[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013213605A - 冷凍サイクル及び冷凍冷蔵庫 - Google Patents

冷凍サイクル及び冷凍冷蔵庫 Download PDF

Info

Publication number
JP2013213605A
JP2013213605A JP2012083664A JP2012083664A JP2013213605A JP 2013213605 A JP2013213605 A JP 2013213605A JP 2012083664 A JP2012083664 A JP 2012083664A JP 2012083664 A JP2012083664 A JP 2012083664A JP 2013213605 A JP2013213605 A JP 2013213605A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
gas
decompression device
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012083664A
Other languages
English (en)
Inventor
Tsuneyoshi Cho
張  恒良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012083664A priority Critical patent/JP2013213605A/ja
Publication of JP2013213605A publication Critical patent/JP2013213605A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

【課題】成績係数を向上できる冷凍サイクルを提供する。
【解決手段】冷媒を圧縮する圧縮機11と、圧縮機11で圧縮された冷媒を放熱させる放熱器12と、放熱器12を流出後の冷媒を減圧する第1、第2減圧装置13、23と、第1減圧装置13で減圧した冷媒を蒸発させる第1蒸発器14と、第1蒸発器14から流出した冷媒を気液分離する第1気液分離器15と、第2減圧装置23で減圧した冷媒を蒸発させるとともに第1蒸発器14よりも蒸発圧力が低い第2蒸発器24と、第1気液分離器15の気相の冷媒の流出側に接続される第1流入口16aと第2蒸発器24に接続される第2流入口16bと圧縮機11に接続される流出口16cとを有するエジェクタ16とを備え、エジェクタ16が第1流入口16aからの冷媒流入によって第2蒸発器24を流出した冷媒を第2流入口16bから吸引して流入させる。
【選択図】図2

