2部分で構成される面の面積率が80%超であるため、接触部材であるクリーニングブレードとの接触面積が大きくなり、摩擦低減効果が十分に得られなかった。 In Comparative Examples 4-6 and 4-8, since the area ratio of the surface constituted by the second portion is more than 80%, the contact area with the cleaning blade that is the contact member is increased, and the friction reduction effect is sufficient. It was not obtained.
比較例4−4および4−7では、第2部分で構成される面の面積率が10%未満であるところと、第2部分で構成される面の面積率が80%超であるところとが混在しており、摩擦低減効果が十分に得られなかった。 In Comparative Examples 4-4 and 4-7, the area ratio of the surface composed of the second part is less than 10%, and the area ratio of the surface composed of the second part is more than 80%. The friction reduction effect could not be obtained sufficiently.
(実施例4−7〜4−23および比較例4−9〜4−10)
電子写真感光体11〜29の評価を、実施例4−1〜4−6および比較例4−1〜4−8と同様にして行った。
(Examples 4-7 to 4-23 and Comparative Examples 4-9 to 4-10)
The
実施例4−7〜4−23および比較例4−9〜4−10の結果を表11に示す。 Table 11 shows the results of Examples 4-7 to 4-23 and Comparative examples 4-9 to 4-10.
(実施例4−24〜4−32および比較例4−11〜4−15)
電子写真感光体30〜40および201〜203の評価を、実施例4−1〜4−6および比較例4−1〜4−8と同様にして行った。ただし、評価に使用した電子写真装置をキヤノン(株)製のモノクロ複写機のGP−215(商品名)からキヤノン(株)製のモノクロ複写機のGP−405(商品名)に変更した。また、画像出力枚数を10000枚から20000枚に変更した。GP−405(商品名)も、電子写真感光体の表面をクリーニングするためのクリーニング手段を有し、このクリーニング手段が電子写真感光体の表面に接触するクリーニングブレードを有する複写機である。
(Examples 4-24 to 4-32 and Comparative Examples 4-11 to 4-15)
The electrophotographic photoreceptors 30 to 40 and 201 to 203 were evaluated in the same manner as in Examples 4-1 to 4-6 and Comparative Examples 4-1 to 4-8. However, the electrophotographic apparatus used for the evaluation was changed from GP-215 (trade name) of a monochrome copier manufactured by Canon Inc. to GP-405 (product name) of a monochrome copier manufactured by Canon Inc. Also, the number of output images was changed from 10,000 to 20000. GP-405 (trade name) is also a copier having a cleaning unit for cleaning the surface of the electrophotographic photosensitive member, and a cleaning blade that contacts the surface of the electrophotographic photosensitive member.
実施例4−24〜4−32および比較例4−11〜4−15の結果を表12に示す。 Table 12 shows the results of Examples 4-24 to 4-32 and Comparative examples 4-11 to 4-15.
(実施例4−33〜4−51および比較例4−16〜4−25)
電子写真感光体41〜63および301〜303の評価を、実施例4−24〜4−32および比較例4−11〜4−15と同様にして行った。
(Examples 4-33 to 4-51 and Comparative Examples 4-16 to 4-25)
The electrophotographic photoreceptors 41 to 63 and 301 to 303 were evaluated in the same manner as in Examples 4-24 to 4-32 and Comparative Examples 4-11 to 4-15.
実施例4−33〜4−51および比較例4−16〜4−25の結果を表13に示す。 Table 13 shows the results of Examples 4-33 to 4-51 and Comparative examples 4-16 to 4-25.
Claims (12)
該膜の表面が該第1部分で構成される面および該第2部分で構成される面を有し、
該第1部分および該第2部分がそれぞれ連続して該膜の膜厚方向に該膜の膜厚の75%以上延在しており、
該膜の表面の任意の位置に配置された一辺1mmの正方形の領域において、該第2部分で構成される面の面積率が10〜80%であって、かつ、該第1部分で構成される面および該第2部分で構成される面の合計の面積率が50%以上である
ことを特徴とする膜。 A first portion and a second portion having different hardnesses, and the hardness (H 1 [GPa]) of the first portion by a continuous stiffness measurement method is 0.01 to 3 GPa, and the continuous stiffness measurement method of the first portion The ratio (H 2 / H 1 ) of the ratio of hardness (H 2 [GPa]) according to the continuous stiffness measurement method of the second portion to the hardness (H 1 [GPa]) of the second part is 1.2 to 30. And
The surface of the membrane has a surface composed of the first portion and a surface composed of the second portion;
Each of the first portion and the second portion continuously extends in the film thickness direction of the film by 75% or more of the film thickness;
In a square region having a side of 1 mm arranged at an arbitrary position on the surface of the membrane, the area ratio of the surface constituted by the second portion is 10 to 80%, and the first portion is constituted. And a total area ratio of the surface constituted by the second portion is 50% or more.
