[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013241295A - Mixed powder for solid shaping and solid-shaped article - Google Patents

Mixed powder for solid shaping and solid-shaped article Download PDF

Info

Publication number
JP2013241295A
JP2013241295A JP2012114922A JP2012114922A JP2013241295A JP 2013241295 A JP2013241295 A JP 2013241295A JP 2012114922 A JP2012114922 A JP 2012114922A JP 2012114922 A JP2012114922 A JP 2012114922A JP 2013241295 A JP2013241295 A JP 2013241295A
Authority
JP
Japan
Prior art keywords
mixed powder
dimensional
gypsum
dimensional modeling
modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012114922A
Other languages
Japanese (ja)
Other versions
JP5659192B2 (en
Inventor
Hiroshi Yoshikawa
大士 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2012114922A priority Critical patent/JP5659192B2/en
Publication of JP2013241295A publication Critical patent/JP2013241295A/en
Application granted granted Critical
Publication of JP5659192B2 publication Critical patent/JP5659192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide inexpensive mixed powder for solid shaping capable of imparting sufficient strength to a solid-shaped article just after being formed, and the solid-shaped article.SOLUTION: Since mixed powder 26 for solid shaping containing hemihydrate gypsum and a gypsum hardening accelerator contains the gypsum hardening accelerator in the proportion in the range of ≥5.01 and ≤45 wt% with respect to the whole mixed powder 26 for solid shaping, inexpensive mixed powder 26 for solid shaping having quick hardening speed at the forming time and sufficient strength of a solid-shaped article just after being formed can be obtained. Namely, the inexpensive mixed powder 26 for solid shaping capable of imparting sufficient strength to a solid-shaped article 32 just after being formed can be provided.

Description

本発明は、立体造形用混合粉体及びその立体造形用混合粉体により生成される立体造形物に関し、特に、成形直後の立体造形物に十分な強度を付与でき且つ安価な立体造形用混合粉体及び立体造形物を提供するための改良に関する。   The present invention relates to a mixed powder for three-dimensional modeling and a three-dimensional molded article produced by the mixed powder for three-dimensional modeling, and in particular, can provide sufficient strength to a three-dimensional molded article immediately after molding and is inexpensive. The present invention relates to an improvement for providing a body and a three-dimensional object.

半水石膏及び石膏硬化促進剤を含む立体造形用混合粉体と、水を溶媒とする造形液とから生成される生成物を層状に積層することにより立体造形物を成形する立体造形物成形装置が知られている。例えば、特許文献1に記載された3D印刷システムがそれである。この技術においては、立体造形用混合粉体に熱可塑性粒子充填材料を含むことで、強度に優れた立体造形物を成形することができるとされている。   A three-dimensional object molding apparatus for forming a three-dimensional object by laminating a product produced from a mixed powder for three-dimensional modeling containing hemihydrate gypsum and a gypsum hardening accelerator and a modeling liquid containing water as a solvent. It has been known. For example, this is the 3D printing system described in Patent Document 1. In this technique, it is said that a three-dimensional structure excellent in strength can be formed by including a thermoplastic particle filling material in the mixed powder for three-dimensional modeling.

特表2007−502713号公報Special table 2007-502713

しかし、前述したような従来の技術では、立体造形用混合粉体の調合によっては複雑な反応を経て立体造形物が成形されるため、反応速度が不十分となり成形直後に十分な強度が得られない場合があった。また、前記従来の立体造形用混合粉体は、含有する物質の種類によっては高価なものとなるという弊害があった。このため、成形直後の立体造形物に十分な強度を付与でき且つ安価な立体造形用混合粉体及び立体造形物の開発が求められていた。   However, in the conventional technology as described above, depending on the preparation of the mixed powder for three-dimensional modeling, a three-dimensional model is formed through a complicated reaction, so that the reaction rate is insufficient and sufficient strength is obtained immediately after molding. There was no case. In addition, the conventional mixed powder for three-dimensional modeling has an adverse effect that it is expensive depending on the type of substance contained. For this reason, development of the mixed powder for solid modeling and solid modeling which can give sufficient intensity to a solid modeling thing immediately after fabrication and was inexpensive was calculated | required.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、成形直後の立体造形物に十分な強度を付与でき且つ安価な立体造形用混合粉体及び立体造形物を提供することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is to provide a sufficient amount of strength to a three-dimensional structure immediately after molding and to provide an inexpensive mixed powder for three-dimensional modeling and a three-dimensional structure. Is to provide.

斯かる目的を達成するために、本第1発明の要旨とするところは、半水石膏及び石膏硬化促進剤を含む立体造形用混合粉体であって、前記石膏硬化促進剤の割合は、前記立体造形用混合粉体全体に対して5.01重量%以上45重量%以下の範囲内であることを特徴とするものである。   In order to achieve such an object, the gist of the first invention is a mixed powder for three-dimensional modeling including hemihydrate gypsum and a gypsum curing accelerator, wherein the proportion of the gypsum curing accelerator is as described above. It is in the range of 5.01 wt% or more and 45 wt% or less with respect to the whole mixed powder for three-dimensional modeling.

このように、前記第1発明によれば、半水石膏及び石膏硬化促進剤を含む立体造形用混合粉体であって、前記石膏硬化促進剤の割合は、前記立体造形用混合粉体全体に対して5.01重量%以上45重量%以下の範囲内であることから、成形時の硬化速度が早く、成形直後の造形物強度が十分であり、且つ安価な立体造形用混合粉体を得ることができる。すなわち、成形直後の立体造形物に十分な強度を付与でき且つ安価な立体造形用混合粉体を提供することができる。   Thus, according to the first aspect of the present invention, it is a mixed powder for three-dimensional modeling including hemihydrate gypsum and a gypsum curing accelerator, and the proportion of the gypsum curing accelerator is in the whole mixed powder for three-dimensional modeling. On the other hand, since it is in the range of 5.01% by weight or more and 45% by weight or less, the curing speed at the time of molding is high, the strength of the molded article immediately after molding is sufficient, and an inexpensive mixed powder for three-dimensional modeling is obtained. be able to. That is, it is possible to provide an inexpensive mixed powder for three-dimensional modeling that can give sufficient strength to the three-dimensional molded item immediately after molding.

