JP2013209509A - Water-repellent structure and method of manufacturing the same - Google Patents
Water-repellent structure and method of manufacturing the same Download PDFInfo
- Publication number
- JP2013209509A JP2013209509A JP2012080390A JP2012080390A JP2013209509A JP 2013209509 A JP2013209509 A JP 2013209509A JP 2012080390 A JP2012080390 A JP 2012080390A JP 2012080390 A JP2012080390 A JP 2012080390A JP 2013209509 A JP2013209509 A JP 2013209509A
- Authority
- JP
- Japan
- Prior art keywords
- water
- repellent
- skeleton
- voids
- monolith
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000005871 repellent Substances 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 239000011148 porous material Substances 0.000 claims abstract description 22
- 239000000945 filler Substances 0.000 claims abstract description 17
- 239000011941 photocatalyst Substances 0.000 claims description 20
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 15
- 229910052731 fluorine Inorganic materials 0.000 claims description 15
- 239000011737 fluorine Substances 0.000 claims description 15
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 13
- 230000002940 repellent Effects 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 239000003822 epoxy resin Substances 0.000 claims description 5
- 229920000647 polyepoxide Polymers 0.000 claims description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- -1 polytetrafluoroethylene Polymers 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 3
- 125000001153 fluoro group Chemical group F* 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 1
- 230000003373 anti-fouling effect Effects 0.000 abstract description 8
- 230000003115 biocidal effect Effects 0.000 abstract 1
- 239000007787 solid Substances 0.000 description 12
- 239000003921 oil Substances 0.000 description 9
- 230000000844 anti-bacterial effect Effects 0.000 description 7
- 239000004408 titanium dioxide Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010702 perfluoropolyether Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229940048276 new coccine Drugs 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000012731 ponceau 4R Nutrition 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- SWGJCIMEBVHMTA-UHFFFAOYSA-K trisodium;6-oxido-4-sulfo-5-[(4-sulfonatonaphthalen-1-yl)diazenyl]naphthalene-2-sulfonate Chemical compound [Na+].[Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=C(S([O-])(=O)=O)C2=C1 SWGJCIMEBVHMTA-UHFFFAOYSA-K 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
Abstract
Description
本発明は、高度撥水性状態の高耐久性を有しつつ、防汚性や抗菌性を有する撥水性構造体およびその製造方法に関する。 The present invention relates to a water-repellent structure having antifouling properties and antibacterial properties while having high durability in a highly water-repellent state and a method for producing the same.
接触角が高い撥水性の表面は、低表面エネルギーに表面粗さを組み合わせることにより作製できることが知られている。この作製方法には様々なものがある。 It is known that a water-repellent surface having a high contact angle can be produced by combining surface roughness with low surface energy. There are various manufacturing methods.
超撥水性表面は、表面と水との接触面積を著しく小さくすることができるため、水を介した化学反応の進行や局部電池の形成、電気回線のショート、あるいは水素結合の形成を抑えることができる。このため、固体表面における着雪雨滴防止、汚れ防止、防錆、電気絶縁性、離型性などの様々な目的に対して、高い効果が期待できる。 The super-water-repellent surface can significantly reduce the contact area between the surface and water, which can suppress the progress of chemical reaction through water, formation of local batteries, short circuit of electric lines, or formation of hydrogen bonds. it can. For this reason, a high effect can be expected for various purposes such as prevention of raindrops on the solid surface, prevention of dirt, rust prevention, electrical insulation, and releasability.
ここで述べる高度撥水性表面とは、平滑面では実現できない接触角120°以上のものである。そしてその適用範囲は、自動車や新幹線等の乗り物の外装、船底塗料、外灯、台所及び台所用品、浴室や洗面所とその用品、漁業用網、ブイ、歯科用品、電気機器、住宅の床や外装、玄関ドア及びノブ、屋根、プール及びプールサイド、橋脚、門扉、ポスト、ベンチ、鉄塔、アンテナ、電線、ガレージ、テント、傘、レインコート、スポーツ用品およびスポーツ衣料、ヘルメット、靴や鞄などの皮革製品、カメラ、ビデオ、紙、スピーカー等の屋外拡声器や音響機器、カーテン、絨毯、ガソリンスタンド等の注油ノズル、精油所等の化学プラント、金属製工具類、釘やネジ、バケツ類等、極めて広範囲に及ぶ。 The highly water-repellent surface described here is a surface having a contact angle of 120 ° or more that cannot be realized on a smooth surface. And the scope of application includes exteriors of vehicles such as automobiles and bullet trains, ship bottom paint, outdoor lights, kitchens and kitchenware, bathrooms and toilets and their equipment, fishing nets, buoys, dental supplies, electrical equipment, residential floors and exteriors, Entrance doors and knobs, roofs, pools and poolsides, bridge piers, gates, posts, benches, towers, antennas, electric wires, garages, tents, umbrellas, raincoats, sports equipment and sports clothing, helmets, shoes and bags and other leather products , Outdoor loudspeakers such as cameras, video, paper, speakers, audio equipment, curtains, carpets, oiling nozzles for gas stations, chemical plants such as refineries, metal tools, nails, screws, buckets, etc. It extends to.