該電子写真感光体が、請求項8に記載の電子写真感光体であり、該クリーニング手段が、該電子写真感光体の表面に接触するクリーニングブレードを有することを特徴とするプロセスカートリッジ。 In a process cartridge that integrally supports an electrophotographic photosensitive member and a cleaning means for cleaning the surface of the electrophotographic photosensitive member, and is detachable from an electrophotographic apparatus main body,
9. The process cartridge according to claim 8, wherein the electrophotographic photosensitive member is the electrophotographic photosensitive member according to claim 8, and the cleaning means has a cleaning blade that contacts the surface of the electrophotographic photosensitive member.
該電子写真感光体が、請求項8に記載の電子写真感光体であり、該クリーニング手段が、該電子写真感光体の表面に接触するクリーニングブレードを有することを特徴とする電子写真装置。 In an electrophotographic apparatus having an electrophotographic photosensitive member, a charging unit, an exposing unit, a developing unit, a transferring unit, and a cleaning unit for cleaning the surface of the electrophotographic photosensitive member.
9. The electrophotographic apparatus according to claim 8, wherein the electrophotographic photoreceptor is the electrophotographic photoreceptor according to claim 8, and the cleaning unit has a cleaning blade that contacts the surface of the electrophotographic photoreceptor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013057564A JP2013214064A (en) | 2011-04-12 | 2013-03-21 | Film, device including film, electrophotographic photoreceptor, process cartridge and electrophotographic device |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011088442 | 2011-04-12 | ||
JP2011088442 | 2011-04-12 | ||
JP2011094158 | 2011-04-20 | ||
JP2011094158 | 2011-04-20 | ||
JP2011110620 | 2011-05-17 | ||
JP2011110620 | 2011-05-17 | ||
JP2012053581 | 2012-03-09 | ||
JP2012053581 | 2012-03-09 | ||
JP2013057564A JP2013214064A (en) | 2011-04-12 | 2013-03-21 | Film, device including film, electrophotographic photoreceptor, process cartridge and electrophotographic device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012085035A Division JP5236095B1 (en) | 2011-04-12 | 2012-04-03 | Film, device having film, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013214064A true JP2013214064A (en) | 2013-10-17 |
Family
ID=49587396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013057564A Pending JP2013214064A (en) | 2011-04-12 | 2013-03-21 | Film, device including film, electrophotographic photoreceptor, process cartridge and electrophotographic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013214064A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113933215A (en) * | 2021-11-27 | 2022-01-14 | 中国南方电网有限责任公司超高压输电公司曲靖局 | Composite insulator hydrophobicity detection system, method and device and storage medium |
-
2013
- 2013-03-21 JP JP2013057564A patent/JP2013214064A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113933215A (en) * | 2021-11-27 | 2022-01-14 | 中国南方电网有限责任公司超高压输电公司曲靖局 | Composite insulator hydrophobicity detection system, method and device and storage medium |
CN113933215B (en) * | 2021-11-27 | 2023-09-12 | 中国南方电网有限责任公司超高压输电公司曲靖局 | Composite insulator hydrophobicity detection system, method and device and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5236095B1 (en) | Film, device having film, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
US7369807B2 (en) | Cleaner, and process cartridge and image forming apparatus using the cleaner | |
US8867960B2 (en) | Image forming apparatus and process cartridge | |
JP6403586B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP5581736B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic image forming apparatus | |
US8293439B2 (en) | Electrophotographic photorecptor, method of manufacturing electrophotographic photorecptor, image forming apparatus, and process cartridge | |
JP5127991B1 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2013190555A (en) | Image forming apparatus and process cartridge | |
US20140064810A1 (en) | Image forming apparatus and process cartridge | |
JP2014224960A (en) | Cleaning device, process cartridge, and image forming apparatus | |
JP5320999B2 (en) | Image forming apparatus | |
JP5110211B1 (en) | Method for producing electrophotographic photosensitive member | |
JP2008292573A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus | |
JP2010008898A (en) | Electrophotographic device | |
JP7483477B2 (en) | Electrophotographic photosensitive drum, process cartridge and electrophotographic image forming apparatus | |
JP5105986B2 (en) | Image forming apparatus and process cartridge | |
JP6263848B2 (en) | Image forming apparatus, image forming method, and process cartridge | |
JP2013214064A (en) | Film, device including film, electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JP4572715B2 (en) | Image forming apparatus | |
JP2000250245A (en) | Electrophotographic device and process cartridge used in same | |
JP5582389B2 (en) | Electrophotographic photoreceptor | |
JP2022170536A (en) | Dispersion liquid of fluorine atom-containing resin fine particle, electrophotographic photoreceptor, and method for manufacturing electrophotographic photoreceptor | |
JP2014178424A (en) | Electrophotographic photoreceptor, image forming apparatus, and process cartridge | |
JP2005316264A (en) | Image forming method | |
JP2010107696A (en) | Image forming apparatus |