ここで、前記第1発明において、好適には、前記石膏硬化促進剤は、二水石膏、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩、アルカリ金属塩化物塩、アルカリ土類金属塩化物塩、無機酸のアンモニウム塩、及びミョウバン類のうち少なくとも1種類を含むものである。このようにすれば、実用的且つ安価な石膏硬化促進剤を用いて、成形直後の立体造形物に十分な強度を付与でき且つ安価な立体造形用混合粉体を提供することができる。   Here, in the first invention, preferably, the gypsum curing accelerator is dihydrate gypsum, alkali metal sulfate, alkaline earth metal sulfate, alkali metal chloride salt, alkaline earth metal chloride salt, It contains at least one of ammonium salts of inorganic acids and alums. If it does in this way, sufficient intensity | strength can be provided to the three-dimensional molded item immediately after shaping | molding using a practical and cheap gypsum hardening accelerator, and the cheap mixed powder for three-dimensional modeling can be provided.

また、好適には、前記立体造形用混合粉体全体に対して、10重量%以下の割合で水溶性樹脂を含むものである。このようにすれば、前記立体造形用混合粉体に必要十分な湿度を付与することができる。   Preferably, the water-soluble resin is contained at a ratio of 10% by weight or less with respect to the whole mixed powder for three-dimensional modeling. If it does in this way, required and sufficient humidity can be provided to the said mixed powder for solid modeling.

また、好適には、前記立体造形用混合粉体は、層状に充填されたその立体造形用混合粉体の少なくとも一部を、水を溶媒とする造形液によって固化した層状固化物を順次積層することにより立体造形物を成形する立体造形物成形装置において用いられるものである。このようにすれば、所謂3Dプリンタをはじめとする立体造形物成形装置において用いられる、成形直後の立体造形物に十分な強度を付与でき且つ安価な立体造形用混合粉体を提供することができる。   Preferably, the three-dimensional modeling mixed powder is sequentially laminated with a layered solidified product obtained by solidifying at least a part of the three-dimensional modeling mixed powder filled in layers with a modeling liquid using water as a solvent. This is used in a three-dimensional object molding apparatus for forming a three-dimensional object. In this way, it is possible to provide an inexpensive mixed powder for three-dimensional modeling that can give sufficient strength to a three-dimensional molded article immediately after molding, which is used in a three-dimensional molded article forming apparatus including a so-called 3D printer. .

また、前記目的を達成するために、本第2発明の要旨とするところは、前記第1発明の立体造形用混合粉体と、水を溶媒とする造形液とから生成される生成物が層状に積層されることによって成形される立体造形物である。このようにすれば、成形直後の強度が十分であり且つ安価な立体造形物を提供することができる。   In order to achieve the above object, the gist of the second invention is that the product produced from the mixed powder for three-dimensional modeling of the first invention and a modeling liquid using water as a solvent is layered. It is a three-dimensional modeled object formed by being laminated on. If it does in this way, the intensity | strength immediately after shaping | molding is sufficient, and an inexpensive three-dimensional molded item can be provided.

本発明の立体造形用混合粉体が好適に用いられる立体造形物成形装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the three-dimensional molded item shaping | molding apparatus with which the mixed powder for three-dimensional modeling of this invention is used suitably. 図1の立体造形物成形装置による立体造形物の成形について概略的に示す図である。It is a figure which shows roughly about shaping | molding of the three-dimensional molded item by the three-dimensional molded item shaping | molding apparatus of FIG. 本発明の効果を検証するために本発明者が行った試験において用いられた試料の作成方法について説明する図である。It is a figure explaining the preparation method of the sample used in the test which this inventor performed in order to verify the effect of this invention. 本発明の効果を検証するために本発明者が行った試験において用いられた試料の作成方法について説明する図である。It is a figure explaining the preparation method of the sample used in the test which this inventor performed in order to verify the effect of this invention. 本発明の効果を検証するために本発明者が行った試験における試験結果を示すグラフである。It is a graph which shows the test result in the test which this inventor performed in order to verify the effect of this invention. 図5のグラフにおける石膏硬化促進剤の割合が0重量%〜45重量%の範囲を拡大して示す図である。It is a figure which expands and shows the range where the ratio of the gypsum hardening accelerator in the graph of FIG. 5 is 0 weight%-45 weight%. 本発明の効果を検証するために本発明者が行った試験における他の試験結果を示すグラフである。It is a graph which shows the other test result in the test which this inventor performed in order to verify the effect of this invention. 図5〜図7に示す試料とは異なる水溶性樹脂を含有する混合粉体の硬化時間について説明する図である。It is a figure explaining the hardening time of the mixed powder containing water-soluble resin different from the sample shown in FIGS.

以下、本発明の好適な実施例を図面に基づいて詳細に説明する。以下の説明に用いる図面において、各部の寸法比等は必ずしも正確には描かれていない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings used for the following description, the dimensional ratios and the like of each part are not necessarily drawn accurately.

図1は、本発明の立体造形用混合粉体が好適に用いられる立体造形物成形装置10の構成を概略的に示す図である。図1では、鉛直方向に相当する方向をz軸で、水平面において互いに直交する2方向をx軸及びy軸でそれぞれ示している。すなわち、図1に示すx軸、y軸、及びz軸は、互いに直交する3方向をそれぞれ示している。図1に示すように、前記立体造形物形成装置10は、フレーム12に対して位置固定に設けられた枠状の部材である枠部14と、その枠部14の内側に、前記フレーム12(枠部14)に対するz軸方向の移動可能に設けられた基台16と、その基台16に対するx軸方向及びy軸方向(xy平面内)の移動可能に設けられたヘッド18とを、備えて構成されている。また、モータ(サーボモータ)20から出力される駆動力により前記基台16を前記フレーム12(枠部14)に対してz軸方向に昇降させる基台駆動機構22と、前記ヘッド18を前記基台16に対してx軸方向及びy軸方向に(xy平面内を)駆動するヘッド駆動機構24とを、備えている。   FIG. 1 is a diagram schematically showing a configuration of a three-dimensionally shaped article forming apparatus 10 in which the three-dimensionally shaped mixed powder of the present invention is suitably used. In FIG. 1, the direction corresponding to the vertical direction is indicated by the z-axis, and the two directions orthogonal to each other on the horizontal plane are indicated by the x-axis and the y-axis, respectively. That is, the x-axis, y-axis, and z-axis shown in FIG. 1 indicate three directions that are orthogonal to each other. As shown in FIG. 1, the three-dimensional structure forming device 10 includes a frame portion 14 that is a frame-shaped member provided in a fixed position with respect to the frame 12, and the frame 12 ( A base 16 provided so as to be movable in the z-axis direction with respect to the frame portion 14), and a head 18 provided so as to be movable in the x-axis direction and the y-axis direction (in the xy plane) with respect to the base 16. Configured. Further, a base drive mechanism 22 that raises and lowers the base 16 in the z-axis direction with respect to the frame 12 (frame portion 14) by a driving force output from a motor (servo motor) 20, and the head 18 includes the base 18. And a head driving mechanism 24 that drives the base 16 in the x-axis direction and the y-axis direction (within the xy plane).