Description

本発明は、エジェクタを有する冷凍サイクル及びそれを備えた冷凍冷蔵庫に関する。
従来の冷凍サイクルは特許文献1に開示されている。図6はこの冷凍サイクルを示している。冷凍サイクル10は圧縮機11、放熱器12、減圧装置13、気液分離器15、エジェクタ16を順に接続して圧縮機11に戻る。また、冷凍サイクル10は気液分離器15で分岐して減圧装置23、蒸発器14を順に接続し、エジェクタ16で合流する。
圧縮機11は冷媒を圧縮し、放熱器12は圧縮機11で圧縮された冷媒を放熱させる。減圧装置13及び減圧装置23は放熱器12を流出後の冷媒を減圧する。気液分離器15は冷媒を気相と液相とに分離する。エジェクタ16は高圧の冷媒が流入する流入口16aと低圧の冷媒が流入する流入口16bとを有している。気液分離器15から流出した気相の冷媒は流入口16aからエジェクタ16に流入する。気液分離器15から流出した液相の冷媒は減圧装置23に流入する。蒸発器14は減圧装置23で減圧した冷媒を蒸発させる。
上記構成の冷凍サイクル10において、圧縮機11の駆動によって圧縮された高温高圧の冷媒は放熱器12で放熱して凝縮する。放熱器12で液化した冷媒は減圧装置13に流入する。冷媒は減圧装置13で減圧、膨張し、乾き度が低い低温の湿り蒸気となる。減圧装置13を流出した冷媒は気液分離器15で気相と液相とに分離され、気相の冷媒が流入口16aを介してエジェクタ16に流入する。
気液分離器15から流出した液相の冷媒は減圧装置23に流入して減圧、膨張し、更に低温の湿り蒸気となる。低温の湿り蒸気は蒸発器14に流入し、外部からの吸熱により蒸発する。蒸発器14から流出した乾き度の高い冷媒は流入口16bから吸引されてエジェクタ16に流入する。
エジェクタ16は流入口16aを介して流入する高圧の冷媒によって流入口16bに吸引力が生じる。これにより、蒸発器14から流出した低圧の冷媒が流入口16bに吸引され、流入口16aからの冷媒と混合して昇圧される。エジェクタ16で混合された冷媒は流出口16cから流出して圧縮機11に戻る。
蒸発器14を流出した冷媒が流入口16bから吸引して昇圧されるため、圧縮機11による圧縮仕事が低減される。これにより、冷凍サイクル10の成績係数(COP:Coefficient Of Performance)を向上し、冷凍サイクル10を搭載した機器の省電力化を図ることができる。
特開2007−57156号公報(第3頁−第5頁、第1図)
しかしながら、上記従来の冷凍サイクルによると、減圧装置13を通過した冷媒は乾き度が低い湿り蒸気であるため気液分離器15で分離された気相の冷媒量が少ない。このため、エジェクタ16の流入口16aから流入する冷媒が少なく、流入口16bに生じる吸引力が低くなる。これにより、冷凍サイクルの成績係数を十分向上することができない問題があった。
一方、気液分離器15から流出する気相の冷媒量を増加させるために放熱器12による放熱量を小さくすると、冷凍サイクルの成績係数が低下する。
本発明は、成績係数をより向上できる冷凍サイクル及びそれを備えた冷凍冷蔵庫を提供することを目的とする。
上記目的を達成するために本発明は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒を放熱させる放熱器と、前記放熱器を流出後の冷媒を減圧する第1減圧装置及び第2減圧装置と、第1減圧装置で減圧した冷媒を蒸発させる第1蒸発器と、第1蒸発器から流出した冷媒を気相と液相とに分離する第1気液分離器と、第2減圧装置で減圧した冷媒を蒸発させるとともに第1蒸発器よりも蒸発圧力が低い第2蒸発器と、第1気液分離器の気相の冷媒の流出側に接続される第1流入口と第2蒸発器に接続される第2流入口と前記圧縮機に接続される流出口とを有するエジェクタとを備え、前記エジェクタが第1流入口からの冷媒流入によって第2蒸発器を流出した冷媒を第2流入口から吸引して流入させることを特徴としている。
この構成によると、圧縮機が駆動されると冷媒が圧縮され、高温高圧の冷媒が放熱器の放熱によって凝縮される。放熱器で液化した冷媒は第1減圧装置で減圧、膨張し、乾き度が低い低温の湿り蒸気となる。第1減圧装置を流出した冷媒は第1蒸発器で外部からの吸熱により蒸発する。第1蒸発器を流出した冷媒は第1気液分離器で気相と液相とに分離され、気相の冷媒が第1流入口を介してエジェクタに流入する。この時、第1蒸発器の蒸発圧力が高いため高圧の冷媒が第1流入口に導かれる。
また、放熱器から流出した後の冷媒が第2減圧装置で減圧、膨張し、乾き度が低い低温の湿り蒸気となる。第2減圧装置を流出した冷媒は第2蒸発器で外部からの吸熱により蒸発する。エジェクタは第1流入口からの高圧の冷媒流入によって第2流入口に吸引力が生じる。第2蒸発器の蒸発圧力が低いため第2蒸発器を流出した低圧の冷媒が第2流入口に吸引され、第1流入口からの冷媒と混合して増圧される。そして、エジェクタで混合した冷媒が流出口を介して流出し、圧縮機に戻る。
また本発明は、上記構成の冷凍サイクルにおいて、第1減圧装置と第2減圧装置とが第1気液分離器を介して直列に接続され、第1気液分離器から流出した液相の冷媒が第2減圧装置に流入することを特徴としている。この構成によると、第1気液分離器から流出した気相の冷媒が第1流入口からエジェクタに流入し、液相の冷媒が第2減圧装置に流入して減圧、膨張する。第2減圧装置を流出した冷媒は第2蒸発器で蒸発し、第2流入口からエジェクタに流入する。
また本発明は、上記構成の冷凍サイクルにおいて、第1減圧装置と第2減圧装置とが前記放熱器の後段で並列に接続され、前記放熱器から流出した冷媒が分岐して第1減圧装置及び第2減圧装置に流入するとともに、第2減圧装置が第1減圧装置よりも低い圧力まで冷媒を減圧することを特徴としている。
この構成によると、放熱器を流出した冷媒は分岐して第1減圧装置及び第2減圧装置に流入し、それぞれ減圧、膨張する。第1減圧装置を流出した冷媒は第1蒸発器で蒸発し、第1気液分離器に流入する。第1気液分離器で分離された気相の冷媒は第1流入口からエジェクタに流入する。第2減圧装置を流出した冷媒は第2蒸発器で蒸発し、第2流入口からエジェクタに流入する。
また本発明は、上記構成の冷凍サイクルにおいて、第2蒸発器から流出した冷媒を気相と液相とに分離する第2気液分離器を設け、第2気液分離器を流出した気相の冷媒が第2流入口から前記エジェクタに流入することを特徴としている。
また本発明の冷凍冷蔵庫は、上記各構成の冷凍サイクルと、貯蔵物を冷蔵保存する冷蔵室と、貯蔵物を冷凍保存する冷凍室とを備え、第1蒸発器と熱交換して生成された冷気により前記冷蔵室を冷却するとともに第2蒸発器と熱交換して生成された冷気により前記冷凍室を冷却することを特徴としている。この構成によると、蒸発圧力が高い第1蒸発器の冷媒が冷蔵室の冷気との熱交換により蒸発し、蒸発圧力が低い第2蒸発器の冷媒が冷凍室の冷気との熱交換により蒸発する。
本発明によると、第1蒸発器を流出して第1気液分離器で分離された気相の冷媒が第1流入口からエジェクタに流入し、第1蒸発器よりも蒸発圧力の低い第2蒸発器を流出した冷媒が第2流入口から吸引されてエジェクタに流入する。第1蒸発器で液相の冷媒が蒸発するため、第1蒸発器から流出した冷媒の気相冷媒の量が第1蒸発器に流入する前よりも増加する。このため、第1流入口から流入する気相の冷媒量を多くし、第2流入口に生じる吸引力を高くして冷媒をより高い圧力まで昇圧することができる。従って、圧縮機の圧縮仕事を低減し、冷凍サイクルの省電力化を図ることができる。
本発明の第1実施形態の冷凍冷蔵庫の概略構成図 本発明の第1実施形態の冷凍冷蔵庫の冷凍サイクルを示す図 本発明の第1実施形態の冷凍冷蔵庫のエジェクタを示す詳細図 本発明の第1実施形態の冷凍冷蔵庫の冷凍サイクルのP−H線図 本発明の第2実施形態の冷凍冷蔵庫の冷凍サイクルを示す図 従来の冷凍サイクルを示す図
以下に本発明の実施形態を図面を参照して説明する。以下の図面において説明の便宜上、前述の図6に示す従来例と同様の部分には同一の符号を付している。図1は第1実施形態の冷凍冷蔵庫の概略構成図である。冷凍冷蔵庫1は発泡断熱材を充填したキャビネット2を備え、キャビネット2の上部に貯蔵物を冷蔵保存する冷蔵室3が配される。キャビネット2の下部には貯蔵物を冷凍保存する冷凍室4が配され、冷凍室4の後方には機械室5が設けられる。
機械室5内には後述する冷凍サイクル10(図2参照)を運転する圧縮機11が配される。冷蔵室3の背面には冷気通路6が設けられ、冷凍室4の背面には冷気通路7が設けられる。冷気通路6内には蒸発器14(第1蒸発器)が配され、蒸発器14の上方には冷蔵室送風機8が配される。冷気通路7内には蒸発器24(第2蒸発器)が配され、蒸発器24の上方には冷凍室送風機9が配される。また、キャビネット2の背壁内にはエジェクタ16が配される。
蒸発器14と熱交換して冷却された冷気は冷蔵室送風機8により冷蔵室3の上部に吐出される。該冷気は冷蔵室3内を流通し、冷蔵室3の下部から蒸発器14に戻る。これにより、冷蔵室3が冷却される。蒸発器24と熱交換して冷却された冷気は冷凍室送風機9により冷凍室4に吐出される。冷凍室4に吐出された冷気は冷凍室4内を流通し、蒸発器24に戻る。これにより、冷凍室4が冷却される。
図2は冷凍冷蔵庫1の冷凍サイクルを示している。冷凍冷蔵庫1の冷凍サイクル10にはイソブタンや二酸化炭素等の冷媒が図中、矢印Sに示すように流通する。冷凍サイクル10は圧縮機11、放熱器12、減圧装置13、蒸発器14、気液分離器15、エジェクタ16を順に接続して圧縮機11に戻る。また、冷凍サイクル10は気液分離器15で分岐して減圧装置23、蒸発器24、気液分離器25を順に接続し、エジェクタ16で合流する。これにより、減圧装置13と減圧装置23とが蒸発器14及び気液分離器15を介して直列に接続される。
圧縮機11は冷媒を圧縮し、放熱器12は圧縮機11で圧縮された冷媒を放熱させる。減圧装置13(第1減圧装置)は膨張弁やキャピラリチューブにより形成され、放熱器12を流出後の冷媒を減圧する。蒸発器14(第1蒸発器)は減圧装置13で減圧した冷媒を蒸発させる。気液分離器15(第1気液分離器)は冷媒を気相と液相とに分離する。気液分離器15から流出した高圧の気相の冷媒が流入口16a(図3参照)からエジェクタ16に流入する。
気液分離器15から流出した液相の冷媒は減圧装置23(第2減圧装置)に流入する。減圧装置23は膨張弁やキャピラリチューブにより形成され、放熱器12から流出して蒸発器14を通過した冷媒を減圧する。蒸発器24(第2蒸発器)は減圧装置23で減圧した冷媒を蒸発させる。気液分離器25(第2気液分離器)は冷媒を気相と液相とに分離する。気液分離器25から流出した低圧の気相の冷媒が流入口16b(図3参照)からエジェクタ16に流入する。
尚、気液分離器15とエジェクタ16の流入口16aとの間で分岐して流出口16c(図3参照)と圧縮機11の間で合流するバイパス通路18が設けられる。バイパス通路18はバルブ17により開閉可能になっている。
図3はエジェクタ16の詳細図を示している。エジェクタ16は筒状に形成され、上流から順に吸引部16d、混合部16e、ディフューザ部16fを有している。吸引部16dは一端に流入口16aを有するノズル16gが内装され、周面に流入口16bが設けられる。流入口16aから流入する冷媒はノズル16gにより膨張して高速流となる。ノズル16gの出口の圧力が流入口16bに導入される冷媒よりも低圧になると、圧力差により流入口16bから冷媒が吸引されて吸引部16dに流入する。
混合部16eはノズル16gの下流に配され、流入口16a、16bから流入する冷媒を混合する。ディフューザ部16fは端面に流出口16cを有して下流側を拡幅し、混合部16eで混合した冷媒を昇圧する。これにより、流入口16aから流入する高圧の冷媒の圧力エネルギーを利用して流入口16bから冷媒を吸引し、蒸発器24の蒸発圧力よりも高圧の冷媒が圧縮機11に送られる。
上記構成の冷凍冷蔵庫1において、冷蔵室3の室内温度が例えば3℃に設定され、冷凍室4の室内温度が例えば−18℃に設定される。圧縮機11の駆動によって圧縮された高温高圧の冷媒は放熱器12で放熱して凝縮する。この時、冷媒に二酸化炭素等を用いた超臨界冷凍サイクルの場合は放熱器12で降温される。放熱器12で放熱した冷媒は減圧装置13に流入する。冷媒は減圧装置13で減圧、膨張し、乾き度が低い低温の湿り蒸気となる。
減圧装置13を流出した冷媒は蒸発器14に流入し、冷蔵室3の冷気通路6を流通する冷気との熱交換により蒸発して乾き度の高い湿り蒸気となる。蒸発器14を流出した冷媒は気液分離器15で気相と液相とに分離され、気相の冷媒が高圧側の流入口16aを介してエジェクタ16に流入する。
気液分離器15から流出した液相の冷媒は減圧装置23に流入して減圧、膨張し、更に低温の湿り蒸気となる。低温の湿り蒸気は蒸発器24に流入し、冷凍室4の冷気通路7を流通する冷気との熱交換により吸熱して蒸発する。蒸発器24から流出した乾き度の高い低圧の冷媒は流入口16bから吸引されてエジェクタ16に流入する。流入口16a、16bからエジェクタ16に流入した冷媒は混合され、流出口16cから流出して圧縮機11に戻る。
冷媒は減圧装置13で減圧して降温された後に減圧装置23で更に減圧して降温されるため、蒸発器14と蒸発器24との蒸発温度が異なる。これにより、蒸発器14及び蒸発器24の冷媒流入側の温度がそれぞれ例えば0℃、−21℃になるように圧縮機11が制御され、冷蔵室3及び冷凍室4の冷気によって蒸発器14、24で冷媒が蒸発する。この時、蒸発器14、24の蒸発圧力は各蒸発温度に対応した飽和蒸気圧力となり、蒸発器14の蒸発圧力が蒸発器24の蒸発圧力よりも高くなっている。
前述の従来例のように蒸発器が1つであると、蒸発器の蒸発温度を冷凍室4の設定温度よりも低温にする必要がある。このため、蒸発温度に対応する飽和蒸気圧力が低く、圧縮機の吸込圧力が低くなる。これに対して、本実施形態は蒸発器14の蒸発圧力が高く、圧縮機11の吸込圧力を高くすることができる。
バルブ17は通常閉じられるが、バルブ17を開くと一部の冷媒がバイパス通路18を流通して蒸発器24を流通する冷媒が減少する。これにより、冷凍室4が設定温度よりも低温で冷蔵室3が設定温度よりも高温の場合に、バルブ17を開いて冷凍室4の冷却を抑制して冷蔵室3の冷却が行われる。尚、ノズル17及びバイパス通路18を省いてもよい。
図4は冷凍サイクル10の圧力−エンタルピー線図(P−H線図)を示している。縦軸は圧力を示し、横軸はエンタルピーを示している。また、図中、各点A、B、C、D、E、E’、F、G、H、Iは、図2、図3に示す冷凍サイクル10の各点と対応している。
線I−Aは圧縮機11における過程を表している。線A−Bは放熱器12における過程を表している。線B−Cは減圧装置13における過程を表している。線C−Dは蒸発器14における過程を表しており、点Dは蒸発器14の出口における冷媒の状態を表している。線F−Gは減圧装置23における過程を表している。線G−Hは蒸発器24における過程を表している。
線E−E’はノズル16gにおける膨張過程を表している。線E’−Iはノズル16gで膨張した冷媒が混合部16eを通過した後のディフューザ部16fにおける昇圧過程を表している。線H−Iは流入口16bから吸引された冷媒が混合部16eを通過した後のディフューザ部16fにおける昇圧過程を表している。
また、点E、点Fはそれぞれ気液分離器15で分離された気相冷媒及び液相冷媒の状態を表している。冷媒は点Eで飽和蒸気状態であり、点Fで飽和液状態である。
同図に示すように、流入口16bからエジェクタ16に吸引された冷媒がディフューザ部16fで点Iと点Hとの差圧ΔPだけ昇圧される。このため、点Hの圧力から点Iの圧力まで圧縮するのに要する圧縮仕事を省くことができる。
本実施形態によると、蒸発器14(第1蒸発器)を流出して気液分離器15(第1気液分離器)で分離された気相の冷媒が流入口16a(第1流入口)からエジェクタ16に流入する。また、蒸発器14よりも蒸発圧力の低い蒸発器24(第2蒸発器)を流出した冷媒が流入口16b(第2流入口)から吸引されてエジェクタ16に流入する。
蒸発器14で液相の冷媒が蒸発するため、蒸発器14から流出した冷媒の気相冷媒の量が蒸発器14に流入する前よりも増加する。このため、流入口16aから流入する気相の冷媒量を多くし、流入口16bに生じる吸引力を高くして冷媒を昇圧することができる。従って、圧縮機11の圧縮仕事を低減し、冷凍サイクル10の成績係数を向上できるとともに冷凍冷蔵庫1の省電力化を図ることができる。
また、気液分離器15によってエジェクタ16の流入口16aから気相の冷媒が流入して液相の冷媒が流入しないため、ノズル16gに流入する冷媒の体積流量が大きい。これにより、ノズル16gの内径を大きくすることができ、容易にノズル16gを形成することができる。
また、減圧装置13と減圧装置23とが気液分離器15を介して直列に接続され、気液分離器15から流出した液相の冷媒が減圧装置23に流入する。これにより、蒸発圧力の異なる蒸発器14、24を備えた冷凍サイクル10を容易に実現することができる。
また、気液分離器25(第2気液分離器)を流出した気相の冷媒が流入口16bからエジェクタ16に流入する。これにより、蒸発器24から流出した冷媒を流入口16bの吸引によって容易にエジェクタ16に導くことができるとともに、圧縮機11への液戻りを防止することができる。
また、蒸発圧力の高い蒸発器14と熱交換して生成された冷気により冷蔵室3を冷却し、蒸発圧力の低い蒸発器24と熱交換して生成された冷気により冷凍室4を冷却するので、圧縮機11の吸込圧力を高くすることができる。従って、冷凍冷蔵庫1のより省電力化を図ることができる。
次に、図5は第2実施形態の冷凍冷蔵庫1の冷凍サイクル10を示している。説明の便宜上、前述の図1〜図4に示す第1実施形態と同様の部分には同一の符号を付している。本実施形態は減圧装置13、23が三方弁19とエジェクタ16の間で並列に配置される。その他の部分は第1実施形態の冷凍サイクル10(図2参照)と同様である。
冷凍サイクル10は圧縮機11、放熱器12、三方弁19、減圧装置13、蒸発器14、気液分離器15、エジェクタ16を順に接続して圧縮機11に戻る。また、冷凍サイクル10は三方弁19で分岐して減圧装置23、蒸発器24、気液分離器25を順に接続し、エジェクタ16で合流する。これにより、放熱器12の後段で減圧装置13及び蒸発器14が減圧装置23及び蒸発器24と並列に接続される。
三方弁19は放熱器12からの冷媒を分流し、一部の冷媒を減圧装置13に導くとともに一部の冷媒を減圧装置23に導く。減圧装置23は減圧装置13よりも圧力の低い状態まで冷媒を減圧、膨張させるようになっている。
上記構成の冷凍冷蔵庫1において、圧縮機11の駆動によって圧縮された高温高圧の冷媒は放熱器12で放熱して凝縮する。放熱器12で放熱した冷媒の一部は三方弁19を介して減圧装置13に流入する。冷媒は減圧装置13で減圧、膨張し、乾き度が低い低温の湿り蒸気となる。
減圧装置13を流出した冷媒は蒸発器14に流入し、冷蔵室3の冷気通路6を流通する冷気との熱交換により蒸発して乾き度の高い湿り蒸気となる。蒸発器14を流出した冷媒は気液分離器15で気相と液相とに分離され、気相の冷媒が高圧側の流入口16aを介してエジェクタ16に流入する。
また、放熱器12で放熱した冷媒の一部は三方弁19を介して減圧装置23に流入する。冷媒は減圧装置23で減圧、膨張し、減圧装置13を流出した冷媒よりも更に低温の湿り蒸気となる。低温の湿り蒸気は蒸発器24に流入し、冷凍室4の冷気通路7を流通する冷気との熱交換により吸熱して蒸発する。蒸発器24から流出した乾き度の高い低圧の冷媒は流入口16bから吸引されてエジェクタ16に流入する。流入口16a、16bからエジェクタ16に流入した冷媒は混合され、流出口16cから流出して圧縮機11に戻る。
減圧装置23が減圧装置13よりも圧力の低い状態まで冷媒を膨張させるため、蒸発器14と蒸発器24との蒸発温度が異なる。蒸発器14、24の蒸発圧力は各蒸発温度に対応した飽和蒸気圧力となり、蒸発器14の蒸発圧力が蒸発器24の蒸発圧力よりも高くなっている。
本実施形態によると、第1実施形態と同様に、蒸発器14を流出して気液分離器15で分離された気相の冷媒が流入口16aからエジェクタ16に流入する。また、蒸発器14よりも蒸発圧力の低い蒸発器24を流出した冷媒が流入口16bから吸引されてエジェクタ16に流入する。
このため、蒸発器14で冷媒を蒸発させて流入口16aから流入する気相の冷媒量を多くし、流入口16bに生じる吸引力を高くして冷媒を昇圧することができる。従って、圧縮機11の圧縮仕事を低減し、冷凍サイクル10の成績係数を向上できるとともに冷凍冷蔵庫1の省電力化を図ることができる。
また、放熱器12の後段で並列な減圧装置13及び減圧装置23に冷媒が分岐して流入し、減圧装置23が減圧装置13よりも低い圧力まで冷媒を減圧する。これにより、蒸発圧力の異なる蒸発器14、24を備えた冷凍サイクル10を容易に実現することができる。
第1、第2実施形態おいて、冷凍冷蔵庫1について説明しているが、異なる温度設定空間を冷却する複数の蒸発器を備えた機器に適用が可能である。
本発明によると、エジェクタを有する冷凍サイクル及びそれを備えた冷凍冷蔵庫に利用することができる。
1 冷凍冷蔵庫
2 断熱箱体
3 冷蔵室
4 冷凍室
5 機械室
6、7 冷気通路
8 冷蔵室送風機
9 冷凍室送風機
10 冷凍サイクル
11 圧縮機
12 放熱器
13、23 減圧装置
14、24 蒸発器
15、25 気液分離器
16 エジェクタ
16a、16b 流入口
16c 流出口
16d 吸引部
16e 混合部
16f ディフューザ部
16g ノズル
17 バルブ
18 バイパス通路
19 三方弁

Claims (5)

  1. 冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒を放熱させる放熱器と、前記放熱器を流出後の冷媒を減圧する第1減圧装置及び第2減圧装置と、第1減圧装置で減圧した冷媒を蒸発させる第1蒸発器と、第1蒸発器から流出した冷媒を気相と液相とに分離する第1気液分離器と、第2減圧装置で減圧した冷媒を蒸発させるとともに第1蒸発器よりも蒸発圧力が低い第2蒸発器と、第1気液分離器の気相の冷媒の流出側に接続される第1流入口と第2蒸発器に接続される第2流入口と前記圧縮機に接続される流出口とを有するエジェクタとを備え、前記エジェクタが第1流入口からの冷媒流入によって第2蒸発器を流出した冷媒を第2流入口から吸引して流入させることを特徴とする冷凍サイクル。
  2. 第1減圧装置と第2減圧装置とが第1気液分離器を介して直列に接続され、第1気液分離器から流出した液相の冷媒が第2減圧装置に流入することを特徴とする請求項1に記載の冷凍サイクル。
  3. 第1減圧装置と第2減圧装置とが前記放熱器の後段で並列に接続され、前記放熱器から流出した冷媒が分岐して第1減圧装置及び第2減圧装置に流入するとともに、第2減圧装置が第1減圧装置よりも低い圧力まで冷媒を減圧することを特徴とする請求項1に記載の冷凍サイクル。
  4. 第2蒸発器から流出した冷媒を気相と液相とに分離する第2気液分離器を設け、第2気液分離器を流出した気相の冷媒が第2流入口から前記エジェクタに流入することを特徴とする請求項1〜請求項3のいずれかに記載の冷凍サイクル。
  5. 請求項1〜請求項4のいずれかに記載の冷凍サイクルと、貯蔵物を冷蔵保存する冷蔵室と、貯蔵物を冷凍保存する冷凍室とを備え、第1蒸発器と熱交換して生成された冷気により前記冷蔵室を冷却するとともに第2蒸発器と熱交換して生成された冷気により前記冷凍室を冷却することを特徴とする冷凍冷蔵庫。
JP2012083664A 2012-04-02 2012-04-02 冷凍サイクル及び冷凍冷蔵庫 Pending JP2013213605A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012083664A JP2013213605A (ja) 2012-04-02 2012-04-02 冷凍サイクル及び冷凍冷蔵庫

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012083664A JP2013213605A (ja) 2012-04-02 2012-04-02 冷凍サイクル及び冷凍冷蔵庫

Publications (1)

Publication Number Publication Date
JP2013213605A true JP2013213605A (ja) 2013-10-17

Family

ID=49587047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083664A Pending JP2013213605A (ja) 2012-04-02 2012-04-02 冷凍サイクル及び冷凍冷蔵庫

Country Status (1)

Country Link
JP (1) JP2013213605A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180116744A (ko) * 2017-04-17 2018-10-25 삼성전자주식회사 냉장고
CN108826728A (zh) * 2018-06-20 2018-11-16 中国科学院广州能源研究所 一种高效co2热泵余热回收装置
JP2019074300A (ja) * 2017-04-17 2019-05-16 三星電子株式会社Samsung Electronics Co.,Ltd. 冷凍サイクル装置、その制御方法、及び三方流量制御弁
WO2020097263A1 (en) * 2018-11-06 2020-05-14 Evapco, Inc. Direct expansion evaporator with vapor ejector capacity boost
RU2822117C2 (ru) * 2018-11-06 2024-07-01 Эвапко, Инк. Испаритель непосредственного охлаждения с повышением производительности посредством парового эжектора

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147717U (ja) * 1988-03-29 1989-10-12
JPH06109338A (ja) * 1992-09-25 1994-04-19 Morikawa Sangyo Kk 冷凍機回路及びこれを用いたガス回収装置
JP2001147050A (ja) * 1999-10-19 2001-05-29 Lg Electronics Inc 2個の蒸発器を備えた冷蔵庫の冷凍システム
JP2003083622A (ja) * 2001-07-06 2003-03-19 Denso Corp エジェクタサイクル
JP2007046806A (ja) * 2005-08-08 2007-02-22 Denso Corp エジェクタ式サイクル
JP2007057156A (ja) * 2005-08-24 2007-03-08 Calsonic Kansei Corp 冷凍サイクル
JP2009236330A (ja) * 2008-03-25 2009-10-15 Calsonic Kansei Corp 冷却システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147717U (ja) * 1988-03-29 1989-10-12
JPH06109338A (ja) * 1992-09-25 1994-04-19 Morikawa Sangyo Kk 冷凍機回路及びこれを用いたガス回収装置
JP2001147050A (ja) * 1999-10-19 2001-05-29 Lg Electronics Inc 2個の蒸発器を備えた冷蔵庫の冷凍システム
JP2003083622A (ja) * 2001-07-06 2003-03-19 Denso Corp エジェクタサイクル
JP2007046806A (ja) * 2005-08-08 2007-02-22 Denso Corp エジェクタ式サイクル
JP2007057156A (ja) * 2005-08-24 2007-03-08 Calsonic Kansei Corp 冷凍サイクル
JP2009236330A (ja) * 2008-03-25 2009-10-15 Calsonic Kansei Corp 冷却システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180116744A (ko) * 2017-04-17 2018-10-25 삼성전자주식회사 냉장고
JP2019074300A (ja) * 2017-04-17 2019-05-16 三星電子株式会社Samsung Electronics Co.,Ltd. 冷凍サイクル装置、その制御方法、及び三方流量制御弁
KR102496363B1 (ko) 2017-04-17 2023-02-06 삼성전자주식회사 냉장고
CN108826728A (zh) * 2018-06-20 2018-11-16 中国科学院广州能源研究所 一种高效co2热泵余热回收装置
WO2020097263A1 (en) * 2018-11-06 2020-05-14 Evapco, Inc. Direct expansion evaporator with vapor ejector capacity boost
CN112969895A (zh) * 2018-11-06 2021-06-15 艾威普科公司 具有提升蒸气喷射器产量的直接膨胀蒸发器
US11493245B2 (en) 2018-11-06 2022-11-08 Evapco, Inc. Direct expansion evaporator with vapor ejector capacity boost
CN112969895B (zh) * 2018-11-06 2023-04-14 艾威普科公司 具有提升蒸气喷射器产量的直接膨胀蒸发器
RU2822117C2 (ru) * 2018-11-06 2024-07-01 Эвапко, Инк. Испаритель непосредственного охлаждения с повышением производительности посредством парового эжектора

Similar Documents

Publication Publication Date Title
US11149989B2 (en) High efficiency ejector cycle
US20220113065A1 (en) Ejector Cycle
US9759462B2 (en) High efficiency ejector cycle
KR100798395B1 (ko) 이젝터-타입 냉동사이클 장치
JP5195364B2 (ja) エジェクタ式冷凍サイクル
US9752801B2 (en) Ejector cycle
US20120234026A1 (en) High efficiency refrigeration system and cycle
US6622518B2 (en) Cryogenic refrigerating system
US20100313582A1 (en) High efficiency r744 refrigeration system and cycle
JP2004198002A (ja) 蒸気圧縮式冷凍機
JP5126072B2 (ja) エジェクタ式冷凍サイクル
KR20080106311A (ko) 냉동 장치
JP5359231B2 (ja) エジェクタ式冷凍サイクル
JP2016061472A (ja) 冷凍サイクル装置
JP2013213605A (ja) 冷凍サイクル及び冷凍冷蔵庫
JP2005249315A (ja) エジェクタサイクル
JP2005024210A (ja) 蒸気圧縮式冷凍機
JP4577365B2 (ja) エジェクタを用いたサイクル
JP2008082693A (ja) 冷凍サイクル
JP2005037056A (ja) エジェクタサイクル
JP2009002576A (ja) 冷凍サイクル装置
JP2004163084A (ja) 蒸気圧縮式冷凍機
JP2007212071A (ja) 冷凍サイクル装置
JP5792585B2 (ja) 冷凍機、冷蔵ショーケース及び自動販売機
JP2014190562A (ja) 冷凍サイクル及び冷却機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329