しかしながら、高度撥水性表面は、微細な表面構造と低表面エネルギーの組み合わせで実現させることから、その表面構造を形成する基材に固い素材を用いたとしても、摩耗等に対する耐久性を担保させることが最も困難であった。 However, the highly water-repellent surface is realized by a combination of a fine surface structure and low surface energy, so even if a hard material is used for the base material that forms the surface structure, durability against abrasion etc. is ensured. Was the most difficult.
その改善策として、特許文献1に開示されるような有機モノリス構造体を用いた高度撥水性表面が実現された。有機モノリス構造体とは、空隙(0.1〜10μm)と該空隙を構成する骨格が連結した共連続構造(スピノーダル)であることから、その塊をいかなる方向で切り分けても、一定の凹凸構造を有する表面になる。さらに、モノリス構造体は、骨格表面上及び/又は骨格内部に直径数10 nm の細孔が存在する二重細孔構造を有している。有機モノリス構造体は、その骨格を撥水性にする表面改質を行った場合、高い撥水性を呈するのに十分な凹凸構造を有する。 As an improvement measure, a highly water-repellent surface using an organic monolith structure as disclosed in Patent Document 1 has been realized. An organic monolith structure is a co-continuous structure (spinodal) in which voids (0.1 to 10 μm) and skeletons constituting the voids are connected. Therefore, even if the lump is cut in any direction, it has a certain uneven structure. Become the surface. Further, the monolith structure has a double pore structure in which pores having a diameter of several tens of nanometers exist on the skeleton surface and / or inside the skeleton. The organic monolith structure has a concavo-convex structure sufficient to exhibit high water repellency when surface modification is performed to make the skeleton water-repellent.
さらに、生物の新陳代謝による“自己修復機能”を模倣した材料設計指針に取り入れ、常に新鮮な表面をさらすことで凹凸構造を維持するような高度撥水性を維持するような材料が実現された。例えば、分離精製媒体やカラムクロマトグラフィーの充填剤に使用される多孔性架橋ポリマー樹脂が、細い骨格により分離性能を示す一体構造を有する分離媒体として注目され(特許文献2参照。)、一部実用化に至っている。これは、エポキシ樹脂硬化物の三次元網目骨格を有する多孔体であり、三次元網目構造が柱状のエポキシ樹脂硬化物の共連続構造である。その際に用いることができる樹脂は、エポキシ樹脂の他に、スチレン、メタクリレート、アクリレートであった。 In addition, the material design guideline that mimics the “self-healing function” by the metabolism of living organisms has been realized, and a material that maintains a high water repellency that maintains an uneven structure by constantly exposing a fresh surface has been realized. For example, porous cross-linked polymer resins used for separation and purification media and packing materials for column chromatography are attracting attention as a separation medium having an integral structure that exhibits separation performance by a thin skeleton (see Patent Document 2), and is partially practical. Has led to This is a porous body having a three-dimensional network skeleton of a cured epoxy resin, and the three-dimensional network structure is a co-continuous structure of a cured epoxy resin having a columnar shape. Resins that can be used at that time were styrene, methacrylate and acrylate in addition to the epoxy resin.
従来、多くの撥水性表面は空気層を微細な表面構造に空気(気体)を噛み込ませることで高撥水表面を実現してきた(特許文献1)が、表面に凹凸構造や微細なファイバーを設置し、その構造体の隙間にフッ素系溶液を配置して転落性のよい高撥水性表面を形成した報告もある(非特許文献1)。 Conventionally, many water-repellent surfaces have realized a highly water-repellent surface by entraining air (gas) into a fine surface structure (Patent Document 1). There is also a report that a highly water-repellent surface with good tumbling properties is formed by installing a fluorine-based solution in the gap between the structures (Non-Patent Document 1).
従来技術に述べたように、高度撥水性表面の作製例は多数報告されているが、実用化までに至ったのは極めて限定的である。例えば特許文献1に開示される有機モノリス構造体を用いた高度撥水性表面では、耐久性(特に、耐摩耗性)が改善されたが、水及び油の滴の転落性が不十分であることから、防汚性が不十分であった。 As described in the prior art, many examples of production of highly water-repellent surfaces have been reported, but it has been extremely limited until practical use. For example, a highly water-repellent surface using an organic monolith structure disclosed in Patent Document 1 has improved durability (particularly abrasion resistance), but water and oil drops are insufficiently tumbled. Therefore, the antifouling property was insufficient.
その際、表面張力が小さい液体を構造体に配置する方策がとられることがあったが、蒸気圧を考慮して蒸発を抑制する必要があった。加えて、その液体の物理的保持性(水流等による洗い流しなどに対する保持性)が求められた。 At that time, there has been a measure to arrange a liquid having a low surface tension in the structure, but it is necessary to suppress evaporation in consideration of the vapor pressure. In addition, the physical retention of the liquid (retention against washing away by a water flow or the like) was required.
加えて、光触媒は強い酸化還元力による抗菌性を有するが、定常的に汚れが付着する部位に用いると必ずしも威力を発揮できなかった。 In addition, the photocatalyst has an antibacterial property due to its strong redox power, but it could not always exert its power when used on a site where dirt is regularly attached.
そこで本発明の課題は、高度撥水性状態の高耐久性を有しつつ、防汚性や抗菌性を有する撥水性構造体を提供することにある。 Then, the subject of this invention is providing the water-repellent structure which has antifouling property and antibacterial property, having high durability of a highly water-repellent state.
上記課題を解決するために、本発明に係る撥水性構造体は、空隙と該空隙を形成する骨格とが三次元網目状に連結された共連続構造を有するモノリス構造体からなり、前記骨格の表面に細孔が形成され、前記空隙の内部に液状またはゲル状の撥水性充填材が充填されていることを特徴とするものからなる。 In order to solve the above problems, the water-repellent structure according to the present invention comprises a monolith structure having a co-continuous structure in which voids and a skeleton forming the voids are connected in a three-dimensional network, Fine pores are formed on the surface, and liquid or gel-like water repellent filler is filled in the voids.
モノリス構造体は、空隙と該空隙を形成する骨格とが連結された共連続構造(スピノーダル)を有するので、いかなる方向に沿って切り分けても、一定の凹凸構造が表面に露出される。従って、強い摩擦を与えつつ表面を剥ぎ取った場合でも、高度撥水性表面の形成に必要な凹凸構造を常に維持することが可能である。モノリス構造体の空隙率は、60〜80%であることが好ましい。さらに、細孔内に充填された撥水性充填剤の蒸発と流動性を抑制するために、モノリス構造体の骨格上には数10nmの細孔が形成されていることが好ましい。モノリス構造体の具体例としては、例えば前述の特許文献2に記載されているようなエポキシ樹脂硬化物からなるモノリス構造体を使用できる。
Since the monolith structure has a co-continuous structure (spinodal) in which voids and a skeleton that forms the voids are connected, a certain uneven structure is exposed on the surface even if cut along any direction. Therefore, even when the surface is peeled off while applying strong friction, it is possible to always maintain the uneven structure necessary for forming a highly water-repellent surface. The porosity of the monolith structure is preferably 60 to 80%. Furthermore, in order to suppress evaporation and fluidity of the water repellent filler filled in the pores, it is preferable that pores of several tens of nm are formed on the skeleton of the monolith structure. As a specific example of the monolith structure, for example, a monolith structure made of a cured epoxy resin as described in
このような本発明の撥水性構造体によれば、モノリス構造体の空隙に低表面エネルギーの液状またはゲル状の撥水性充填材が充填されているので、水や油の転落性・防汚性・抗菌性を著しく向上させた高撥水性表面を大面積で形成することが可能となる。 According to such a water-repellent structure of the present invention, the liquid of the monolith structure is filled with a liquid or gel-like water-repellent filler having a low surface energy. -A highly water-repellent surface with significantly improved antibacterial properties can be formed in a large area.
かかる撥水性構造体において、前記撥水性充填材が、フッ素を含有するフッ素系撥水性充填材であることが好ましい。撥水性充填材は、撥水性および撥油性を実現するために表面張力が低いのが望ましく、含浸後の揮発を防ぐためには蒸気圧が低いのが望ましい。このような物性を有する撥水性充填材の具体例として、パーフルオロカーボン、直鎖構造を有するパーフルオロポリエーテル油やフッ素系不活性液体等のフッ素系撥水性充填材が挙げられる。とくに水や油が溶解しにくい不活性液体を用いることで、防汚性を飛躍的に向上させることが可能である。 In such a water-repellent structure, it is preferable that the water-repellent filler is a fluorine-based water-repellent filler containing fluorine. The water repellent filler preferably has a low surface tension in order to realize water repellency and oil repellency, and preferably has a low vapor pressure in order to prevent volatilization after impregnation. Specific examples of the water-repellent filler having such physical properties include fluorine-based water-repellent fillers such as perfluorocarbon, perfluoropolyether oil having a linear structure, and fluorine-based inert liquid. In particular, by using an inert liquid in which water and oil are difficult to dissolve, the antifouling property can be drastically improved.
また、前記骨格の表面および/または内部に、フッ素を含有するフッ素系樹脂が配置されていることが好ましい。骨格部分にフッ素系ポリマー樹脂等をコーティング等により配置することにより、外部に露出する骨格部分の撥水性が向上し、本発明に係る撥水性構造体全体として高い撥水性が実現される。このようなフッ素系樹脂は、骨格の内部に練り込まれるなどして含まれていてもよく、骨格の表面にコーティングされていてもよい。高い撥水性を発現させるために、フッ素系樹脂として例えばポリテトラフルオロエチレンを用いることができる。 Moreover, it is preferable that a fluorine-containing resin containing fluorine is disposed on the surface and / or inside of the skeleton. By disposing the fluoropolymer resin or the like on the skeleton portion by coating or the like, the water repellency of the skeleton portion exposed to the outside is improved, and high water repellency is realized as the entire water-repellent structure according to the present invention. Such a fluororesin may be contained by being kneaded into the inside of the skeleton, or may be coated on the surface of the skeleton. In order to develop high water repellency, for example, polytetrafluoroethylene can be used as the fluororesin.
また、前記骨格の表面や内部に光触媒が配置されていることが好ましい。このようにすることで、二酸化チタンや可視光応答型光触媒等の光触媒が骨格表面の汚れを分解することが可能となる。とくにモノリス構造体が有機物材料からなる有機モノリス構造体である場合には、モノリス構造体を徐々に分解する自己エッチング作用によって、常に新鮮な表面があらわれるようになる。その結果として、いわば「新陳代謝による自己修復機能」を付加されたことによる高耐久性が維持される。 Moreover, it is preferable that the photocatalyst is arrange | positioned on the surface or the inside of the said frame | skeleton. By doing in this way, it becomes possible for photocatalysts, such as titanium dioxide and a visible light response type photocatalyst, to decompose | disassemble the stain | pollution | contamination of a frame | skeleton surface. In particular, when the monolith structure is an organic monolith structure made of an organic material, a fresh surface always appears due to the self-etching action that gradually decomposes the monolith structure. As a result, high durability is maintained by adding a “self-repair function by metabolism”.
ここで、自己エッチング作用とは、二酸化チタン等の光触媒に紫外線が照射された場合に発揮される有機物分解反応を促進させる作用をいう。有機モノリス構造体に適当な量の光触媒を内部構造や表面に添加し、有機モノリス構造体に紫外線を照射すると、表面から順に有機モノリス構造体が分解する。そして、降雨時等に雨水で分解生成物が洗い流されることで常に新鮮なモノリス構造が表面に露出するので、高い撥水性を長期間にわたり維持することができるのである。 Here, the self-etching action means an action of promoting an organic matter decomposition reaction that is exhibited when a photocatalyst such as titanium dioxide is irradiated with ultraviolet rays. When an appropriate amount of a photocatalyst is added to the internal structure or the surface of the organic monolith structure, and the organic monolith structure is irradiated with ultraviolet rays, the organic monolith structure is decomposed in order from the surface. In addition, a fresh monolithic structure is always exposed on the surface by washing the decomposition products with rainwater during rainfall, so that high water repellency can be maintained over a long period of time.
このような本発明の撥水性構造体において、前記光触媒が、体積比で前記モノリス構造体の10%以下を占めることが好ましい。光触媒はモノリス構造体を分解する自己エッチング作用を有するが、撥水性構造体自体に十分な撥水性を持たせるためにはモノリス構造体の露出面積をある程度確保するのが有利である。具体的には、光触媒がモノリス構造体の10%以下を占める程度であれば、十分な撥水性が発揮される。
In such a water-repellent structure of the present invention, the photocatalyst preferably occupies 10% or less of the monolith structure by volume. Although the photocatalyst has a self-etching action for decomposing the monolith structure, it is advantageous to secure a certain amount of the exposed area of the monolith structure in order to give the water-repellent structure itself sufficient water repellency. Specifically, if the
また、上記課題を解決するために、本発明に係る撥水性構造体の製造方法は、空隙と該空隙を形成する骨格とが三次元網目状に連結された共連続構造を有するモノリス構造体において前記骨格の表面に細孔を形成し、前記空隙に、液状またはゲル状の撥水性充填材を充填することを特徴とする方法からなる。 In order to solve the above problems, the method for producing a water-repellent structure according to the present invention provides a monolith structure having a co-continuous structure in which voids and a skeleton forming the voids are connected in a three-dimensional network. The method comprises forming pores on the surface of the skeleton and filling the voids with a liquid or gel water-repellent filler.
このような本発明に係る撥水性構造体の製造方法によれば、モノリス構造体の空隙に低表面エネルギーの液状またはゲル状の撥水性充填材が充填されるので、水や油の転落性・防汚性・抗菌性を著しく向上させた高撥水性表面を大面積で形成することが可能となる。骨格表面上の細孔の数は多いほど望ましく、例えば走査型電子顕微鏡で断面観察を行った場合に、1μm×1μmの領域内に1個以上、さらには0.1μm×0.1μmの領域内に1個以上存在することが望ましい。 According to such a method for producing a water-repellent structure according to the present invention, a liquid or gel-like water-repellent filler having a low surface energy is filled in the voids of the monolith structure. A highly water-repellent surface with significantly improved antifouling and antibacterial properties can be formed in a large area. The larger the number of pores on the surface of the skeleton, the better. For example, when cross-sectional observation is performed with a scanning electron microscope, one or more in a 1 μm × 1 μm region, and further 1 in a 0.1 μm × 0.1 μm region. It is desirable that there are more than one.
本発明に係る撥水性構造体によれば、高い撥水性を呈するモノリス構造体の空隙の内部に液状またはゲル状の撥水性充填材が充填されているので、水や油が空隙内に進入することが効果的に防止される結果、水滴や油滴の転落性が向上するので、耐久性が高く防汚性や抗菌性に優れた撥水性構造体が提供可能となる。 According to the water-repellent structure according to the present invention, since the liquid or gel-like water-repellent filler is filled in the voids of the monolith structure exhibiting high water repellency, water or oil enters the voids. As a result, it is possible to provide a water repellent structure that is highly durable and excellent in antifouling properties and antibacterial properties.
また、ゲル化及び/若しくは骨格表面上の細孔で撥水性充填剤の流動性を制限することで、蒸発の抑制やその液体の物理的保持(水流等に対する保持)が可能な撥水性構造体の提供が可能となる。 In addition, the water-repellent structure that can suppress evaporation and physically hold the liquid (holding against water flow, etc.) by limiting the fluidity of the water-repellent filler with gelation and / or pores on the surface of the skeleton. Can be provided.
(モノリス構造体の作製方法)
基材に、空隙と該空隙を構成する骨格が連結した共連続構造(スピノーダル)を有する有機モノリス構造体を用意する。これは、化学的に安定な粘弾性体で、空隙の孔径の制御がある程度可能であり(特許文献2参照。)、エポキシ系モノマーを重合させたものである。その孔径は特に限定されないが、望ましくは200nm〜10μm、より望ましくは、500nm〜1μmである。加えて、骨格表面上の細孔径は、それぞれの骨格径より十分小さいが、その細孔の数が多いほど望ましい。光触媒の酸化分解反応を用いてモノリス構造体を光照射表面から分解し常に初期状態と同等の凹凸構造を維持する、自己エッチング機能を用いた自己修復機能を付加するために、二酸化チタン光触媒をモノリス構造内部及び/又は表面に設置する(特許文献1参照。)。モノリス構造体内部に設置する場合には(図1)、モノリス構造体を作製する際にモノマーに二酸化チタン光触媒を0.01〜95Mass%の体積比で添加する。壁材等の緩やかな汚染に対するものは5Mass%以下で骨格を形成し、望ましくは、1.5〜0.5 Mass%の範囲で添加することが望ましい。高撥水性の維持性を重視するには、骨格中に例えば30〜65Mass%のポリテトラフルオロエチレンが練り込まれていてもよい。抗菌性を重視する場合には、50Mass%以上で骨格を形成し、望ましくは、50〜80 Mass%の範囲で添加することが望ましい。いずれの場合であっても、二酸化チタン等の光触媒の粒子サイズは特に限定されないが、モノリス構造体の空隙の孔径よりも十分に小さい粒径が適切であり、数10nm以下が望ましい。最後に、二酸化チタン光触媒が添加されたモノリス構造体を、撥水系ポリマー(シリコン系・フッ素系)を0.0001〜40Mass%を有機溶媒に溶解したものに含浸させ、表面改質を行う。
(Method for producing monolith structure)
An organic monolith structure having a co-continuous structure (spinodal) in which a void and a skeleton constituting the void are connected to a substrate is prepared. This is a chemically stable viscoelastic body, and the pore diameter of the voids can be controlled to some extent (see Patent Document 2), and is obtained by polymerizing an epoxy monomer. The pore diameter is not particularly limited, but is preferably 200 nm to 10 μm, more preferably 500 nm to 1 μm. In addition, the pore diameter on the skeleton surface is sufficiently smaller than each skeleton diameter, but it is desirable that the number of pores is large. In order to add a self-healing function using a self-etching function that decomposes the monolith structure from the light-irradiated surface using the photocatalytic oxidative decomposition reaction and always maintains the uneven structure equivalent to the initial state, the monolithic titanium dioxide photocatalyst is monolithic. It is installed inside the structure and / or on the surface (see Patent Document 1). When installed inside the monolith structure (FIG. 1), a titanium dioxide photocatalyst is added to the monomer in a volume ratio of 0.01 to 95% by mass when the monolith structure is produced. For a wall material or the like that is moderately contaminated, a skeleton is formed at 5% by mass or less, and desirably it is added in a range of 1.5 to 0.5% by mass. In order to attach importance to the maintenance of high water repellency, for example, 30 to 65% by mass of polytetrafluoroethylene may be incorporated into the skeleton. When emphasizing antibacterial properties, a skeleton is formed at 50% by mass or more, and desirably it is added in the range of 50 to 80% by mass. In either case, the particle size of the photocatalyst such as titanium dioxide is not particularly limited, but a particle size sufficiently smaller than the pore size of the voids of the monolith structure is appropriate, and is preferably several tens of nm or less. Finally, the monolith structure to which the titanium dioxide photocatalyst is added is impregnated with a water-repellent polymer (silicon-based / fluorine-based) dissolved in 0.0001 to 40% by mass in an organic solvent to perform surface modification.