図2は、前記立体造形物成形装置10による立体造形物の成形について概略的に示す図である。この図2に示すように、前記立体造形物成形装置10は、成形対象となる立体造形物に対応する3次元データ等に基づいて、層状に充填された本発明の一実施例である立体造形用混合粉体26の一部を、水を溶媒とする造形液28によって固化した層状固化物30a、30b、30c、・・・、30j(以下、特に区別しない場合には単に層状固化物30という)を順次積層することにより立体造形物32を成形する。図2においては、前記層状固化物30の各層を破線で示している。すなわち、前記立体造形物成形装置10は、例えば3次元データに基づいて立体(3次元のオブジェクト)を造形する3次元造型機(rapid prototyping)或いは立体プリンタ(3Dプリンタ)等と称されるものである。   FIG. 2 is a diagram schematically illustrating the formation of the three-dimensional structure by the three-dimensional structure forming apparatus 10. As shown in FIG. 2, the three-dimensional model forming apparatus 10 is a three-dimensional model that is an embodiment of the present invention filled in layers based on three-dimensional data corresponding to a three-dimensional model to be molded. , 30j (hereinafter simply referred to as the layered solid 30 unless otherwise distinguished), in which a part of the mixed powder 26 is solidified by a modeling liquid 28 using water as a solvent. ) Are sequentially laminated to form the three-dimensional structure 32. In FIG. 2, each layer of the layered solidified product 30 is indicated by a broken line. That is, the three-dimensional object molding apparatus 10 is called a three-dimensional molding machine (rapid prototyping) or a three-dimensional printer (3D printer) that forms a solid (three-dimensional object) based on three-dimensional data, for example. is there.

すなわち、前記立体造形物成形装置10による立体造形物の成形においては、先ず、前記枠部14の内側であって前記基台16の鉛直上側(z軸方向上側)に、前記立体造形用混合粉体26が前記層状固化物30の各層に対応する例えば厚さ0.1〜0.3mm程度の層状に充填させられ、その充填された前記立体造形用混合粉体26の表面(見かけ上の表面)と前記枠部14の鉛直上側表面とが略面一となるように図示しない篦等によって前記立体造形用混合粉体26が擦り切られる。次に、前記層状に充填された立体造形用混合粉体26において固化されるべき部分すなわち成形対象となる立体造形物32の一部に相当する位置に対して前記ヘッド18から造形液28が射出(滴下)され、その部分が前記層状固化物30として形成(固化)される。図2においては、前記立体造形用混合粉体26のうち固化された部分を斜線で示している。この際、前記ヘッド駆動機構24により前記基台16に対して前記ヘッド18がxy平面内を移動させられつつ前記造形液28が射出されることで、成形対象となる立体造形物32の一部に相当する層状固化物30が形成される。次に、前記基台16が前記基台駆動機構22により前記枠部14に対して鉛直下方(z軸方向下方)に、前記層状固形物30の各層に対応する厚さ分だけ下降させされる。以下、同様の処理が繰り返されることにより、前記層状固化物30が順次積層されて立体的な造形物が成形されてゆき、固化されなかった前記立体造形用混合粉体26が取り除かれることで立体造形物32が得られる。   That is, in the formation of the three-dimensional object by the three-dimensional object molding apparatus 10, first, the mixed powder for three-dimensional object is formed on the inner side of the frame portion 14 and vertically above the base 16 (upper side in the z-axis direction). The body 26 is filled in a layer shape having a thickness of, for example, about 0.1 to 0.3 mm corresponding to each layer of the layered solidified material 30, and the surface of the filled three-dimensional modeling mixed powder 26 (apparent surface) ) And the vertical upper surface of the frame portion 14 are scraped off by the wrinkles (not shown) or the like so as to be substantially flush with each other. Next, the modeling liquid 28 is injected from the head 18 to a position corresponding to a portion to be solidified in the three-dimensional modeling mixed powder 26 filled in the layered form, that is, a part of the three-dimensional modeled object 32 to be molded. (Dropped), and the portion is formed (solidified) as the layered solidified product 30. In FIG. 2, the solidified portion of the three-dimensional modeling mixed powder 26 is indicated by oblique lines. At this time, a part of the three-dimensional structure 32 to be molded is ejected while the head 18 is moved in the xy plane with respect to the base 16 by the head driving mechanism 24. The layered solidified product 30 corresponding to is formed. Next, the base 16 is lowered vertically by the base drive mechanism 22 with respect to the frame portion 14 (down in the z-axis direction) by a thickness corresponding to each layer of the layered solid material 30. . Thereafter, by repeating the same process, the layered solidified product 30 is sequentially laminated to form a three-dimensional modeled object, and the three-dimensional modeled mixed powder 26 that has not been solidified is removed. A shaped object 32 is obtained.

本実施例の立体造形用混合粉体26は、半水石膏(CaSO4・1/2H2O:焼石膏)及び石膏硬化促進剤を含むものである。この石膏硬化促進剤は、好適には、二水石膏(CaSO4・2H2O)、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩、アルカリ金属塩化物塩、アルカリ土類金属塩化物塩、無機酸のアンモニウム塩、及びミョウバン類のうち少なくとも1種類を含むものである。前記石膏硬化促進剤の割合は、前記立体造形用混合粉体26全体に対して5.01重量%以上45重量%以下の範囲内、好適には、5.01重量%以上20重量%以下の範囲内である。換言すれば、前記石膏硬化促進剤の割合は、前記立体造形用混合粉体26全体に対して5重量%より大きく45重量%以下の範囲内、好適には、5重量%より大きく20重量%以下の範囲内である。前記石膏硬化促進剤の割合が、前記立体造形用混合粉体26全体に対して5.01重量%未満である場合、或いは45重量%より大きい場合の何れにおいても、前記立体造形用混合粉体26の成形後の硬化が遅くなり、立体造形物32に十分な強度が付与できなくなくなるおそれがある。前記半水石膏、石膏硬化促進剤の粒径は、立体造形用混合粉体の仕様に応じて適宜設定され得るが、例えば5〜150μm程度が好ましい。 The mixed powder 26 for three-dimensional modeling of the present embodiment contains hemihydrate gypsum (CaSO 4 .1 / 2H 2 O: calcined gypsum) and a gypsum hardening accelerator. This gypsum accelerator is preferably dihydrate gypsum (CaSO 4 .2H 2 O), alkali metal sulfate, alkaline earth metal sulfate, alkali metal chloride salt, alkaline earth metal chloride salt, inorganic It contains at least one of acid ammonium salts and alums. The proportion of the gypsum curing accelerator is within the range of 5.01 wt% or more and 45 wt% or less, preferably 5.01 wt% or more and 20 wt% or less with respect to the whole mixed powder for three-dimensional modeling 26. Within range. In other words, the proportion of the gypsum curing accelerator is in the range of more than 5% by weight to 45% by weight or less, preferably more than 5% by weight and preferably 20% by weight with respect to the whole mixed powder for three-dimensional modeling 26 Within the following range. Whether the proportion of the gypsum hardening accelerator is less than 5.01% by weight or more than 45% by weight with respect to the entire mixed powder for three-dimensional modeling 26, the mixed powder for three-dimensional modeling There is a possibility that curing after the molding of S26 will be delayed, and sufficient strength cannot be imparted to the three-dimensional structure 32. The particle sizes of the hemihydrate gypsum and the gypsum curing accelerator can be appropriately set according to the specifications of the mixed powder for three-dimensional modeling, but are preferably about 5 to 150 μm, for example.

前記立体造形用混合粉体26は、好適には、その立体造形用混合粉体26全体に対して、10重量%以下の割合で水溶性樹脂を含む。この水溶性樹脂としては、アラビアゴム、メトローズ(セルロースを苛性ソーダで処理した後、塩化メチル等のエーテル化剤と反応させて得られる非イオン性の水溶性セルロースエーテル)、ケルザン(キサンタンガムを成分とする天然高分子多糖類)、ポリアクリル酸ナトリウム部分中和物、或いはポリビニルアルコール(PVA)等の水溶性ポリマが好適に用いられる。前記水溶性樹脂の割合が、前記立体造形用混合粉体26全体に対して10重量%より大きい場合には、前記立体造形用混合粉体26が過度に湿潤して保形性が悪くなり、成形後の硬化速度が遅れるおそれがある。   The three-dimensional modeling mixed powder 26 preferably contains a water-soluble resin at a ratio of 10 wt% or less with respect to the entire three-dimensional modeling mixed powder 26. Examples of the water-soluble resin include gum arabic, Metrose (nonionic water-soluble cellulose ether obtained by treating cellulose with caustic soda and then reacting with an etherifying agent such as methyl chloride), and Kelzan (xanthan gum as a component). Natural polymer polysaccharides), partially neutralized sodium polyacrylate, or water-soluble polymers such as polyvinyl alcohol (PVA) are preferably used. When the proportion of the water-soluble resin is larger than 10% by weight with respect to the entire three-dimensional mixed powder 26, the three-dimensional mixed powder 26 is excessively wetted, resulting in poor shape retention. There is a possibility that the curing speed after molding may be delayed.

以上のように、前記立体造形用混合粉体26は、好適には、前記石膏硬化促進剤を5.01重量%以上45重量%以下、前記水溶性樹脂を0重量%以上10重量%以下の割合で含み、残りの割合が半水石膏とされた混合粉体である。すなわち、前記半水石膏の割合は、前記立体造形用混合粉体26全体に対して45重量%以上94.99重量%以下の範囲内である。   As described above, the mixed powder for three-dimensional modeling preferably includes 5.01% by weight to 45% by weight of the gypsum accelerator and 0% by weight to 10% by weight of the water-soluble resin. It is a mixed powder containing a proportion, the remaining proportion being hemihydrate gypsum. That is, the ratio of the hemihydrate gypsum is in the range of 45 wt% or more and 94.99 wt% or less with respect to the entire three-dimensional mixed powder 26.

続いて、本発明の効果を検証するために本発明者が行った試験について説明する。本発明者は、半水石膏、石膏硬化促進剤、及び水溶性樹脂の割合を以下の範囲内で様々に変化させて混合粉体の調合を行い、その混合粉体の簡易硬化時間を以下の手法で測定した。   Subsequently, a test conducted by the present inventor in order to verify the effect of the present invention will be described. The present inventor prepared a mixed powder by changing the proportions of hemihydrate gypsum, gypsum curing accelerator, and water-soluble resin in various ranges within the following ranges. Measured by method.

[混合粉体割合]
・半水石膏:13〜93重量%
・硬化促進剤(二水石膏):0〜80重量%
(硫酸カリウム):0〜45重量%
・水溶性樹脂(アラビアゴム):0〜10重量%
[Mixed powder ratio]
・ Hemihydrate gypsum: 13 to 93% by weight
・ Hardening accelerator (dihydrate gypsum): 0 to 80% by weight
(Potassium sulfate): 0 to 45% by weight
・ Water-soluble resin (gum arabic): 0 to 10% by weight

[硬化時間測定方法]
(a)水0.6〜0.75gに調合された混合粉体4〜5g(混水率15重量%)を混ぜ、ゴム器(篦)により30秒間混合する。
(b)図3に示すような内径φ=20mm×高さh=30mmの円筒状のゴム型34であって、底部にゴム蓋36が嵌め入れられた容器に(a)で混合された混合体を押し込み、1分経過後に図4に示すように前記ゴム蓋36ごと押し出して円柱状の試験片(造形物)38を得る。
(c)よく知られたビカー針(φ2mm×300g)により(b)で得られた試験片38の表面形状変化が目視できなくなる時間を硬化時間として測定する。
[Curing time measurement method]
(A) 4 to 5 g of mixed powder (mixed water ratio: 15% by weight) mixed with 0.6 to 0.75 g of water is mixed and mixed for 30 seconds with a rubber device (slag).
(B) Mixing mixed in (a) in a cylindrical rubber mold 34 having an inner diameter φ = 20 mm × height h = 30 mm as shown in FIG. 3 and having a rubber lid 36 fitted in the bottom. The body is pushed in, and after one minute has passed, the rubber lid 36 is pushed out as shown in FIG. 4 to obtain a cylindrical test piece (modeled article) 38.
(C) Time when the surface shape change of the test piece 38 obtained in (b) cannot be visually observed with a well-known Vicat needle (φ2 mm × 300 g) is measured as the curing time.

図5は、石膏硬化促進剤として二水石膏、水溶性樹脂としてアラビアゴムをそれぞれ用い、それら二水石膏及びアラビアゴムの割合を様々に変化させた各試料における硬化時間を示すグラフである。また、図6は、図5における石膏硬化促進剤の割合が0重量%〜45重量%の範囲を拡大して示す図である。図5及び図6においては、水溶性樹脂としてアラビアゴムを含まない(0重量%)試料の硬化時間を実線で、2重量%の割合で含む試料の硬化時間を一点鎖線で、7重量%の割合で含む試料の硬化時間を二点鎖線で、10重量%の割合で含む試料の硬化時間を破線でそれぞれ示している。   FIG. 5 is a graph showing the curing time in each sample in which dihydrate gypsum was used as the gypsum curing accelerator and gum arabic was used as the water-soluble resin, and the ratios of the dihydrate gypsum and gum arabic were variously changed. FIG. 6 is an enlarged view showing the range of the gypsum hardening accelerator in FIG. 5 in the range of 0 wt% to 45 wt%. In FIGS. 5 and 6, the curing time of the sample containing no gum arabic as a water-soluble resin (0% by weight) is 7% by weight, and the curing time of the sample containing 2% by weight is 7% by weight. The curing time of the sample including the ratio is indicated by a two-dot chain line, and the curing time of the sample including the ratio of 10% by weight is indicated by a broken line.

図5及び図6に示すように、水溶性樹脂を含有しない(0重量%の)試料は、石膏硬化促進剤としての二水石膏の比率が5.01重量%〜45重量%の範囲内で硬化時間2分以内であった。また、水溶性樹脂としてのアラビアゴムを2重量%の割合で含有する試料は、石膏硬化促進剤としての二水石膏の比率が5.01重量%〜60重量%の範囲内で硬化時間3.5分以内であった。また、水溶性樹脂としてのアラビアゴムを7重量%の割合で含有する試料は、石膏硬化促進剤としての二水石膏の比率が3重量%〜45重量%の範囲内で硬化時間4.5分以内、5.01重量%〜20重量%の範囲内で硬化時間3.5分以内であった。また、水溶性樹脂としてのアラビアゴムを10重量%の割合で含有する試料は、石膏硬化促進剤としての二水石膏の比率が5.01重量%〜45重量%の範囲内で硬化時間6分以内であった。一方、石膏硬化促進剤としての二水石膏の比率が5重量%以下(5.01重量%未満)或いは45重量%より大きい試料では、水溶性樹脂の含有割合によらず二水石膏の比率が5.01重量%〜45重量%の範囲内である試料に比べて硬化時間が長くなっていることがわかる。この傾向は、特に、二水石膏の比率が5.01重量%未満の試料において顕著であり、その二水石膏の比率が0に近づくほど硬化時間が急激に長くなっていることがわかる。   As shown in FIGS. 5 and 6, the sample containing no water-soluble resin (0% by weight) has a ratio of dihydrate gypsum as a gypsum hardening accelerator within the range of 5.01% to 45% by weight. The curing time was within 2 minutes. In addition, a sample containing 2% by weight of gum arabic as a water-soluble resin has a curing time of 3.1 to 60% by weight of dihydrate gypsum as a gypsum curing accelerator. Within 5 minutes. A sample containing 7% by weight of gum arabic as a water-soluble resin has a curing time of 4.5 minutes within a range of 3% to 45% by weight of dihydrate gypsum as a gypsum curing accelerator. The curing time was within 3.5 minutes within the range of 5.01 wt% to 20 wt%. Further, a sample containing 10% by weight of gum arabic as a water-soluble resin has a curing time of 6 minutes within a range of 5.01% to 45% by weight of dihydrate gypsum as a gypsum curing accelerator. Was within. On the other hand, in a sample having a dihydrate gypsum ratio of 5% by weight or less (less than 5.01% by weight) or greater than 45% by weight as a gypsum hardening accelerator, the ratio of dihydrate gypsum is not dependent on the content of the water-soluble resin. It can be seen that the curing time is longer than that of the sample in the range of 5.01 wt% to 45 wt%. This tendency is particularly remarkable in a sample having a dihydrate gypsum ratio of less than 5.01% by weight, and it can be seen that as the dihydrate gypsum ratio approaches 0, the curing time increases rapidly.

図7は、石膏硬化促進剤として硫酸カリウム、水溶性樹脂としてアラビアゴムをそれぞれ用い、それら硫酸カリウム及びアラビアゴムの割合を様々に変化させた各試料における硬化時間を示すグラフである。図7においては、水溶性樹脂としてアラビアゴムを含まない(0重量%)試料の硬化時間を実線で、2重量%の割合で含む試料の硬化時間を一点鎖線で、10重量%の割合で含む試料の硬化時間を破線でそれぞれ示している。この図7に示すように、水溶性樹脂を含有しない(0重量%の)試料は、石膏硬化促進剤としての硫酸カリウムの比率が5.01重量%〜45重量%の範囲内で硬化時間2分以内であった。また、水溶性樹脂としてのアラビアゴムを2重量%の割合で含有する試料は、石膏硬化促進剤としての硫酸カリウムの比率が5.01重量%〜45重量%の範囲内で硬化時間3.5分以内であった。また、水溶性樹脂としてのアラビアゴムを10重量%の割合で含有する試料は、石膏硬化促進剤としての硫酸カリウムの比率が5.01重量%〜45重量%の範囲内で硬化時間4分以内であった。一方、石膏硬化促進剤としての硫酸カリウムの比率が5重量%以下(5.01重量%未満)の試料では、水溶性樹脂の含有割合によらず硫酸カリウムの比率が5.01重量%〜45重量%の範囲内である試料に比べて硬化時間が長くなっていることがわかる。   FIG. 7 is a graph showing the curing time in each sample using potassium sulfate as the gypsum accelerator and gum arabic as the water-soluble resin, and varying the ratios of potassium sulfate and gum arabic. In FIG. 7, the curing time of a sample containing no gum arabic as a water-soluble resin (0% by weight) is 2% by weight, and the curing time of a sample containing 2% by weight is included by a dashed line at a rate of 10% by weight. The curing time of the sample is indicated by broken lines. As shown in FIG. 7, the sample containing no water-soluble resin (0% by weight) has a curing time of 2 within a range where the ratio of potassium sulfate as a gypsum curing accelerator is 5.01% to 45% by weight. Within minutes. A sample containing 2% by weight of gum arabic as a water-soluble resin has a curing time of 3.5% within a range of 5.01% to 45% by weight of potassium sulfate as a gypsum curing accelerator. Within minutes. A sample containing 10% by weight of gum arabic as a water-soluble resin has a ratio of potassium sulfate as a gypsum curing accelerator within a range of 5.01% to 45% by weight and a curing time within 4 minutes. Met. On the other hand, in a sample having a potassium sulfate ratio of 5% by weight or less (less than 5.01% by weight) as a gypsum accelerator, the potassium sulfate ratio is 5.01% to 45% regardless of the content of the water-soluble resin. It can be seen that the curing time is longer than that of the sample in the range of% by weight.

図8は、図5〜図7に示す試料とは異なる水溶性樹脂を含有する混合粉体の硬化時間について説明する図である。この図8に示す例では、半水石膏を85重量%、石膏硬化促進剤としての二水石膏を10重量%、水溶性樹脂を5重量%の割合で調合した混合粉体における硬化時間を、その水溶性樹脂の種類毎に比較して示している。図8に示すように、水溶性樹脂としてポリビニルアルコール(PVA)を含有する試料では硬化時間2.75分、メトローズを含有する試料では硬化時間2.75分、ポリアクリル酸ナトリウム部分中和物を含有する試料では硬化時間2.5分、ケルザンを含有する試料では硬化時間2.75分と、水溶性樹脂としてアラビアゴムを含有する試料(硬化時間2.5分)と同等の硬化時間が示されることがわかる。すなわち、図5〜図7に示す試験結果は、水溶性樹脂としてポリビニルアルコール(PVA)、メトローズ、ポリアクリル酸ナトリウム部分中和物、或いはケルザン等を含有する立体造形用混合粉体についても同様の結果が得られるものと考えられる。   FIG. 8 is a diagram for explaining the curing time of a mixed powder containing a water-soluble resin different from the samples shown in FIGS. In the example shown in FIG. 8, the curing time in the mixed powder prepared by mixing 85 wt% of hemihydrate gypsum, 10 wt% of dihydrate gypsum as a gypsum hardening accelerator, and 5 wt% of a water-soluble resin, The comparison is made for each type of water-soluble resin. As shown in FIG. 8, the sample containing polyvinyl alcohol (PVA) as the water-soluble resin has a curing time of 2.75 minutes, and the sample containing Metroses has a curing time of 2.75 minutes. The sample containing it has a setting time of 2.5 minutes, the sample containing Kelzan has a setting time of 2.75 minutes, and the same setting time as the sample containing gum arabic as a water-soluble resin (setting time 2.5 minutes). I understand that That is, the test results shown in FIGS. 5 to 7 are the same for the three-dimensional modeling mixed powder containing polyvinyl alcohol (PVA), Metrose, sodium polyacrylate partial neutralized product, or Kelzan as a water-soluble resin. The result is considered to be obtained.

前記立体造形物成形装置10等における立体造形用混合粉体を用いた立体造形物の成形においては、その立体造形用混合粉体に造形液を付与した際の硬化時間が、成形される立体造形物の強度と密接に対応し、硬化時間が短いほど立体造形物が強度に優れたものとなる。例えば、前述した試験とは別に、本発明者が行った試験において、硬化時間6分以内の立体造形用混合粉体を図1等に示すような立体造形物作成装置10に投入して前記立体造形物32を作成したところ、十分な強度を有する立体造形物32が成形された。一方、硬化時間7分以上というように硬化時間が6分を超過する立体造形用混合粉体を用いた場合、成形後の硬化が不十分であり、ハンドリング強化が十分に得られないことが確認された。すなわち、前記立体造形物成形装置10等において用いられる立体造形用混合粉体では、その硬化時間が6分以内となることが望ましく、前述した図5〜図8に示す試験結果から、前記石膏硬化促進剤を5.01重量%以上45重量%以下、好適には5.01重量%以上20重量%以下、前記水溶性樹脂を0重量%以上10重量%以下の割合で含み、残りの割合が半水石膏とされた立体造形用混合粉体であれば、成形後の立体成形物32に十分な強度を付与できることが証明された。   In the molding of a three-dimensional model using the three-dimensional modeled mixed powder in the three-dimensional model molding apparatus 10 or the like, the three-dimensional model in which the curing time when the modeling liquid is applied to the three-dimensional modeled mixed powder is molded. Corresponding closely with the strength of the object, the shorter the curing time, the more excellent the three-dimensional modeled object. For example, in a test conducted by the present inventor separately from the above-described test, a solid powder for solid modeling within a curing time of 6 minutes is put into a three-dimensional model creating apparatus 10 as shown in FIG. When the shaped article 32 was created, the three-dimensional shaped article 32 having sufficient strength was formed. On the other hand, when using a 3D modeling mixed powder with a curing time exceeding 6 minutes, such as a curing time of 7 minutes or more, it is confirmed that curing after molding is insufficient and sufficient handling enhancement cannot be obtained. It was done. That is, in the three-dimensional modeling mixed powder used in the three-dimensional model molding apparatus 10 or the like, it is desirable that the curing time is within 6 minutes. From the test results shown in FIGS. The accelerator contains 5.01 wt% or more and 45 wt% or less, preferably 5.01 wt% or more and 20 wt% or less, the water-soluble resin is contained in a proportion of 0 wt% or more and 10 wt% or less, and the remaining proportion is It has been proved that sufficient strength can be imparted to the three-dimensional molded article 32 after molding if it is a mixed powder for three-dimensional modeling that is made of hemihydrate gypsum.

このように、本実施例によれば、前記石膏硬化促進剤の割合は、前記立体造形用混合粉体26全体に対して5.01重量%以上45重量%以下の範囲内であることから、成形時の硬化速度が早く、成形直後の造形物強度が十分であり、且つ安価な立体造形用混合粉体26を得ることができる。すなわち、成形直後の立体造形物32に十分な強度を付与でき且つ安価な立体造形用混合粉体26を提供することができる。   Thus, according to the present embodiment, the proportion of the gypsum accelerator is within the range of 5.01% by weight or more and 45% by weight or less with respect to the entire mixed powder for three-dimensional modeling 26, It is possible to obtain a mixed powder 26 for three-dimensional modeling that has a fast curing speed at the time of molding, has a sufficient strength of a molded article immediately after molding, and is inexpensive. That is, it is possible to provide an inexpensive mixed powder 26 for three-dimensional modeling that can give sufficient strength to the three-dimensional molded article 32 immediately after molding.

また、前記石膏硬化促進剤は、二水石膏、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩、アルカリ金属塩化物塩、アルカリ土類金属塩化物塩、無機酸のアンモニウム塩、及びミョウバン類のうち少なくとも1種類を含むものであるため、実用的且つ安価な石膏硬化促進剤を用いて、成形直後の立体造形物32に十分な強度を付与でき且つ安価な立体造形用混合粉体26を提供することができる。   Further, the gypsum accelerator includes dihydrate gypsum, alkali metal sulfate, alkaline earth metal sulfate, alkali metal chloride salt, alkaline earth metal chloride salt, ammonium salt of inorganic acid, and alum. Since it contains at least one kind, it is possible to provide a low-priced mixed powder 26 for three-dimensional modeling that can give sufficient strength to the three-dimensional structure 32 immediately after molding using a practical and inexpensive gypsum curing accelerator. it can.

また、前記立体造形用混合粉体26全体に対して、10重量%以下の割合で水溶性樹脂を含むものであるため、前記立体造形用混合粉体26に必要十分な湿度を付与することができる。   In addition, since the water-soluble resin is contained at a ratio of 10% by weight or less with respect to the entire mixed powder for three-dimensional modeling 26, necessary and sufficient humidity can be given to the mixed powder for three-dimensional modeling 26.

また、前記立体造形用混合粉体26は、層状に充填されたその立体造形用混合粉体26の少なくとも一部を、水を溶媒とする造形液によって固化した層状固化物30を順次積層することにより立体造形物32を成形する立体造形物成形装置10において用いられるものであるため、所謂3Dプリンタをはじめとする立体造形物成形装置10において用いられる、成形直後の立体造形物32に十分な強度を付与でき且つ安価な立体造形用混合粉体26を提供することができる。   In addition, the three-dimensional modeling mixed powder 26 is formed by sequentially laminating at least a part of the three-dimensional modeling mixed powder 26 filled in layers with a modeling liquid containing water as a solvent. Since it is used in the three-dimensional object molding apparatus 10 that forms the three-dimensional object 32 by the above, the strength sufficient for the three-dimensional object 32 immediately after molding, which is used in the three-dimensional object molding apparatus 10 including a so-called 3D printer. Can be provided and an inexpensive mixed powder 26 for three-dimensional modeling can be provided.

また、本実施例によれば、前記立体造形用混合粉体26と、水を溶媒とする造形液28とから生成される生成物が層状に積層されることによって成形される立体造形物32であることから、成形直後の強度が十分であり且つ安価な立体造形物32を提供することができる。   Further, according to the present embodiment, the three-dimensional structure 32 formed by laminating a product generated from the mixed powder for three-dimensional modeling 26 and a modeling liquid 28 using water as a solvent is laminated. Therefore, it is possible to provide a three-dimensional model 32 that has sufficient strength immediately after molding and is inexpensive.

以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、更に別の態様においても実施される。   The preferred embodiments of the present invention have been described in detail with reference to the drawings. However, the present invention is not limited to these embodiments, and may be implemented in other modes.

例えば、前述の実施例においては、石膏硬化促進剤として、二水石膏、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩、アルカリ金属塩化物塩、アルカリ土類金属塩化物塩、無機酸のアンモニウム塩、及びミョウバン類のうち少なくとも1種類を含む立体造形用混合粉体26について説明したが、本発明はこれに限定されるものでなくともよく、立体造形用混合粉体の仕様に応じて種々の石膏硬化促進剤が適宜選択されて用いられ得る。   For example, in the above-described embodiments, gypsum hardening accelerators include dihydrate gypsum, alkali metal sulfate, alkaline earth metal sulfate, alkali metal chloride salt, alkaline earth metal chloride salt, ammonium salt of inorganic acid The three-dimensional modeling mixed powder 26 including at least one of alums has been described. However, the present invention is not limited to this, and various types may be used depending on the specifications of the three-dimensional modeling mixed powder. A gypsum accelerator may be appropriately selected and used.

また、前述の実施例では特に言及していないが、本発明の立体造形用混合粉体には、前記石膏硬化促進剤及び水溶性樹脂の他に、その仕様に応じて接着粒子材料や充填剤等、各種材料が適宜含有され得ることは言うまでもない。   Although not specifically mentioned in the above-described embodiments, the mixed powder for three-dimensional modeling of the present invention includes an adhesive particle material and a filler in addition to the gypsum curing accelerator and the water-soluble resin, depending on the specifications. Needless to say, various materials can be appropriately contained.

その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。   In addition, although not illustrated one by one, the present invention is implemented with various modifications within a range not departing from the gist thereof.

10:立体造形物成形装置、26:立体造形用混合粉体、28:造形液、30:層状固化物、32:立体造形物   10: 3D modeling apparatus, 26: Mixed powder for 3D modeling, 28: Modeling liquid, 30: Layered solidified product, 32: 3D modeling product

Claims (5)

半水石膏及び石膏硬化促進剤を含む立体造形用混合粉体であって、
前記石膏硬化促進剤の割合は、前記立体造形用混合粉体全体に対して5.01重量%以上45重量%以下の範囲内であることを特徴とする立体造形用混合粉体。
A mixed powder for three-dimensional modeling containing hemihydrate gypsum and a gypsum curing accelerator,
The ratio of the said gypsum hardening accelerator is in the range of 5.01 weight% or more and 45 weight% or less with respect to the said mixed powder for three-dimensional modeling, The mixed powder for three-dimensional modeling characterized by the above-mentioned.
前記石膏硬化促進剤は、二水石膏、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩、アルカリ金属塩化物塩、アルカリ土類金属塩化物塩、無機酸のアンモニウム塩、及びミョウバン類のうち少なくとも1種類を含むものである請求項1に記載の立体造形用混合粉体。   The gypsum accelerator is at least one of dihydrate gypsum, alkali metal sulfate, alkaline earth metal sulfate, alkali metal chloride salt, alkaline earth metal chloride salt, ammonium salt of inorganic acid, and alum. The mixed powder for three-dimensional modeling according to claim 1, wherein the mixed powder is a type. 前記立体造形用混合粉体全体に対して、10重量%以下の割合で水溶性樹脂を含むものである請求項1又は2に記載の立体造形用混合粉体。   The mixed powder for three-dimensional modeling according to claim 1 or 2, wherein the mixed powder for three-dimensional modeling contains a water-soluble resin at a ratio of 10 wt% or less with respect to the entire mixed powder for three-dimensional modeling. 前記立体造形用混合粉体は、層状に充填された該立体造形用混合粉体の少なくとも一部を、水を溶媒とする造形液によって固化した層状固化物を順次積層することにより立体造形物を成形する立体造形物成形装置において用いられるものである請求項1から3の何れか1項に記載の立体造形用混合粉体。   The three-dimensional modeling mixed powder is obtained by sequentially laminating a layered solidified product obtained by solidifying at least a part of the three-dimensional modeling mixed powder filled in layers with a modeling liquid using water as a solvent. The mixed powder for three-dimensional modeling according to any one of claims 1 to 3, which is used in a three-dimensional model molding apparatus for molding. 前記請求項1から4の何れか1項に記載の立体造形用混合粉体と、水を溶媒とする造形液とから生成される生成物が層状に積層されることによって成形される立体造形物。   The three-dimensional modeled object formed by laminating a product generated from the mixed powder for three-dimensional model modeling according to any one of claims 1 to 4 and a modeling liquid containing water as a solvent. .
JP2012114922A 2012-05-18 2012-05-18 3D modeling powder and 3D modeling Expired - Fee Related JP5659192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012114922A JP5659192B2 (en) 2012-05-18 2012-05-18 3D modeling powder and 3D modeling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012114922A JP5659192B2 (en) 2012-05-18 2012-05-18 3D modeling powder and 3D modeling

Publications (2)

Publication Number Publication Date
JP2013241295A true JP2013241295A (en) 2013-12-05
JP5659192B2 JP5659192B2 (en) 2015-01-28

Family

ID=49842614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012114922A Expired - Fee Related JP5659192B2 (en) 2012-05-18 2012-05-18 3D modeling powder and 3D modeling

Country Status (1)

Country Link
JP (1) JP5659192B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081766A (en) * 2015-10-22 2017-05-18 株式会社ノリタケカンパニーリミテド Mixed powder for cubic molding, and cubic molded object

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254461A (en) * 1991-02-01 1992-09-09 Onoda Cement Co Ltd Manufacture of gypsum board
JPH06279087A (en) * 1993-03-30 1994-10-04 Ask:Kk Fiber-containing gypsum plate and its production
JPH10226558A (en) * 1997-02-10 1998-08-25 Sanesu Sekko Kk Dental calcined gypsum
JP2000015613A (en) * 1998-06-29 2000-01-18 Asupekuto:Kk Three-dimensionally shaping device and three- dimensionally shaping method
JP2002528375A (en) * 1998-10-29 2002-09-03 ズィー・コーポレーション Three-dimensional printing material system and method
JP2006524626A (en) * 2003-03-19 2006-11-02 ユナイテツド ステイツ ジプサム カンパニー SOUND ABSORBING PANEL CONTAINING INTERLOCKING MATRIX OF SOLIDED Gypsum and Method for Producing the
WO2007122804A1 (en) * 2006-04-21 2007-11-01 Next21 K.K. Figure-forming composition, process for production of figures in three dimensions by using the composition and process for production of three-dimensional structures
JP2010515605A (en) * 2007-01-10 2010-05-13 ズィー コーポレイション 3D printing material system with improved color, article performance and ease of use

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254461A (en) * 1991-02-01 1992-09-09 Onoda Cement Co Ltd Manufacture of gypsum board
JPH06279087A (en) * 1993-03-30 1994-10-04 Ask:Kk Fiber-containing gypsum plate and its production
JPH10226558A (en) * 1997-02-10 1998-08-25 Sanesu Sekko Kk Dental calcined gypsum
JP2000015613A (en) * 1998-06-29 2000-01-18 Asupekuto:Kk Three-dimensionally shaping device and three- dimensionally shaping method
JP2002528375A (en) * 1998-10-29 2002-09-03 ズィー・コーポレーション Three-dimensional printing material system and method
JP2006524626A (en) * 2003-03-19 2006-11-02 ユナイテツド ステイツ ジプサム カンパニー SOUND ABSORBING PANEL CONTAINING INTERLOCKING MATRIX OF SOLIDED Gypsum and Method for Producing the
WO2007122804A1 (en) * 2006-04-21 2007-11-01 Next21 K.K. Figure-forming composition, process for production of figures in three dimensions by using the composition and process for production of three-dimensional structures
JP2010515605A (en) * 2007-01-10 2010-05-13 ズィー コーポレイション 3D printing material system with improved color, article performance and ease of use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081766A (en) * 2015-10-22 2017-05-18 株式会社ノリタケカンパニーリミテド Mixed powder for cubic molding, and cubic molded object

Also Published As

Publication number Publication date
JP5659192B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
Hajash et al. Large-scale rapid liquid printing
Xia et al. Method of formulating geopolymer for 3D printing for construction applications
CN105563820B (en) Three-dimensional printing device and three-dimensional printing method
Xia et al. Influence of binder saturation level on compressive strength and dimensional accuracy of powder-based 3D printed geopolymer
CN105014965B (en) Three-dimensional printing device
JP7149687B2 (en) additive manufacturing method
WO2018093763A1 (en) Three dimensional printing compositions and processes
CN107976352A (en) A kind of production method for simulating the transparent tunnel model containing complicated Fracture Networks
JP2021511230A (en) 3D printer and its operation method
WO2009038222A3 (en) Method for producing optical member and optical member formed by the production process
JP5659192B2 (en) 3D modeling powder and 3D modeling
JP2016050126A (en) Mixture powder for three-dimensional molding and three-dimensional molded article
KR101722979B1 (en) An Manufacturing Method of 3 Dimensional Shape
JP2007301945A (en) Three-dimensional structure and its manufacturing method
KR102003217B1 (en) Three-dimensional object
CN109986780A (en) Stereolithography 3D printing method and its Stereolithography 3D printing object
CN206536844U (en) A kind of programmable orientated short fiber enhancing composite 3D printing device
CN104526836A (en) Solid inorganic powder 3D printing method based on selective laser melting technology
JP2013154615A (en) Solid-shaping apparatus, method for manufacturing solid-shaped article, shaping liquid for solid-shaping apparatus, and solid-shaping powder
TWI585558B (en) Three dimensional printing method
Yokota et al. Fabrication of three-dimensional dense alumina ceramics by DLP stereolithography
JP2017081766A (en) Mixed powder for cubic molding, and cubic molded object
KR20150087526A (en) The method of manufacturing civil structure model using of three dimensions printer
CN108778658A (en) The method of quick production mould
Kampa Impact of rapid prototyping techniques for the manufacturing of new product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5659192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees