[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013202532A - Honeycomb filter - Google Patents

Honeycomb filter Download PDF

Info

Publication number
JP2013202532A
JP2013202532A JP2012074824A JP2012074824A JP2013202532A JP 2013202532 A JP2013202532 A JP 2013202532A JP 2012074824 A JP2012074824 A JP 2012074824A JP 2012074824 A JP2012074824 A JP 2012074824A JP 2013202532 A JP2013202532 A JP 2013202532A
Authority
JP
Japan
Prior art keywords
thermal expansion
honeycomb structure
honeycomb
difference
honeycomb filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012074824A
Other languages
Japanese (ja)
Inventor
Hiroaki Okano
宏昭 岡野
Hiroshi Yamaguchi
宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2012074824A priority Critical patent/JP2013202532A/en
Publication of JP2013202532A publication Critical patent/JP2013202532A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of cracks by the heat shock caused by the thermal expansion difference between a honeycomb structure and a seal part without inhibiting the material selection of the seal part or the degree of freedom of the setting of porosity, without promoting the accumulation of PM in the seal part or without generating the irregularity in the purification function of PM between cells.SOLUTION: The differences between the respective longitudinal and lateral coefficients of thermal expansion of a honeycomb structure 10 and a seal part 13 are both below 0.5×10/°C and the differences between the individual longitudinal coefficients and the individual lateral coefficients, of thermal expansion, are below 3.5×10/°C. Further, in a case that the longitudinal and lateral coefficients of thermal expansions in the honeycomb structure 10 and the seal part 13 are respectively supposed as vectors, the difference of the angles θh and θm taken by the expansion vectors Zh and Zm being those resultant vectors with the axial direction is below 15°.

Description

本発明は、内燃エンジン、特に、ディーゼルエンジンの排気ガスに含有される粒子状物質を除去する排気ガス浄化用フィルタとして用いられるハニカムフィルタに関する。   The present invention relates to a honeycomb filter used as an exhaust gas purifying filter for removing particulate matter contained in exhaust gas of an internal combustion engine, particularly a diesel engine.

内燃機関の排気通路に備えられ、排気ガス中に含まれる粒子状物質を捕集するフィルタとして、多孔性のセラミック材料を用いた排気ガス浄化用フィルタが広く用いられている。特に、ディーゼル車両の排気ガス中に含まれる粒子状物質(PM:Particulate Matter)については、窒素酸化物(NOx)とともに、その排出規制が日米欧において段階的に強化されている。かかる規制に適合させるため、粒子状物質を捕集するためのディーゼルパーティキュレートフィルタ(DPF:Diesel Particulate Filter)の開発が盛んに進
められてきている。現在、DPFとしては、主に、ハニカム構造を有するウォールフロータイプのものが用いられている。
As a filter that is provided in an exhaust passage of an internal combustion engine and collects particulate matter contained in exhaust gas, an exhaust gas purification filter using a porous ceramic material is widely used. In particular, particulate matter (PM) contained in exhaust gas from diesel vehicles, together with nitrogen oxides (NOx), emission regulations are being strengthened in stages in Japan, the United States, and Europe. In order to meet such regulations, development of a diesel particulate filter (DPF: Diesel Particulate Filter) for collecting particulate matter has been actively promoted. Currently, a wall flow type having a honeycomb structure is mainly used as the DPF.

このようなハニカムフィルタは、貫通孔からなる多数のセルが、ハニカムフィルタの軸方向を延伸方向として規則的に形成されたハニカム構造体を有する。ハニカム構造体は多孔質セラミック焼成体よりなる。各セルにおけるハニカムフィルタの軸方向(セルの延伸方向)のいずれかの端面は目封止部にて目封じされている。目封じは、隣り合うセル同士で異なる端面になされている。   Such a honeycomb filter has a honeycomb structure in which a large number of cells including through-holes are regularly formed with the axial direction of the honeycomb filter as the extending direction. The honeycomb structure is made of a porous ceramic fired body. Any end face in the axial direction of the honeycomb filter (cell extending direction) in each cell is plugged with a plugging portion. Sealing is performed on different end faces between adjacent cells.

例えば、特許文献1には、フィルタ部(ハニカム構造体)と目封止部との間に熱膨張差があり、熱衝撃によってフィルタ部と目封止部との境界に応力が集中して境界部分にクラックが発生することを防止すべく、目封止厚さを不均一にする構成が開示されている。   For example, in Patent Document 1, there is a difference in thermal expansion between the filter portion (honeycomb structure) and the plugged portion, and stress is concentrated on the boundary between the filter portion and the plugged portion due to thermal shock. In order to prevent the occurrence of cracks in the portion, a configuration in which the plugging thickness is made non-uniform is disclosed.

また、特許文献2には、目封止部が緻密化された充填材であると、柱状体(ハニカム構造体)と目封止部の熱膨張率が異なるものとなり、焼成時に柱状体と目封止部との間に大きな熱応力が作用して隙間やクラックが生じることを防止すべく、柱状体の気孔率が20〜80%である場合に、目封止部の気孔率を90%以下かつ柱状体の気孔率の0.15〜4倍にする構成が開示されている。   Further, in Patent Document 2, if the plugging portion is a dense filler, the columnar body (honeycomb structure) and the plugging portion have different thermal expansion coefficients. In order to prevent a gap or a crack from being generated due to a large thermal stress acting between the sealing portion and the porosity of the columnar body is 20 to 80%, the porosity of the plugging portion is 90%. In the following, a configuration that makes the porosity of the columnar body 0.15 to 4 times is disclosed.

特許3012167号明細書Japanese Patent No. 3012167 特許4386830号明細書Japanese Patent No. 4386830

しかしながら、特許文献1の技術では、目封止厚さを不均一にしているので、フィルタ機能をなすセルの軸方向の長さがハニカムフィルタを構成する複数のセルにおいて異なることとなる。その結果、セル間でPMの浄化機能にばらつきが生じ、ハニカムフィルタとして浄化品質の安定性が十分でないという問題がある。   However, in the technique of Patent Document 1, since the plugging thickness is not uniform, the length in the axial direction of the cell forming the filter function differs among the plurality of cells constituting the honeycomb filter. As a result, the PM purification function varies between cells, and there is a problem that the purification quality is not sufficiently stable as a honeycomb filter.

なお、フィルタ部と目封止部の材質を同材にして、両者の熱膨張差をなくすことも考えられる。しかしながら、その場合、目封止部の気孔率がフィルタ部と同じ気孔率になるため、目封止部の材料選択について設計の自由度が取れなくなる。   Note that it is also conceivable that the filter portion and the plugging portion are made of the same material to eliminate the difference in thermal expansion between them. However, in this case, since the porosity of the plugged portion is the same as that of the filter portion, the degree of freedom in designing the material selection of the plugged portion cannot be obtained.

一方、特許文献2の技術では、目封止部の気孔率が柱状体の気孔率により規制される。
例えば、柱状体の気孔率が80%の場合、目封止部の気孔率は12(=80×0.15)%以上にする必要がある。目封止部の気孔率が柱状体の気孔率によって制限を受けることで、目封止部の気孔率について設計の自由度が取れなくなる。
On the other hand, in the technique of Patent Document 2, the porosity of the plugged portion is regulated by the porosity of the columnar body.
For example, when the porosity of the columnar body is 80%, the porosity of the plugged portion needs to be 12 (= 80 × 0.15)% or more. When the porosity of the plugged portion is limited by the porosity of the columnar body, the degree of freedom in designing the porosity of the plugged portion cannot be obtained.

また、目封止部の気孔率が比較的大きくなるため、PMの浄化処理によって、目封止部の気孔にも排気ガスのPMが侵入して堆積する。目封止部に堆積したPMは、ハニカムフィルタの再生加熱時に燃焼するため、目封止部の温度が上昇し、目封止部と柱状体との熱膨張差が大きくなって、耐熱衝撃性が阻害されるおそれがある。   Further, since the porosity of the plugged portion becomes relatively large, PM of the exhaust gas enters and accumulates in the pores of the plugged portion by the PM purification process. Since PM deposited in the plugging portion burns during regeneration heating of the honeycomb filter, the temperature of the plugging portion rises, the difference in thermal expansion between the plugging portion and the columnar body increases, and the thermal shock resistance May be disturbed.

本発明は、上記課題に鑑み成されたもので、その目的は、ハニカム構造体と目封止部との間の熱膨張差に起因する熱衝撃によるクラックの発生を、目封止部の材料選択や気孔率設定の自由度を阻害することなく、また、目封止部におけるPMの堆積を助長したり、セル間でPMの浄化機能にばらつきを生じさせたりすることなく、抑制することにある。   The present invention has been made in view of the above problems, and its purpose is to prevent generation of cracks due to thermal shock caused by a difference in thermal expansion between the honeycomb structure and the plugged portion, and to provide a material for the plugged portion. To inhibit the freedom of selection and porosity setting without inhibiting PM deposition in the plugged portion or causing variation in the PM purification function between cells. is there.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、ハニカム構造体、目封止部をそれぞれ構成する物質の縦横の熱伝導率の差に着眼した。つまり、ハニカム構造体、目封止部をそれぞれ構成する物質間にたとえ熱膨張係数の差があっても、それぞれの物質において、縦横の熱膨張係数の差が小さければ、ハニカム構造体と目封止部との接合面における熱膨張差による滑りが生じにくいものとなり、熱膨張に起因する製造時、または使用時の熱衝撃によるクラック発生を抑制できることを見出し、本願発明に至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention focused on the difference in the vertical and horizontal thermal conductivities of the substances constituting the honeycomb structure and the plugged portions. In other words, even if there is a difference in thermal expansion coefficient between the materials constituting the honeycomb structure and the plugging portion, if the difference between the vertical and horizontal thermal expansion coefficients is small in each material, the honeycomb structure and the plugging are sealed. It was found that slippage due to the difference in thermal expansion at the joint surface with the stop portion is less likely to occur, and it was found that cracking due to thermal shock during production or use due to thermal expansion can be suppressed, leading to the present invention.

本発明のハニカムフィルタは、上記課題を解決するために、セル壁によって区画されることで形成された一方向に延伸するセルを複数有した焼成体よりなるハニカム構造体を備え、上記複数のセルの延伸方向の一端部が目封止部にて目封止されてなるハニカムフィルタであって、上記ハニカム構造体および目封止部は、それぞれの上記延伸方向およびこれに直交する方向の熱膨張係数の差が共に0.5×10-6/℃未満であると共に、互いの上記延伸方向の熱膨張係数の差および上記延伸方向と直交する方向の熱膨張係数の差が共に3.5×10-6/℃未満であり、さらに、上記ハニカム構造体における、上記延伸方向を向きとし上記延伸方向の熱膨張係数を大きさとしたベクトルと上記延伸方向に直交する方向を向きとし該直交する方向の熱膨張係数を大きさとしたベクトルとの合成ベクトルが、上記延伸方向と成す角をθh、上記目封止部における、上記延伸方向を向きとし上記延伸方向の熱膨張係数を大きさとしたベクトルと上記延伸方向に直交する方向を向きとし該直交する方向の熱膨張係数を大きさとしたベクトルとの合成ベクトルが、上記延伸方向と成す角をθmとし、θhとθmとの差が15度よりも小さいことを特徴としている。ここで、延伸方向およびこれに直交する方向の熱膨張係数は、縦横の熱膨張係数に相当する。 In order to solve the above problems, a honeycomb filter of the present invention includes a honeycomb structure including a fired body having a plurality of cells extending in one direction formed by being partitioned by cell walls, and the plurality of cells A honeycomb filter in which one end portion in the extending direction is plugged with a plugging portion, and the honeycomb structure and the plugged portion have a thermal expansion in each of the extending direction and a direction orthogonal thereto. The difference in coefficient is both less than 0.5 × 10 −6 / ° C., and the difference in the thermal expansion coefficient in the stretching direction and the difference in thermal expansion coefficient in the direction orthogonal to the stretching direction are both 3.5 ×. Less than 10 −6 / ° C., and in the honeycomb structure, the direction in which the stretching direction is oriented and the coefficient of thermal expansion in the stretching direction is large and the direction perpendicular to the stretching direction is oriented and the orthogonal direction of The combined vector of the vector with the coefficient of expansion coefficient is the angle formed with the extending direction θh, the plugging portion has the direction of the extending direction and the coefficient of thermal expansion in the extending direction, and the extending direction. The combined vector of the vector with the direction orthogonal to the direction and the coefficient of thermal expansion in the orthogonal direction as the magnitude is θm as the angle formed with the stretching direction, and the difference between θh and θm is smaller than 15 degrees. It is characterized by. Here, the thermal expansion coefficient in the stretching direction and the direction orthogonal thereto corresponds to the vertical and horizontal thermal expansion coefficients.

上記構成では、ハニカム構造体および目封止部は共に、延伸方向およびこれに直交する方向の熱膨張係数の差が0.5×10-6/℃未満に設定されている。つまり、ハニカム構造体および目封止部は、縦横の熱膨張係数が小さい物質より構成されている。また、ハニカム構造体および目封止部は共に、互いの延伸方向の熱膨張係数の差および延伸方向と直交する方向の熱膨張係数の差が共に3.5×10-6/℃未満に設定されている。つまり、ハニカム構造体および目封止部は、縦横の熱膨張係数が互いに近い物質より構成されている。 In the above structure, the difference in the thermal expansion coefficient between the extending direction and the direction orthogonal to the extending direction is set to be less than 0.5 × 10 −6 / ° C. in both the honeycomb structure and the plugged portion. That is, the honeycomb structure and the plugging portion are made of a material having a small vertical and horizontal thermal expansion coefficient. In addition, both the honeycomb structure and the plugging portion are set such that the difference in the thermal expansion coefficient in the stretching direction and the difference in the thermal expansion coefficient in the direction orthogonal to the stretching direction are both less than 3.5 × 10 −6 / ° C. Has been. That is, the honeycomb structure and the plugging portion are made of materials having vertical and horizontal thermal expansion coefficients close to each other.

さらに、上記構成では、ハニカム構造体における縦横の熱膨張係数の合成ベクトルが延伸方向と成す角θhと、目封止部における縦横の熱膨張係数の合成ベクトルが延伸方向と成す角θmとの差が15度よりも小さく設定されている。つまり、ハニカム構造体と目封止部の縦横の熱膨張係数の合成ベクトルは、ほぼ同じ方向を向いている。このような構成とすることで、ハニカム構造体および目封止部を構成する物質間に、縦横の熱膨張係数に
差が上記範囲であったとしても、熱衝撃に対してより強くできる。
Further, in the above configuration, the difference between the angle θh formed by the combined vector of the longitudinal and lateral thermal expansion coefficients in the honeycomb structure and the extending direction and the angle θm formed by the combined vector of the longitudinal and lateral thermal expansion coefficients in the plugged portion. Is set to be smaller than 15 degrees. That is, the combined vector of the vertical and horizontal thermal expansion coefficients of the honeycomb structure and the plugged portions are oriented in substantially the same direction. By adopting such a configuration, even if the difference in longitudinal and lateral thermal expansion coefficients between the substances constituting the honeycomb structure and the plugging portion is within the above range, it can be more resistant to thermal shock.

これにより、ハニカム構造体と目封止部との間の熱膨張差に起因する熱衝撃によるクラックの発生を、特許文献1,2とは別の手法で、抑制することができる。したがって、目封止部の材料選択や気孔率設定の自由度を阻害することなく、また、目封止部におけるPMの堆積を助長したり、セル間でPMの浄化機能にばらつきを生じさせたりすることもない。   Thereby, generation | occurrence | production of the crack by the thermal shock resulting from the thermal expansion difference between a honeycomb structure and a plugging part can be suppressed by the method different from patent document 1,2. Therefore, without hindering the freedom of material selection and porosity setting of the plugged portion, it is possible to promote the accumulation of PM in the plugged portion, or to cause variation in the PM purification function between cells. I don't have to.

本発明のハニカムフィルタにおいては、さらに、上記目封止部における上記セルの中央部側の端面位置の標準偏差が3.2%以下とする構成が好ましい。   In the honeycomb filter of the present invention, it is preferable that the standard deviation of the end face position on the center side of the cell in the plugged portion is 3.2% or less.

これによれば、セル間でPMの浄化機能が均一になり、ハニカムフィルタとして浄化品質の安定性を十分なものとできる。   According to this, the PM purification function becomes uniform between cells, and the stability of the purification quality as a honeycomb filter can be sufficient.

本発明のハニカムフィルタにおいては、さらに、上記ハニカム構造体の気孔率が50〜80%であり、上記目封止部の気孔率が2〜10%であることがより好ましい。   In the honeycomb filter of the present invention, it is more preferable that the honeycomb structure has a porosity of 50 to 80% and the plugged portion has a porosity of 2 to 10%.

ハニカム構造体の気孔率が比較的高いものであっても、目封止部の気孔率を小さくしているので、目封止部における気孔率が高い場合のように目封止部にPMが堆積することを抑制でき、ハニカムフィルタの再生加熱時において、耐熱衝撃性が阻害されることを抑制できる。   Even if the honeycomb structure has a relatively high porosity, the porosity of the plugged portion is reduced, so that PM is present in the plugged portion as in the case where the porosity of the plugged portion is high. Accumulation can be suppressed, and thermal shock resistance can be prevented from being hindered during regeneration heating of the honeycomb filter.

本発明のハニカムフィルタにおいては、さらに、上記目封止部の主たる構成材料が、ハニカム構造体の主たる構成材料とは異なることが好ましい。   In the honeycomb filter of the present invention, it is preferable that the main constituent material of the plugged portion is different from the main constituent material of the honeycomb structure.

ハニカム構造体と目封止部との構成材料を異ならせることで、目封止部の材料選択における自由度を広げることができる。   By making the constituent materials of the honeycomb structure and the plugged portions different, the degree of freedom in selecting the material of the plugged portions can be expanded.

本発明のハニカムフィルタにおいては、さらに、上記ハニカム構造体の主たる構成材料が窒化珪素であり、上記目封止部の主たる構成材料が酸化カルシウム含有セラミックス系骨材と無機バインダーとの反応物を含む構成とすることもできる。   In the honeycomb filter of the present invention, the main constituent material of the honeycomb structure is silicon nitride, and the main constituent material of the plugged portion includes a reaction product of a calcium oxide-containing ceramic aggregate and an inorganic binder. It can also be configured.

本発明により、ハニカム構造体と目封止部との間の熱膨張差に起因する熱衝撃によるクラックの発生を、目封止部の材料選択や気孔率設定の自由度を阻害することなく、また、目封止部におけるPMの堆積を助長したり、セル間でPMの浄化機能にばらつきを生じさせたりすることなく、抑制することができる。   According to the present invention, the occurrence of cracks due to thermal shock caused by the difference in thermal expansion between the honeycomb structure and the plugged portion, without hindering the freedom of material selection and porosity setting of the plugged portion, In addition, it is possible to suppress the PM deposition in the plugged portion without causing the variation in the PM purification function between cells.

本発明の実施の形態1に係るハニカムフィルタの模式図である。1 is a schematic diagram of a honeycomb filter according to Embodiment 1 of the present invention. 図1に示すハニカムフィルタの要部の断面図である。It is sectional drawing of the principal part of the honey-comb filter shown in FIG. (a)(b)共に、膨張ベクトル、膨張ベクトルが軸方向と成す角θを示す説明図である。(A) and (b) are both explanatory diagrams showing an expansion vector and an angle θ formed by the expansion vector and the axial direction. 本発明の実施の形態2に係るハニカムフィルタの模式図である。It is a schematic diagram of the honeycomb filter which concerns on Embodiment 2 of this invention. 図4に示すハニカムフィルタのハニカム構造体を構成するハニカムセグメント体の模式図である。FIG. 5 is a schematic view of a honeycomb segment body constituting the honeycomb structure of the honeycomb filter shown in FIG. 4. 図5に示すハニカムセグメント体が複数、接合部で互いに接合されてなるセグメント接合体の模式図である。FIG. 6 is a schematic diagram of a segment joined body in which a plurality of honeycomb segment bodies shown in FIG. 5 are joined to each other at a joined portion.

[実施の形態1]
本発明の一実施形態を、図1、2に基づいて説明すれば、以下の通りである。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to FIGS.

図1は、本実施の形態のハニカムフィルタの模式図である。図1に示すように、本ハニカムフィルタ1は、ハニカム構造体10と、目封止部13と、外周被覆層15とを備えている。   FIG. 1 is a schematic diagram of the honeycomb filter of the present embodiment. As shown in FIG. 1, the present honeycomb filter 1 includes a honeycomb structure 10, a plugging portion 13, and an outer peripheral coating layer 15.

ハニカム構造体10は、円柱状をなし、貫通孔からなる多数のセル11が、ハニカムフィルタ1の軸方向、すなわちA方向に沿って規則的に形成されてなる1つの多孔質セラミック焼成体よりなる。ハニカムフィルタ1は、セル11の延伸方向でもあるA方向が排気ガスの流れと平行となるように配置される。   The honeycomb structure 10 has a cylindrical shape, and is composed of one porous ceramic fired body in which a large number of cells 11 including through holes are regularly formed along the axial direction of the honeycomb filter 1, that is, the A direction. . The honeycomb filter 1 is arranged so that the A direction, which is also the extending direction of the cells 11, is parallel to the flow of the exhaust gas.

セル11は、軸方向に垂直な方向の断面形状が、略正方形であり、多孔性の材料からなるセル壁12によって仕切られることによって形成されている。ハニカム構造体10は、排気ガスに含まれる粒子状物質(以下、PM)の捕集部材としの機能と、ハニカムフィルタ1の構造体としての機能を有する。   The cell 11 has a substantially square cross-sectional shape in the direction perpendicular to the axial direction, and is formed by being partitioned by a cell wall 12 made of a porous material. The honeycomb structure 10 has a function as a collecting member for particulate matter (hereinafter referred to as PM) contained in the exhaust gas and a function as a structure of the honeycomb filter 1.

目封止部13は、セル11の一端を目封じするものである。各セル11は、ハニカムフィルタ1における排気ガスの流れる方向の上流側あるいは下流側のいずれかの端面において目封じされている。目封じは、隣り合うセル11同士で異なる端面になされており、各端面において目封止部13は、図1に示すように市松模様を形成する。   The plugging portion 13 plugs one end of the cell 11. Each cell 11 is sealed at either the upstream or downstream end face of the honeycomb filter 1 in the exhaust gas flow direction. The plugging is made on different end surfaces of the adjacent cells 11, and the plugging portions 13 form a checkered pattern on each end surface as shown in FIG. 1.

外周被覆層15は、ハニカム構造体10の外周部を覆うものである。外周被覆層15は、セラミック層からなり、ハニカム構造体10の外周部に塗布された外周被覆材が焼成されることで形成されている。   The outer peripheral covering layer 15 covers the outer peripheral portion of the honeycomb structure 10. The outer periphery covering layer 15 is made of a ceramic layer, and is formed by firing an outer periphery covering material applied to the outer periphery of the honeycomb structure 10.

このような構成を有するハニカムフィルタ1において、排気ガスはその上流側の端面において目封じされていないセル11から流入し、多孔性のセル壁12の微細孔を通過して、隣り合うセル11から流出する。このとき、排気ガスに含まれるPMは、排気ガスがセル壁12の微細孔を通過する際に、セル壁12で捕集されることとなる。なお、捕集されたPMは、ハニカムフィルタ1に再生加熱処理が施されることで、ハニカムフィルタ1より除去される。   In the honeycomb filter 1 having such a configuration, the exhaust gas flows from the cells 11 that are not sealed at the upstream end face, passes through the micropores of the porous cell wall 12, and passes from the adjacent cells 11. leak. At this time, PM contained in the exhaust gas is collected by the cell wall 12 when the exhaust gas passes through the fine holes of the cell wall 12. The collected PM is removed from the honeycomb filter 1 by subjecting the honeycomb filter 1 to regeneration heating treatment.

図1においては、ハニカム構造体10として、ハニカムフィルタ1の軸方向に垂直な方向の断面形状が円形をなす円柱状のものを例示したが、該断面形状は特に限定されるものではない。例えば、楕円形、正方形、長方形、多角形であってもよい。また、ハニカムフィルタ1の断面の大きさはエンジンの排気量によってその最適値が決定される。ハニカム構造体10の成型は、押出機を用いて所望する形状に予め成型することができる。   In FIG. 1, the honeycomb structure 10 is exemplified by a columnar shape in which the cross-sectional shape in the direction perpendicular to the axial direction of the honeycomb filter 1 is circular, but the cross-sectional shape is not particularly limited. For example, it may be oval, square, rectangular, or polygonal. The optimum value of the cross-sectional size of the honeycomb filter 1 is determined by the engine displacement. The honeycomb structure 10 can be molded in advance into a desired shape using an extruder.

セル11の断面形状としては、略正方形であることが好ましいが、必ずしもこれに限定されるものではなく、他の形状であってもよい。セル壁12の厚さも特に限定されるものではないが、例えば、0.2〜0.4mmである。また、単位面積中のセル数も特に限定されるものではないが、例えば、200〜300cpsiである。外周被覆層15の厚さも特に限定されないが、概して0.3mm〜1.0mmである。   The cross-sectional shape of the cell 11 is preferably substantially square, but is not necessarily limited to this, and may be other shapes. Although the thickness of the cell wall 12 is not specifically limited, For example, it is 0.2-0.4 mm. Further, the number of cells in the unit area is not particularly limited, but is, for example, 200 to 300 cpsi. Although the thickness of the outer peripheral coating layer 15 is not particularly limited, it is generally 0.3 mm to 1.0 mm.

ハニカムフィルタ1における各部の材料としては、従来からある既存の材料を用いることができる。例えば、ハニカム構造体10は、ハニカム構造体10を構成する主要構成材と、従来公知の焼結助剤、従来公知の各種バインダー等を含んでいる組成物を焼結、または反応焼結等をすることによって形成することができる。主要構成材としては、窒化珪素、窒化アルミニウム、窒化ホウ素および窒化チタン等の窒化物セラミック、窒化珪素、ア
ルミナ(Al)、シリカおよびムライト等の酸化物セラミック、炭化珪素、炭化ジルコニウム、炭化チタン、炭化タンタルおよび炭化タングステン等の炭化物セラミック、などを挙げることができる。中でも、強度、耐熱性の観点から、窒化珪素が好ましい。なお、窒化珪素の珪素と窒素の一部をそれぞれアルミニウムと酸素で置換したサイアロンも窒化珪素質に含まれる。
As a material of each part in the honeycomb filter 1, a conventional existing material can be used. For example, the honeycomb structure 10 is obtained by sintering a composition containing a main constituent material constituting the honeycomb structure 10 and conventionally known sintering aids, conventionally known various binders, or reactive sintering. Can be formed. Main constituent materials include nitride ceramics such as silicon nitride, aluminum nitride, boron nitride and titanium nitride, oxide ceramics such as silicon nitride, alumina (Al 2 O 3 ), silica and mullite, silicon carbide, zirconium carbide, carbonized Examples thereof include carbide ceramics such as titanium, tantalum carbide, and tungsten carbide. Among these, silicon nitride is preferable from the viewpoint of strength and heat resistance. Note that silicon nitride also includes sialon in which part of silicon and nitrogen in silicon nitride is replaced with aluminum and oxygen, respectively.

目封止部13としては、チタン酸アルミニウム、炭化珪素、窒化珪素、アルミナ、コーディライト、ムライトなどのセラミック坏土;またはセメント材料を使用することができる。これらは単独で使用してもよいし、複数種類を併用してもよい。中でも、目封止部13としては、酸化カルシウム含有セラミックス系骨材と無機バインダーとの反応物を含む構成が好ましい。なお、封止材料の濃度を調整するために、水などの希釈剤が使用される。   As the plugging portion 13, ceramic clay such as aluminum titanate, silicon carbide, silicon nitride, alumina, cordierite, mullite, or cement material can be used. These may be used alone or in combination. Especially, as the plugging part 13, the structure containing the reaction material of a calcium oxide containing ceramic aggregate and an inorganic binder is preferable. In order to adjust the concentration of the sealing material, a diluent such as water is used.

外周被覆層15はセラミック層よりなり、窒化珪素等のハニカムの主原料に無機バルーン、コロイダルシリカ、ベントナイト配合してなる。   The outer peripheral coating layer 15 is made of a ceramic layer, and is formed by blending an inorganic balloon, colloidal silica, or bentonite with a main raw material of a honeycomb such as silicon nitride.

そして、本ハニカムフィルタ1において、注目すべき構成は、ハニカム構造体10、目封止部13において、熱膨張係数が以下の(1)〜(3)の条件を満たしている点である。
(1)ハニカム構造体10および目封止部13は、それぞれの軸方向およびこれに直交する
方向の熱膨張係数の差が共に0.5×10-6/℃未満である。つまり、ハニカム構造体10における軸方向の熱膨張係数をαh、これに直交する軸⊥方向の熱膨張係数をαh⊥とすると、αhとαh⊥との差である|αh−αh⊥|が0.5×10-6/℃未満である。同様に、目封止部13における軸方向の熱膨張係数をαm、軸⊥方向の熱膨張係数をαm⊥とすると、αmとαm⊥との差である|αm−αm⊥|が0.5×10-6/℃未満である。
(2)ハニカム構造体10および目封止部13は、互いの上記延伸方向の熱膨張係数の差お
よび上記延伸方向と直交する方向の熱膨張係数の差が共に3.5×10-6/℃未満である。つまり、αhとαmとの差である|αh−αm|、およびαh⊥とαm⊥との差である|αh⊥−αm⊥|が3.5×10-6/℃未満である。
(3)ハニカム構造体10における、軸方向を向きとし軸方向の熱膨張係数を大きさとした
ベクトルと軸⊥方向を向きとし該軸⊥方向の熱膨張係数を大きさとしたベクトルとの合成ベクトルが、軸方向と成す角をθh、目封止部13における、軸方向を向きとし軸方向の熱膨張係数を大きさとしたベクトルと軸⊥方向を向きとし該軸⊥方向の熱膨張係数を大きさとしたベクトルとの合成ベクトルが、軸方向と成す角をθmとし、θhとθmとの差が15度よりも小さい。
In the honeycomb filter 1, a notable configuration is that the honeycomb structure 10 and the plugging portion 13 have thermal expansion coefficients satisfying the following conditions (1) to (3).
(1) The honeycomb structure 10 and the plugging portion 13 each have a difference in thermal expansion coefficient between the axial direction and the direction orthogonal thereto is less than 0.5 × 10 −6 / ° C. That is, if the thermal expansion coefficient in the axial direction of the honeycomb structure 10 is αh and the thermal expansion coefficient in the axial axis direction orthogonal to this is αh⊥, | αh−αh⊥ |, which is the difference between αh and αh⊥, is 0. It is less than 5 × 10 −6 / ° C. Similarly, if the thermal expansion coefficient in the axial direction of the plugged portion 13 is αm and the thermal expansion coefficient in the axial direction is αm⊥, | αm−αm⊥ |, which is the difference between αm and αm⊥, is 0.5. × 10 −6 / ° C.
(2) In the honeycomb structure 10 and the plugging portion 13, both the difference in the thermal expansion coefficient in the stretching direction and the difference in the thermal expansion coefficient in the direction orthogonal to the stretching direction are 3.5 × 10 −6 / It is less than ℃. That is, | αh−αm |, which is the difference between αh and αm, and | αh⊥−αm⊥ |, which is the difference between αh⊥ and αm⊥, are less than 3.5 × 10 −6 / ° C.
(3) In the honeycomb structure 10, a composite vector of a vector whose axial direction is the direction and the axial thermal expansion coefficient is large and a vector whose axial axis direction is the direction and whose thermal expansion coefficient is the magnitude is The angle formed with the axial direction is θh, and the plugging portion 13 is a vector in which the axial direction is the direction and the axial thermal expansion coefficient is large, and the axial axial direction is the direction and the thermal expansion coefficient in the axial axial direction is the magnitude. An angle formed by the combined vector with the vector is θm, and the difference between θh and θm is smaller than 15 degrees.

図3(a)(b) は、上記(3)の条件に含まれる合成ベクトル、合成ベクトルが
軸方向と成す角度θを示す説明図である。図3(a)に示すように、ベクトルXは、軸方向を向きとし軸方向の熱膨張係数を大きさとしている。ベクトルYは、軸⊥方向を向きとし該軸⊥方向の熱膨張係数を大きさとしている。これらベクトルXとベクトルYとの合成ベクトルZが軸方向との間に形成する角度が成す角θである。以下、合成ベクトルを膨張ベクトルと称する。
FIGS. 3A and 3B are explanatory diagrams showing the combined vector included in the condition (3) and the angle θ formed by the combined vector and the axial direction. As shown in FIG. 3A, the vector X is oriented in the axial direction and has a coefficient of thermal expansion in the axial direction. The vector Y is oriented in the axial axis direction and has a coefficient of thermal expansion in the axial axis direction. An angle θ formed by an angle formed between the vector X and the vector Y and a combined vector Z formed with the axial direction. Hereinafter, the combined vector is referred to as an expansion vector.

また、θhとθmとの差は、図3(b)に示すように、ハニカム構造体10および目封止部13それぞれの膨張ベクトルZh,Zmと軸方向とが成す角θh,θm間の差である。   Further, as shown in FIG. 3B, the difference between θh and θm is the difference between the angles θh and θm formed by the expansion vectors Zh and Zm of the honeycomb structure 10 and the plugging portions 13 and the axial direction. It is.

ハニカム構造体10および目封止部13は、上記した軸方向、軸⊥方向の熱膨張係数の条件を満たすように、材料およびその配合が調整されている。軸方向および軸⊥方向の熱膨張係数は、縦横の熱膨張係数に相当する。   The material of the honeycomb structure 10 and the plugging portion 13 are adjusted so as to satisfy the above-described conditions of the thermal expansion coefficient in the axial direction and axial direction. The thermal expansion coefficients in the axial direction and the axial heel direction correspond to vertical and horizontal thermal expansion coefficients.

上記(1)の条件により、ハニカム構造体10および目封止部13はそれぞれ、縦横の熱
膨張係数が小さい物質より構成されている。また上記(2)の条件により、ハニカム構造体
10および目封止部13はそれぞれ、縦横の熱膨張係数が互いに近い物質より構成されている。そして、さらに上記(3)の条件により、ハニカム構造体10の膨張ベクトルZhと
目封止部13の膨張ベクトルZmとがほぼ同じ方向を向くこととなり、ハニカム構造体10および目封止部13を構成する物質間に、縦横の熱膨張係数に差があったとしても(上記範囲内の差)、熱衝撃に対してより強くできる。
Under the condition (1), each of the honeycomb structure 10 and the plugging portion 13 is made of a material having a small vertical and horizontal thermal expansion coefficient. In addition, the honeycomb structure 10 and the plugging portions 13 are made of materials having vertical and horizontal thermal expansion coefficients close to each other under the condition (2). Further, under the condition (3), the expansion vector Zh of the honeycomb structure 10 and the expansion vector Zm of the plugging portion 13 are directed in substantially the same direction, so that the honeycomb structure 10 and the plugging portion 13 are Even if there is a difference in the vertical and horizontal thermal expansion coefficients between the constituent materials (difference within the above range), it can be made stronger against thermal shock.

これにより、ハニカム構造体10と目封止部13との間の熱膨張差に起因する熱衝撃によるクラックの発生を、特許文献1,2とは別の手法で、抑制することができる。したがって、目封止部13の材料選択や気孔率設定の自由度を阻害することなく、また、目封止部13におけるPMの堆積を助長したり、セル11間でPMの浄化機能にばらつきを生じさせたりすることもない。これについて、より詳細に説明する。   Thereby, generation | occurrence | production of the crack by the thermal shock resulting from the thermal expansion difference between the honeycomb structure 10 and the plugging part 13 can be suppressed with the method different from patent document 1,2. Therefore, without obstructing the freedom of material selection and porosity setting of the plugging portion 13, the PM deposition in the plugging portion 13 is promoted, and the PM purification function varies among the cells 11. It does not cause it. This will be described in more detail.

本ハニカムフィルタ1においては、特許文献1のように、目封止部の厚さを不均一にしなくても、クラックが境界部に発生するのを防止できる。その結果、壁フローフィルタ機能をなすセル11の軸方向の長さを、ハニカムフィルタ1を構成する複数のセル11において同じにできる。   In the present honeycomb filter 1, as in Patent Document 1, it is possible to prevent cracks from occurring at the boundary portion without making the plugged portion thickness uneven. As a result, the axial length of the cells 11 forming the wall flow filter function can be made the same in the plurality of cells 11 constituting the honeycomb filter 1.

より具体的には、ハニカムフィルタ1においては、目封止部13における、セル11の中央部側の端面位置の標準偏差が3.2%以下とすることが好ましい。このような構成とすることで、セル間11でPMの浄化機能が均一になり、ハニカムフィルタ1として浄化品質の安定性を十分なものとできる。   More specifically, in the honeycomb filter 1, it is preferable that the standard deviation of the end face position on the central portion side of the cell 11 in the plugged portion 13 is 3.2% or less. By adopting such a configuration, the PM purification function becomes uniform between the cells 11 and the honeycomb filter 1 can have sufficient purification quality stability.

また、本ハニカムフィルタ1においては、ハニカム構造体10と目封止部13とでは、主たる構成材料を異ならせることができるので、目封止部13の材料選択における自由度を広げることができる。   Further, in the honeycomb filter 1, the main constituent material can be made different between the honeycomb structure 10 and the plugging portion 13, so that the degree of freedom in selecting the material of the plugging portion 13 can be expanded.

また、本ハニカムフィルタ1においては、特許文献2のように、目封止部の気孔率がハニカム構造体の気孔率にて規制しなくても、クラックが境界部に発生するのを防止できる。その結果、目封止部13の気孔率も自由に設定できる。   Further, in the present honeycomb filter 1, as in Patent Document 2, it is possible to prevent cracks from occurring at the boundary even if the porosity of the plugged portion is not regulated by the porosity of the honeycomb structure. As a result, the porosity of the plugged portion 13 can be freely set.

より具体的には、本発明のハニカムフィルタ1においては、ハニカム構造体10の気孔率は50〜80%、目封止部13の気孔率は2〜10%とすることが好ましい。ハニカム構造体10の気孔率は50〜70%とすることがより好ましい。目封止部13の気孔率は、2〜8.5%とすることがより好ましく、さらに好ましくは5〜8%とすることである。   More specifically, in the honeycomb filter 1 of the present invention, the porosity of the honeycomb structure 10 is preferably 50 to 80%, and the porosity of the plugging portion 13 is preferably 2 to 10%. The porosity of the honeycomb structure 10 is more preferably 50 to 70%. The porosity of the plugged portion 13 is more preferably 2 to 8.5%, and further preferably 5 to 8%.

ハニカム構造体10の気孔率が、50%以上と比較的高くても、目封止部13の気孔率を、10%以下(好ましくは8.5%以下、さらに好ましくは8%以下)と小さくしているので、目封止部13における気孔率が高い場合のように目封止部13にPMが堆積することを抑制することができ、ハニカムフィルタ1の再生加熱時において、耐熱衝撃性が阻害されることを抑制できる。   Even if the honeycomb structure 10 has a relatively high porosity of 50% or more, the plugging portion 13 has a porosity of 10% or less (preferably 8.5% or less, more preferably 8% or less). Therefore, it is possible to suppress PM from being deposited on the plugged portion 13 as in the case where the porosity of the plugged portion 13 is high, and the thermal shock resistance is improved during regeneration heating of the honeycomb filter 1. Inhibition can be suppressed.

また、本ハニカムフィルタ1においては、さらに、ハニカム構造体10の主たる構成材料が窒化珪素であり、目封止部13の主たる構成材料が、酸化カルシウム含有セラミックス系骨材と無機バインダーとの反応物を含む構成とすることがより好ましい。   Further, in the honeycomb filter 1, the main constituent material of the honeycomb structure 10 is silicon nitride, and the main constituent material of the plugging portion 13 is a reaction product of a calcium oxide-containing ceramic aggregate and an inorganic binder. It is more preferable to have a configuration including

[実施の形態2]
本発明のその他の実施形態について図4〜図6に基づいて説明すれば、以下の通りである。なお、説明の便宜上、実施の形態1で用いた部材と同じ機能を有する部材には同じ符号を付して説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those used in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

実施の形態1のハニカムフィルタ1は、ハニカム構造体10が1つの多孔質セラミック焼成体よりなる、いわゆる一体型であった。これに対し、実施の形態2のハニカムフィルタは、角柱状に形成され、各々が多孔質セラミック焼成体であるハニカムセグメント体を、接合部を介して貼り合わせてハニカム構造体とした、いわゆる分割型である。   The honeycomb filter 1 of the first embodiment is a so-called integral type in which the honeycomb structure 10 is formed of one porous ceramic fired body. On the other hand, the honeycomb filter of the second embodiment is a so-called split type in which a honeycomb segment body is formed in a prismatic shape, and each honeycomb segment body, which is a porous ceramic fired body, is bonded through a joint. It is.

図4は、本実施の形態のハニカムフィルタの模式図である。本ハニカムフィルタ20は、図4に示すように、多数のセル11を有するハニカムセグメント体21が複数、セル11の延伸方向であるA方向と互いに直交する2方向に積み重ねられると共に、外面同士が接合部23にて接合されてなるハニカム構造体25を備える。   FIG. 4 is a schematic diagram of the honeycomb filter of the present embodiment. As shown in FIG. 4, the honeycomb filter 20 includes a plurality of honeycomb segment bodies 21 each having a large number of cells 11 stacked in two directions orthogonal to the A direction that is the extending direction of the cells 11, and the outer surfaces are joined to each other. The honeycomb structure 25 formed by joining at the portion 23 is provided.

図5は、1つのハニカムセグメント体21の模式図である。図5に示すように、ハニカムセグメント体21は、ハニカムフィルタ20の軸方向に垂直な方向の断面形状が正方形である角柱状である。ハニカムセグメント体21は、複数が組み合わされることで1つのハニカム構造体25を構成する。したがって、実施の形態1のハニカム構造体10に比べて軸方向に垂直な断面の形状が小さく形成されている以外は、実施の形態1のハニカム構造体10と同様の構成を有する。   FIG. 5 is a schematic diagram of one honeycomb segment body 21. As shown in FIG. 5, the honeycomb segment body 21 has a prismatic shape having a square cross-sectional shape in a direction perpendicular to the axial direction of the honeycomb filter 20. A plurality of honeycomb segment bodies 21 are combined to form one honeycomb structure 25. Therefore, it has the same configuration as the honeycomb structure 10 of the first embodiment except that the shape of the cross section perpendicular to the axial direction is smaller than that of the honeycomb structure 10 of the first embodiment.

接合部23は、ハニカムセグメント体21同士の外面を接合するもので、接合部23を構成する材料を混合されてなる接合材が硬化されることで形成されている。   The joining portion 23 joins the outer surfaces of the honeycomb segment bodies 21 and is formed by curing a joining material obtained by mixing materials constituting the joining portion 23.

接合部23を構成する接合材としては、例えば、コージェライト、チタン酸アルミニウム、アルミナ(Al)、フォルステライト、ジルコニア(ZrO)および酸化マグネシウム(MgO)などのセラミックを挙げることができる。 Examples of the bonding material forming the bonding portion 23 include ceramics such as cordierite, aluminum titanate, alumina (Al 2 O 3 ), forsterite, zirconia (ZrO 2 ), and magnesium oxide (MgO). .

接合部23の厚みは、従来公知の厚みであり、例えば、0.5〜10mmであり、1〜5mmであることが好ましく、1〜3mmであることがより好ましい。   The thickness of the joint portion 23 is a conventionally known thickness, for example, 0.5 to 10 mm, preferably 1 to 5 mm, and more preferably 1 to 3 mm.

図6は、複数のハニカムセグメント体が接合部で互いに接合されてなるセグメント接合体の模式図である。セグメント接合体27は、図において破線にて示す加工想定曲面29に沿って、軸方向に垂直な方向の断面形状が円形となるように研削加工される。これにより、円柱状に加工され、その外周面に外周被覆材が塗布され、外周被覆層15が形成されている。   FIG. 6 is a schematic diagram of a segment bonded body in which a plurality of honeycomb segment bodies are bonded to each other at a bonded portion. The segment joined body 27 is ground so that the cross-sectional shape in the direction perpendicular to the axial direction is circular along the assumed processing curved surface 29 indicated by a broken line in the drawing. Thereby, it is processed into a cylindrical shape, and the outer peripheral covering material is applied to the outer peripheral surface thereof to form the outer peripheral covering layer 15.

本ハニカムフィルタ20においも、各ハニカムセグメント体21と目封止部13とが、上記(1)〜(3)の条件を満たしており、また、目封止部13は、ハニカム構造体25において、上記した端面位置の標準偏差の条件を満たしている。   Also in the present honeycomb filter 20, each honeycomb segment body 21 and the plugging portion 13 satisfy the conditions (1) to (3), and the plugging portion 13 is formed in the honeycomb structure 25. The condition of the standard deviation of the end face position described above is satisfied.

実施の形態1のハニカムフィルタ1の実施例について説明する。   Examples of the honeycomb filter 1 according to Embodiment 1 will be described.

(実施例1)
金属シリコン23重量%(山石金属製)、β型窒化珪素22重量%(電気化学工業製)、造孔剤(原料:フェノール樹脂)16重量%(エアウオーター製)、押出成形用バインダー(原料:メチルセルロース)16重量%(信越化学工業製)、水からなる原料を混合・混練し、押出機でφ144×150mm、セルピッチ1.7mmのハニカム状の円柱体を成形した。脱脂後、窒素中で反応焼結を行い、実施例1のハニカム構造体10を作成し
た。焼成温度は、第1焼成は1000〜1450℃、第2焼成は1700〜1800℃で行った。
Example 1
23% by weight of metal silicon (manufactured by Yamaishi Metal), 22% by weight of β-type silicon nitride (manufactured by Denki Kagaku Kogyo), 16% by weight of pore-forming agent (raw material: phenolic resin) (manufactured by Air Water), binder for extrusion molding (raw material: Methyl cellulose) 16% by weight (manufactured by Shin-Etsu Chemical Co., Ltd.) and a raw material consisting of water were mixed and kneaded, and a honeycomb-shaped cylindrical body having a diameter of 144 × 150 mm and a cell pitch of 1.7 mm was formed by an extruder. After degreasing, reaction sintering was performed in nitrogen to produce a honeycomb structure 10 of Example 1. The firing temperature was 1000 to 1450 ° C. for the first firing and 1700 to 1800 ° C. for the second firing.

得られたハニカム構造体10の気孔率と、熱膨張係数を測定した。気孔率はアルキメデス法の密度計用いて測定し、熱膨張係数αh、αh⊥は示差熱膨張率測定器を用いて測定した。   The porosity and thermal expansion coefficient of the obtained honeycomb structure 10 were measured. The porosity was measured using an Archimedes density meter, and the thermal expansion coefficients αh and αh⊥ were measured using a differential thermal expansion meter.

測定結果を以下に示す。
気孔率:60%
軸方向の熱膨張係数αh:3.00×10-6/℃
軸⊥方向の熱膨張係数αh⊥:2.94×10-6/℃
上記ハニカム構造体10に、Al23(昭和電工製)、SiO2(キンセイマテック製
)、CaO、コロイダルシリカ(日産化学工業製)を、表1に示す配合で混合して、目封止部13となる封止材を作成した。作成した封止材を、上記ハニカム構造体10の軸方向の端面から5mmの深さまで充填し、乾燥させて目封止部13を作成した。
The measurement results are shown below.
Porosity: 60%
Axial thermal expansion coefficient αh: 3.00 × 10 −6 / ° C.
Thermal expansion coefficient αhα in the axial axis direction: 2.94 × 10 -6 / ° C
Al 2 O 3 (manufactured by Showa Denko), SiO 2 (manufactured by Kinsei Matec), CaO, colloidal silica (manufactured by Nissan Chemical Industries) are mixed in the honeycomb structure 10 with the composition shown in Table 1, and plugged. The sealing material used as the part 13 was created. The prepared sealing material was filled to a depth of 5 mm from the end face in the axial direction of the honeycomb structure 10 and dried to create a plugged portion 13.

Figure 2013202532
Figure 2013202532

続いて、無機バルーン(電気化学工業製)、窒化珪素粒子(電気化学工業製)、コロイダルシリカ(日産化学工業製)、水、バインダー(原料:ベントナイト、ホージュン製)を混合して、外周被覆層15となる外周被覆材を作成した。作成した外周被覆材を、0.3〜1mmの厚みで上記ハニカム構造体10の外面に塗布し、その後、550−750℃の温度で焼成することで、外周被覆層15を作成し、実施例1のハニカムフィルタを得た。   Subsequently, an inorganic balloon (manufactured by Denki Kagaku Kogyo), silicon nitride particles (manufactured by Denki Kagaku Kogyo), colloidal silica (manufactured by Nissan Kagaku Kogyo), water, binder (raw materials: bentonite, manufactured by Hojun) are mixed, and the outer peripheral coating layer The outer periphery covering material used as 15 was created. The outer peripheral coating material 15 was applied to the outer surface of the honeycomb structure 10 with a thickness of 0.3 to 1 mm, and then fired at a temperature of 550 to 750 ° C., thereby forming the outer peripheral coating layer 15. 1 honeycomb filter was obtained.

また、実施例1のハニカムフィルタにおいて目封止部13を作成したと同じ条件で、物性測定用のサンプルを作成し、目封止部13の気孔率と、熱膨張係数を前述と同様の測定方法で測定した。   In addition, a sample for measuring physical properties was created under the same conditions as those for creating the plugged portion 13 in the honeycomb filter of Example 1, and the porosity and thermal expansion coefficient of the plugged portion 13 were measured in the same manner as described above. Measured by the method.

また、作成した実施例1のハニカムフィルタにおいて、目封止部13における、セル11の中央部側の端面位置の準偏差を求めた。端面位置の標準偏差はハニカムを軸方向に平行に切断し目封部をレーザー顕微鏡で撮影し、寸法測定を実施した。   Further, in the prepared honeycomb filter of Example 1, the quasi-deviation of the end face position on the central portion side of the cell 11 in the plugged portion 13 was obtained. As for the standard deviation of the end face position, the honeycomb was cut in parallel to the axial direction, the plugged portion was photographed with a laser microscope, and the dimensions were measured.

測定結果を以下に示す。
気孔率:8.9%
軸方向の熱膨張係数αm:5.5×10-6/℃
軸⊥方向の熱膨張係数αm⊥:5.6×10-6/℃
端面位置の標準偏差:2.8%
また、測定結果より算出した、αhとαh⊥との差である|αh−αh⊥|、αmとαm⊥との差である|αm−αm⊥|、αhとαmとの差である|αh−αm|、αh⊥とαm⊥との差である|αh⊥−αm⊥|、θhとθmとの差である|θh−θm|を算出した結果を以下に示す。
|αh−αh⊥|:0.06×10-6/℃
|αm−αm⊥|:0.1×10-6/℃
|αh−αm|:2.50×10-6/℃
|αh⊥−αm⊥|:2.66×10-6/℃
|θh−θm|:2度
(実施例2)
炭化珪素粒子67重量%(屋久島電工製)、窒化珪素微粒子17重量%(電気化学工業製)、造孔材(フェノール樹脂8重量%(エアウオーター製)押出成形用バインダー(原料:メチルセルロース)8重量%(信越化学工業製)、水からなる原料を混合・混練し、押出機でφ144×150mm、セルピッチ1.7mmのハニカム状の円柱体を成形した。脱脂後、アルゴン気流中で1350〜1450℃で焼結を行い、ハニカム構造体10を作成した。
The measurement results are shown below.
Porosity: 8.9%
Axial thermal expansion coefficient αm: 5.5 × 10 −6 / ° C.
Thermal expansion coefficient αmα in the axial axis direction: 5.6 × 10 -6 / ° C
Standard deviation of end face position: 2.8%
Also, | αh−αh⊥ |, which is a difference between αh and αh し た, and | αm−αm⊥ |, which is a difference between αm and αm⊥, and a difference between αh and αm, which are calculated from the measurement results | αh The results of calculating −αm |, | αhα−αm⊥ |, which is the difference between αh⊥ and αm⊥, and | θh−θm |, which is the difference between θh and θm, are shown below.
| Αh−αh⊥ |: 0.06 × 10 −6 / ° C.
| Αm−αm∥: 0.1 × 10 −6 / ° C.
| Αh−αm |: 2.50 × 10 −6 / ° C.
| Αh⊥−αm⊥ |: 2.66 × 10 −6 / ° C.
| Θh−θm |: 2 degrees (Example 2)
Silicon carbide particles 67% by weight (manufactured by Yakushima Denko), silicon nitride fine particles 17% by weight (manufactured by Denki Kagaku Kogyo), pore former (phenol resin 8% by weight (manufactured by Air Water)) binder for extrusion molding (raw material: methylcellulose) 8% % (Manufactured by Shin-Etsu Chemical Co., Ltd.) and raw materials consisting of water were mixed and kneaded, and a honeycomb-shaped cylindrical body having a diameter of 144 mm × 150 mm and a cell pitch of 1.7 mm was formed by an extruder, and after degreasing, 1350 to 1450 ° C. in an argon stream. The honeycomb structure 10 was prepared by sintering.

得られたハニカム構造体10の気孔率と、熱膨張係数を前述と同様の方法で測定した。その後、表1に記載された配合に変更した以外は実施例1と同様にして、目封止部13を作成し、さらに、実施例1と同様にして外周被覆層15を作成し、実施例2のハニカムフィルタを得た。得られたハニカムフィルタにおいて、実施例1と同様に、目封止部13における、セル11の中央部側の端面位置の準偏差を求めた。また、実施例2のハニカムフィルタを作成したと同じ条件で、目封止部13の物性測定用のサンプルを作成し、目封止部13の気孔率と、熱膨張係数も測定した。測定した結果、および結果より算出した熱膨張係数の差等も表1に示す。   The porosity and thermal expansion coefficient of the obtained honeycomb structure 10 were measured by the same method as described above. Thereafter, the plugging portion 13 was created in the same manner as in Example 1 except that the formulation described in Table 1 was changed, and the outer peripheral coating layer 15 was created in the same manner as in Example 1. 2 honeycomb filters were obtained. In the obtained honeycomb filter, the quasi-deviation of the end face position on the central part side of the cell 11 in the plugged portion 13 was obtained in the same manner as in Example 1. In addition, a sample for measuring physical properties of the plugged portion 13 was created under the same conditions as the honeycomb filter of Example 2, and the porosity and thermal expansion coefficient of the plugged portion 13 were also measured. Table 1 also shows the measured results and the difference in thermal expansion coefficient calculated from the results.

(実施例3)
酸化チタン粉末26重量%(堺化学工業製)、アルミナ粉末50重量%(昭和電工製)、造孔剤(原料:フェノール樹脂)15重量%(エアウオーター製)、押出成形用バイン
ダー(原料:メチルセルロース)8重量%(信越化学工業製)、水からなる原料を混合・混練し、押出機でφ144×150mm、セルピッチ1.7mmのハニカム状の円柱体を成形した。脱脂後、大気中で1350〜1450℃で焼結を行い、ハニカム構造体10を作成した。
(Example 3)
26% by weight of titanium oxide powder (manufactured by Sakai Chemical Industry), 50% by weight of alumina powder (manufactured by Showa Denko), 15% by weight of pore-forming agent (raw material: phenol resin) (manufactured by Air Water), binder for extrusion molding (raw material: methylcellulose) ) 8% by weight (manufactured by Shin-Etsu Chemical Co., Ltd.) and a raw material consisting of water were mixed and kneaded, and a honeycomb cylindrical body having a diameter of 144 × 150 mm and a cell pitch of 1.7 mm was formed by an extruder. After degreasing, sintering was performed at 1350 to 1450 ° C. in the atmosphere to prepare the honeycomb structure 10.

得られたハニカム構造体10の気孔率と、熱膨張係数を前述と同様の方法で測定した。その後、表1に記載された配合に変更した以外は実施例1と同様にして、目封止部13を作成し、さらに、実施例1と同様にして外周被覆層15を作成し、実施例3のハニカムフィルタを得た。得られたハニカムフィルタにおいて、実施例1と同様に、目封止部13における、セル11の中央部側の端面位置の準偏差を求めた。また、実施例3のハニカムフィルタを作成したと同じ条件で、目封止部13の物性測定用のサンプルを作成し、目封止部13の気孔率と、熱膨張係数も測定した。測定した結果、および結果より算出した熱膨張係数の差等も表1に示す。   The porosity and thermal expansion coefficient of the obtained honeycomb structure 10 were measured by the same method as described above. Thereafter, the plugging portion 13 was created in the same manner as in Example 1 except that the formulation described in Table 1 was changed, and the outer peripheral coating layer 15 was created in the same manner as in Example 1. 3 honeycomb filters were obtained. In the obtained honeycomb filter, the quasi-deviation of the end face position on the central part side of the cell 11 in the plugged portion 13 was obtained in the same manner as in Example 1. In addition, a sample for measuring physical properties of the plugged portion 13 was created under the same conditions as the honeycomb filter of Example 3, and the porosity and thermal expansion coefficient of the plugged portion 13 were also measured. Table 1 also shows the measured results and the difference in thermal expansion coefficient calculated from the results.

(実施例4)
全て実施例1と同様にしてハニカム構造体10を作成し、得られたハニカム構造体10の気孔率と、熱膨張係数を測定した後、実施例1と同様にして、目封止部13を作成した。この際、実施例1よりもセル11中央部側の端面位置がばらつくように作成した。その後、実施例1と同様にして、外周被覆層15を作成し、実施例4のハニカムフィルタを得た。得られたハニカムフィルタにおいて、目封止部13におけるセル11の中央部側の端面位置の準偏差を求めた。また、実施例4のハニカムフィルタを作成したと同じ条件で、目封止部13の物性測定用のサンプルを作成し、目封止部13の気孔率と、熱膨張係数も測定した。測定した結果、および結果より算出した熱膨張係数の差等も表1に示す。
Example 4
A honeycomb structure 10 was prepared in the same manner as in Example 1, and after the porosity and thermal expansion coefficient of the obtained honeycomb structure 10 were measured, plugging portions 13 were formed in the same manner as in Example 1. Created. At this time, it was created so that the position of the end surface on the central side of the cell 11 was more varied than that of Example 1. Then, the outer periphery coating layer 15 was produced like Example 1, and the honeycomb filter of Example 4 was obtained. In the obtained honeycomb filter, the quasi-deviation of the end face position on the center part side of the cell 11 in the plugged portion 13 was obtained. In addition, a sample for measuring physical properties of the plugged portion 13 was created under the same conditions as the honeycomb filter of Example 4, and the porosity and thermal expansion coefficient of the plugged portion 13 were also measured. Table 1 also shows the measured results and the difference in thermal expansion coefficient calculated from the results.

(比較例1)
珪酸マグネシウム28重量%(キンセイマテック製)、水酸化アルミニウム34重量%(昭和電工製)、シリカ15重量%(キンセイマテック)造孔材(原料:フェノール樹脂)20重量%(エアウオーター製)、押出成形バインダー(原料:メチルセルロース)8重量%(信越化学工業製)、水からなる原料を混合・混練し、押出機でφ144×150mm、セルピッチ1.7mmのハニカム状の円柱体を成形した。脱脂後、大気中で1350〜1450℃で焼結を行い、ハニカム構造体10を作成した。
(Comparative Example 1)
Magnesium silicate 28% by weight (manufactured by Kinsei Matec), aluminum hydroxide 34% by weight (manufactured by Showa Denko), silica 15% by weight (Kinsei Matech) pore former (raw material: phenolic resin) 20% by weight (manufactured by Air Water), extrusion A formed binder (raw material: methylcellulose) 8% by weight (manufactured by Shin-Etsu Chemical Co., Ltd.) and a raw material consisting of water were mixed and kneaded, and a honeycomb-shaped cylindrical body having a diameter of 144 × 150 mm and a cell pitch of 1.7 mm was formed by an extruder. After degreasing, sintering was performed at 1350 to 1450 ° C. in the atmosphere to prepare the honeycomb structure 10.

得られたハニカム構造体10の気孔率と、熱膨張係数を前述と同様の方法で測定した。その後、表1に記載された配合に変更した以外は実施例1と同様にして、目封止部13を作成し、さらに、実施例1と同様にして外周被覆層15を作成し、比較例1のハニカムフィルタを得た。得られたハニカムフィルタにおいて、実施例1と同様に、目封止部13における、セル11の中央部側の端面位置の準偏差を求めた。また、比較例1のハニカムフィルタを作成したと同じ条件で、目封止部13の物性測定用のサンプルを作成し、目封止部13の気孔率と、熱膨張係数も測定した。測定した結果、および結果より算出した熱膨張係数の差等も表1に示す。   The porosity and thermal expansion coefficient of the obtained honeycomb structure 10 were measured by the same method as described above. Then, except having changed into the mixing | blending described in Table 1, the plugging part 13 was created like Example 1, and also the outer periphery coating layer 15 was created like Example 1, and a comparative example 1 honeycomb filter was obtained. In the obtained honeycomb filter, the quasi-deviation of the end face position on the central part side of the cell 11 in the plugged portion 13 was obtained in the same manner as in Example 1. In addition, a sample for measuring physical properties of the plugged portion 13 was created under the same conditions as the honeycomb filter of Comparative Example 1, and the porosity and thermal expansion coefficient of the plugged portion 13 were also measured. Table 1 also shows the measured results and the difference in thermal expansion coefficient calculated from the results.

(比較例2)
比較例1と同様にしてハニカム構造体10を作成し、得られたハニカム構造体10の気孔率と、熱膨張係数を前述と同様の方法で測定した。その後、表1に記載された配合に変更した以外は実施例1と同様にして、目封止部13を作成し、さらに、実施例1と同様にして外周被覆層15を作成し、比較例2のハニカムフィルタを得た。得られたハニカムフィルタにおいて、実施例1と同様に、目封止部13における、セル11の中央部側の端面位置の準偏差を求めた。また、比較例2のハニカムフィルタを作成したと同じ条件で、目封止部13の物性測定用のサンプルを作成し、目封止部13の気孔率と、熱膨張係数も測定した。測定した結果、および結果より算出した熱膨張係数の差等も表1に示す。
(Comparative Example 2)
A honeycomb structure 10 was prepared in the same manner as in Comparative Example 1, and the porosity and thermal expansion coefficient of the obtained honeycomb structure 10 were measured by the same method as described above. Then, except having changed into the mixing | blending described in Table 1, the plugging part 13 was created like Example 1, and also the outer periphery coating layer 15 was created like Example 1, and a comparative example 2 honeycomb filters were obtained. In the obtained honeycomb filter, the quasi-deviation of the end face position on the central part side of the cell 11 in the plugged portion 13 was obtained in the same manner as in Example 1. In addition, a sample for measuring physical properties of the plugged portion 13 was created under the same conditions as the honeycomb filter of Comparative Example 2, and the porosity and thermal expansion coefficient of the plugged portion 13 were also measured. Table 1 also shows the measured results and the difference in thermal expansion coefficient calculated from the results.

そして、このように作製した実施例1〜4、比較例1,2のハニカムフィルタを、600℃の炉内に2時間保持後空冷する処理を10回繰り返す熱衝撃試験に供して、目封止部13にクラックが発生するか否かを確認した。表1に確認結果も示す。   The honeycomb filters of Examples 1 to 4 and Comparative Examples 1 and 2 thus produced were subjected to a thermal shock test that was repeated 10 times after being held in a furnace at 600 ° C. for 2 hours and then air-cooled, and plugged. It was confirmed whether or not cracks occurred in the portion 13. Table 1 also shows the confirmation results.

表1に示すように、ハニカム構造体10および目封止部13における、気孔率、軸方向および軸⊥方向の熱膨張係数が上記した条件を満足する実施例1〜4のハニカムフィルタについては、試験後、目封止部13にクラックは発生しなかった。これに対し、上記した条件を満足しない比較例1、2のハニカムフィルタについては、試験後、目封止部13にクラックが発生した。   As shown in Table 1, with respect to the honeycomb filters of Examples 1 to 4 in which the porosity, the axial direction, and the axial expansion coefficient in the plugged portion 13 satisfy the above-described conditions, After the test, no cracks occurred in the plugged portion 13. On the other hand, in the honeycomb filters of Comparative Examples 1 and 2 that did not satisfy the above conditions, cracks occurred in the plugged portions 13 after the test.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明は、ディーゼルエンジンの排気ガスに含まれる粒子状物質を捕集するための排気ガス浄化用フィルタとして好適に利用することができる。   The present invention can be suitably used as an exhaust gas purification filter for collecting particulate matter contained in exhaust gas of a diesel engine.

1 ハニカムフィルタ
10 ハニカム構造体
11 セル
12 セル壁
13 目封止部
15 外周被覆層
20 ハニカムフィルタ
21 ハニカムセグメント体
23 接合部
25 ハニカム構造体
27 セグメント接合体
29 加工想定曲面
DESCRIPTION OF SYMBOLS 1 Honeycomb filter 10 Honeycomb structure 11 Cell 12 Cell wall 13 Plugging part 15 Outer peripheral coating layer 20 Honeycomb filter 21 Honeycomb segment body 23 Joint part 25 Honeycomb structure 27 Segment joined body 29 Process assumption curved surface

Claims (5)

セル壁によって区画されることで形成された一方向に延伸するセルを複数有した焼成体よりなるハニカム構造体を備え、上記複数のセルの延伸方向の一端部が目封止部にて目封止されてなるハニカムフィルタであって、
上記ハニカム構造体および目封止部は、それぞれの上記延伸方向およびこれに直交する方向の熱膨張係数の差が共に0.5×10-6/℃未満であると共に、互いの上記延伸方向の熱膨張係数の差および上記延伸方向と直交する方向の熱膨張係数の差が共に3.5×10-6/℃未満であり、
さらに、上記ハニカム構造体における、上記延伸方向を向きとし上記延伸方向の熱膨張係数を大きさとしたベクトルと上記延伸方向に直交する方向を向きとし該直交する方向の熱膨張係数を大きさとしたベクトルとの合成ベクトルが、上記延伸方向と成す角をθh、上記目封止部における、上記延伸方向を向きとし上記延伸方向の熱膨張係数を大きさとしたベクトルと上記延伸方向に直交する方向を向きとし該直交する方向の熱膨張係数を大きさとしたベクトルとの合成ベクトルが、上記延伸方向と成す角をθmとし、θhとθmとの差が15度よりも小さいことを特徴とするはハニカムフィルタ。
A honeycomb structure comprising a fired body having a plurality of cells extending in one direction formed by being partitioned by cell walls, wherein one end portion of the plurality of cells in the extending direction is plugged at a plugging portion. A honeycomb filter that is stopped,
The honeycomb structure and the plugging portion each have a difference in thermal expansion coefficient between the stretching direction and a direction perpendicular to the stretching direction of less than 0.5 × 10 −6 / ° C., and Both the difference in thermal expansion coefficient and the difference in thermal expansion coefficient in the direction orthogonal to the stretching direction are less than 3.5 × 10 −6 / ° C.,
Further, in the honeycomb structure, a vector in which the extending direction is directed and a coefficient of thermal expansion in the extending direction is increased, and a vector in which a direction orthogonal to the extending direction is directed and the coefficient of thermal expansion in the orthogonal direction is increased. Is the angle formed with the stretching direction θh, and the plugging portion faces the stretching direction and the coefficient of thermal expansion in the stretching direction and the direction orthogonal to the stretching direction. The honeycomb filter is characterized in that a combined vector of a vector having a coefficient of thermal expansion in a direction orthogonal to the above is θm as an angle formed with the drawing direction, and a difference between θh and θm is smaller than 15 degrees .
上記目封止部における上記セルの中央部側の端面位置の標準偏差が3.2%以下であることを特徴とする請求項1に記載のハニカムフィルタ。   2. The honeycomb filter according to claim 1, wherein a standard deviation of an end face position of the plugged portion on the center side of the cell is 3.2% or less. 上記ハニカム構造体の気孔率が50〜80%であり、上記目封止部の気孔率が2〜10%であることを特徴とする請求項1又は2に記載のハニカムフィルタ。   The honeycomb filter according to claim 1 or 2, wherein the honeycomb structure has a porosity of 50 to 80%, and the plugged portion has a porosity of 2 to 10%. 上記目封止部の主たる構成材料が、ハニカム構造体の主たる構成材料とは異なることを特徴とする請求項1〜3の何れか1項に記載のハニカムフィルタ。   The honeycomb filter according to any one of claims 1 to 3, wherein a main constituent material of the plugged portion is different from a main constituent material of the honeycomb structure. 上記ハニカム構造体の主たる構成材料が窒化珪素であり、上記目封止部の主たる構成材料が、酸化カルシウム含有セラミックス系骨材と無機バインダーとの反応物を含むことを特徴とする請求項1〜4の何れか1項に記載のハニカムフィルタ。   The main constituent material of the honeycomb structure is silicon nitride, and the main constituent material of the plugged portion includes a reaction product of a calcium oxide-containing ceramic aggregate and an inorganic binder. 5. The honeycomb filter according to any one of 4 above.
JP2012074824A 2012-03-28 2012-03-28 Honeycomb filter Withdrawn JP2013202532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074824A JP2013202532A (en) 2012-03-28 2012-03-28 Honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074824A JP2013202532A (en) 2012-03-28 2012-03-28 Honeycomb filter

Publications (1)

Publication Number Publication Date
JP2013202532A true JP2013202532A (en) 2013-10-07

Family

ID=49522237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074824A Withdrawn JP2013202532A (en) 2012-03-28 2012-03-28 Honeycomb filter

Country Status (1)

Country Link
JP (1) JP2013202532A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100773A (en) * 2013-11-27 2015-06-04 日本特殊陶業株式会社 Filter structure and method of manufacturing the same
JP2017514780A (en) * 2014-05-01 2017-06-08 コーニング インコーポレイテッド Honeycomb structure with cement skin composition containing crystalline inorganic fiber material
CN110284943A (en) * 2018-03-19 2019-09-27 日本碍子株式会社 Honeycomb structure
US10603633B2 (en) 2012-02-24 2020-03-31 Corning Incorporated Honeycomb structure comprising a cement skin composition with crystalline inorganic fibrous material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10603633B2 (en) 2012-02-24 2020-03-31 Corning Incorporated Honeycomb structure comprising a cement skin composition with crystalline inorganic fibrous material
JP2015100773A (en) * 2013-11-27 2015-06-04 日本特殊陶業株式会社 Filter structure and method of manufacturing the same
JP2017514780A (en) * 2014-05-01 2017-06-08 コーニング インコーポレイテッド Honeycomb structure with cement skin composition containing crystalline inorganic fiber material
CN110284943A (en) * 2018-03-19 2019-09-27 日本碍子株式会社 Honeycomb structure
CN110284943B (en) * 2018-03-19 2022-06-03 日本碍子株式会社 Honeycomb structure

Similar Documents

Publication Publication Date Title
US7867456B2 (en) Honeycomb structure, method of manufacturing the structure, and exhaust emission control system
JP5864329B2 (en) Honeycomb structure
KR20130135930A (en) Sealed honeycomb structure
WO2014061320A1 (en) Dust-collecting honeycomb filter
KR20130135929A (en) Sealed honeycomb structure
JPWO2008047558A1 (en) Ceramic honeycomb structure and method for manufacturing ceramic honeycomb structure
KR20130137673A (en) Sealed honeycomb structure, and exhaust gas purification device
JP6847724B2 (en) Sealed honeycomb structure
JP2010221159A (en) Honeycomb filter
JP2014113510A (en) Ceramic honeycomb filter and manufacturing method thereof
JPWO2010098347A1 (en) Honeycomb structure and gas processing apparatus
KR20090017484A (en) Honeycomb structure body
US11065571B2 (en) Honeycomb filter
JP2013202532A (en) Honeycomb filter
CN107159316B (en) Honeycomb structure
JP6862245B2 (en) Honeycomb filter
JP7002377B2 (en) Honeycomb structure
JP2020049428A (en) Honeycomb filter
JP7094193B2 (en) Honeycomb filter
JP4402732B1 (en) Honeycomb structure
JP2008100408A (en) Ceramic honeycomb structure
JP2014194172A (en) Ceramic filter
JP7569756B2 (en) Honeycomb Filter
JP6084497B2 (en) Honeycomb filter
JP7057691B2 (en) Honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20141215