(充填する液体またはゲル)
充填する液体またはゲルは、低表面張力(撥水・撥油をもたらすため)および低蒸気圧(含浸後の揮発を防ぐため)を有するものであることが好ましく、具体的には以下のようなものを使用することができる。
(Liquid or gel to fill)
The liquid or gel to be filled preferably has a low surface tension (to bring about water and oil repellency) and a low vapor pressure (to prevent volatilization after impregnation). Things can be used.
・パーフルオロカーボン単体若しくは複数のパーフルオロカーボンの液体(C6F14など)
・フッ素系不活性液体(表面張力=12〜18mN/m@25℃:住友3M フォロリナート)
・フッ素系不活性液体(表面張力=16mN/m@25℃:三菱マテリアル イナートリキッド)
・フッ素オイル(表面張力=17.7〜19.1mN/m@25℃:ダイキン イナートリキッド)
・直鎖構造を有するパーフルオロポリエーテル油
・シリコーンオイル(表面張力=19〜22mN/m@25℃:信越シリコーン)
・ Perfluorocarbon alone or multiple perfluorocarbon liquids (C6F14, etc.)
・ Fluorine-based inert liquid (Surface tension = 12-18mN / m @ 25 ℃: Sumitomo 3M Forolinate)
・ Fluorine-based inert liquid (Surface tension = 16mN / m @ 25 ℃: Mitsubishi Materials Inert Liquid)
・ Fluorine oil (Surface tension = 17.7 to 19.1mN/m@25℃: Daikin Inert Liquid)
・ Perfluoropolyether oil with linear structure ・ Silicone oil (Surface tension = 19-22mN / m @ 25 ℃: Shin-Etsu Silicone)
上記具体例のほか、モノリス構造体に含浸させることにより撥水性構造体の表面エネルギーが12〜45mJ/m2となるような液体またはゲルが適用可能である。この表面エネルギーの数値範囲は、Owens and Wendt法に準拠して、極性・非極性の2液の液滴の接触角をそれぞれ測定することにより算出されたものである。所定の液体を有機モノリス構造体に含浸させた撥水性構造体について、実際に計測された表面エネルギーの値の一例は37.6mJ/m2である。 In addition to the above specific examples, liquids or gels can be applied such that the surface energy of the water repellent structure is 12 to 45 mJ / m 2 by impregnating the monolith structure. This numerical range of the surface energy is calculated by measuring the contact angle of two polar and nonpolar liquid droplets in accordance with the Owens and Wendt method. An example of the actually measured surface energy value of the water repellent structure obtained by impregnating the organic monolith structure with a predetermined liquid is 37.6 mJ / m 2 .
以下、実施例を例示して、本発明をより具体的に説明する。尚、これらの実施例は本発明を制限するものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. In addition, these Examples do not restrict | limit this invention.
(接触角)
図1は、本発明の一実施態様に係る撥水性構造体における有機モノリス構造体の共連続構造を示す概略断面図である。図1において有機モノリス構造体1は、骨格2(白抜き部分)と空隙3(格子柄を付した部分)とが三次元網目状に連結された共連続構造を有し、骨格2の表面には細孔4が形成されている。かかる有機モノリス構造体1中(骨格2内)にTiO2光触媒及びPTFEを配置し、フッ化炭素系溶媒を含浸させた固体表面に液滴を滴下したところ、接触角は概ね140°以上を示した。
(Contact angle)
FIG. 1 is a schematic cross-sectional view showing a co-continuous structure of an organic monolith structure in a water-repellent structure according to an embodiment of the present invention. In FIG. 1, an organic monolith structure 1 has a co-continuous structure in which a skeleton 2 (outlined portion) and voids 3 (portions with a lattice pattern) are connected in a three-dimensional network, Have
(液滴の転落性)
図2に、固体表面の転落角を測定する方法を示す。図2(A)は図1の有機モノリス構造体にフッ化炭素溶液を含浸させてなる撥水性構造体の固体表面を傾斜角2°で傾斜させたときの正面図である。また、図2(B)は図1の有機モノリス構造体の固体表面を傾斜角90°で傾斜させたときの正面図である。実施例(図2(A))においては転落角が2°と測定され、比較例(図2(B))においては転落角が「無し」と測定された。ここで転落角とは、撥水性構造体の表面に滴下した30μLの水滴が、ゆっくりと傾斜を大きくしていったときに転落を開始する角度をいう。図3には、図2(A)の固体表面(実施例)と図2(B)の固体表面(比較例)とに30μLの水滴を滴下し、固体表面の傾斜角が35°となるように傾けたときの転落特性の例を示す。図2〜3より、実施例においては比較例と比べ圧倒的に転落角が小さく、転落速度(=転落距離/経過時間)が大きいことがわかる。
(Dropability of droplets)
FIG. 2 shows a method for measuring the falling angle of the solid surface. FIG. 2A is a front view when the solid surface of a water-repellent structure obtained by impregnating the organic monolith structure of FIG. 1 with a fluorocarbon solution is inclined at an inclination angle of 2 °. FIG. 2B is a front view when the solid surface of the organic monolith structure of FIG. 1 is inclined at an inclination angle of 90 °. In the example (FIG. 2A), the sliding angle was measured as 2 °, and in the comparative example (FIG. 2B), the sliding angle was measured as “none”. Here, the falling angle refers to an angle at which a 30 μL water droplet dropped on the surface of the water-repellent structure starts to fall when the inclination slowly increases. In FIG. 3, 30 μL of water droplets are dropped on the solid surface of FIG. 2A (Example) and the solid surface of FIG. 2B (Comparative Example) so that the inclination angle of the solid surface becomes 35 °. An example of the fall characteristics when tilted to. 2 to 3, it can be seen that in the example, the falling angle is overwhelmingly smaller than in the comparative example, and the falling speed (= falling distance / elapsed time) is large.
図4は、本発明の一実施態様に係る撥水性構造体を構成する有機モノリス構造体を走査型電子顕微鏡で断面観察した際の骨格部分の拡大図である。図4によれば、有機モノリス構造体内に100nm〜10μmの柱体径を有する骨格と、200nm〜10μmの径を有する空隙3とが存在することが観察される。その骨格の表面には、数10nm(正規分布における最頻値)の孔径を有する細孔4が至る所に存在する。この細孔の数は、モノリス構造体の作製段階で制御可能である。 FIG. 4 is an enlarged view of a skeleton portion when a cross-section of the organic monolith structure constituting the water-repellent structure according to one embodiment of the present invention is observed with a scanning electron microscope. According to FIG. 4, it is observed that a skeleton having a columnar diameter of 100 nm to 10 μm and a void 3 having a diameter of 200 nm to 10 μm are present in the organic monolith structure. On the surface of the skeleton, pores 4 having a pore diameter of several tens of nm (mode in normal distribution) are present everywhere. The number of pores can be controlled at the production stage of the monolith structure.
(着色性)
熱可塑性エポキシ系のモノマー及び硬化剤・TiO2光触媒・ポリテトラフルオロエチレン粒子の混合液に、Brilliant Blue FCF若しくはNew Coccineをさらに混入させ、75度の温度環境下に24時間放置させて分相させることで、着色したモノリス構造体を作製することが可能である。着色した色は、24時間程度水につけると色落ちはほとんど発生しなくなる。
(Colorability)
Brilliant Blue FCF or New Coccine is further mixed in a mixture of thermoplastic epoxy monomer and curing agent, TiO2 photocatalyst, and polytetrafluoroethylene particles, and allowed to stand for 24 hours in a 75 ° C temperature environment for phase separation. Thus, it is possible to produce a colored monolith structure. When the colored color is immersed in water for about 24 hours, the color fading hardly occurs.
本発明に係る撥水性構造体は、高撥水撥油性・高液滴滑落性・高耐久性・高防汚性を備えた機能性表面が必要とされる建築材料その他の各種材料に利用可能である。 The water-repellent structure according to the present invention can be used for building materials and other various materials that require a functional surface with high water / oil repellency, high droplet sliding property, high durability, and high antifouling property. It is.
1 有機モノリス構造体
2 骨格
3 空隙
4 細孔
1
Claims (12)
In a monolith structure having a co-continuous structure in which voids and a skeleton forming the voids are connected in a three-dimensional network, pores are formed on the surface of the skeleton, and liquid or gel-like water-repellent filling is provided in the voids. A method for producing a water-repellent structure, comprising filling a material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012080390A JP6043077B2 (en) | 2012-03-30 | 2012-03-30 | Water-repellent structure and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012080390A JP6043077B2 (en) | 2012-03-30 | 2012-03-30 | Water-repellent structure and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013209509A true JP2013209509A (en) | 2013-10-10 |
JP6043077B2 JP6043077B2 (en) | 2016-12-14 |
Family
ID=49527658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012080390A Expired - Fee Related JP6043077B2 (en) | 2012-03-30 | 2012-03-30 | Water-repellent structure and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6043077B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015137511A1 (en) * | 2014-03-11 | 2015-09-17 | Nitto Denko Corporation | Photocatalytic element |
JP2016011375A (en) * | 2014-06-30 | 2016-01-21 | 大和製罐株式会社 | Water-oil lubricating film, method for producing the same, and object having surface coated thereby |
JP2017170737A (en) * | 2016-03-23 | 2017-09-28 | 日産自動車株式会社 | Antifouling structure and automobile component with antifouling structure |
JP2020164802A (en) * | 2019-03-28 | 2020-10-08 | 公立大学法人大阪 | Monolith hole-filling phase separation structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100304120A1 (en) * | 2009-06-01 | 2010-12-02 | Toto Ltd. | Self-cleaning member and coating composition |
JP2011162672A (en) * | 2010-02-10 | 2011-08-25 | Kanagawa Acad Of Sci & Technol | Water-repellent structural body having photocatalyst function |
-
2012
- 2012-03-30 JP JP2012080390A patent/JP6043077B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100304120A1 (en) * | 2009-06-01 | 2010-12-02 | Toto Ltd. | Self-cleaning member and coating composition |
JP2011162672A (en) * | 2010-02-10 | 2011-08-25 | Kanagawa Acad Of Sci & Technol | Water-repellent structural body having photocatalyst function |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015137511A1 (en) * | 2014-03-11 | 2015-09-17 | Nitto Denko Corporation | Photocatalytic element |
CN106068161A (en) * | 2014-03-11 | 2016-11-02 | 日东电工株式会社 | Photocatalysis element |
JP2017509481A (en) * | 2014-03-11 | 2017-04-06 | 日東電工株式会社 | Photocatalytic element |
US10464055B2 (en) | 2014-03-11 | 2019-11-05 | Nitto Denko Corporation | Photocatalytic element |
CN106068161B (en) * | 2014-03-11 | 2022-07-01 | 日东电工株式会社 | Photocatalytic element |
JP2016011375A (en) * | 2014-06-30 | 2016-01-21 | 大和製罐株式会社 | Water-oil lubricating film, method for producing the same, and object having surface coated thereby |
JP2017170737A (en) * | 2016-03-23 | 2017-09-28 | 日産自動車株式会社 | Antifouling structure and automobile component with antifouling structure |
JP2020164802A (en) * | 2019-03-28 | 2020-10-08 | 公立大学法人大阪 | Monolith hole-filling phase separation structure |
JP7502743B2 (en) | 2019-03-28 | 2024-06-19 | 公立大学法人大阪 | Monolithic pore-filling type phase-separated structure |
Also Published As
Publication number | Publication date |
---|---|
JP6043077B2 (en) | 2016-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sethi et al. | Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications: a review | |
Chen et al. | Robust and superhydrophobic surface modification by a “Paint+ Adhesive” method: applications in self-cleaning after oil contamination and oil–water separation | |
Iqbal et al. | Facile fabrication and characterization of a PDMS-derived candle soot coated stable biocompatible superhydrophobic and superhemophobic surface | |
Wang et al. | Bioinspired omniphobic coatings with a thermal self-repair function on industrial materials | |
Kim et al. | Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates | |
Das et al. | A review on superhydrophobic polymer nanocoatings: recent development and applications | |
Fu et al. | Superhydrophobic foams with chemical-and mechanical-damage-healing abilities enabled by self-healing polymers | |
Wu et al. | Spray-coated fluorine-free superhydrophobic coatings with easy repairability and applicability | |
Shang et al. | Fabrication of UV-triggered liquid-repellent coatings with long-term self-repairing performance | |
Xu et al. | Superhydrophobic TiO2–polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties | |
Ragesh et al. | A review on ‘self-cleaning and multifunctional materials’ | |
Bai et al. | Surfaces with sustainable superhydrophobicity upon mechanical abrasion | |
Lee et al. | Zwitter-wettability and antifogging coatings with frost-resisting capabilities | |
JP6043077B2 (en) | Water-repellent structure and method for producing the same | |
Grignard et al. | Electrospinning of a functional perfluorinated block copolymer as a powerful route for imparting superhydrophobicity and corrosion resistance to aluminum substrates | |
Ou et al. | Durable superhydrophobic wood via one-step immersion in composite silane solution | |
Wang et al. | Scalable-manufactured superhydrophobic multilayer nanocomposite coating with mechanochemical robustness and high-temperature endurance | |
US20180118957A1 (en) | Liquid impregnated surfaces for liquid repellancy | |
Zhang et al. | PDMS-infused poly (high internal phase emulsion) templates for the construction of slippery liquid-infused porous surfaces with self-cleaning and self-repairing properties | |
Wang et al. | Design and synthesis of self-healable superhydrophobic coatings for oil/water separation | |
Zhu et al. | Antisoiling performance of lotus leaf and other leaves after prolonged outdoor exposure | |
JP6706420B2 (en) | Laminated body and automobile part provided with the laminated body | |
Wang et al. | Adhesion behaviors on four special wettable surfaces: natural sources, mechanisms, fabrications and applications | |
Yang et al. | Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol–gel process | |
Mossayebi et al. | Reduced ice adhesion using amphiphilic poly (ionic liquid)-based surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161018 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6043077 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |