[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013207907A - Collective electric wire, power transmission device and electronic apparatus using the same, and wireless power transmission system - Google Patents

Collective electric wire, power transmission device and electronic apparatus using the same, and wireless power transmission system Download PDF

Info

Publication number
JP2013207907A
JP2013207907A JP2012073558A JP2012073558A JP2013207907A JP 2013207907 A JP2013207907 A JP 2013207907A JP 2012073558 A JP2012073558 A JP 2012073558A JP 2012073558 A JP2012073558 A JP 2012073558A JP 2013207907 A JP2013207907 A JP 2013207907A
Authority
JP
Japan
Prior art keywords
wire
power transmission
coil
insulated
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012073558A
Other languages
Japanese (ja)
Inventor
Yasuhito Yuasa
安仁 湯浅
Hideki Tatematsu
英樹 立松
Futoshi Deguchi
太志 出口
Katsuya Okamoto
克也 岡本
Kazuhiro Eguchi
和弘 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012073558A priority Critical patent/JP2013207907A/en
Publication of JP2013207907A publication Critical patent/JP2013207907A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a collective electric wire capable of reducing influences due to skin effect and proximity effect to prevent the power transmission efficiency from largely decreasing even when transmission distance between a power transmission coil and a power receiving coil is large or even when an axial displacement exists between the power transmission coil and the power receiving coil.SOLUTION: A collective electric wire 51 includes a first insulated wire 82 and a second insulated wire 83 each coated with an insulating layer. The first insulated wire is spirally wound at a first winding angle a1 forming an angle in one of a positive and a negative direction with respect to a length direction of the collective electric wire. The second insulated wire is spirally wound on the outer side of the first insulated wire at a second winding angle a2 forming an angle in the other of the positive and the negative direction with respect to the length direction of the collective electric wire. Particularly, the first insulated wire further includes a core wire 81 which is wound at the first winding angle. The sectional area of the second insulated wire is larger than the sectional area of the first insulated wire.

Description

本発明は、電子機器に搭載された2次電池を充電するなどの用途で、送電装置から電子機器にワイヤレスで電力伝送を行うワイヤレス電力伝送に用いられる集合電線、これを用いた送電装置および電子機器、ならびにワイヤレス電力伝送システムに関するものである。   The present invention relates to a collective wire used for wireless power transmission in which power is transmitted wirelessly from a power transmission device to an electronic device for use such as charging a secondary battery mounted on the electronic device, a power transmission device using the same, and an electronic device The present invention relates to a device and a wireless power transmission system.

携帯電話などの2次電池を備えた電子機器では、2次電池の充電を行うために、電子機器と充電器とを各々の端子を介して電気的に接続して、充電器から電子機器に電力を供給するようにしたものが一般的であるが、送電装置と電子機器とにそれぞれ送電用と受電用のコイルを設けて、電磁誘導方式により送電装置から電子機器にワイヤレスで電力伝送を行う技術が知られている(特許文献1〜3)。これによると、電気的な接続のための端子が露出しないため、防水性の確保が容易であり、また、接触不良や劣化の問題に配慮する必要がなく、また、送電装置と電子機器の着脱を容易に行うことができるなどの利点が得られる。   In an electronic device equipped with a secondary battery such as a mobile phone, in order to charge the secondary battery, the electronic device and the charger are electrically connected via respective terminals, and the charger is changed to the electronic device. Generally, power is supplied, but a power transmission device and an electronic device are provided with coils for power transmission and power reception, respectively, and power is transmitted wirelessly from the power transmission device to the electronic device by an electromagnetic induction method. Techniques are known (Patent Documents 1 to 3). According to this, since the terminals for electrical connection are not exposed, it is easy to ensure waterproofness, there is no need to consider the problem of poor contact and deterioration, and the power transmission device and the electronic device are attached and detached. It is possible to obtain advantages such as being easily performed.

また、電磁装置(スイッチングトランス)に用いられる電線に関して、中心線に対する素線の相対位置が変化するように素線を編んだ編組線の技術が知られている(特許文献4)。   In addition, with respect to electric wires used in electromagnetic devices (switching transformers), a braided wire technique is known in which strands are knitted so that the relative position of the strands with respect to the center line changes (Patent Document 4).

特開2006−42519号公報JP 2006-42519 A 特開2010−16235号公報JP 2010-16235 A 特開2008−172873号公報JP 2008-172873 A 特開平7−272948号公報JP 7-272948 A

さて、ワイヤレス電力伝送システムでは、コイルの小型化を図るため、高周波電流(数十〜数百kHz)が用いられるが、このような高周波電流を導体に流す場合、電流密度が導体の表面で高くなり、表面から離れるほど低くなる、いわゆる表皮効果の影響により、実効抵抗が増大して電力損失が大きくなり、電力伝送効率が低下するという問題が生じる。   In a wireless power transmission system, a high-frequency current (several tens to hundreds of kHz) is used to reduce the size of the coil. When such a high-frequency current is passed through a conductor, the current density is high on the surface of the conductor. Therefore, due to the effect of the so-called skin effect, which decreases as the distance from the surface increases, the effective resistance increases, the power loss increases, and the power transmission efficiency decreases.

このような問題に対して、従来は、前記の特許文献1〜3にも開示されているように、絶縁電線を複数本撚り合わせた集合電線、いわゆるリッツ線を巻回してコイルを形成するようにしている。このようなリッツ線では、導体の総表面積が大きくなるため、高周波領域での実効抵抗の増大を抑制して、電力伝送効率を高めることができる。   Conventionally, as disclosed in Patent Documents 1 to 3 described above, a coil is formed by winding a collective electric wire obtained by twisting a plurality of insulated wires, so-called litz wires, as disclosed in Patent Documents 1 to 3 above. I have to. In such a litz wire, since the total surface area of the conductor is increased, an increase in effective resistance in a high frequency region can be suppressed, and power transmission efficiency can be increased.

しかしながら、リッツ線は、単に複数本の絶縁電線を撚り合わせただけであるため、各絶縁電線を流れる電流が略同一の方向となる。このため、近接する絶縁電線を流れる電流で発生する磁場が相互に影響し合うことで電流を阻害する、いわゆる近接効果が現れやすくなる傾向にある。この近接効果は、電力損失を増大して電力伝送効率を低下させる要因となり、特に約10W以上の高出力のワイヤレス電力伝送では、送電コイルと受電コイルとの伝送距離が大きくなる場合や、送電コイルおよび受電コイルとに軸ずれがある場合に、電力伝送効率が大幅に低下するという問題があった。   However, since the litz wire is simply a plurality of insulated wires twisted together, the currents flowing through the insulated wires are in substantially the same direction. For this reason, there is a tendency that a so-called proximity effect that inhibits the current is likely to appear due to the magnetic fields generated by the current flowing through the adjacent insulated wires mutually affecting each other. This proximity effect is a factor that increases power loss and decreases power transmission efficiency. Particularly in high-power wireless power transmission of about 10 W or more, when the transmission distance between the power transmission coil and the power reception coil becomes large, In addition, there is a problem in that the power transmission efficiency is significantly reduced when there is an axis deviation between the power receiving coil and the power receiving coil.

また、前記の特許文献4に開示されているように、中心線に対する素線の相対位置が変化するように素線を編んだ構成では、素線が交差した部分が生じ、各素線を流れる電流の向きが異なるため、近接効果の影響を抑制する効果は得られるものの、各素線が略平行に接する部分が多く、各素線を流れる電流の向きが大きく異なるものではないため、近接効果の影響を十分に抑制することができないという問題があった。   In addition, as disclosed in Patent Document 4 described above, in the configuration in which the strands are knitted so that the relative position of the strands with respect to the center line changes, a portion where the strands intersect is generated and flows through each strand. Although the direction of the current is different, the effect of suppressing the effect of the proximity effect can be obtained, but there are many portions where each strand is in contact with each other in parallel, and the direction of the current flowing through each strand is not significantly different. There has been a problem that the influence of can not be sufficiently suppressed.

本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その主な目的は、表皮効果および近接効果の影響を十分に抑えて、送電コイルと受電コイルとの伝送距離を大きくした場合や、送電コイルと受電コイルとに軸ずれがある場合でも、電力伝送効率が大きく低下することがないように構成された集合電線、これを用いた送電装置および電子機器、ならびにワイヤレス電力伝送システムを提供することにある。   The present invention has been devised to solve such problems of the prior art, and its main purpose is to sufficiently suppress the effects of the skin effect and the proximity effect, so that the power transmission coil and the power reception coil are connected to each other. Even when the transmission distance is increased, or even when there is a misalignment between the power transmission coil and the power reception coil, the assembled wire configured so that the power transmission efficiency does not greatly decrease, a power transmission device and an electronic device using the same, And providing a wireless power transmission system.

本発明の集合電線は、絶縁層が被膜される第1の絶縁電線および第2の絶縁電線を有する集合電線であって、前記第1の絶縁電線は、当該集合電線の長さ方向に対して正負いずれか一方の方向に角度をなす第1の巻き角でらせん状に巻回され、前記第2の絶縁電線は、当該集合電線の長さ方向に対して正負いずれか他方の方向に角度をなす第2の巻き角で前記第1の絶縁電線の外側をらせん状に巻回される構成とする。   The collective wire of the present invention is a collective wire having a first insulated wire and a second insulated wire coated with an insulating layer, and the first insulated wire is in the length direction of the collective wire. The second insulated wire is wound spirally at a first winding angle that forms an angle in one of the positive and negative directions, and the second insulated wire has an angle in either the positive or negative direction with respect to the length direction of the aggregated wire. A configuration is adopted in which the outside of the first insulated wire is spirally wound at the second winding angle formed.

また、本発明の送電装置は、電磁誘導により電子機器にワイヤレスで電力伝送を行う送電装置であって、前記の集合電線を巻回して形成された送電コイルを備えた構成とする。   Moreover, the power transmission device of the present invention is a power transmission device that wirelessly transmits electric power to an electronic device by electromagnetic induction, and includes a power transmission coil formed by winding the collective wire.

また、本発明の電子機器は、電磁誘導により送電装置からワイヤレスで電力伝送が行われる電子機器であって、前記の集合電線を巻回して形成された受電コイルを備えた構成とする。   Moreover, the electronic device of the present invention is an electronic device in which power is transmitted wirelessly from a power transmission device by electromagnetic induction, and has a configuration including a power receiving coil formed by winding the collective wire.

また、本発明のワイヤレス電力伝送システムは、送電装置から電子機器にワイヤレスで電力伝送を行うワイヤレス電力伝送システムであって、前記送電装置は、送電コイルを備え、前記電子機器は、受電コイルを備え、前記送電コイルおよび前記受電コイルの少なくとも一方は、絶縁層を被膜された第1の絶縁電線および第2の絶縁電線を有する集合電線によって形成され、前記第1の絶縁電線は、前記集合電線の長さ方向に対して正負いずれか一方の方向に角度をなす第1の巻き角でらせん状に巻回され、前記第2の絶縁電線は、前記集合電線の長さ方向に対して正負いずれか他方の方向に角度をなす第2の巻き角で前記第1の絶縁電線の外側をらせん状に巻回される構成とする。   The wireless power transmission system of the present invention is a wireless power transmission system that wirelessly transmits power from a power transmission device to an electronic device, wherein the power transmission device includes a power transmission coil, and the electronic device includes a power reception coil. And at least one of the power transmission coil and the power reception coil is formed by a collective electric wire having a first insulated wire and a second insulated wire coated with an insulating layer, and the first insulated wire is formed of the collective wire. The second insulated wire is wound either in a positive or negative direction with respect to the length direction of the collective wire. The outside of the first insulated wire is spirally wound at a second winding angle that forms an angle in the other direction.

本発明によれば、絶縁電線を複数本集合させたため、表皮効果の影響を抑制することができ、さらに、各絶縁電線を流れる電流の向きが大きく異なるようになるため、近接効果の影響を抑制することができる。これにより、電力損失を抑えて電力伝送効率を高めることができ、送電コイルと受電コイルとの伝送距離を大きくした場合や、送電コイルと受電コイルとに軸ずれがある場合でも、電力伝送効率が大きく低下することを避けることができる。   According to the present invention, since a plurality of insulated wires are assembled, the influence of the skin effect can be suppressed, and furthermore, the direction of the current flowing through each insulated wire is greatly different, so the influence of the proximity effect is suppressed. can do. As a result, power loss can be suppressed and power transmission efficiency can be increased. Even when the transmission distance between the power transmission coil and the power reception coil is increased or when there is a misalignment between the power transmission coil and the power reception coil, the power transmission efficiency is improved. A large drop can be avoided.

本実施形態に係るワイヤレス電力伝送システムの全体構成図Overall configuration diagram of a wireless power transmission system according to the present embodiment 送電装置1の送電コイル5を示す平面図The top view which shows the power transmission coil 5 of the power transmission apparatus 1 図2に示したコイル構成が適用された送電装置1および電子機器2の断面図Sectional drawing of the power transmission apparatus 1 and the electronic device 2 to which the coil structure shown in FIG. 2 was applied 送電装置1の別のコイル構成を示す平面図The top view which shows another coil structure of the power transmission apparatus 1 図4に示したコイル構成が適用された送電装置1および電子機器2の断面図Sectional drawing of the power transmission apparatus 1 and the electronic device 2 to which the coil structure shown in FIG. 4 was applied 集合電線51を一部切除して示す模式的な側面図Schematic side view showing part of the collecting wire 51 cut away 集合電線51の変形例を示す模式的な側面図Schematic side view showing a modified example of the collecting wire 51 集合電線51の変形例を示す模式的な側面図Schematic side view showing a modified example of the collecting wire 51 集合電線51の変形例を示す模式的な側面図Schematic side view showing a modified example of the collecting wire 51 集合電線51の製造方法を説明する模式的な側面図Schematic side view for explaining the method of manufacturing the collecting wire 51 第1および第2の層84,85をそれぞれ形成する撚り線(素線82,83)の一例を示す側面図The side view which shows an example of the strand wire (elementary wires 82 and 83) which forms the 1st and 2nd layers 84 and 85, respectively 図11(B)に示した撚り線(素線82,83)の製造方法を説明する正面図Front view illustrating a method of manufacturing the stranded wire (element wires 82 and 83) shown in FIG. 集合電線51に関する実施例1〜5の各構成を示す説明図Explanatory drawing which shows each structure of Examples 1-5 regarding the collective wire 51 送電コイル5および受電コイル6に関する実施例6〜13の構成と電力伝送効率を示す説明図Explanatory drawing which shows the structure and power transmission efficiency of Examples 6-13 regarding the power transmission coil 5 and the receiving coil 6. FIG. 電力伝送効率の評価で用いられた計測装置の概略構成図Schematic configuration diagram of a measuring device used in evaluating power transmission efficiency

前記課題を解決するためになされた第1の発明は、絶縁層が被膜される第1の絶縁電線および第2の絶縁電線を有する集合電線であって、前記第1の絶縁電線は、当該集合電線の長さ方向に対して正負いずれか一方の方向に角度をなす第1の巻き角でらせん状に巻回され、前記第2の絶縁電線は、当該集合電線の長さ方向に対して正負いずれか他方の方向に角度をなす第2の巻き角で前記第1の絶縁電線の外側をらせん状に巻回される構成とする。   A first invention made to solve the above-mentioned problems is a collective electric wire having a first insulated wire and a second insulated wire coated with an insulating layer, wherein the first insulated wire is the aggregated wire. The second insulated wire is spirally wound with respect to the length direction of the collective wire, and is wound in a spiral shape at a first winding angle that makes an angle in either the positive or negative direction with respect to the length direction of the wire. The outside of the first insulated wire is spirally wound at a second winding angle that forms an angle in the other direction.

これによると、絶縁電線を複数本集合させたため、表皮効果の影響を抑制することができ、さらに、各絶縁電線を流れる電流の向きが大きく異なるようになるため、近接効果の影響を抑制することができる。これにより、電力損失を抑えて電力伝送効率を高めることができ、送電コイルと受電コイルとの伝送距離を大きくした場合や、送電コイルと受電コイルとに軸ずれがある場合でも、電力伝送効率が大きく低下することを避けることができる。   According to this, since a plurality of insulated wires are assembled, the influence of the skin effect can be suppressed, and furthermore, the direction of the current flowing through each insulated wire is greatly different, so the influence of the proximity effect is suppressed. Can do. As a result, power loss can be suppressed and power transmission efficiency can be increased. Even when the transmission distance between the power transmission coil and the power reception coil is increased or when there is a misalignment between the power transmission coil and the power reception coil, the power transmission efficiency is improved. A large drop can be avoided.

また、第2の発明は、前記第1の絶縁電線が前記第1の巻き角で巻回される芯線をさらに備える構成とする。   Moreover, 2nd invention is set as the structure further equipped with the core wire by which the said 1st insulated wire is wound by the said 1st winding angle.

これによると、芯線の周囲に絶縁電線を順次巻回すればよいため、製造が容易になる。また、集合電線全体の強度を高めることができる。なお、芯線は、絶縁電線などの導体で構成するとよいが、非導体で構成することも可能である。   According to this, since an insulated wire should just be wound around a core wire sequentially, manufacture becomes easy. Moreover, the intensity | strength of the whole assembled electric wire can be raised. In addition, although a core wire is good to comprise with conductors, such as an insulated wire, it can also comprise with a nonconductor.

また、第3の発明は、前記第2の絶縁電線の断面積は前記第1の絶縁電線の断面積よりも大きい構成とする。   Moreover, 3rd invention sets it as the structure where the cross-sectional area of a said 2nd insulated wire is larger than the cross-sectional area of a said 1st insulated wire.

これによると、集合電線全体の強度を高めることができる。また、集合電線の外周側を流れる電流量を多くすることができるため、コイルから発生する磁束を増大することができる。   According to this, the intensity | strength of the whole assembled electric wire can be raised. Moreover, since the amount of current flowing on the outer peripheral side of the collecting wire can be increased, the magnetic flux generated from the coil can be increased.

また、第4の発明は、前記第2の絶縁電線は、前記第1の絶縁電線よりも巻回数が少なくなるように巻回される構成とする。   According to a fourth aspect of the present invention, the second insulated wire is wound so that the number of turns is smaller than that of the first insulated wire.

これによると、外側の第2の絶縁電線の全長を短くして、第2の絶縁電線の全長を内側の第1の絶縁電線の全長に近づけることができ、これにより内外の絶縁電線同士で生じるインダクタンスの差が小さくなるため、電力伝送効率をより一層高めることができる。   According to this, the overall length of the outer second insulated wire can be shortened, and the overall length of the second insulated wire can be made closer to the overall length of the inner first insulated wire, thereby producing the inner and outer insulated wires together. Since the difference in inductance is reduced, the power transmission efficiency can be further increased.

また、第5の発明は、前記第1の絶縁電線は、第1の隙間を有するように巻回され、前記第2の絶縁電線は、前記第1の隙間よりも大きい前記第2の隙間を有するように巻回される構成とする。   In the fifth invention, the first insulated wire is wound so as to have a first gap, and the second insulated wire has the second gap larger than the first gap. It is set as the structure wound so that it may have.

これによると、第2の絶縁電線の巻回数を第1の絶縁電線の巻回数より少なくして、第2の絶縁電線の全長を第1の絶縁電線の全長に近づけることができる。
することができる。
According to this, the total number of turns of the second insulated wire can be made smaller than the number of turns of the first insulated wire, and the total length of the second insulated wire can be made closer to the total length of the first insulated wire.
can do.

また、第6の発明は、前記第2の隙間に設けられるスペーサをさらに備える構成とする。   Moreover, 6th invention is set as the structure further provided with the spacer provided in the said 2nd clearance gap.

これによると、第2の絶縁電線の間隔がスペーサにより保持され、また、第2の絶縁電線の巻回も容易になる。   According to this, the space | interval of a 2nd insulated wire is hold | maintained by a spacer, and winding of a 2nd insulated wire also becomes easy.

また、第7の発明は、前記第2の絶縁電線の絶縁層の断面積は、前記第1の絶縁電線の絶縁層の断面積よりも大きい構成とする。   Moreover, 7th invention sets it as the structure where the cross-sectional area of the insulating layer of a said 2nd insulated wire is larger than the cross-sectional area of the insulating layer of a said 1st insulated wire.

これによると、第2の絶縁電線の巻回数を第1の絶縁電線の巻回数より少なくして、第2の絶縁電線の全長を第1の絶縁電線の全長に近づけることができる。   According to this, the total number of turns of the second insulated wire can be made smaller than the number of turns of the first insulated wire, and the total length of the second insulated wire can be made closer to the total length of the first insulated wire.

また、第8の発明は、前記第2の巻き角は、前記第1の巻き角よりも小さい構成とする。   In an eighth aspect of the invention, the second winding angle is smaller than the first winding angle.

これによると、第2の絶縁電線の巻回数を第1の絶縁電線の巻回数より少なくして、第2の絶縁電線の全長を第1の絶縁電線の全長に近づけることができる。   According to this, the total number of turns of the second insulated wire can be made smaller than the number of turns of the first insulated wire, and the total length of the second insulated wire can be made closer to the total length of the first insulated wire.

また、第9の発明は、前記第2の絶縁電線の一部は、当該集合電線の長さ方向と同一方向である構成とする。   Moreover, 9th invention sets it as the structure which a part of said 2nd insulated wire is the same direction as the length direction of the said assembly wire.

これによると、第2の絶縁電線の巻回数を第1の絶縁電線の巻回数より少なくして、第2の絶縁電線の全長を第1の絶縁電線の全長に近づけることができる。   According to this, the total number of turns of the second insulated wire can be made smaller than the number of turns of the first insulated wire, and the total length of the second insulated wire can be made closer to the total length of the first insulated wire.

また、第10の発明は、前記第2の絶縁電線の一部は、前記第2の巻き角よりも小さい巻き角で巻回される構成とする。   In a tenth aspect of the present invention, a part of the second insulated wire is wound at a winding angle smaller than the second winding angle.

これによると、第2の絶縁電線の巻回数を第1の絶縁電線の巻回数より少なくして、第2の絶縁電線の全長を第1の絶縁電線の全長に近づけることができる。   According to this, the total number of turns of the second insulated wire can be made smaller than the number of turns of the first insulated wire, and the total length of the second insulated wire can be made closer to the total length of the first insulated wire.

また、第11の発明は、前記第1の巻き角または前記第2の巻き角の絶対値が30度から70度の範囲にある構成とする。   The eleventh aspect of the invention is configured such that the absolute value of the first winding angle or the second winding angle is in the range of 30 degrees to 70 degrees.

これによると、近接効果の影響をより一層抑えることができる。   According to this, the influence of the proximity effect can be further suppressed.

また、第12の発明は、前記第1の巻き角および前記第2の巻き角の絶対値の和が60度から140度の範囲にある構成とする。   In a twelfth aspect of the invention, the sum of absolute values of the first winding angle and the second winding angle is in the range of 60 degrees to 140 degrees.

これによると、近接効果の影響をより一層抑えることができる。   According to this, the influence of the proximity effect can be further suppressed.

また、第13の発明は、前記第2の絶縁電線は、複数本撚り合わされて撚り線を構成する構成とする。   In addition, a thirteenth aspect of the present invention is configured such that a plurality of the second insulated wires are twisted together to form a stranded wire.

これによると、撚り線を構成する絶縁電線同士で電流の方向が異なるため、近接効果の影響をより一層抑制することができ、また、絶縁電線の本数が増えるため、表皮効果の影響をより一層抑制することができ、これにより電力伝送効率をより一層高めることができる。   According to this, since the direction of the current is different between the insulated wires constituting the stranded wire, the influence of the proximity effect can be further suppressed, and the number of insulated wires is increased, so the influence of the skin effect is further enhanced. It is possible to suppress the power transmission efficiency.

また、第14の発明は、電磁誘導により電子機器にワイヤレスで電力伝送を行う送電装置であって、前記の集合電線を巻回して形成された送電コイルを備えた構成とする。   According to a fourteenth aspect of the present invention, there is provided a power transmission device that wirelessly transmits electric power to an electronic device by electromagnetic induction, and includes a power transmission coil that is formed by winding the aggregated wire.

これによると、送電コイルが、絶縁電線を複数本集合させた集合電線で形成されるため、表皮効果の影響を抑制することができ、さらに、各絶縁電線を流れる電流の向きが大きく異なるようになるため、近接効果の影響を十分に抑制することができる。これにより、電力損失を抑えて電力伝送効率を高めることができ、送電コイルと受電コイルとの伝送距離を大きくした場合や、送電コイルと受電コイルとに軸ずれがある場合でも、電力伝送効率が大きく低下することを避けることができる。   According to this, since the power transmission coil is formed of an aggregated wire in which a plurality of insulated wires are assembled, the influence of the skin effect can be suppressed, and the direction of the current flowing through each insulated wire is greatly different. Therefore, the influence of the proximity effect can be sufficiently suppressed. As a result, power loss can be suppressed and power transmission efficiency can be increased. Even when the transmission distance between the power transmission coil and the power reception coil is increased or when there is a misalignment between the power transmission coil and the power reception coil, the power transmission efficiency is improved. A large drop can be avoided.

また、第15の発明は、所定の間隙をおいて前記送電コイルと略同心状に配置された無給電コイルと、この無給電コイルの両端に接続された共振コンデンサと、をさらに備えた構成とする。   The fifteenth aspect of the invention further includes a parasitic coil disposed substantially concentrically with the power transmission coil with a predetermined gap, and a resonance capacitor connected to both ends of the parasitic coil. To do.

これによると、送電コイルと受電コイルとの間に無給電コイルを介在させることで、回路インピーダンスの影響によりQ値が低下することを抑えることができ、さらに電力の反射も抑えることができる。また、無給電コイルと送電コイルとが略同心状に配置されるため、無給電コイルと送電コイルとが効率よく磁気結合して、電力伝送効率をより一層高めることができる。なお、無給電コイルも、送電コイルと同様に、前記構成の集合電線を用いるとよい。   According to this, by interposing a parasitic coil between the power transmission coil and the power reception coil, it is possible to suppress the Q value from being lowered due to the influence of the circuit impedance, and it is possible to suppress the reflection of power. In addition, since the parasitic coil and the power transmission coil are arranged substantially concentrically, the parasitic coil and the power transmission coil are efficiently magnetically coupled, and the power transmission efficiency can be further enhanced. In addition, it is good for the parasitic coil to use the collective electric wire of the said structure similarly to a power transmission coil.

この場合、送電コイルの巻き数を無給電コイルの巻き数より小さくする、例えば無給電コイルを複数回巻きとする一方で、送電コイルを1回巻きとした構成とするとよい。これにより、電力伝送効率をより一層高めることができる。   In this case, the number of turns of the power transmission coil is set to be smaller than the number of turns of the parasitic coil. For example, the parasitic coil is configured to be wound a plurality of times while the power transmission coil is configured to be wound once. Thereby, electric power transmission efficiency can be improved further.

また、第16の発明は、電磁誘導により送電装置からワイヤレスで電力伝送が行われる電子機器であって、前記の集合電線を巻回して形成された受電コイルを備えた構成とする。   According to a sixteenth aspect of the present invention, there is provided an electronic apparatus in which power is transmitted wirelessly from a power transmission device by electromagnetic induction, and includes a power receiving coil formed by winding the collective wire.

これによると、受電コイルが、絶縁電線を複数本集合させた集合電線で形成されるため、表皮効果の影響を抑制することができ、さらに、各絶縁電線を流れる電流の向きが大きく異なるようになるため、近接効果の影響を十分に抑制することができる。これにより、電力損失を抑えて電力伝送効率を高めることができ、送電コイルと受電コイルとの伝送距離を大きくした場合や、送電コイルと受電コイルとに軸ずれがある場合でも、電力伝送効率が大きく低下することを避けることができる。   According to this, since the power receiving coil is formed of an aggregated wire in which a plurality of insulated wires are assembled, the influence of the skin effect can be suppressed, and the direction of the current flowing through each insulated wire is greatly different. Therefore, the influence of the proximity effect can be sufficiently suppressed. As a result, power loss can be suppressed and power transmission efficiency can be increased. Even when the transmission distance between the power transmission coil and the power reception coil is increased or when there is a misalignment between the power transmission coil and the power reception coil, the power transmission efficiency is improved. A large drop can be avoided.

また、第17の発明は、所定の間隙をおいて前記受電コイルと略同心状に配置された無給電コイルと、この無給電コイルの両端に接続された共振コンデンサと、をさらに備えた構成とする。   According to a seventeenth aspect of the invention, there is provided a configuration further comprising a parasitic coil disposed substantially concentrically with the power receiving coil with a predetermined gap, and a resonance capacitor connected to both ends of the parasitic coil. To do.

これによると、送電コイルと受電コイルとの間に無給電コイルを介在させることで、回路インピーダンスの影響によりQ値が低下することを抑えることができ、さらに電力の反射も抑えることができる。また、無給電コイルと受電コイルとが略同心状に配置されるため、無給電コイルと受電コイルとが効率よく磁気結合して、電力伝送効率をより一層高めることができる。なお、無給電コイルも、受電コイルと同様に、前記構成の集合電線を用いるとよい。   According to this, by interposing a parasitic coil between the power transmission coil and the power reception coil, it is possible to suppress the Q value from being lowered due to the influence of the circuit impedance, and it is possible to suppress the reflection of power. In addition, since the parasitic coil and the power receiving coil are arranged substantially concentrically, the parasitic coil and the power receiving coil are efficiently magnetically coupled, and the power transmission efficiency can be further improved. In addition, it is good to use the collective electric wire of the said structure also for a parasitic coil similarly to a receiving coil.

この場合、受電コイルの巻き数を無給電コイルの巻き数より小さくする、例えば無給電コイルを複数回巻きとする一方で、受電コイルを1回巻きとした構成とするとよい。これにより、電力伝送効率をより一層高めることができる。   In this case, the number of turns of the power receiving coil is set to be smaller than the number of turns of the non-feeding coil. Thereby, electric power transmission efficiency can be improved further.

また、第18の発明は、送電装置から電子機器にワイヤレスで電力伝送を行うワイヤレス電力伝送システムであって、前記送電装置は、送電コイルを備え、前記電子機器は、受電コイルを備え、前記送電コイルおよび前記受電コイルの少なくとも一方は、絶縁層を被膜された第1の絶縁電線および第2の絶縁電線を有する集合電線によって形成され、前記第1の絶縁電線は、前記集合電線の長さ方向に対して正負いずれか一方の方向に角度をなす第1の巻き角でらせん状に巻回され、前記第2の絶縁電線は、前記集合電線の長さ方向に対して正負いずれか他方の方向に角度をなす第2の巻き角で前記第1の絶縁電線の外側をらせん状に巻回される構成とする。   An eighteenth aspect of the invention is a wireless power transmission system that wirelessly transmits power from a power transmission device to an electronic device, wherein the power transmission device includes a power transmission coil, the electronic device includes a power reception coil, and the power transmission At least one of the coil and the power receiving coil is formed by a collective electric wire having a first insulated wire and a second insulated wire coated with an insulating layer, and the first insulated wire is a length direction of the collective wire. The second insulated wire is wound in a spiral manner at a first winding angle that makes an angle in either one of the positive and negative directions with respect to the length direction of the collective wire. The outside of the first insulated wire is wound in a spiral shape at a second winding angle that forms an angle with the angle.

これによると、送電コイルや受電コイルが、絶縁電線を複数本集合させた集合電線で形成されるため、表皮効果の影響を抑制することができ、さらに、各絶縁電線を流れる電流の向きが大きく異なるようになるため、近接効果の影響を十分に抑制することができる。これにより、電力損失を抑えて電力伝送効率を高めることができ、送電コイルと受電コイルとの伝送距離を大きくした場合や、送電コイルと受電コイルとに軸ずれがある場合でも、電力伝送効率が大きく低下することを避けることができる。   According to this, since the power transmission coil and the power receiving coil are formed by an aggregated electric wire in which a plurality of insulated wires are assembled, the influence of the skin effect can be suppressed, and the direction of the current flowing through each insulated wire is large. Since they are different, the influence of the proximity effect can be sufficiently suppressed. As a result, power loss can be suppressed and power transmission efficiency can be increased. Even when the transmission distance between the power transmission coil and the power reception coil is increased or when there is a misalignment between the power transmission coil and the power reception coil, the power transmission efficiency is improved. A large drop can be avoided.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態に係るワイヤレス電力伝送システムの全体構成図である。このワイヤレス電力伝送システムは、送電装置1から携帯電話などの電子機器2にワイヤレス(無接点)で電力伝送を行うものであり、電子機器2は、搭載された図示しない部品を動作させるための電力を供給する2次電池3を備え、送電装置1から送られる電力で2次電池3の充電が行われる。   FIG. 1 is an overall configuration diagram of a wireless power transmission system according to the present embodiment. This wireless power transmission system performs power transmission wirelessly (contactlessly) from a power transmission device 1 to an electronic device 2 such as a mobile phone, and the electronic device 2 operates to operate a component (not shown) that is mounted. And the secondary battery 3 is charged with the electric power sent from the power transmission device 1.

このワイヤレス電力伝送システムでは、電磁誘導により電力伝送を行うために、送電装置1が送電コイル5を備え、電子機器2が受電コイル6を備えている。送電装置1の送電コイル5に交流電力が供給されると、この送電コイル5が電子機器2の受電コイル6と磁気結合して、受電コイル6に交流電圧が誘起され、これにより交流電力が送電コイル5から受電コイル6に伝送される。   In this wireless power transmission system, the power transmission device 1 includes a power transmission coil 5 and the electronic device 2 includes a power reception coil 6 in order to perform power transmission by electromagnetic induction. When AC power is supplied to the power transmission coil 5 of the power transmission device 1, the power transmission coil 5 is magnetically coupled to the power reception coil 6 of the electronic device 2, and an AC voltage is induced in the power reception coil 6, whereby AC power is transmitted. It is transmitted from the coil 5 to the power receiving coil 6.

送電装置1は、AC/DCコンバータ11と、送電制御部12と、送電回路部13と、を有している。AC/DCコンバータ11では、電源(商用電源)8から供給される交流電力を直流電力に変換する。送電制御部12は、送電回路部13の動作を制御する。送電回路部13は、AC/DCコンバータ11から送電制御部12を介して送られる直流電力を所定の周波数の交流電圧に変換して送電コイル5に供給する。   The power transmission device 1 includes an AC / DC converter 11, a power transmission control unit 12, and a power transmission circuit unit 13. The AC / DC converter 11 converts AC power supplied from a power source (commercial power source) 8 into DC power. The power transmission control unit 12 controls the operation of the power transmission circuit unit 13. The power transmission circuit unit 13 converts the DC power sent from the AC / DC converter 11 via the power transmission control unit 12 into an AC voltage having a predetermined frequency and supplies the AC voltage to the power transmission coil 5.

送電制御部12は、制御回路14と、電圧監視部15と、温度監視部16と、を有している。制御回路14は、送電回路部13の動作を制御する。電圧監視部15は、送電回路部13から送電コイル5に供給される交流電力の電圧を監視する。温度監視部16は、送電コイル5の温度を監視する。この電圧監視部15および温度監視部16で電圧および温度の異常が検知されると、送電コイル5への給電が停止される。   The power transmission control unit 12 includes a control circuit 14, a voltage monitoring unit 15, and a temperature monitoring unit 16. The control circuit 14 controls the operation of the power transmission circuit unit 13. The voltage monitoring unit 15 monitors the voltage of AC power supplied from the power transmission circuit unit 13 to the power transmission coil 5. The temperature monitoring unit 16 monitors the temperature of the power transmission coil 5. When the voltage monitoring unit 15 and the temperature monitoring unit 16 detect an abnormality in voltage and temperature, power supply to the power transmission coil 5 is stopped.

送電回路部13は、ドライバ17と、共振回路18と、を有している。ドライバ17は、AC/DCコンバータ11から送電制御部12を介して送られる直流電力を所定の周波数の交流電圧に変換する。共振回路18は、内部のコンデンサと送電コイル5とにより共振回路を構成し、ドライバ17から印加される交流電圧に応じて所定の共振周波数で送電コイル5を発振させる。   The power transmission circuit unit 13 includes a driver 17 and a resonance circuit 18. The driver 17 converts the DC power sent from the AC / DC converter 11 via the power transmission control unit 12 into an AC voltage having a predetermined frequency. The resonance circuit 18 constitutes a resonance circuit by an internal capacitor and the power transmission coil 5, and oscillates the power transmission coil 5 at a predetermined resonance frequency according to the AC voltage applied from the driver 17.

電子機器2は、受電回路部21と、受電制御部22と、充電制御回路23と、を有している。受電回路部21は、送電装置1の送電コイル5との間での電磁誘導により受電コイル6に誘起された交流電流を所定の電圧の直流電力に変換する。受電制御部22は、受電回路部21の動作を制御する。充電制御回路23は、受電回路部21から受電制御部22を介して送られる電力を2次電池3に供給して2次電池3の充電を行う。   The electronic device 2 includes a power reception circuit unit 21, a power reception control unit 22, and a charge control circuit 23. The power receiving circuit unit 21 converts the alternating current induced in the power receiving coil 6 by electromagnetic induction with the power transmitting coil 5 of the power transmitting device 1 into DC power having a predetermined voltage. The power reception control unit 22 controls the operation of the power reception circuit unit 21. The charging control circuit 23 charges the secondary battery 3 by supplying electric power sent from the power receiving circuit unit 21 via the power receiving control unit 22 to the secondary battery 3.

受電回路部21は、整流回路24と、レギュレータ25と、を有している。整流回路24は、受電コイル6に誘起された交流電力を直流電力に変換する。レギュレータ25は、整流回路24から送られる直流電力を、2次電池3の充電に適合する所定の電圧に変換する。   The power receiving circuit unit 21 includes a rectifier circuit 24 and a regulator 25. The rectifier circuit 24 converts AC power induced in the power receiving coil 6 into DC power. The regulator 25 converts the DC power sent from the rectifier circuit 24 into a predetermined voltage suitable for charging the secondary battery 3.

受電制御部22は、制御回路26と、電圧監視部27と、を有している。制御回路26は、受電回路部21の動作を制御する。制御回路26は、受電回路部21の動作を制御する。電圧監視部27は、受電コイル6に誘起される交流電力の電圧を監視する。この他、受電制御部22は、電子機器2に搭載された機器の状態、例えば、受電コイル6の温度や、2次電池3の充電状態等を監視し、異常が検知されると、受電動作を停止する。   The power reception control unit 22 includes a control circuit 26 and a voltage monitoring unit 27. The control circuit 26 controls the operation of the power receiving circuit unit 21. The control circuit 26 controls the operation of the power receiving circuit unit 21. The voltage monitoring unit 27 monitors the voltage of AC power induced in the power receiving coil 6. In addition, the power reception control unit 22 monitors the state of the device mounted on the electronic device 2, for example, the temperature of the power reception coil 6, the charging state of the secondary battery 3, and the power reception operation when an abnormality is detected. To stop.

また、本実施形態では、送電装置1に、その電子機器載置面上に電子機器2が載置されたことを検知する電子機器検知部31が設けられている。この電子機器検知部31の検知結果に基づいて、送電装置1の送電動作が制御される。すなわち、電子機器載置面上に電子機器2が載置されると、送電コイル5への交流電力の供給を開始し、電子機器2が送電装置1から離れると、送電コイル5への交流電力の供給を停止する。   In the present embodiment, the power transmission device 1 is provided with an electronic device detection unit 31 that detects that the electronic device 2 is placed on the electronic device placement surface. Based on the detection result of the electronic device detection unit 31, the power transmission operation of the power transmission device 1 is controlled. That is, when the electronic device 2 is placed on the electronic device placement surface, supply of AC power to the power transmission coil 5 is started, and when the electronic device 2 leaves the power transmission device 1, AC power to the power transmission coil 5 is started. Stop supplying.

この電子機器検知部31では、電子機器2の受電コイル6が送電装置1の送電コイル5に近接することで負荷インピーダンスが変化することにより送電コイル5に生じる電圧値(または電流値)の変動に基づいて、電子機器2が電子機器載置面上に載置されたことを検知する。このとき、送電コイル5の電圧値(または電流値)の変動量を予め設定されたしきい値と比較して、電子機器2が電子機器載置面上に載置されたか否かの判定を行えばよい。   In the electronic device detection unit 31, the fluctuation of the voltage value (or current value) generated in the power transmission coil 5 due to the load impedance changing due to the power receiving coil 6 of the electronic device 2 being close to the power transmission coil 5 of the power transmission device 1. Based on this, it is detected that the electronic device 2 is placed on the electronic device placement surface. At this time, the amount of change in the voltage value (or current value) of the power transmission coil 5 is compared with a preset threshold value to determine whether or not the electronic device 2 is placed on the electronic device placement surface. Just do it.

また、本実施形態では、電子機器2にも、自身が送電装置1の電子機器載置面上に載置されたことを検知する送電装置検知部41が設けられている。この送電装置検知部41の検知結果に基づいて、電子機器2の受電動作が制御される。   In the present embodiment, the electronic device 2 is also provided with a power transmission device detection unit 41 that detects that the electronic device 2 is placed on the electronic device placement surface of the power transmission device 1. Based on the detection result of the power transmission device detection unit 41, the power receiving operation of the electronic device 2 is controlled.

この送電装置検知部41では、電子機器2の受電コイル6が送電装置1の送電コイル5に近接することで負荷インピーダンスが変化することにより受電コイル6に生じる電圧値(または電流値)の変動に基づいて、電子機器2が電子機器載置面上に載置されたことを検知する。このとき、受電コイル6の電圧値(または電流値)の変動量を予め設定されたしきい値と比較して、電子機器2が電子機器載置面上に載置されたか否かの判定を行えばよい。   In the power transmission device detection unit 41, the fluctuation of the voltage value (or current value) generated in the power reception coil 6 due to a change in load impedance caused by the power reception coil 6 of the electronic device 2 approaching the power transmission coil 5 of the power transmission device 1. Based on this, it is detected that the electronic device 2 is placed on the electronic device placement surface. At this time, the fluctuation amount of the voltage value (or current value) of the power receiving coil 6 is compared with a preset threshold value to determine whether or not the electronic device 2 is placed on the electronic device placement surface. Just do it.

また、本実施形態では、送電装置1および電子機器2がそれぞれ情報送受信部32,42を備えており、送電装置1と電子機器2との間で送電コイル5および受電コイル6を介して所要の情報を送受信する情報伝送ができるようになっている。なお、この情報伝送は、単純なビット通信でもあってもよいし、コード化通信であってもよい。   Moreover, in this embodiment, the power transmission apparatus 1 and the electronic device 2 are each provided with the information transmission / reception parts 32 and 42, and between a power transmission apparatus 1 and the electronic device 2 via a power transmission coil 5 and the power receiving coil 6, required. Information transmission for transmitting and receiving information can be performed. Note that this information transmission may be simple bit communication or coded communication.

送電装置1および電子機器2の各情報送受信部32,42はそれぞれ、情報を含む信号の変復調を行う変復調回路33,43を有している。この変復調回路33,43では、送信元の変復調回路33,43で生成した変調信号が、送電コイル5および受電コイル6を介して送信先に送られ、送信先では、送電コイル5または受電コイル6の出力から取り出された変調信号を変復調回路33,43で復調して送信情報を取得する。   The information transmission / reception units 32 and 42 of the power transmission device 1 and the electronic device 2 have modulation / demodulation circuits 33 and 43 that perform modulation / demodulation of signals including information, respectively. In the modulation / demodulation circuits 33 and 43, the modulation signal generated by the transmission / reception modulation circuits 33 and 43 is sent to the transmission destination via the power transmission coil 5 and the power reception coil 6, and at the transmission destination, the power transmission coil 5 or the power reception coil 6. The modulation signal extracted from the output is demodulated by the modem circuits 33 and 43 to obtain transmission information.

ここで、送電装置1から電子機器2に情報を送信する場合、情報送受信部32から出力される変調信号を送電回路部13で電力伝送用の交流信号に重畳することで、電力伝送と同時に情報送信を行うことができる。また、電力伝送が行われていないときに情報伝送を行うようにしてもよい。なお、電子機器2の受電回路部21は、図示しない情報伝送用のドライバおよび共振回路を備えており、これらを駆動して情報送受信部42から出力される変調信号を送電装置1に向けて送信する。   Here, when transmitting information from the power transmission device 1 to the electronic device 2, the modulation signal output from the information transmission / reception unit 32 is superimposed on the AC signal for power transmission by the power transmission circuit unit 13, thereby simultaneously transmitting information. You can send. Further, information transmission may be performed when power transmission is not performed. The power receiving circuit unit 21 of the electronic device 2 includes an information transmission driver and a resonance circuit (not shown), and drives these to transmit a modulation signal output from the information transmission / reception unit 42 to the power transmission device 1. To do.

ここで送電装置1と電子機器2との間でやりとりされる情報としては、送電装置1および電子機器2の各々の状態に関する状態情報である。状態情報として、例えば2次電池3の充電中に、2次電池3の充電状態に関する情報を電子機器2から送電装置1に送信し、2次電池3の充電が必要な場合は電力伝送を継続し、2次電池3の充電が完了すると電力伝送を停止する。また、状態情報として、温度や電圧などの情報を送電装置1と電子機器2との間でやりとりし、状態情報が異常を示しているときにも電力伝送を停止する制御を行う。   Here, the information exchanged between the power transmission device 1 and the electronic device 2 is state information regarding the states of the power transmission device 1 and the electronic device 2. As the state information, for example, during charging of the secondary battery 3, information on the charging state of the secondary battery 3 is transmitted from the electronic device 2 to the power transmission device 1, and power transmission is continued when the secondary battery 3 needs to be charged. When the charging of the secondary battery 3 is completed, the power transmission is stopped. Further, as status information, information such as temperature and voltage is exchanged between the power transmission device 1 and the electronic device 2, and control is performed to stop power transmission even when the status information indicates an abnormality.

また、本実施形態では、送電装置1および電子機器2がそれぞれ認証部34,44を備えており、送電装置1と電子機器2との間で相互認証が行われる。送電装置1および電子機器2では、各々が備える情報送受信部32,42により、相互認証に用いられる送電装置1および電子機器2の各識別情報などの認証情報がやりとりされ、この認証情報に基づいて認証部34,44において互いに相手方の認証を行う。   In the present embodiment, the power transmission device 1 and the electronic device 2 include authentication units 34 and 44, respectively, and mutual authentication is performed between the power transmission device 1 and the electronic device 2. In the power transmission device 1 and the electronic device 2, authentication information such as identification information of the power transmission device 1 and the electronic device 2 used for mutual authentication is exchanged by the information transmission / reception units 32 and 42 included in each, and based on this authentication information Authentication units 34 and 44 authenticate each other.

この相互認証は、送電装置1から電子機器2への電力伝送を開始する際に行われる。すなわち、送電装置1および電子機器2がそれぞれ、送電装置1の電子機器載置面上に電子機器2が載置されたことを検知すると、送電装置1と電子機器2と間で識別情報をやりとりして、互いに相手方の認証を行う。この相互認証が成功すると、送電装置1から電子機器2への電力伝送が開始される。相互認証が失敗したときは電力伝送が行われない。   This mutual authentication is performed when power transmission from the power transmission device 1 to the electronic device 2 is started. That is, when the power transmission device 1 and the electronic device 2 detect that the electronic device 2 is placed on the electronic device placement surface of the power transmission device 1, identification information is exchanged between the power transmission device 1 and the electronic device 2. And authenticate each other. When this mutual authentication is successful, power transmission from the power transmission device 1 to the electronic device 2 is started. When mutual authentication fails, power transmission is not performed.

次に、送電装置1の送電コイル5および電子機器2の受電コイル6について説明する。図2は、送電装置1の送電コイル5を示す平面図である。図3は、図2に示したコイル構成が適用された送電装置1および電子機器2の断面図である。   Next, the power transmission coil 5 of the power transmission device 1 and the power reception coil 6 of the electronic device 2 will be described. FIG. 2 is a plan view showing the power transmission coil 5 of the power transmission device 1. FIG. 3 is a cross-sectional view of the power transmission device 1 and the electronic device 2 to which the coil configuration shown in FIG. 2 is applied.

図2に示すように、送電コイル5は、線状導体に絶縁層を被覆してなる絶縁電線を複数本集合させた集合電線51を略円形の渦巻状に巻回して形成された平面コイルである。送電コイル5の両端の端子52は送電回路部13(図1参照)に接続される。   As shown in FIG. 2, the power transmission coil 5 is a planar coil formed by winding a collective electric wire 51 in which a plurality of insulated electric wires each having a linear conductor covered with an insulating layer are gathered into a substantially circular spiral shape. is there. Terminals 52 at both ends of the power transmission coil 5 are connected to the power transmission circuit unit 13 (see FIG. 1).

図3に示すように、送電コイル5は、送電装置1のハウジング53の内面に接するように配置され、送電コイル5におけるハウジング53に接する面と相反する側には送電コイル5の全面を覆うように磁性シート54が設けられている。   As shown in FIG. 3, the power transmission coil 5 is disposed so as to be in contact with the inner surface of the housing 53 of the power transmission device 1, and covers the entire surface of the power transmission coil 5 on the side opposite to the surface in contact with the housing 53 of the power transmission coil 5. A magnetic sheet 54 is provided.

電子機器2の受電コイル6は、図2に示した送電コイル5と同様に、線状導体に絶縁層を被覆してなる絶縁電線を複数本集合させた集合電線51を略円形の渦巻状に巻回して形成された平面コイルである。受電コイル6の両端は受電回路部21(図1参照)に電気的に接続される。この受電コイル6は、電子機器2のハウジング55の内面に接するように配置され、受電コイル6におけるハウジング55に接する面と相反する側には受電コイル6の全面を覆うように磁性シート56が設けられている。   Similarly to the power transmission coil 5 shown in FIG. 2, the power receiving coil 6 of the electronic device 2 has a collective electric wire 51 in which a plurality of insulated electric wires each having a linear conductor covered with an insulating layer are gathered into a substantially circular spiral shape. It is a planar coil formed by winding. Both ends of the power receiving coil 6 are electrically connected to the power receiving circuit unit 21 (see FIG. 1). The power receiving coil 6 is disposed in contact with the inner surface of the housing 55 of the electronic device 2, and a magnetic sheet 56 is provided on the side of the power receiving coil 6 opposite to the surface in contact with the housing 55 so as to cover the entire surface of the power receiving coil 6. It has been.

このような構成では、送電装置1のハウジング53に設けられた電子機器載置面57に電子機器2を載置することで、送電コイル5と受電コイル6とがハウジング53,55を介して近接するため、送電コイル5から発生する磁束が受電コイル6に鎖交し、送電コイル5と受電コイル6とが磁気結合して、交流電力が送電コイル5から受電コイル6に伝送される。   In such a configuration, by placing the electronic device 2 on the electronic device placement surface 57 provided in the housing 53 of the power transmission device 1, the power transmission coil 5 and the power reception coil 6 are brought close to each other via the housings 53 and 55. Therefore, the magnetic flux generated from the power transmission coil 5 is linked to the power reception coil 6, the power transmission coil 5 and the power reception coil 6 are magnetically coupled, and AC power is transmitted from the power transmission coil 5 to the power reception coil 6.

図4は、送電装置1の別のコイル構成を示す平面図である。図5は、図4に示したコイル構成が適用された送電装置1および電子機器2の断面図である。   FIG. 4 is a plan view showing another coil configuration of the power transmission device 1. FIG. 5 is a cross-sectional view of the power transmission device 1 and the electronic device 2 to which the coil configuration shown in FIG. 4 is applied.

ここでは、図4に示すように、所定の間隙をおいて送電コイル61と無給電コイル62とが同心状に配置されており、特にここでは送電コイル61が無給電コイル62を取り囲むように配置されている。   Here, as shown in FIG. 4, the power transmission coil 61 and the parasitic coil 62 are arranged concentrically with a predetermined gap, and particularly here, the power transmission coil 61 is arranged to surround the parasitic coil 62. Has been.

無給電コイル62は、図2に示した送電コイル5と同様に、集合電線51を略円形の渦巻状に複数回巻きして形成された平面コイルである。送電コイル61も、集合電線51を略円形状に巻回して形成された平面コイルであるが、送電コイル61の巻き数を無給電コイル62の巻き数より小さくしており、特にここでは送電コイル61を1回巻きの構成としている。   The parasitic coil 62 is a planar coil formed by winding the collecting wire 51 in a substantially circular spiral shape a plurality of times, similarly to the power transmission coil 5 shown in FIG. The power transmission coil 61 is also a planar coil formed by winding the collective electric wire 51 in a substantially circular shape. However, the number of turns of the power transmission coil 61 is smaller than the number of turns of the parasitic coil 62, and particularly here the power transmission coil 61 is configured to be wound once.

送電コイル61および無給電コイル62は、基板63上に配置されており、接着剤などの適宜な固定手段で基板63に固定される。送電コイル61の両端の端子64は送電回路部13(図1参照)に接続される。無給電コイル62の両端は共振コンデンサ65と接続されている。   The power transmission coil 61 and the parasitic coil 62 are disposed on the substrate 63 and are fixed to the substrate 63 by appropriate fixing means such as an adhesive. Terminals 64 at both ends of the power transmission coil 61 are connected to the power transmission circuit unit 13 (see FIG. 1). Both ends of the parasitic coil 62 are connected to the resonance capacitor 65.

図5に示すように、送電コイル61および無給電コイル62は、基板63と相反する側を送電装置1のハウジング53の内面に接するように配置され、基板63における送電コイル61および無給電コイル62と相反する側には送電コイル61および無給電コイル62の全面を覆うように磁性シート66が設けられている。   As shown in FIG. 5, the power transmission coil 61 and the parasitic coil 62 are arranged so that the side opposite to the substrate 63 is in contact with the inner surface of the housing 53 of the power transmission device 1. On the opposite side, a magnetic sheet 66 is provided so as to cover the entire surface of the power transmission coil 61 and the parasitic coil 62.

電子機器2側のコイル構成も、図4に示した送電装置1側のコイル構成と同様であり、受電コイル67が所定の間隙をおいて無給電コイル68と同心状に配置されており、特にここでは受電コイル67が無給電コイル68を取り囲むように配置されている。   The coil configuration on the electronic device 2 side is the same as the coil configuration on the power transmission device 1 side shown in FIG. 4, and the power receiving coil 67 is arranged concentrically with the parasitic coil 68 with a predetermined gap. Here, the power receiving coil 67 is disposed so as to surround the parasitic coil 68.

無給電コイル68は、図4に示した送電装置1側の無給電コイル62と同様に、集合電線51を略円形の渦巻状に複数回巻きして形成された平面コイルである。受電コイル67も、集合電線51を略円形状に巻回して形成された平面コイルであるが、受電コイル67の巻き数を無給電コイル68の巻き数より小さくしており、特にここでは受電コイル67を1回巻きの構成としている。   The parasitic coil 68 is a planar coil formed by winding the collecting wire 51 into a substantially circular spiral shape a plurality of times, similarly to the parasitic coil 62 on the power transmission device 1 side shown in FIG. The power receiving coil 67 is also a planar coil formed by winding the collective electric wire 51 in a substantially circular shape. However, the number of turns of the power receiving coil 67 is smaller than the number of turns of the parasitic coil 68, and particularly here the power receiving coil. 67 is configured to be wound once.

受電コイル67および無給電コイル68は、基板69上に配置されており、接着剤などの適宜な固定手段で基板69に固定される。無給電コイル68の両端は図示しない共振コンデンサと接続される。受電コイル67の両端は受電回路部21(図1参照)に接続される。   The power receiving coil 67 and the parasitic coil 68 are disposed on the substrate 69 and are fixed to the substrate 69 by appropriate fixing means such as an adhesive. Both ends of the parasitic coil 68 are connected to a resonance capacitor (not shown). Both ends of the power receiving coil 67 are connected to the power receiving circuit unit 21 (see FIG. 1).

また、受電コイル67および無給電コイル68は、基板69と相反する側を電子機器2のハウジング55の内面に接するように配置され、基板69における受電コイル67および無給電コイル68と相反する側には受電コイル67および無給電コイル68の全面を覆うように磁性シート70が設けられている。   The power receiving coil 67 and the parasitic coil 68 are arranged so that the side opposite to the substrate 69 is in contact with the inner surface of the housing 55 of the electronic device 2, and the side opposite to the power receiving coil 67 and the parasitic coil 68 on the substrate 69 is arranged. Is provided with a magnetic sheet 70 so as to cover the entire surface of the power receiving coil 67 and the parasitic coil 68.

このような構成では、送電装置1の送電コイル61に交流電圧が印加されると、送電コイル61から発生する磁束により無給電コイル62が共振する。そして、無給電コイル62から発生する磁束が電子機器2側の無給電コイル68に鎖交して無給電コイル62と無給電コイル68とが磁気結合し、無給電コイル68が共振する。そして、無給電コイル68から発生する磁束により受電コイル67が励振される。これにより、交流電力が送電装置1側の送電コイル61から無給電コイル62および電子機器2側の無給電コイル68を介して受電コイル67に伝送される。   In such a configuration, when an AC voltage is applied to the power transmission coil 61 of the power transmission device 1, the parasitic coil 62 resonates due to the magnetic flux generated from the power transmission coil 61. Then, the magnetic flux generated from the parasitic coil 62 is linked to the parasitic coil 68 on the electronic device 2 side, the parasitic coil 62 and the parasitic coil 68 are magnetically coupled, and the parasitic coil 68 resonates. The power receiving coil 67 is excited by the magnetic flux generated from the parasitic coil 68. Thereby, AC power is transmitted from the power transmission coil 61 on the power transmission device 1 side to the power reception coil 67 via the parasitic coil 62 and the parasitic coil 68 on the electronic device 2 side.

このように送電コイル61と受電コイル67との間に無給電コイル62,68を介在させることで、回路インピーダンスの影響によりQ値が低下することを抑えることができ、さらに電力の反射も抑えることができ、Q値が高く維持されるように、無給電コイル62,68のインピーダンスが適切な値に設定される。また、送電コイル61と無給電コイル62,68との結合係数および無給電コイル62,68と受電コイル67との結合係数を大きく確保することで、高い電力伝送効率を実現することができる。   Thus, by providing the non-feed coils 62 and 68 between the power transmission coil 61 and the power reception coil 67, it is possible to suppress the Q value from being lowered due to the influence of the circuit impedance, and also to suppress the reflection of power. The impedances of the parasitic coils 62 and 68 are set to appropriate values so that the Q value can be maintained high. Further, by ensuring a large coupling coefficient between the power transmission coil 61 and the parasitic coils 62 and 68 and a coupling coefficient between the parasitic coils 62 and 68 and the power reception coil 67, high power transmission efficiency can be realized.

また、送電装置1では、送電コイル61と同心状に無給電コイル62を配置すると、送電コイル61と無給電コイル62とでは電流の向きが逆方向となるので、送電コイル61から発生する磁束が無給電コイル62から発生する磁束を弱めるように作用するが、ここでは、送電コイル61の巻き数を無給電コイル62の巻き数より小さくしているため、無給電コイル62の磁束が弱められることを抑制することができ、これにより消費電力を低く抑えることができる。また、このような作用は電子機器2の受電コイル67および無給電コイル68においても同様である。   Further, in the power transmission device 1, when the parasitic coil 62 is disposed concentrically with the power transmission coil 61, the direction of current is reversed between the power transmission coil 61 and the parasitic coil 62, so that the magnetic flux generated from the power transmission coil 61 is generated. This acts to weaken the magnetic flux generated from the parasitic coil 62, but here, the number of turns of the power transmission coil 61 is made smaller than the number of turns of the parasitic coil 62, so that the magnetic flux of the parasitic coil 62 is weakened. Thus, power consumption can be kept low. Such an action is also the same in the power receiving coil 67 and the parasitic coil 68 of the electronic device 2.

次に、図3に示した送電コイル5および受電コイル6や図5に示した送電コイル61および無給電コイル62ならびに受電コイル67および無給電コイル68を構成する集合電線51について説明する。図6は、集合電線51を一部切除して示す模式的な側面図である。   Next, the power transmission coil 5 and the power reception coil 6 shown in FIG. 3, the power transmission coil 61 and the parasitic coil 62 shown in FIG. 5, and the collective electric wire 51 constituting the power reception coil 67 and the parasitic coil 68 will be described. FIG. 6 is a schematic side view showing a part of the collecting wire 51. FIG.

図6(A)に示す例では、集合電線51が、中心部に配される芯線81と、この芯線81の周囲に、素線82,83を所定の巻き角(素線82,83の中心線が位置する円柱面上で集合電線51の中心線と平行となる線と素線82,83の中心線とのなす角度)a1,a2でらせん状に巻回させて形成された第1および第2の層84,85とを有しており、第1の層84と第2の層85とでは素線82,83の巻回方向が互いに逆となっている。   In the example shown in FIG. 6A, the collective electric wire 51 includes a core wire 81 arranged in the center portion, and the strands 82 and 83 are wound around the core wire 81 with a predetermined winding angle (the center of the strands 82 and 83). The angle formed between the line parallel to the center line of the collecting wire 51 and the center line of the strands 82 and 83 on the cylindrical surface where the line is located) The first layer 84 and the second layer 85 have the winding directions of the strands 82 and 83 opposite to each other.

また、換言すると、集合電線51の長さ方向(集合電線51の中心線)と素線82の巻き方向とがなす角度(第1の巻き角a1)は、集合電線51の長さ方向に対して負方向の角度であり、集合電線51の長さ方向と素線83の巻き方向とがなす角度(第2の巻き角a2)は、集合電線51の長さ方向に対して正方向の角度である。すなわち、集合電線51の長さ方向を基準にして、巻き角a1は巻き角a2の正負方向に対して逆(反対)方向である。つまり、素線82(または素線83)の巻き方向が集合電線51の長さ方向と一致するときの角度を0度とすると、−90度<巻き角a1<0度、0度<巻き角a2<90度の関係を満たす。なお、巻き角a1が正方向の角度(0<巻き角a1<90)であり、巻き角a2が負方向の角度(−90度<巻き角a2<0度)であってもよい。   In other words, the angle (first winding angle a1) formed by the length direction of the collecting wire 51 (center line of the collecting wire 51) and the winding direction of the strand 82 is relative to the length direction of the collecting wire 51. The angle between the length direction of the collecting wire 51 and the winding direction of the strand 83 (second winding angle a2) is an angle in the positive direction with respect to the length direction of the collecting wire 51. It is. That is, with reference to the length direction of the collecting wire 51, the winding angle a1 is opposite (opposite) to the positive / negative direction of the winding angle a2. That is, assuming that the angle when the winding direction of the wire 82 (or the wire 83) coincides with the length direction of the collecting wire 51 is 0 degree, −90 degrees <winding angle a1 <0 degree, 0 degree <winding angle The relationship of a2 <90 degrees is satisfied. The winding angle a1 may be a positive angle (0 <winding angle a1 <90), and the winding angle a2 may be a negative angle (−90 degrees <winding angle a2 <0 degrees).

また、集合電線51の長さ方向とこの長さ方向に垂直な直線とで第1〜第4象限を形成する場合、素線82の巻き方向は第4の象限(または、第2の象限)に位置し、すなわち、第2象限および第4象限を貫く直線である。また、素線83の巻き方向は第1象限(または第3象限)に位置し、すなわち、第1の象限および第3象限を貫く直線である。   When the first to fourth quadrants are formed by the length direction of the collecting wire 51 and a straight line perpendicular to the length direction, the winding direction of the strands 82 is the fourth quadrant (or the second quadrant). I.e., a straight line passing through the second quadrant and the fourth quadrant. The winding direction of the wire 83 is located in the first quadrant (or the third quadrant), that is, a straight line passing through the first quadrant and the third quadrant.

芯線81は、1本の絶縁電線で構成される。内側の第1の層84は、素線82(ここでは1本の絶縁電線(第1の絶縁電線))を芯線81の周囲に巻回して形成される。外側の第2の層85は、素線83(ここでは1本の絶縁電線(第2の絶縁電線))を第1の層84の周囲に巻回して形成される。   The core wire 81 is composed of one insulated wire. The inner first layer 84 is formed by winding a wire 82 (here, one insulated wire (first insulated wire)) around the core wire 81. The outer second layer 85 is formed by winding a wire 83 (here, one insulated wire (second insulated wire)) around the first layer 84.

図6(B)に示す例では、集合電線51が、図6(A)に示した例と同様に、中心部に配される芯線81と、この芯線81の周囲に形成された第1の層84と、この第1の層84の周囲に形成された第2の層85と、を有しているが、ここでは、第2の層85の素線83に、複数の絶縁電線(第2の絶縁電線)を撚り合わせた撚り線(片撚り線)が用いられている。その他の構成は図6(A)に示した例と同様であり、芯線81には絶縁電線の単線が用いられ、また、第1の層84の素線82にも絶縁電線の単線(第1の絶縁電線)が用いられており、第1の層84と第2の層85とで素線82,83の巻回方向が互いに逆となっている。   In the example shown in FIG. 6 (B), the collective electric wire 51 has a core wire 81 disposed in the center and a first wire formed around the core wire 81, as in the example shown in FIG. 6 (A). Layer 84 and a second layer 85 formed around the first layer 84. Here, a plurality of insulated wires (first wires 83) are connected to the wires 83 of the second layer 85. 2 stranded wires (single stranded wires) are used. The other configuration is the same as the example shown in FIG. 6A. A single wire of an insulated wire is used for the core wire 81, and a single wire (first wire) of the insulated wire is used for the element wire 82 of the first layer 84. Insulated electric wires) are used, and the winding directions of the strands 82 and 83 of the first layer 84 and the second layer 85 are opposite to each other.

図6(C)に示す例では、集合電線51が、図6(A)に示した例と同様に、中心部に配される芯線81と、この芯線81の周囲に形成された第1の層84と、この第1の層84の周囲に形成された第2の層85と、を有しているが、ここでは、第1の層84の素線82および第2の層85の素線83に、複数の絶縁電線(第1の絶縁電線および第2の絶縁電線)を撚り合わせた撚り線(片撚り線)が用いられている。その他の構成は図6(A)に示した例と同様であり、芯線81には絶縁電線の単線が用いられており、第1の層84と第2の層85とで素線82,83の巻回方向が互いに逆となっている。   In the example shown in FIG. 6 (C), the collective electric wire 51 has a core wire 81 arranged at the center and a first wire formed around the core wire 81, as in the example shown in FIG. 6 (A). Layer 84 and a second layer 85 formed around the first layer 84. Here, the strands 82 of the first layer 84 and the elements of the second layer 85 are included. A stranded wire (single stranded wire) in which a plurality of insulated wires (first insulated wire and second insulated wire) are twisted together is used as the wire 83. The other configuration is the same as that of the example shown in FIG. 6A, and a single wire of an insulated wire is used for the core wire 81. The first layer 84 and the second layer 85 include the strands 82 and 83. The winding directions are opposite to each other.

このように第1の層84の素線82や第2の層85の素線83に、複数の絶縁電線を撚り合わせた撚り線を用いると、層84,85内の絶縁電線同士で電流の方向が異なるため、近接効果の影響をより一層抑制することができ、また、各層84,85で絶縁電線の本数が増えるため、表皮効果の影響をより一層抑制することができ、これにより電力伝送効率をより一層高めることができる。特に、最も外側に位置する層、ここでは第2の層85の素線83に撚り線を用いると、この素線83は、一部露出して他の絶縁電線に接しない部分が多くなるため、近接効果の影響を抑制する上で効果的である。   As described above, when a stranded wire obtained by twisting a plurality of insulated wires is used as the strand 82 of the first layer 84 or the strand 83 of the second layer 85, the insulated wires in the layers 84 and 85 are electrically connected with each other. Since the directions are different, the influence of the proximity effect can be further suppressed, and the number of insulated wires in each layer 84 and 85 is increased, so that the influence of the skin effect can be further suppressed, thereby allowing power transmission. Efficiency can be further increased. In particular, if a stranded wire is used for the outermost layer, here, the strand 83 of the second layer 85, the strand 83 is partially exposed and has many portions that do not contact other insulated wires. It is effective in suppressing the influence of the proximity effect.

なお、図示する例では、第1の層84を形成する素線82を右方向に巻回(Z巻き)し、第2の層85を形成する素線83を左方向に巻回(S巻き)しているが、この巻回方向を逆としてもよい。   In the illustrated example, the wire 82 forming the first layer 84 is wound in the right direction (Z winding), and the wire 83 forming the second layer 85 is wound in the left direction (S winding). However, this winding direction may be reversed.

このような構成の集合電線51を送電コイル5や受電コイル6に用いると、素線82,83を複数本集合させたため、表皮効果の影響を抑制することができ、さらに、各素線82,83を流れる電流の向きが大きく異なるようになるため、近接効果の影響を抑制することができる。これにより、電力損失を抑えて電力伝送効率を高めることができ、特に高出力のワイヤレス電力伝送において、送電コイル5と受電コイル6との伝送距離を大きくした場合や、送電コイル5と受電コイル6とに軸ずれがある場合でも、電力伝送効率が大きく低下することを避けることができる。   When the collective electric wire 51 having such a configuration is used for the power transmission coil 5 or the power reception coil 6, since a plurality of the strands 82 and 83 are aggregated, the influence of the skin effect can be suppressed. Since the direction of the current flowing through 83 is greatly different, the influence of the proximity effect can be suppressed. Thereby, it is possible to suppress power loss and increase power transmission efficiency. Particularly in high-power wireless power transmission, when the transmission distance between the power transmission coil 5 and the power reception coil 6 is increased, or when the power transmission coil 5 and the power reception coil 6 are increased. Even when there is an axis misalignment, it is possible to avoid a significant decrease in power transmission efficiency.

ここで、芯線81と第1の層84の素線82と第2の層85の素線83とは、外側に位置するものほど断面積が大きくなる、すなわち、芯線81の断面積をA1、第1の層84の素線82の断面積をA2、第2の層85の素線83の断面積をA3とすると、A1≦A2≦A3の関係を満たすようにするとよい。特に、式1〜式3に示すように、好ましくは、外側に位置するものに対するその内側直近に位置するものの断面積の比率(増大率)が、1.1倍から3倍の範囲(式1参照)、より好ましくは1.2倍から2.5倍の範囲(式2参照)、さらに好ましくは1.4倍から2倍の範囲(式3参照)である。
A1×1.1≦A2≦A1×3、A2×1.1≦A3≦A2×3 (式1)
A1×1.2≦A2≦A1×2.5、A2×1.2≦A3≦A2×2.5 (式2)
A1×1.4≦A2≦A1×2、A2×1.4≦A3≦A2×2 (式3)
Here, the core wire 81, the wire 82 of the first layer 84, and the wire 83 of the second layer 85 have a larger cross-sectional area as they are located on the outer side, that is, the cross-sectional area of the core wire 81 is A1, When the cross-sectional area of the wire 82 of the first layer 84 is A2, and the cross-sectional area of the wire 83 of the second layer 85 is A3, the relationship of A1 ≦ A2 ≦ A3 may be satisfied. In particular, as shown in Equations 1 to 3, preferably, the ratio (increase rate) of the cross-sectional area of the one located closest to the inside to the one located outside is in a range of 1.1 to 3 times (Equation 1 More preferably in the range of 1.2 times to 2.5 times (see Formula 2), and still more preferably in the range of 1.4 times to 2 times (see Formula 3).
A1 × 1.1 ≦ A2 ≦ A1 × 3, A2 × 1.1 ≦ A3 ≦ A2 × 3 (Formula 1)
A1 × 1.2 ≦ A2 ≦ A1 × 2.5, A2 × 1.2 ≦ A3 ≦ A2 × 2.5 (Formula 2)
A1 × 1.4 ≦ A2 ≦ A1 × 2, A2 × 1.4 ≦ A3 ≦ A2 × 2 (Formula 3)

このように芯線81と第1の層84の素線82と第2の層85の素線83とを、外側に位置するものほど断面積が大きくなるようにすると、集合電線51全体の強度を高めることができる。また、集合電線51の外周側を流れる電流量を多くすることができるため、送電コイル5から発生する磁束を増大することができる。   As described above, when the core wire 81, the wire 82 of the first layer 84 and the wire 83 of the second layer 85 are arranged so that the cross-sectional area becomes larger toward the outer side, the strength of the entire collecting wire 51 is increased. Can be increased. Further, since the amount of current flowing on the outer peripheral side of the collecting wire 51 can be increased, the magnetic flux generated from the power transmission coil 5 can be increased.

また、集合電線51の中心線に対する素線82,83の巻き角a1,a2が30度から70度の範囲にあるようにするとよい。この巻き角a1,a2は、好ましくは35度から65度の範囲、より好ましくは、40度から60度の範囲である。なお、素線82,83の巻き角a1,a2は、素線82,83上の位置に応じて多少のばらつきが現れる場合があるので、複数箇所(10〜20箇所)の巻き角a1,a2を平均して評価するとよい。   The winding angles a1 and a2 of the strands 82 and 83 with respect to the center line of the collecting wire 51 are preferably in the range of 30 degrees to 70 degrees. The winding angles a1 and a2 are preferably in the range of 35 degrees to 65 degrees, and more preferably in the range of 40 degrees to 60 degrees. The winding angles a1 and a2 of the strands 82 and 83 may vary somewhat depending on the positions on the strands 82 and 83, so the winding angles a1 and a2 at a plurality of locations (10 to 20 locations). Should be evaluated on average.

また、互いに逆向きに巻回された2本の素線82,83の交角、すなわち2本の素線82,83の各巻き角a1,a2を加算した角度が、60度から140度の範囲にあるようにするとよい。この素線82,83の交角は、好ましくは70度から130度の範囲、より好ましくは80度から120度の範囲である。   Further, the angle of intersection of the two strands 82 and 83 wound in opposite directions, that is, the angle obtained by adding the winding angles a1 and a2 of the two strands 82 and 83 is in the range of 60 degrees to 140 degrees. It is good to be in. The intersection angle of the strands 82 and 83 is preferably in the range of 70 degrees to 130 degrees, and more preferably in the range of 80 degrees to 120 degrees.

素線82,83の巻き角a1,a2を前記のような範囲に収め、また2本の素線82,83の交角を前記のような範囲に収めるようにすると、近接する素線82,83を流れる電流の方向を大きくずらすことができるため、より一層確実に近接効果を抑制することができる。   When the winding angles a1 and a2 of the strands 82 and 83 are within the above range, and the intersection angle of the two strands 82 and 83 is within the above range, the adjacent strands 82 and 83 are adjacent to each other. Since the direction of the current flowing through can be greatly shifted, the proximity effect can be more reliably suppressed.

また、芯線81、第1の層84の素線82および第2の層85の素線83の直径は、送電コイル5および受電コイル6の大きさによって異なるものの、概ね0.05mmから0.2mmの範囲とすることが好ましい。   The diameters of the core wire 81, the wire 82 of the first layer 84, and the wire 83 of the second layer 85 vary depending on the sizes of the power transmission coil 5 and the power reception coil 6, but are generally 0.05 mm to 0.2 mm. It is preferable to set it as the range.

ところで、集合電線51は、前記のように、素線82,83を巻回してなる層84,85が積層された多層構造をなすが、このような構成では、外側に位置する層85の素線83の方が全長が長くなり、内外の素線82,83同士でインダクタンスに差が生じる。   Incidentally, as described above, the collective electric wire 51 has a multilayer structure in which the layers 84 and 85 formed by winding the strands 82 and 83 are laminated. In such a configuration, the element 85 of the layer 85 positioned on the outside is formed. The total length of the wire 83 is longer, and there is a difference in inductance between the inner and outer strands 82 and 83.

したがって、素線83の全長を短くするために(素線83の全長を素線82の全長に近づけるために)、素線83は素線82よりも巻回数が少なくなるように巻回される方が好ましい。以下にその例を示す。なお、ここでの巻回数とは、素線82,83が芯線81(または集合電線51の中心線)を周回する回数である。   Therefore, in order to shorten the total length of the strand 83 (in order to make the total length of the strand 83 close to the total length of the strand 82), the strand 83 is wound so that the number of turns is smaller than that of the strand 82. Is preferred. An example is shown below. Here, the number of windings refers to the number of times that the strands 82 and 83 circulate around the core wire 81 (or the center line of the collecting wire 51).

図7、図8、図9は、集合電線51の変形例を示す模式的な側面図である。   7, 8, and 9 are schematic side views showing modifications of the collective wire 51.

図7は、外側に位置する層85の素線83が巻き密度が低くなるように巻回される例である。図7(A)に示す例では、巻き密度を低くするために、素線83が所定の隙間を有するように巻回されている。図7(B)に示す例では、素線82も所定の隙間(第1の隙間)を有して巻回され、素線83の隙間(第2の隙間)は素線82の隙間よりも大きくしている。   FIG. 7 shows an example in which the strands 83 of the layer 85 located outside are wound so that the winding density is low. In the example shown in FIG. 7A, the wire 83 is wound so as to have a predetermined gap in order to reduce the winding density. In the example shown in FIG. 7B, the strand 82 is also wound with a predetermined gap (first gap), and the gap of the strand 83 (second gap) is larger than the gap of the strand 82. It is getting bigger.

図7(C)に示す例では、素線83の隙間(第2の隙間)にスペーサ86が設けられている。これにより、素線83の間隔がスペーサ86により保持され、また、素線83の巻回も容易になる。なお、ここでは、スペーサ86が素線83に沿ってらせん状に巻回されているが、このスペーサは素線83の間隔を保持するものであれば良く、このような形態のものに限定されない。   In the example shown in FIG. 7C, a spacer 86 is provided in the gap (second gap) between the strands 83. Thereby, the space | interval of the strand 83 is hold | maintained by the spacer 86, and the winding of the strand 83 becomes easy. Here, the spacer 86 is spirally wound along the strand 83, but the spacer is not limited to such a configuration as long as it maintains the spacing between the strands 83. .

図8は、素線83の全長を短くするために、素線83に用いられる絶縁電線の被覆(絶縁層)83bの厚さを大きくした例である。すなわち、素線83の絶縁層83bの断面積は素線82の絶縁層82bの断面積よりも大きくなる。換言すると、素線83の線状導体83aの外周面と素線83(の絶縁層83b)の外周面との距離d2は、素線82の線状導体82aの外周面と素線82(の絶縁層82b)の外周面との距離d1よりも大きくなる。なお、素線82,83の絶縁層82b,83bは複数の層から形成されてもよい。   FIG. 8 is an example in which the thickness of the insulated wire coating (insulating layer) 83b used for the wire 83 is increased in order to shorten the total length of the wire 83. That is, the cross-sectional area of the insulating layer 83 b of the strand 83 is larger than the cross-sectional area of the insulating layer 82 b of the strand 82. In other words, the distance d2 between the outer peripheral surface of the linear conductor 83a of the strand 83 and the outer peripheral surface of the strand 83 (the insulating layer 83b) is equal to the outer peripheral surface of the linear conductor 82a of the strand 82 and the strand 82 It becomes larger than the distance d1 with the outer peripheral surface of the insulating layer 82b). The insulating layers 82b and 83b of the strands 82 and 83 may be formed from a plurality of layers.

また、素線83の全長を短くするために、図6に示したように、素線83を素線82よりも太くしてもよい。すなわち、素線83の断面積は素線82の断面積よりも大きくなる。   Moreover, in order to shorten the full length of the strand 83, the strand 83 may be made thicker than the strand 82 as shown in FIG. That is, the cross-sectional area of the strand 83 is larger than the cross-sectional area of the strand 82.

図9は、素線83の全長を短くするために、素線83の巻き方を変えた例である。図9(A)に示す例では、素線83の巻き角(第2の巻き角)a2を素線82の巻き角(第1の巻き角)a1よりも小さくしている。ここでの巻き角a1,a2の大小は巻き角a1,a2の絶対値で判断することは言うまでもない。例えば、巻き角a1を−45度にし、巻き角a2を30度にする。   FIG. 9 is an example in which the winding method of the wire 83 is changed in order to shorten the overall length of the wire 83. In the example shown in FIG. 9A, the winding angle (second winding angle) a2 of the strand 83 is made smaller than the winding angle (first winding angle) a1 of the strand 82. Needless to say, the magnitudes of the winding angles a1 and a2 are determined by the absolute values of the winding angles a1 and a2. For example, the winding angle a1 is set to −45 degrees and the winding angle a2 is set to 30 degrees.

図9(B)に示す例では、素線83の全長を短くするために、素線83の一部を巻回しないようにしている。すなわち、素線83の一部は集合電線51の長さ方向と同一(略平行)の方向となる。図9(C)に示す例では、素線83の一部が巻き角a2(例えば45度)よりも小さい巻き角a2’(例えば40度)で巻回されている。   In the example shown in FIG. 9B, in order to shorten the total length of the strand 83, a part of the strand 83 is not wound. That is, a part of the strand 83 is in the same (substantially parallel) direction as the length direction of the collecting wire 51. In the example shown in FIG. 9C, a part of the strand 83 is wound at a winding angle a2 '(for example, 40 degrees) smaller than the winding angle a2 (for example, 45 degrees).

以上のように素線82,82が巻回されることにより、素線83の巻き数が少なくなり、素線83の全長を短くすることができる。すなわち、素線83の全長を素線82の全長に近づけることができる。したがって、内外の素線82,83同士で生じるインダクタンスの差が小さくなり、電力伝送効率をより一層高めることができる。なお、上述した素線83の巻き数を少なくするためのいくつかの巻回方法は適宜組み合わされても良い。   By winding the strands 82 and 82 as described above, the number of windings of the strand 83 is reduced, and the overall length of the strand 83 can be shortened. That is, the total length of the strand 83 can be made close to the total length of the strand 82. Therefore, the difference in inductance generated between the inner and outer strands 82 and 83 is reduced, and the power transmission efficiency can be further enhanced. Note that several winding methods for reducing the number of windings of the wire 83 described above may be combined as appropriate.

なお、本実施形態では、集合電線51を、芯線81と第1の層84と第2の層85とを有する3層構造としたが、4層以上の構造とすることも可能である。このように層数を増やすと、集合電線51全体の断面積を大きくして、コイルから発生する磁力の強度を高めることができる。この場合、巻回方向が互いに逆となる第1の層84と第2の層85とを交互に形成するとよい。また、上記した素線82,83の角度(巻き角a1,a2と交角)および断面積の関係は、すべての層で満足されるように構成することが好ましいが、少なくとも、最も外側に位置する層とこれに隣接する内側の層とで上記した素線の角度および断面積の関係が満足されるように構成するとよい。これにより、素線が交差する構成がより多くなり、近接効果抑制の効果をより確実なものとすることができる。   In the present embodiment, the collecting wire 51 has a three-layer structure including the core wire 81, the first layer 84, and the second layer 85, but it may have a structure of four or more layers. When the number of layers is increased in this way, the cross-sectional area of the entire collecting wire 51 can be increased, and the strength of the magnetic force generated from the coil can be increased. In this case, it is preferable to alternately form the first layer 84 and the second layer 85 whose winding directions are opposite to each other. Further, it is preferable that the relationship between the angles (intersection angles with the winding angles a1 and a2) and the cross-sectional areas of the strands 82 and 83 described above is satisfied in all layers, but at least the outermost positions are positioned. It is preferable that the above-described relationship between the angle of the strand and the cross-sectional area be satisfied between the layer and the inner layer adjacent thereto. Thereby, the structure which a strand cross | intersects increases, and the effect of proximity effect suppression can be made more reliable.

次に、集合電線51の製造方法について説明する。図10は、集合電線51の製造方法を説明する模式的な側面図である。ここでは、芯線81の周囲に素線82を巻回して第1の層84を形成する要領を示している。   Next, the manufacturing method of the collection electric wire 51 is demonstrated. FIG. 10 is a schematic side view for explaining a method for manufacturing the assembled wire 51. Here, the procedure for forming the first layer 84 by winding the wire 82 around the core wire 81 is shown.

素線供給装置91は、一定量の素線82を保持するロールなどから構成され、一定速度で素線82を繰り出すようになっている。この素線供給装置91は、芯線81に平行となる方向に移動可能に適宜な支持手段に支持されている。芯線81は、その両端を図示しない回転装置に保持されて回転(自転)するようになっている。この芯線81の回転と素線供給装置91の移動とは互いに同期して行われる。   The strand supply device 91 is composed of a roll or the like that holds a certain amount of the strand 82, and feeds the strand 82 at a constant speed. The strand supply device 91 is supported by appropriate support means so as to be movable in a direction parallel to the core wire 81. The core wire 81 is rotated (autorotated) while being held by a rotating device (not shown) at both ends. The rotation of the core wire 81 and the movement of the strand supply device 91 are performed in synchronization with each other.

素線82の先端を芯線81に固定した上で、素線供給装置91から一定速度で素線82を繰り出すとともに素線供給装置91を一定速度で移動させると、芯線81の周囲に素線82が巻き付く。このとき、素線供給装置91から繰り出された素線82の芯線81に対する傾斜角b1を一定に保持することで、素線82の巻き角a1(図6参照)を均一にすることができる。また、素線82同士が重なり合う状態や、素線82の隙間が大きくなって芯線81が過度に剥き出しになる状態とならないように、芯線81の回転速度と素線供給装置91の移動速度とを調整する。   When the tip of the strand 82 is fixed to the core 81, the strand 82 is fed out from the strand supply device 91 at a constant speed and the strand supply device 91 is moved at a constant speed. Wrap around. At this time, the winding angle a1 (see FIG. 6) of the strand 82 can be made uniform by keeping the inclination angle b1 of the strand 82 drawn out from the strand supply device 91 with respect to the core 81 constant. In addition, the rotational speed of the core wire 81 and the moving speed of the strand supply device 91 are set so that the strands 82 do not overlap each other or the gap between the strands 82 becomes large and the core wire 81 is not excessively exposed. adjust.

また、素線供給装置91から繰り出された素線82の芯線81に対する傾斜角b1は、素線82の巻き角a1(図6参照)を規定するものであり、この巻き角a1を調整するには、芯線81に素線82を巻回し始める開始時点で、素線82が芯線81に巻き付く巻回位置に対する素線供給装置91の位置を前後させればよい。図10(A)に示すように、素線供給装置91を巻回位置に近づけると、素線82の巻き角a1を大きくすることができ、図10(B)に示すように、素線供給装置91を巻回位置から遠ざけると、素線82の巻き角a1を小さくすることができる。   Further, the inclination angle b1 of the strand 82 drawn out from the strand supply device 91 with respect to the core wire 81 defines the winding angle a1 (see FIG. 6) of the strand 82, and this winding angle a1 is adjusted. In other words, at the start of winding the wire 82 around the core wire 81, the position of the wire supply device 91 relative to the winding position where the wire 82 winds around the core wire 81 may be moved back and forth. As shown in FIG. 10A, when the strand supply device 91 is brought close to the winding position, the winding angle a1 of the strand 82 can be increased. As shown in FIG. When the device 91 is moved away from the winding position, the winding angle a1 of the strand 82 can be reduced.

ここでは、芯線81の周囲に素線82を巻回して第1の層84を形成する要領を説明したが、第1の層84の周囲に素線83を巻回して第2の層85を形成する場合にも、同様の要領で行えばよい。   Here, the procedure for forming the first layer 84 by winding the strand 82 around the core wire 81 has been described. However, the second layer 85 is formed by winding the strand 83 around the first layer 84. In the case of formation, the same procedure may be performed.

図11は、図6(B)に示した第2の層85を形成する素線83(撚り線)、ならびに図6(C)に示した第1および第2の層84,85をそれぞれ形成する素線82,83(撚り線)の一例を示す側面図である。   11 forms the strand 83 (twisted wire) forming the second layer 85 shown in FIG. 6B and the first and second layers 84 and 85 shown in FIG. 6C, respectively. It is a side view which shows an example of the strands 82 and 83 (stranded wire) to do.

図11(A)に示す例では、2本の絶縁電線101を片撚りで撚り合わせている。撚りの向きは右撚りおよび左撚りのいずれでもよい。絶縁電線101の撚り角cは、30度から70度の範囲とするとよく、好ましくは35度から65度の範囲、より好ましくは40度から60度の範囲である。   In the example shown in FIG. 11A, two insulated wires 101 are twisted together by single twisting. The twisting direction may be either right-handed or left-handed. The twist angle c of the insulated wire 101 is preferably in the range of 30 degrees to 70 degrees, preferably in the range of 35 degrees to 65 degrees, and more preferably in the range of 40 degrees to 60 degrees.

図11(B)に示す例では、3本の絶縁電線101を片撚りで撚り合わせている。撚りの向きは右撚りおよび左撚りのいずれでもよい。このようすると、各層84,85で絶縁電線101の本数がより一層増えるため、電力伝送効率をより一層高めることができる。   In the example shown in FIG. 11B, the three insulated wires 101 are twisted together by single twisting. The twisting direction may be either right-handed or left-handed. If it does in this way, since the number of the insulated wires 101 increases further in each layer 84 and 85, electric power transmission efficiency can be raised further.

次に、図11(B)に示した3本の絶縁電線101を撚り合わせた撚り線を有する素線82,83の製造方法について説明する。図12は、図11(B)に示した撚り線を有する素線82,83の製造方法を説明する正面図である。   Next, the manufacturing method of the strands 82 and 83 which have the strand wire which twisted together the three insulated wires 101 shown to FIG. 11 (B) is demonstrated. FIG. 12 is a front view for explaining a method of manufacturing the strands 82 and 83 having the stranded wires shown in FIG.

絶縁電線101を繰り出す3つの絶縁電線供給装置111は、一定量の絶縁電線101を保持するロールなどから構成され、一定速度で絶縁電線101を繰り出すようになっている。この絶縁電線供給装置111は、周方向に等間隔(120度)をおいて配置され、3本の絶縁電線101が絡み合う中心線を中心して回転(公転)するとともに、紙面に直交する方向に移動可能に適宜な支持手段に支持されており、絶縁電線供給装置111から一定速度で絶縁電線101を繰り出しながら、絶縁電線供給装置111を一定速度で同一方向に回転させることで、3本の絶縁電線101が撚り合わせられる。   The three insulated wire supply devices 111 that feed out the insulated wire 101 are configured by a roll or the like that holds a certain amount of insulated wire 101, and the insulated wire 101 is fed out at a constant speed. This insulated wire supply device 111 is arranged at equal intervals (120 degrees) in the circumferential direction, and rotates (revolves) around a center line where the three insulated wires 101 are intertwined, and moves in a direction perpendicular to the paper surface. The three insulated wires are supported by appropriate supporting means as possible, and the insulated wire supply device 111 is rotated in the same direction at a constant speed while the insulated wire 101 is fed out from the insulated wire supply device 111 at a constant speed. 101 is twisted together.

このとき、各絶縁電線供給装置111から引き出された絶縁電線101の先端は予め適宜な固定手段に固定される。絶縁電線供給装置111の回転時には、中心線に対する絶縁電線101の傾斜角d(図11参照)を一定に保持する。この傾斜角dは撚り角cを規定するものであり、この撚り角cは、開始時点での絶縁電線供給装置111の位置で調整することができる。3つの絶縁電線供給装置111は、その回転と同期して、相対位置を保持しながら紙面に直交する方向に一定速度で移動させる。ここで、絶縁電線101同士が過度に重なったり、絶縁電線101同士が離れ過ぎないように、絶縁電線供給装置111の回転数と移動速度とを調整する。   At this time, the tip of the insulated wire 101 drawn out from each insulated wire supply device 111 is fixed in advance to an appropriate fixing means. During the rotation of the insulated wire supply device 111, the inclination angle d (see FIG. 11) of the insulated wire 101 with respect to the center line is kept constant. This inclination angle d defines the twist angle c, and this twist angle c can be adjusted at the position of the insulated wire supply device 111 at the start time. The three insulated wire supply devices 111 are moved at a constant speed in a direction orthogonal to the paper surface while maintaining the relative position in synchronization with the rotation. Here, the number of rotations and the moving speed of the insulated wire supply device 111 are adjusted so that the insulated wires 101 are not excessively overlapped or the insulated wires 101 are not separated too much.

なお、図11(A)に示したように、2本の絶縁電線101を撚り合わせた撚り線を有する素線82,83も、これと同様に製造することができ、この場合、絶縁電線101を繰り出す2つの絶縁電線供給装置111を、2本の絶縁電線101が絡み合う中心線を中心して回転させればよい。   As shown in FIG. 11A, the strands 82 and 83 having stranded wires obtained by twisting two insulated wires 101 can be manufactured in the same manner. The two insulated wire supply devices 111 that feed out the wire may be rotated around the center line where the two insulated wires 101 are intertwined.

なお、本実施形態では、電子機器2に搭載された2次電池3を充電するために、送電装置1から電子機器2に電力伝送を行う構成について説明し、このような構成は2次電池を備えた携帯電話などの携帯型の電子機器に好適であるが、本発明におけるワイヤレス電力伝送はこのような2次電池の充電に限定されるものではなく、2次電池を備えていない電子機器に動作電力を常時供給するものであってもよい。   In addition, in this embodiment, in order to charge the secondary battery 3 mounted in the electronic device 2, the structure which transmits electric power from the power transmission apparatus 1 to the electronic device 2 is demonstrated, and such a structure is a secondary battery. Although it is suitable for a portable electronic device such as a mobile phone provided, the wireless power transmission in the present invention is not limited to the charging of such a secondary battery, but to an electronic device not equipped with a secondary battery. The operating power may be constantly supplied.

また、本実施形態では、図6に示したように、集合電線51の中心部に芯線81を設けた例について説明したが、この芯線81を設けない構成も可能である。また、芯線81を設ける場合でも、芯線81を、絶縁電線などの導体ではなく、合成樹脂などの非導体のみで構成することも可能である。   Further, in the present embodiment, as illustrated in FIG. 6, the example in which the core wire 81 is provided at the center of the collective electric wire 51 has been described, but a configuration in which the core wire 81 is not provided is also possible. Further, even when the core wire 81 is provided, the core wire 81 can be configured only with a non-conductor such as a synthetic resin instead of a conductor such as an insulated wire.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

まず、集合電線51に関する実施例1〜5について説明する。図13は、集合電線51に関する実施例1〜5の各構成を示す説明図である。   First, Examples 1 to 5 related to the collective wire 51 will be described. FIG. 13 is an explanatory diagram illustrating each configuration of the first to fifth embodiments related to the collective wire 51.

実施例1では、図6(A)に示したように、芯線81、第1の層84の素線82および第2の層85の素線83を有する集合電線51を採用し、芯線81、第1の層84の素線82および第2の層85の素線83には共に、直径0.1mmの絶縁電線を用いた。また、第1の層84の素線82の巻き角a1を30度、第2の層85の素線83の巻き角a2を50度とし、素線82と素線83との交角を80度とした。また、第1の層84と第2の層85とを交互に形成し、第1の層84および第2の層85の各層数を20層とした。   In the first embodiment, as illustrated in FIG. 6A, the assembly wire 51 including the core wire 81, the strand 82 of the first layer 84 and the strand 83 of the second layer 85 is employed, and the core wire 81, For both the strands 82 of the first layer 84 and the strands 83 of the second layer 85, insulated wires having a diameter of 0.1 mm were used. Further, the winding angle a1 of the strand 82 of the first layer 84 is 30 degrees, the winding angle a2 of the strand 83 of the second layer 85 is 50 degrees, and the intersection angle between the strand 82 and the strand 83 is 80 degrees. It was. In addition, the first layer 84 and the second layer 85 are alternately formed, and the number of each of the first layer 84 and the second layer 85 is set to 20.

実施例2では、実施例1と同様に、図6(A)に示した構成の集合電線51を採用し、芯線81に直径0.08mmの絶縁電線を、第1の層84の素線82に直径0.1mmの絶縁電線を、第2の層85の素線83に直径0.12mmの絶縁電線をそれぞれ用いた。また、第1の層84の素線82の巻き角a1を30度、第2の層85の素線83の巻き角a2を45度とし、素線82と素線83との交角を75度とした。また、第1の層84と第2の層85とを交互に形成し、第1の層84および第2の層85の各層数を16層とした。   In the second embodiment, as in the first embodiment, the collective electric wire 51 having the configuration shown in FIG. 6A is adopted, an insulated electric wire having a diameter of 0.08 mm is used as the core wire 81, and the strand 82 of the first layer 84 is used. An insulated wire having a diameter of 0.1 mm was used, and an insulated wire having a diameter of 0.12 mm was used for the strand 83 of the second layer 85. Further, the winding angle a1 of the strand 82 of the first layer 84 is 30 degrees, the winding angle a2 of the strand 83 of the second layer 85 is 45 degrees, and the intersection angle between the strand 82 and the strand 83 is 75 degrees. It was. In addition, the first layer 84 and the second layer 85 were alternately formed, and the number of each of the first layer 84 and the second layer 85 was set to 16.

実施例3では、実施例1と同様に、図6(A)に示した構成の集合電線51を採用し、芯線81に直径0.06mmの絶縁電線を、第1の層84の素線82に直径0.1mmの絶縁電線を、第2の層85の素線83に直径0.15mmの絶縁電線をそれぞれ用いた。また、第1の層84の素線82の巻き角a1を40度、第2の層85の素線83の巻き角a2を50度とし、素線82と素線83との交角を90度とした。また、第1の層84と第2の層85とを交互に形成し、第1の層84および第2の層85の各層数を12層とした。   In the third embodiment, similarly to the first embodiment, the collective electric wire 51 having the configuration shown in FIG. 6A is adopted, an insulated electric wire having a diameter of 0.06 mm is used as the core wire 81, and the strand 82 of the first layer 84. An insulated wire having a diameter of 0.1 mm was used, and an insulated wire having a diameter of 0.15 mm was used for the strand 83 of the second layer 85. Further, the winding angle a1 of the strand 82 of the first layer 84 is 40 degrees, the winding angle a2 of the strand 83 of the second layer 85 is 50 degrees, and the intersection angle between the strand 82 and the strand 83 is 90 degrees. It was. In addition, the first layer 84 and the second layer 85 were alternately formed, and the number of layers of the first layer 84 and the second layer 85 was twelve.

実施例4では、図6(B)に示したように、第2の層85を撚り線(片撚り線)である素線83で形成した集合電線51を採用した。芯線81には直径0.08mmの絶縁電線を、第1の層84の素線82に直径0.08mmの絶縁電線をそれぞれ用いた。第2の層85の素線83には直径0.1mmの絶縁電線を撚り合わせた撚り線を用い、この絶縁電線を4本撚り合わせて撚り線を形成し、撚り角cは35度である。また、第1の層84の素線82の巻き角a1を45度、第2の層85の素線83(撚り線)の巻き角a2を50度とし、素線82と素線83との交角を95度とした。また、第1の層84と第2の層85とを交互に形成し、第1の層84および第2の層85の各層数を15層とした。   In Example 4, as shown in FIG. 6B, the collective electric wire 51 in which the second layer 85 is formed by the strands 83 that are stranded wires (single stranded wires) is employed. An insulated wire having a diameter of 0.08 mm was used for the core wire 81, and an insulated wire having a diameter of 0.08 mm was used for the strand 82 of the first layer 84. As the strand 83 of the second layer 85, a stranded wire obtained by twisting insulated wires having a diameter of 0.1 mm is used, and four insulated wires are twisted to form a stranded wire, and the twist angle c is 35 degrees. . Further, the winding angle a1 of the strand 82 of the first layer 84 is 45 degrees, the winding angle a2 of the strand 83 (twisted wire) of the second layer 85 is 50 degrees, and the The crossing angle was 95 degrees. In addition, the first layer 84 and the second layer 85 were alternately formed, and the number of layers of the first layer 84 and the second layer 85 was fifteen.

実施例5では、図6(C)に示したように、第1の層84および第2の層85をともに撚り線(片撚り線)である素線82,83で形成した集合電線51を採用した。芯線81には直径0.06mmの絶縁電線を用いた。第1の層84の素線82および第2の層85の素線83には直径0.06mmの絶縁電線を撚り合わせた撚り線を用い、この絶縁電線を4本撚り合わせて撚り線を形成し、撚り角cは30度である。また、第1の層84の素線82(撚り線)の巻き角a1を40度、第2の層85の素線83(撚り線)の巻き角a2を60度とし、素線82と素線83との交角を100度とした。また、第1の層84と第2の層85とを交互に形成し、第1の層84および第2の層85の各層数を12層とした。   In Example 5, as shown in FIG. 6 (C), the collective electric wire 51 in which the first layer 84 and the second layer 85 are both formed by the strands 82 and 83 that are stranded wires (single stranded wires). Adopted. An insulated wire having a diameter of 0.06 mm was used for the core wire 81. The strands 82 of the first layer 84 and the strands 83 of the second layer 85 are stranded wires in which insulated wires having a diameter of 0.06 mm are twisted, and four of the insulated wires are twisted to form a stranded wire. The twist angle c is 30 degrees. Further, the winding angle a1 of the strand 82 (stranded wire) of the first layer 84 is 40 degrees, the winding angle a2 of the strand 83 (stranded wire) of the second layer 85 is 60 degrees, and the strand 82 and strand The angle of intersection with the line 83 was set to 100 degrees. In addition, the first layer 84 and the second layer 85 were alternately formed, and the number of layers of the first layer 84 and the second layer 85 was twelve.

次に、実施例1〜5の集合電線51を用いた送電コイル5および受電コイル6に関する実施例6〜13と、この実施例6〜13で電力伝送効率を評価した結果について説明する。図14は、送電コイル5および受電コイル6に関する実施例6〜13の構成と電力伝送効率を示す説明図である。図15は、電力伝送効率の評価で用いられた計測装置の概略構成図である。   Next, Examples 6 to 13 related to the power transmission coil 5 and the power receiving coil 6 using the collective wires 51 of Examples 1 to 5 and the results of evaluating the power transmission efficiency in Examples 6 to 13 will be described. FIG. 14 is an explanatory diagram showing configurations and power transmission efficiencies of Examples 6 to 13 related to the power transmission coil 5 and the power reception coil 6. FIG. 15 is a schematic configuration diagram of a measuring device used in the evaluation of power transmission efficiency.

電力伝送効率の評価では、図15に示すように、定電圧電源から送電回路を介して送電コイル5に供給される電力の電流I1および電圧V1を計測し、また、受電コイル6に発生する電力により受電回路を介して負荷側に発生する電流I2および電圧V2を計測し、電力伝送効率ηを次式により算出した。
η=V2×I2/V1×I1
ここで、送電回路のスイッチング周波数を150kHzとし、送電コイル5と受電コイル6との伝送距離(送電コイル5と受電コイル6との軸方向の離間距離)を40mmとし、送電回路からの送電電力を20Wとした。また、送電コイル5および受電コイル6の互いの中心軸が整合する状態の他、直径に対して15%ずれた軸ずれがある状態で電力伝送効率を評価した。
In the evaluation of the power transmission efficiency, as shown in FIG. 15, the current I1 and the voltage V1 of the power supplied from the constant voltage power source to the power transmission coil 5 through the power transmission circuit are measured, and the power generated in the power reception coil 6 is measured. Was used to measure the current I2 and the voltage V2 generated on the load side through the power receiving circuit, and the power transmission efficiency η was calculated by the following equation.
η = V2 × I2 / V1 × I1
Here, the switching frequency of the power transmission circuit is 150 kHz, the transmission distance between the power transmission coil 5 and the power reception coil 6 (the axial distance between the power transmission coil 5 and the power reception coil 6) is 40 mm, and the transmission power from the power transmission circuit is 20W. In addition to the state in which the central axes of the power transmission coil 5 and the power reception coil 6 are aligned, the power transmission efficiency was evaluated in a state where there was an axial shift that was 15% shifted from the diameter.

実施例6では、実施例1の集合電線51を採用し、この集合電線51の巻き数を40回とした。コイル構成は、図3に示したものを採用した。この実施例6では、電力伝送効率ηが73%となり、良好な電力伝送が可能なことが確認された。また、送電コイル5と受電コイル6とに軸ずれがある場合でも、電力伝送効率がほとんど低下しないことが確認された。   In Example 6, the collective electric wire 51 of Example 1 was employ | adopted and the winding number of this collective electric wire 51 was 40 times. The coil configuration shown in FIG. 3 was used. In Example 6, the power transmission efficiency η was 73%, and it was confirmed that good power transmission was possible. In addition, it was confirmed that even when the power transmission coil 5 and the power receiving coil 6 are misaligned, the power transmission efficiency hardly decreases.

実施例7では、実施例2の集合電線51を採用し、この集合電線51の巻き数を40回とした。コイル構成は、図3に示したもの(無給電コイルなし)を採用した。この実施例7では、電力伝送効率ηが75%となり、良好な電力伝送が可能なことが確認された。また、送電コイル5と受電コイル6とに軸ずれがある場合でも、電力伝送効率がほとんど低下しないことが確認された。   In Example 7, the collective electric wire 51 of Example 2 was employ | adopted and the winding number of this collective electric wire 51 was 40 times. The coil configuration shown in FIG. 3 (no parasitic coil) was adopted. In Example 7, the power transmission efficiency η was 75%, and it was confirmed that good power transmission was possible. In addition, it was confirmed that even when the power transmission coil 5 and the power receiving coil 6 are misaligned, the power transmission efficiency hardly decreases.

実施例8では、実施例3の集合電線51を採用し、この集合電線51の巻き数を40回とした。コイル構成は、図3に示したもの(無給電コイルなし)を採用した。この実施例8では、電力伝送効率ηが76%となり、良好な電力伝送が可能なことが確認された。また、送電コイル5と受電コイル6とに軸ずれがある場合でも、電力伝送効率がほとんど低下しないことが確認された。   In Example 8, the collective electric wire 51 of Example 3 was employ | adopted and the winding number of this collective electric wire 51 was 40 times. The coil configuration shown in FIG. 3 (no parasitic coil) was adopted. In Example 8, the power transmission efficiency η was 76%, and it was confirmed that good power transmission was possible. In addition, it was confirmed that even when the power transmission coil 5 and the power receiving coil 6 are misaligned, the power transmission efficiency hardly decreases.

実施例9では、実施例3の集合電線51を採用し、この集合電線51の巻き数を40回とした。コイル構成は、図5に示したもの(無給電コイルあり)を採用した。この実施例9では、電力伝送効率ηが78%となり、良好な電力伝送が可能なことが確認された。また、送電コイル5と受電コイル6とに軸ずれがある場合でも、電力伝送効率がほとんど低下しないことが確認された。   In Example 9, the collective electric wire 51 of Example 3 was employ | adopted and the winding number of this collective electric wire 51 was 40 times. The coil configuration shown in FIG. 5 (with a parasitic coil) was adopted. In Example 9, the power transmission efficiency η was 78%, and it was confirmed that good power transmission was possible. In addition, it was confirmed that even when the power transmission coil 5 and the power receiving coil 6 are misaligned, the power transmission efficiency hardly decreases.

実施例10では、実施例4の集合電線51を採用し、この集合電線51の巻き数を50回とした。コイル構成は、図3に示したもの(無給電コイルなし)を採用した。この実施例10では、電力伝送効率ηが80%となり、良好な電力伝送が可能なことが確認された。また、送電コイル5と受電コイル6とに軸ずれがある場合でも、電力伝送効率がほとんど低下しないことが確認された。   In Example 10, the collective electric wire 51 of Example 4 was employ | adopted and the winding number of this collective electric wire 51 was 50 times. The coil configuration shown in FIG. 3 (no parasitic coil) was adopted. In Example 10, the power transmission efficiency η was 80%, and it was confirmed that good power transmission was possible. In addition, it was confirmed that even when the power transmission coil 5 and the power receiving coil 6 are misaligned, the power transmission efficiency hardly decreases.

実施例11では、実施例4の集合電線51を採用し、この集合電線51の巻き数を50回とした。コイル構成は、図5に示したもの(無給電コイルあり)を採用した。この実施例11では、電力伝送効率ηが82%となり、良好な電力伝送が可能なことが確認された。また、送電コイル5と受電コイル6とに軸ずれがある場合でも、電力伝送効率がほとんど低下しないことが確認された。   In Example 11, the collective electric wire 51 of Example 4 was employ | adopted and the winding number of this collective electric wire 51 was 50 times. The coil configuration shown in FIG. 5 (with a parasitic coil) was adopted. In Example 11, the power transmission efficiency η was 82%, and it was confirmed that good power transmission was possible. In addition, it was confirmed that even when the power transmission coil 5 and the power receiving coil 6 are misaligned, the power transmission efficiency hardly decreases.

実施例12では、実施例5の集合電線51を採用し、この集合電線51の巻き数を60回とした。コイル構成は、図3に示したもの(無給電コイルなし)を採用した。この実施例12では、電力伝送効率ηが82%となり、良好な電力伝送が可能なことが確認された。また、送電コイル5と受電コイル6とに軸ずれがある場合でも、電力伝送効率がほとんど低下しないことが確認された。   In Example 12, the collective electric wire 51 of Example 5 was employ | adopted and the winding number of this collective electric wire 51 was 60 times. The coil configuration shown in FIG. 3 (no parasitic coil) was adopted. In Example 12, the power transmission efficiency η was 82%, and it was confirmed that good power transmission was possible. In addition, it was confirmed that even when the power transmission coil 5 and the power receiving coil 6 are misaligned, the power transmission efficiency hardly decreases.

実施例13では、実施例5の集合電線51を採用し、この集合電線51の巻き数を60回とした。コイル構成は、図5に示したもの(無給電コイルあり)を採用した。この実施例13では、電力伝送効率ηが84%となり、良好な電力伝送が可能なことが確認された。また、送電コイル5と受電コイル6とに軸ずれがある場合でも、電力伝送効率がほとんど低下しないことが確認された。   In Example 13, the collective wire 51 of Example 5 was adopted, and the number of turns of the collective wire 51 was 60 times. The coil configuration shown in FIG. 5 (with a parasitic coil) was adopted. In Example 13, the power transmission efficiency η was 84%, and it was confirmed that good power transmission was possible. In addition, it was confirmed that even when the power transmission coil 5 and the power receiving coil 6 are misaligned, the power transmission efficiency hardly decreases.

また、無給電コイルを採用せず、且つ巻き数が同じ実施例6,7,8を比較すると、集合電線51に関する実施例1,2,3の順で電力伝送効率が高くなっており、芯線81と第1の層84の素線82と第2の層85の素線83とを、外側に位置するものほど断面積を大きくすることの有効性が実証された。また、無給電コイルを採用した実施例9,11,13が、無給電コイルを採用しない実施例8,10,12より良好な結果が得られ、無給電コイルを有するコイル構成の有効性が実証された。   Further, when comparing the sixth, seventh, and eighth embodiments in which the parasitic coil is not used and the number of turns is the same, the power transmission efficiency is higher in the order of the first, second, and third embodiments with respect to the collecting wire 51. The effectiveness of increasing the cross-sectional area of the wire 81 and the wire 82 of the first layer 84 and the wire 83 of the second layer 85 located on the outer side was demonstrated. In addition, the ninth, eleventh, and thirteenth examples that employ a parasitic coil provide better results than the eighth, tenth, and twelve examples that do not employ a parasitic coil, demonstrating the effectiveness of a coil configuration that includes a parasitic coil. It was done.

本発明にかかる集合電線、これを用いた送電装置および電子機器、ならびにワイヤレス電力伝送システムは、表皮効果および近接効果の影響を十分に抑えて、送電コイルと受電コイルとの伝送距離を大きくした場合や、送電コイルと受電コイルとに軸ずれがある場合でも、電力伝送効率が大きく低下することがない効果を有し、電子機器に搭載された2次電池を充電するなどの用途で、送電装置から電子機器にワイヤレスで電力伝送を行うワイヤレス電力伝送に用いられる集合電線、これを用いた送電装置および電子機器、ならびにワイヤレス電力伝送システムなどとして有用である。   The collective wire according to the present invention, a power transmission device and an electronic device using the same, and a wireless power transmission system sufficiently suppress the influence of the skin effect and the proximity effect, and increase the transmission distance between the power transmission coil and the power reception coil. In addition, even when there is a misalignment between the power transmission coil and the power reception coil, the power transmission efficiency has an effect that the power transmission efficiency is not greatly reduced, and the power transmission device is used for charging a secondary battery mounted on an electronic device. It is useful as a collective wire used for wireless power transmission that wirelessly transmits power to an electronic device, a power transmission device and electronic device using the same, and a wireless power transmission system.

1 送電装置
2 電子機器
3 2次電池
5 送電コイル
6 受電コイル
51 集合電線
61 送電コイル
62 無給電コイル
65 共振コンデンサ
67 受電コイル
68 無給電コイル
81 芯線
82,83 素線
84 第1の層
85 第2の層
a1,a2 巻き角
b1 傾斜角
c 撚り角
d 傾斜角
DESCRIPTION OF SYMBOLS 1 Power transmission apparatus 2 Electronic device 3 Secondary battery 5 Power transmission coil 6 Power reception coil 51 Collecting wire 61 Power transmission coil 62 Power supply coil 65 Resonance capacitor 67 Power reception coil 68 Power supply coil 81 Core wire 82, 83 Elementary wire 84 1st layer 85 1st Layers a1, a2 Winding angle b1 Inclination angle c Twisting angle d Inclination angle

Claims (18)

絶縁層が被膜される第1の絶縁電線および第2の絶縁電線を有する集合電線であって、
前記第1の絶縁電線は、当該集合電線の長さ方向に対して正負いずれか一方の方向に角度をなす第1の巻き角でらせん状に巻回され、
前記第2の絶縁電線は、当該集合電線の長さ方向に対して正負いずれか他方の方向に角度をなす第2の巻き角で前記第1の絶縁電線の外側をらせん状に巻回されることを特徴とする集合電線。
A collective wire having a first insulated wire and a second insulated wire coated with an insulating layer,
The first insulated wire is spirally wound at a first winding angle that forms an angle in either the positive or negative direction with respect to the length direction of the collective wire,
The second insulated wire is spirally wound around the outside of the first insulated wire at a second winding angle that forms an angle in either the positive or negative direction with respect to the length direction of the aggregated wire. Collective wire characterized by that.
前記第1の絶縁電線が前記第1の巻き角で巻回される芯線をさらに備えることを特徴とする請求項1に記載の集合電線。   The assembled electric wire according to claim 1, further comprising a core wire around which the first insulated electric wire is wound at the first winding angle. 前記第2の絶縁電線の断面積は前記第1の絶縁電線の断面積よりも大きいことを特徴とする請求項1または請求項2に記載の集合電線。   The assembled wire according to claim 1 or 2, wherein a cross-sectional area of the second insulated wire is larger than a cross-sectional area of the first insulated wire. 前記第2の絶縁電線は、前記第1の絶縁電線よりも巻回数が少なくなるように巻回されることを特徴とする請求項1から請求項3のいずれかに記載の集合電線。   The collective electric wire according to any one of claims 1 to 3, wherein the second insulated electric wire is wound so that the number of turns is smaller than that of the first insulated electric wire. 前記第1の絶縁電線は、第1の隙間を有するように巻回され、
前記第2の絶縁電線は、前記第1の隙間よりも大きい前記第2の隙間を有するように巻回されることを特徴とする請求項4に記載の集合電線。
The first insulated wire is wound so as to have a first gap,
The said 2nd insulated wire is wound so that it may have the said 2nd clearance gap larger than the said 1st clearance gap, The collective wire of Claim 4 characterized by the above-mentioned.
前記第2の隙間に設けられるスペーサをさらに備えることを特徴とする請求項5に記載の集合電線。   The assembled electric wire according to claim 5, further comprising a spacer provided in the second gap. 前記第2の絶縁電線の絶縁層の断面積は、前記第1の絶縁電線の絶縁層の断面積よりも大きいことを特徴とする請求項4に記載の集合電線。   The collective electric wire according to claim 4, wherein a cross-sectional area of the insulating layer of the second insulated wire is larger than a cross-sectional area of the insulating layer of the first insulated wire. 前記第2の巻き角は、前記第1の巻き角よりも小さいことを特徴とする請求項4に記載の集合電線。   The assembled electric wire according to claim 4, wherein the second winding angle is smaller than the first winding angle. 前記第2の絶縁電線の一部は、当該集合電線の長さ方向と同一方向であることを特徴とする請求項4に記載の集合電線。   The part of said 2nd insulated wire is the same direction as the length direction of the said assembled wire, The assembled wire of Claim 4 characterized by the above-mentioned. 前記第2の絶縁電線の一部は、前記第2の巻き角よりも小さい巻き角で巻回されることを特徴とする請求項4に記載の集合電線。   The part of said 2nd insulated wire is wound by the winding angle smaller than the said 2nd winding angle, The collective wire of Claim 4 characterized by the above-mentioned. 前記第1の巻き角または前記第2の巻き角の絶対値が30度から70度の範囲にあることを特徴とする請求項1から請求項10のいずれかに記載の集合電線。   The aggregate electric wire according to any one of claims 1 to 10, wherein an absolute value of the first winding angle or the second winding angle is in a range of 30 degrees to 70 degrees. 前記第1の巻き角および前記第2の巻き角の絶対値の和が60度から140度の範囲にあることを特徴とする請求項1から請求項11のいずれかに記載の集合電線。   The aggregate wire according to any one of claims 1 to 11, wherein a sum of absolute values of the first winding angle and the second winding angle is in a range of 60 degrees to 140 degrees. 前記第2の絶縁電線は、複数本撚り合わされて撚り線を構成することを特徴とする請求項1から請求項12のいずれかに記載の集合電線。   The aggregated electric wire according to any one of claims 1 to 12, wherein a plurality of the second insulated electric wires are twisted to form a stranded wire. 電磁誘導により電子機器にワイヤレスで電力伝送を行う送電装置であって、
請求項1から請求項13のいずれかに記載の集合電線を巻回して形成された送電コイルを備えたことを特徴とする送電装置。
A power transmission device that wirelessly transmits power to an electronic device by electromagnetic induction,
A power transmission device comprising a power transmission coil formed by winding the aggregated wire according to any one of claims 1 to 13.
所定の間隙をおいて前記送電コイルと略同心状に配置された無給電コイルと、
この無給電コイルの両端に接続された共振コンデンサと、をさらに備えたことを特徴とする請求項14に記載の送電装置。
A parasitic coil disposed substantially concentrically with the power transmission coil with a predetermined gap;
The power transmission device according to claim 14, further comprising a resonance capacitor connected to both ends of the parasitic coil.
電磁誘導により送電装置からワイヤレスで電力伝送が行われる電子機器であって、
請求項1から請求項13のいずれかに記載の集合電線を巻回して形成された受電コイルを備えたことを特徴とする電子機器。
An electronic device in which power is transmitted wirelessly from a power transmission device by electromagnetic induction,
An electronic device comprising a power receiving coil formed by winding the collecting wire according to any one of claims 1 to 13.
所定の間隙をおいて前記受電コイルと略同心状に配置された無給電コイルと、
この無給電コイルの両端に接続された共振コンデンサと、をさらに備えたことを特徴とする請求項16に記載の電子機器。
A parasitic coil disposed substantially concentrically with the receiving coil with a predetermined gap;
The electronic apparatus according to claim 16, further comprising a resonance capacitor connected to both ends of the parasitic coil.
送電装置から電子機器にワイヤレスで電力伝送を行うワイヤレス電力伝送システムであって、
前記送電装置は、送電コイルを備え、
前記電子機器は、受電コイルを備え、
前記送電コイルおよび前記受電コイルの少なくとも一方は、絶縁層を被膜された第1の絶縁電線および第2の絶縁電線を有する集合電線によって形成され、
前記第1の絶縁電線は、前記集合電線の長さ方向に対して正負いずれか一方の方向に角度をなす第1の巻き角でらせん状に巻回され、
前記第2の絶縁電線は、前記集合電線の長さ方向に対して正負いずれか他方の方向に角度をなす第2の巻き角で前記第1の絶縁電線の外側をらせん状に巻回されることを特徴とするワイヤレス電力伝送システム。
A wireless power transmission system that wirelessly transmits power from a power transmission device to an electronic device,
The power transmission device includes a power transmission coil,
The electronic device includes a power receiving coil,
At least one of the power transmission coil and the power reception coil is formed by a collective electric wire having a first insulated wire and a second insulated wire coated with an insulating layer,
The first insulated wire is spirally wound at a first winding angle that forms an angle in either the positive or negative direction with respect to the length direction of the collective wire,
The second insulated wire is spirally wound around the outside of the first insulated wire at a second winding angle that forms an angle in either the positive or negative direction with respect to the length direction of the collective wire. A wireless power transmission system characterized by that.
JP2012073558A 2012-03-28 2012-03-28 Collective electric wire, power transmission device and electronic apparatus using the same, and wireless power transmission system Pending JP2013207907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073558A JP2013207907A (en) 2012-03-28 2012-03-28 Collective electric wire, power transmission device and electronic apparatus using the same, and wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073558A JP2013207907A (en) 2012-03-28 2012-03-28 Collective electric wire, power transmission device and electronic apparatus using the same, and wireless power transmission system

Publications (1)

Publication Number Publication Date
JP2013207907A true JP2013207907A (en) 2013-10-07

Family

ID=49526514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073558A Pending JP2013207907A (en) 2012-03-28 2012-03-28 Collective electric wire, power transmission device and electronic apparatus using the same, and wireless power transmission system

Country Status (1)

Country Link
JP (1) JP2013207907A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600874A (en) * 2015-01-30 2015-05-06 哈尔滨工业大学 Three-layer three-phase symmetry type coil applied to wireless electric energy transmission system
EP2953143A1 (en) * 2014-03-25 2015-12-09 TDK Corporation Coil unit and wireless power transmission device
CN108391457A (en) * 2015-09-11 2018-08-10 扬科技术有限公司 Utilize the wireless charging platform of three dimensional Phase coil array
CN113345696A (en) * 2020-03-02 2021-09-03 Tdk株式会社 Coil component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2953143A1 (en) * 2014-03-25 2015-12-09 TDK Corporation Coil unit and wireless power transmission device
CN104600874A (en) * 2015-01-30 2015-05-06 哈尔滨工业大学 Three-layer three-phase symmetry type coil applied to wireless electric energy transmission system
CN108391457A (en) * 2015-09-11 2018-08-10 扬科技术有限公司 Utilize the wireless charging platform of three dimensional Phase coil array
CN113345696A (en) * 2020-03-02 2021-09-03 Tdk株式会社 Coil component

Similar Documents

Publication Publication Date Title
JP6083652B2 (en) Contactless connector system
CN103534772B (en) Power supply unit, electric power system and electronic installation
EP3282539B1 (en) Power transmission device, vehicle equipped with power transmission device, and wireless power transmission system
CN209591776U (en) Coil mould group and radio energy transmit circuit for wireless charging
KR101448024B1 (en) Contactless power transmission system and transmission coil for contactless power transmission
US10014105B2 (en) Coil unit and wireless power transmission device
JP5920363B2 (en) Power receiving apparatus, power transmission system, and power transmission method
CN104838459A (en) Litz wire coil
JP2013208012A (en) Antenna coil unit and magnetic field resonance power supply system
TW201320121A (en) Planar coil, coil module including planar coil, power receiving device including planar coil, and contactless electric power transmission apparatus including planar coil
JP2011142177A (en) Contactless power transmission device, and coil unit for contactless power transmission device
JP5613268B2 (en) Contactless power supply system
WO2013150785A1 (en) Coil unit, and power transmission device equipped with coil unit
JP2012110080A5 (en)
JP5646688B2 (en) Contactless power supply system
JP2017212880A (en) Wireless power transmission apparatus
JP2013207907A (en) Collective electric wire, power transmission device and electronic apparatus using the same, and wireless power transmission system
JP2013207908A (en) Electric vehicle, parking device and wireless power transmission system
JP6056100B2 (en) Spiral coil
JP2014103147A (en) Collective wires, power transmission device using the same, electronic apparatus and wireless power transmission system
CN108270078A (en) A kind of high efficiency wireless charging reception antenna
JP2011229202A (en) Wireless power transmission coil
JP2013207909A (en) Electric vehicle, parking device and wireless power transmission system
US20200152369A1 (en) Printed circuit board coil
CN109411210B (en) Wire winding device