[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013108521A - Long high pressure container - Google Patents

Long high pressure container Download PDF

Info

Publication number
JP2013108521A
JP2013108521A JP2011251833A JP2011251833A JP2013108521A JP 2013108521 A JP2013108521 A JP 2013108521A JP 2011251833 A JP2011251833 A JP 2011251833A JP 2011251833 A JP2011251833 A JP 2011251833A JP 2013108521 A JP2013108521 A JP 2013108521A
Authority
JP
Japan
Prior art keywords
layer
fiber layer
carbon fiber
layers
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011251833A
Other languages
Japanese (ja)
Other versions
JP5856447B2 (en
Inventor
Yoshiki Sakaguchi
善樹 阪口
Senta Tojo
千太 東條
Zenhiko Yamazaki
全彦 山崎
Junzo Suzuki
純三 鈴木
Junji Okazaki
順二 岡崎
Kojiro Nakagawa
幸次郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samtech Corp
Eneos Corp
Original Assignee
Samtech Corp
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samtech Corp, JX Nippon Oil and Energy Corp filed Critical Samtech Corp
Priority to JP2011251833A priority Critical patent/JP5856447B2/en
Publication of JP2013108521A publication Critical patent/JP2013108521A/en
Application granted granted Critical
Publication of JP5856447B2 publication Critical patent/JP5856447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high pressure container having a reinforcing fiber layer which absorbs axial differential shrinkage between a metal liner and a carbon fiber layer, and is favorable in improving high-pressure resistance and fatigue resistance.SOLUTION: In a long high pressure container A of a structure in which on an outer circumferential surface of a metal liner 1 having a barrel part 2 and dome parts 3a, 3b and formed so that the total length between dome parts at both ends is 2 m to 6 m, fibers impregnated with a thermoset resin are wound around, a non-conductive fiber layer 11 is formed as an insulation layer on an innermost side contacting the metal liner, and hoop-wound fiber layers 12, 14, 16 of carbon fiber and herically-wound fiber layers 13, 15, 17 of carbon fiber are alternately laminated sequentially at least by three layers on the outside of the insulation layer, forming six layers or more of carbon fiber layers in total, and the insulation layer is formed thinner than any of carbon fiber layers.

Description

本発明は、軸方向の長さが2m以上の金属ライナの外周面に樹脂含浸繊維からなる補強繊維層が形成された長尺の高圧容器に関する。本発明の高圧容器は、例えば、ガス貯蔵施設やガス輸送車で大量の高圧ガスを貯蔵、運搬するために用いられる。   The present invention relates to a long high-pressure vessel in which a reinforcing fiber layer made of resin-impregnated fibers is formed on the outer peripheral surface of a metal liner having an axial length of 2 m or more. The high-pressure container of the present invention is used, for example, for storing and transporting a large amount of high-pressure gas in a gas storage facility or a gas transport vehicle.

次世代の自動車として燃料電池自動車の開発が進められている。燃料電池自動車は水素ガスを燃料としている。水素ガスは、ガスステーションで車載用高圧容器に充填されるが、ガスステーションでは水素ガスを大量に貯蔵しておくことが必要であり、そのための高圧容器が必要となる。また、ガスステーションに水素ガスを輸送するための輸送車についても大量の水素ガスを輸送するための高圧容器が必要になる。
このように、ガスを大量に貯蔵したり輸送したりするための高圧容器が求められている。
Fuel cell vehicles are being developed as next-generation vehicles. Fuel cell vehicles use hydrogen gas as fuel. Hydrogen gas is filled in a vehicle-mounted high-pressure vessel at a gas station, but it is necessary to store a large amount of hydrogen gas at the gas station, and a high-pressure vessel for that purpose is required. In addition, a high-pressure vessel for transporting a large amount of hydrogen gas is also required for a transport vehicle for transporting hydrogen gas to a gas station.
Thus, there is a need for a high-pressure vessel for storing and transporting a large amount of gas.

軽量化が図れる高圧ガス容器として、特許文献1には、高圧ガスを細長い筒状容器に入れて輸送し、使用するための高圧ガス移動式貯蔵モジュールと、これに用いる複合材料製容器に関する発明が開示されている。
この文献によれば、少なくとも10フィート(約3m)の長さの円筒形容器に、軸方向と周方向との強度を付与する繊維層が形成された高圧ガス容器であって、円筒形コア(ライナ)を覆う第一層(内側層)と第二層(外側層)とがガラス繊維による軸方向巻き層(ヘリカル巻き)であり、第一層と第二層との間に炭素繊維からなる周方向巻き(フープ巻き)の第三層(中間層)が形成された高圧ガス容器が記載されている。また、3つの層のいずれについても厚さは0.1インチ(0.25cm)〜0.5インチ(1.3cm)が好ましいとされている。
As a high-pressure gas container that can be reduced in weight, Patent Document 1 discloses an invention related to a high-pressure gas mobile storage module for transporting and using high-pressure gas in an elongated cylindrical container, and a composite material container used therefor. It is disclosed.
According to this document, a high-pressure gas container in which a fiber layer that imparts strength in the axial direction and the circumferential direction is formed on a cylindrical container having a length of at least 10 feet (about 3 m), the cylindrical core ( The first layer (inner layer) and the second layer (outer layer) covering the liner) are axially wound layers (helical winding) made of glass fibers, and are made of carbon fibers between the first layer and the second layer. A high-pressure gas container in which a third layer (intermediate layer) of circumferential winding (hoop winding) is formed is described. In addition, the thickness of any of the three layers is preferably 0.1 inch (0.25 cm) to 0.5 inch (1.3 cm).

また、上記文献によれば、ガラス繊維と炭素繊維とを比べれば、炭素繊維の方が強度が高い反面、ガラス繊維は価格が相当安く、また、炭素繊維が導電性であり、ガラス繊維が非導電性であることから、補強繊維層については以下に示す構造にすることが開示されている。
まず、内側層をガラス繊維層とすることで、炭素繊維と金属コアとの間を電気的に絶縁することにより、腐食(電食)を排除しながら軸方向強度と周方向強度を確保する。
また、周方向巻きの中間層に、ガラス繊維よりも強度が高い炭素繊維を用いることにより、最も損傷を受けやすい周方向成分の荷重に対して強度を確保する。
さらに、外側層をガラス繊維層にするようにして軸方向強度を強化するとともに、比較的もろい炭素繊維を接触損傷から保護する。
Further, according to the above document, when glass fiber and carbon fiber are compared, carbon fiber has higher strength, but glass fiber is considerably cheaper, carbon fiber is conductive, and glass fiber is non-conductive. Since it is conductive, the reinforcing fiber layer is disclosed to have the following structure.
First, by making the inner layer a glass fiber layer, the carbon fiber and the metal core are electrically insulated to ensure axial strength and circumferential strength while eliminating corrosion (electric corrosion).
Further, by using carbon fibers having higher strength than glass fibers in the circumferentially wound intermediate layer, the strength is secured against the load of the circumferential component that is most easily damaged.
In addition, the outer layer is a glass fiber layer to enhance axial strength and protect relatively brittle carbon fibers from contact damage.

特表平8−510428号公報Japanese National Patent Publication No. 8-510428

ところで金属ライナの外周面にガラス繊維補強層と炭素繊維補強層とを形成することにより補強した高圧容器においても、さらに大量のガスを貯蔵できるようにするため、これまで以上の高圧に耐えることができ、しかも加圧と減圧とを繰り返すときの耐疲労性に優れた圧力容器が必要とされており、具体的には、例えば破裂圧力(耐高圧性)が最高充填圧力の2.25倍以上であることが求められ、使用圧力(最高充填圧力)が35Pa、45MPa、80Paのような加圧条件下で、少なくとも11250回以上のサイクル回数に耐える耐疲労性を備えていることが求められている。   By the way, even in a high-pressure vessel reinforced by forming a glass fiber reinforcing layer and a carbon fiber reinforcing layer on the outer peripheral surface of a metal liner, in order to be able to store a larger amount of gas, it can withstand higher pressure than before. In addition, there is a need for a pressure vessel that is excellent in fatigue resistance when repeated pressurization and depressurization. Specifically, for example, the burst pressure (high pressure resistance) is 2.25 times or more of the maximum filling pressure. It is required to have fatigue resistance that can withstand at least 11250 cycles under a pressurized condition such as a working pressure (maximum filling pressure) of 35 Pa, 45 MPa, and 80 Pa. Yes.

このような過酷条件に耐えうる高圧容器を形成するには、金属ライナの肉厚を十分に厚くすればよいが、容器重量が増大してしまい、製造コスト、運搬コストも増大することとなり、実用的な高圧容器ではなくなってしまう。そのため、金属ライナの肉厚はできるだけ抑えつつ、補強繊維層の改良で耐高圧性、耐疲労性を向上させることが好ましい。   To form a high-pressure container that can withstand such harsh conditions, it is sufficient to make the metal liner sufficiently thick, but this increases the weight of the container and increases manufacturing and transportation costs. It is no longer a typical high pressure vessel. Therefore, it is preferable to improve the high pressure resistance and fatigue resistance by improving the reinforcing fiber layer while suppressing the thickness of the metal liner as much as possible.

補強繊維層については、前記特許文献等に開示されているように、腐食(電食)を防ぐ観点から絶縁層(樹脂層あるいは樹脂含浸ガラス繊維層)を形成すること、フープ巻きとヘリカル巻きとにより軸方向強度と周方向強度とを補強すること、ガラス繊維層よりも炭素繊維層の方が周方向強度を高めることができること、炭素繊維層は比較的もろいので、その上にガラス繊維層や樹脂層を保護層として形成することが好ましいことが知られている。   As for the reinforcing fiber layer, as disclosed in the above-mentioned patent documents and the like, an insulating layer (resin layer or resin-impregnated glass fiber layer) is formed from the viewpoint of preventing corrosion (electric corrosion), hoop winding and helical winding. Reinforcing the strength in the axial direction and the strength in the circumferential direction, the carbon fiber layer can increase the strength in the circumferential direction rather than the glass fiber layer, and the carbon fiber layer is relatively brittle. It is known that it is preferable to form a resin layer as a protective layer.

しかしながら、ガラス繊維層および炭素繊維層を補強繊維層とする高圧容器の耐圧強度、耐疲労性強度をさらに向上させ、長尺の高圧容器で問題となる金属ライナと補強繊維層との熱膨張差による剥離(後述)を抑制する上で、どのような補強繊維層にすればよいかについてはほとんど検討されておらず、単純に、巻き数(補強繊維層の厚さ)を増やしたり、補強繊維層の層数を増やしたりすることで、耐圧性能を向上させているにすぎなかった。   However, the pressure resistance and fatigue resistance of the high-pressure vessel using the glass fiber layer and the carbon fiber layer as the reinforcing fiber layer are further improved, and the thermal expansion difference between the metal liner and the reinforcing fiber layer, which is a problem in the long high-pressure vessel In order to suppress the peeling (described later) due to, almost no study has been made on what kind of reinforcing fiber layer should be used, simply increasing the number of turns (the thickness of the reinforcing fiber layer) or reinforcing fiber Increasing the number of layers only improved the pressure resistance.

そこで、本発明は、補強繊維層を有する高圧容器において、金属ライナと炭素繊維層の軸方向収縮差を吸収しつつ、耐高圧性、耐疲労性について向上させる上で好ましい補強繊維層の種類や巻き方、層数を検討し、バランスよく耐久性能を高めた高圧容器を提供することを目的とする。
また、本発明は、特に、金属ライナの軸方向の全長(胴部両側に延設されるドーム部間の長さ)が2m以上の長尺の高圧容器の場合に好ましい補強繊維層を備えた高圧容器を提供することを目的とする。
Therefore, the present invention is a high-pressure container having a reinforcing fiber layer, while absorbing the axial shrinkage difference between the metal liner and the carbon fiber layer, and improving the high-pressure resistance and fatigue resistance, The purpose of this study is to provide a high-pressure container with a well-balanced and improved durability by examining the winding method and the number of layers.
The present invention also includes a reinforcing fiber layer that is preferable in the case of a high-pressure vessel having a length of 2 m or more, particularly in the axial length of the metal liner (the length between the dome portions extending on both sides of the body portion). The object is to provide a high-pressure vessel.

一般に、熱硬化性樹脂が含浸された補強繊維層を有する高圧容器では、その製造工程において、加熱により高温状態で補強繊維層を硬化させた後、再び室温に戻したときに、金属ライナおよび補強繊維層の熱膨張率差によって、両者の境界面には高圧容器の軸方向に向いた力が働くことになる。高圧容器の全長が短いときはあまり問題にはならないが、全長が2m以上の長尺の高圧容器になると、金属ライナと補強繊維層との熱膨張率差による収縮量の差が大きくなり(7mm以上)、境界面で両者が部分的に剥離してしまうことがあった。
境界面で剥離が発生した状態の高圧容器は、剥離していない状態に比べて耐圧強度、耐疲労性能が劣るようになる。そのため、熱硬化後に境界面での剥離が発生しにくい補強繊維層の構造について検討することにより、本発明がなされた。
In general, in a high-pressure container having a reinforcing fiber layer impregnated with a thermosetting resin, when the reinforcing fiber layer is cured at a high temperature by heating and then returned to room temperature in the manufacturing process, the metal liner and the reinforcement are used. Due to the difference in thermal expansion coefficient between the fiber layers, a force directed in the axial direction of the high-pressure vessel acts on the boundary surface between the two. When the total length of the high-pressure vessel is short, this is not a problem, but when the high-pressure vessel is longer than 2 m, the difference in shrinkage due to the difference in thermal expansion coefficient between the metal liner and the reinforcing fiber layer increases (7 mm). As described above, both may be partially separated at the boundary surface.
A high-pressure container in a state where peeling has occurred at the boundary surface is inferior in pressure resistance and fatigue resistance compared to a state where peeling has not occurred. Therefore, the present invention was made by examining the structure of the reinforcing fiber layer that hardly peels off at the interface after thermosetting.

すなわち、上記課題を解決するためになされた本発明は、筒状の胴部と当該胴部の両端に延設されるドーム部とを有し、かつ、前記両側のドーム部間の全長が2m以上6m以下となるように形成された金属ライナの外周面に、熱硬化性樹脂が含浸された繊維を巻きつけた構造の長尺高圧容器であって、金属ライナに接する最も内側には非導電性繊維層が絶縁層として形成され、この絶縁層の外側に炭素繊維のフープ巻き繊維層と炭素繊維のヘリカル巻き繊維層が交互に少なくとも3層ずつ順次積層されて炭素繊維層が合計6層以上形成され、さらに絶縁層は前記いずれの炭素繊維層よりも薄く形成されるようにしている。   That is, the present invention made in order to solve the above-mentioned problems has a cylindrical body part and dome parts extending at both ends of the body part, and the total length between the dome parts on both sides is 2 m. A long high-pressure vessel having a structure in which a fiber impregnated with a thermosetting resin is wound around the outer peripheral surface of a metal liner formed to be 6 m or less, and the innermost side in contact with the metal liner is non-conductive. The conductive fiber layer is formed as an insulating layer, and at least three carbon fiber hoop-wrapped fiber layers and carbon fiber helically-wrapped fiber layers are alternately stacked on the outer side of the insulating layer, so that a total of six or more carbon fiber layers are formed. In addition, the insulating layer is formed thinner than any of the carbon fiber layers.

本発明では、ガラス繊維層を専ら絶縁層と熱収縮吸収層として使用し、強度補強用の層としては用いないようにするため、絶縁性が維持できる厚さではあるが、後述する炭素繊維層に比べてできるだけ薄くすることで、ガラス繊維層に対する炭素繊維層の比率を高める。そして、ガラス繊維の絶縁層の上に、周方向強度と軸方向強度とを確保するための補強繊維層としてフープ巻き炭素繊維層とヘリカル巻き炭素繊維層とを交互に少なくとも3層ずつに分けて形成し境界面の数を増やす。ヘリカル巻き層とフープ巻き層との境界は、熱収縮差によって剥離しようとする力を吸収する緩和面として働き、層の数を増やすことで緩和面となる層間の数が増え、各層間で熱収縮を分割して吸収するようになる。これにより耐圧強度、耐疲労強度を補強繊維層で補強するとともに、金属ライナと補強繊維層との熱収縮の変化量の差を、ヘリカル巻きとフープ巻きとが交互に形成される各層間で分割して吸収する熱収縮吸収層として利用するようにする。
したがって、最内側層である薄いガラス繊維層と、その上に交互にそれぞれ3層以上ずつ形成される炭素繊維のフープ巻き繊維層と炭素繊維のヘリカル巻き繊維層とによって形成される各層間とにより熱収縮量の差を吸収するようにし、さらに炭素繊維による軸方向強度、周方向強度を補強することにより、耐高圧性、耐疲労性に優れた高圧容器を得ることができる。
In the present invention, the glass fiber layer is used exclusively as an insulating layer and a heat shrinkage absorbing layer, and is not used as a layer for reinforcing strength. By making it as thin as possible, the ratio of the carbon fiber layer to the glass fiber layer is increased. And on the insulating layer of glass fiber, as a reinforcing fiber layer for securing the circumferential strength and the axial strength, the hoop-wrapped carbon fiber layer and the helical-wrapped carbon fiber layer are alternately divided into at least three layers. Increase the number of boundary surfaces. The boundary between the helical winding layer and the hoop winding layer acts as a relaxation surface that absorbs the force to be peeled off due to the difference in thermal shrinkage, and increasing the number of layers increases the number of interlayers that become relaxation surfaces, and heat between each layer. The contraction is divided and absorbed. This reinforces the compressive strength and fatigue strength with the reinforcing fiber layer and divides the difference in thermal shrinkage between the metal liner and the reinforcing fiber layer between the layers where the helical winding and the hoop winding are alternately formed. And used as a heat-shrinkable absorbing layer.
Accordingly, the thin glass fiber layer that is the innermost layer, and the layers formed by the carbon fiber hoop-wrapped fiber layer and the carbon fiber helically-wrapped fiber layer that are alternately formed on each of the three or more layers. By absorbing the difference in heat shrinkage and further reinforcing the axial strength and circumferential strength of the carbon fiber, a high-pressure container excellent in high-pressure resistance and fatigue resistance can be obtained.

ここで、絶縁層がガラス繊維層からなる非導電性繊維層であり、絶縁層の厚さが0.3mm以上0.9mm以下であるのが好ましい。
最内側である絶縁層のガラス繊維層の厚さが0.3mmより薄すぎると、熱収縮差を十分吸収できないおそれがある。このことはフックの法則(軸方向のせん断ひずみν=軸方向収縮量÷層厚)により、層厚が小さくなるとせん断ひずみνが大きくなることからも明らかである。また、0.9mmより厚くすると絶縁層としては問題ないが、その上に形成する炭素繊維層によるライナ強度の補強効果が小さくなり、結果的に強度の向上が困難になるのでこの範囲とする。繊維層は、ガラス繊維層の厚さを少なくとも炭素繊維層より厚くならないようにすることで、炭素繊維層の比率を高めて耐圧性能(耐高圧性、耐疲労性)を向上する。
Here, the insulating layer is a non-conductive fiber layer made of a glass fiber layer, and the thickness of the insulating layer is preferably 0.3 mm or more and 0.9 mm or less.
If the thickness of the glass fiber layer of the innermost insulating layer is too thin than 0.3 mm, the heat shrinkage difference may not be sufficiently absorbed. This is clear from the fact that the shear strain ν increases as the layer thickness decreases according to Hooke's law (axial shear strain ν = axial shrinkage ÷ layer thickness). If the thickness is greater than 0.9 mm, there is no problem as an insulating layer, but the effect of reinforcing the liner strength by the carbon fiber layer formed thereon is reduced, and as a result, it is difficult to improve the strength. The fiber layer increases the ratio of the carbon fiber layer and improves the pressure resistance (high pressure resistance, fatigue resistance) by preventing the glass fiber layer from becoming thicker than at least the carbon fiber layer.

さらに各炭素繊維層の厚さは3mm以上であるのが好ましい。
補強強度は炭素繊維層の全体(総和)の厚さに依存するが、3mm以上にすることで、ガラス繊維層よりも十分に厚い炭素繊維層となり、ガラス繊維層の影響を最も受ける最内層の炭素繊維層においても、十分な弾性率を維持することにより補強繊維層との役割を果たすことができる。
Furthermore, the thickness of each carbon fiber layer is preferably 3 mm or more.
The reinforcing strength depends on the thickness of the entire carbon fiber layer (total), but by setting it to 3 mm or more, the carbon fiber layer is sufficiently thicker than the glass fiber layer, and is the innermost layer most affected by the glass fiber layer. The carbon fiber layer can also serve as a reinforcing fiber layer by maintaining a sufficient elastic modulus.

なお、本発明において「ドーム部」とは、容器の胴部分から口金部分(あるいは製造方法によっては片側は底部分となる)にかけて、タンクの外径が湾曲面を形成するようにして大きく変化する部位を総称していう。湾曲面の形状は特に限定されない。したがって、「ドーム部」には、椀状、半円状、楕円状、放物面状などの湾曲面も含まれる。
「2m以上の金属ライナ」としたのは、2m以下では製造工程中に生じる熱収縮の変化量に起因した熱硬化樹脂の剥離があまり問題とならないためである。
また、「6m以下の金属ライナ」としたのは、これ以上の長さになると寸法や重量の問題で、容器を扱うことが困難になるなど実用上の支障をきたすようになるためである。
In the present invention, the “dome portion” means that the outer diameter of the tank greatly changes so as to form a curved surface from the body portion of the container to the base portion (or depending on the manufacturing method, one side is the bottom portion). The parts are collectively called. The shape of the curved surface is not particularly limited. Therefore, the “dome portion” includes curved surfaces such as a bowl shape, a semicircular shape, an elliptical shape, and a parabolic shape.
The reason why the “metal liner of 2 m or more” is used is that peeling of the thermosetting resin due to the amount of change in thermal shrinkage that occurs during the manufacturing process is less problematic at 2 m or less.
The reason why the metal liner of 6 m or less is used is that when the length is longer than this, practical problems such as difficulty in handling the container due to size and weight problems occur.

繊維層に含浸される熱硬化性樹脂はエポキシ樹脂が好ましいが、特に限定されず、フェノール、ウレタン、アクリル樹脂等でもよい。
「非導電性繊維層」としては、ガラス繊維層が好ましいが、ウレタン繊維層やその他の導電性を有しない繊維層であってもよい。
なお、「フープ巻き」とは、金属ライナの胴部に繊維を周方向に巻回することをいい、「ヘリカル巻き」とは、主としてドーム部を巻回するために、金属ライナの一方のドーム部から胴部を経て他方のドーム部にかけて、螺旋状に巻回することをいう。
The thermosetting resin impregnated in the fiber layer is preferably an epoxy resin, but is not particularly limited, and may be phenol, urethane, acrylic resin, or the like.
The “non-conductive fiber layer” is preferably a glass fiber layer, but may be a urethane fiber layer or other fiber layer having no conductivity.
“Hoop winding” refers to winding a fiber around the body of the metal liner in the circumferential direction, and “helical winding” refers to one dome of the metal liner mainly for winding the dome. It refers to winding in a spiral from the part to the other dome part through the body part.

本発明では、金属ライナに接する最も内側層を非導電性繊維層による絶縁層とし、絶縁層の外側に、炭素繊維のフープ巻き繊維層と炭素繊維のヘリカル巻き繊維層が交互に少なくとも3層ずつ順次積層されて炭素繊維層が合計6層以上形成されるようにし、さらに絶縁層は各炭素繊維層よりも薄く形成されるようにしたことにより、金属ライナと炭素繊維層の軸方向収縮差を吸収しつつ、耐高圧性、耐疲労性を向上させることができるようになった。   In the present invention, the innermost layer in contact with the metal liner is an insulating layer made of a non-conductive fiber layer, and at least three layers of carbon fiber hoop-wrapped fiber layers and carbon fiber helically-wrapped fiber layers are alternately arranged outside the insulating layer. The carbon fiber layers are sequentially laminated to form a total of 6 or more layers, and the insulating layer is formed to be thinner than each carbon fiber layer, thereby reducing the axial shrinkage difference between the metal liner and the carbon fiber layer. While absorbing, the high pressure resistance and fatigue resistance can be improved.

本発明にかかる補強繊維層が形成された長尺高圧容器の断面構造を示す図。The figure which shows the cross-section of the elongate high-pressure vessel in which the reinforcement fiber layer concerning this invention was formed. 図1の一部拡大断面図。The partially expanded sectional view of FIG. 45MPaでの耐久性能試験でのサイクル回数とヘリカル巻き炭素繊維数の厚さ(Th)との関係をグラフ化した図。The figure which graphed the relationship between the number of cycles in the durability performance test at 45 MPa, and the thickness (Th) of the number of helically wound carbon fibers. 熱収縮差吸収試験に用いる模擬サンプルを示す図。The figure which shows the simulation sample used for a thermal contraction difference absorption test. 一定厚の炭素繊維層に対し、ガラス繊維層の厚さを変化させたときの合成弾性率の算出データの一例を示す図。The figure which shows an example of the calculation data of a synthetic elastic modulus when changing the thickness of a glass fiber layer with respect to a carbon fiber layer of fixed thickness. 一定厚の炭素繊維層に対し、ガラス繊維層の厚さを変化させたときの合成弾性率の算出データの一例を示す図。The figure which shows an example of the calculation data of a synthetic elastic modulus when changing the thickness of a glass fiber layer with respect to a carbon fiber layer of fixed thickness.

以下、本発明にかかる長尺高圧容器の実施例を図面に基づいて説明する。ここでは、使用圧力が35MPa、45MPaの長尺高圧容器(35MPa、45MPaでの耐圧試験をクリアする容器)を例に説明する。図1は本発明の一実施形態である長尺高圧容器の断面構造を示す図であり、図2はその一部拡大断面図である。   Embodiments of a long high-pressure vessel according to the present invention will be described below with reference to the drawings. Here, a long high-pressure container having a working pressure of 35 MPa and 45 MPa (a container that clears a pressure test at 35 MPa and 45 MPa) will be described as an example. FIG. 1 is a view showing a cross-sectional structure of a long high-pressure vessel according to an embodiment of the present invention, and FIG. 2 is a partially enlarged cross-sectional view thereof.

長尺高圧容器Aは、容器の本体部分となる金属ライナ1とその外周に巻かれた補強繊維層10とからなる。なお、この容器Aは、後述する表1、表2のT6テストの容器に対応する。   The long high-pressure vessel A is composed of a metal liner 1 serving as a main body portion of the vessel and a reinforcing fiber layer 10 wound around the outer periphery thereof. The container A corresponds to a T6 test container in Tables 1 and 2 described later.

金属ライナ1の材料には、軽量で、耐圧性に優れているアルミ合金(A6061材)を用いている。
金属ライナ1は、円筒状の胴部2の左右両側に椀状のドーム部3a、3bが形成されている。ドーム部3a、3bの胴部2と反対側には小径の口部4a、4bが形成されている。口部4a、4bの内面にはネジ溝が刻設してあり、一方の口部4aにはガス導入、ガス排出用のバルブ(不図示)、他方の口部4bには封止栓4cが取り付けられる。
As the material of the metal liner 1, an aluminum alloy (A6061 material) that is lightweight and has excellent pressure resistance is used.
In the metal liner 1, bowl-shaped dome portions 3 a and 3 b are formed on the left and right sides of the cylindrical body portion 2. Small-diameter mouth portions 4a and 4b are formed on the opposite sides of the dome portions 3a and 3b to the body portion 2. Screw holes are formed on the inner surfaces of the mouth portions 4a and 4b, a gas inlet / outlet valve (not shown) is provided in one mouth portion 4a, and a sealing plug 4c is provided in the other mouth portion 4b. It is attached.

金属ライナ1の肉厚は、胴部2がドーム部3a、3bよりも薄くなるように形成してあり、ドーム部3a、3bは口部4a、4bに近い側(ポート側ともいう)が最も厚く、胴部2に近づくにつれて薄くなるようにしてある。これは金属ライナ1の重量をできるだけ軽量化するとともに、応力が集中しやすく加圧したときに破壊されやすいドーム部3a、3bを強化するためである。   The thickness of the metal liner 1 is formed so that the body portion 2 is thinner than the dome portions 3a and 3b, and the dome portions 3a and 3b are closest to the mouth portions 4a and 4b (also called the port side). It is thick and thins as it approaches the body 2. This is to reduce the weight of the metal liner 1 as much as possible, and to strengthen the dome portions 3a and 3b that are easily broken when stress is easily concentrated.

なお、軽量化のために金属ライナ1の肉厚を薄くしすぎると、その分を補強繊維層で補強する必要が生じるので、金属ライナ1の肉厚は使用圧力(ガス充填圧力)と、補強繊維層の層数や厚さとの兼ね合いで、バランスのとれた肉厚にする必要がある。
実用上の観点から、長尺高圧容器Aには、35MPa以上の使用圧力(ガス充填圧力)が要求される。この使用圧力においてドーム部3a、3bのうち、補強繊維層で補強されない口部4a、4b側(ポート側)のドーム部の肉厚を最低8mm以上になるようにして、胴部側のドーム部の肉厚を最低3mm以上とし、補強繊維層に必要な厚さとバランスをとるようにしている。そして、使用圧力が増大するにつれて、ドーム部の肉厚を増やすようにする。例えば、後述する82MPaでの使用圧力では口部側(ポート側)のドーム部肉厚を35mm以上になるようにしている。
If the thickness of the metal liner 1 is made too thin for weight reduction, it is necessary to reinforce that portion with a reinforcing fiber layer. Therefore, the thickness of the metal liner 1 depends on the working pressure (gas filling pressure) and the reinforcement. It is necessary to make the wall thickness balanced in consideration of the number and thickness of the fiber layers.
From a practical viewpoint, the long high-pressure vessel A is required to have a working pressure (gas filling pressure) of 35 MPa or more. Among the dome portions 3a and 3b at this operating pressure, the dome portion on the side of the mouth portions 4a and 4b (port side) that is not reinforced by the reinforcing fiber layer is set to a minimum thickness of 8 mm or more so The thickness of the fiber is set to at least 3 mm so as to balance the thickness required for the reinforcing fiber layer. And as the operating pressure increases, the thickness of the dome is increased. For example, the dome thickness on the mouth side (port side) is set to 35 mm or more at a working pressure at 82 MPa, which will be described later.

また、金属ライナ1のガス充填用の内容積を大きくするため、ドーム部3a、3b間の長さを2m以上にしてある。ただし、長すぎると運搬等での使い勝手が悪くなるため6m以内にしてある。   Further, in order to increase the gas filling inner volume of the metal liner 1, the length between the dome portions 3a and 3b is set to 2 m or more. However, if the length is too long, the ease of use in transportation becomes worse.

次に、補強繊維層10について説明する。補強繊維層10は最も内側に巻かれる樹脂含浸のガラス繊維層(GFRP)11と、その上に交互に積層され、少なくとも3層以上ずつ形成される樹脂含浸のフープ巻き炭素繊維層(フープ巻きCFRP)12、14、16、18と、樹脂含浸のヘリカル巻き炭素繊維層(ヘリカル巻きCFRP)13、15、17とからなる。なお、フープ巻き炭素繊維層とヘリカル巻き炭素繊維層とは、使用圧力(ガス充填圧力)が高圧になるにつれて、さらに積層数を増すことになる。
さらに、繊維層を外部衝撃から保護するための保護層として、樹脂層(例えばエポキシ樹脂層)あるいはもう1つのガラス繊維層を最外層に被覆してもよい。
Next, the reinforcing fiber layer 10 will be described. The reinforcing fiber layer 10 is a resin-impregnated glass fiber layer (GFRP) 11 that is wound on the innermost side, and a resin-impregnated hoop-wound carbon fiber layer (hoop-wound CFRP) that is alternately laminated thereon and formed at least three layers. ) 12, 14, 16, and 18 and resin-impregnated helically wound carbon fiber layers (helically wound CFRP) 13, 15, and 17. The hoop-wrapped carbon fiber layer and the helical-wrapped carbon fiber layer further increase the number of layers as the operating pressure (gas filling pressure) increases.
Further, as the protective layer for protecting the fiber layer from external impact, a resin layer (for example, an epoxy resin layer) or another glass fiber layer may be coated on the outermost layer.

ガラス繊維層11は、非導電性の繊維層であり、ドーム部3aからドーム部3bまでの外周面全体を覆うようにヘリカル巻きで形成され、電食を防ぐための絶縁層として機能するようにしてある。ガラス繊維層11の厚さは0.8mm程度にしている。なお、このガラス絶縁層の厚さは0.3mm以上0.9mm以下とし、ガラス繊維層11は各炭素繊維層12〜17のいずれの層の厚さよりも薄くするようにして、ヘリカル巻き繊維層であっても軸方向強度を強化するための補強繊維層ではなく、専ら絶縁層、製造工程時の熱収縮吸収層としてのみ働かせるようにしている。   The glass fiber layer 11 is a non-conductive fiber layer, is formed by helical winding so as to cover the entire outer peripheral surface from the dome portion 3a to the dome portion 3b, and functions as an insulating layer for preventing electrolytic corrosion. It is. The thickness of the glass fiber layer 11 is about 0.8 mm. In addition, the thickness of this glass insulating layer shall be 0.3 mm or more and 0.9 mm or less, and the glass fiber layer 11 shall be thinner than the thickness of any one of each carbon fiber layer 12-17, and a helical wound fiber layer Even so, it is not a reinforcing fiber layer for reinforcing the strength in the axial direction, but only serves as an insulating layer and a heat shrinkage absorbing layer during the manufacturing process.

ガラス繊維層11の外側には、胴部2を周方向に巻き、周方向強度の補強を行うフープ巻き炭素繊維層12が形成される。さらにその上にドーム部3aからドーム部3bまでを巻き、軸方向強度の補強を行うためのヘリカル巻き炭素繊維層13が形成される。ヘリカル巻き炭素繊維層13は、胴部2の上ではフープ巻き炭素繊維層12の上を覆い、ドーム部3a、3bの上ではガラス繊維層11の上を覆うことになる。そして、同様に、フープ巻き炭素繊維層14、ヘリカル巻き炭素繊維層15、フープ巻き炭素繊維層16、ヘリカル巻き炭素繊維層17、フープ巻き炭素繊維層18が積層するように形成する。このように炭素繊維層が6層以上形成されるようにして、ヘリカル巻き炭素繊維層とフープ巻き炭素繊維層の層間の数(境界面)が6以上となるようにして多数形成する。   A hoop-wrapped carbon fiber layer 12 is formed on the outside of the glass fiber layer 11 to wind the body portion 2 in the circumferential direction and reinforce the circumferential strength. Further, a helically wound carbon fiber layer 13 for winding the dome portion 3a to the dome portion 3b and reinforcing the strength in the axial direction is formed thereon. The helically wound carbon fiber layer 13 covers the hoop-wrapped carbon fiber layer 12 on the trunk portion 2 and covers the glass fiber layer 11 on the dome portions 3a and 3b. And similarly, it forms so that the hoop winding carbon fiber layer 14, the helical winding carbon fiber layer 15, the hoop winding carbon fiber layer 16, the helical winding carbon fiber layer 17, and the hoop winding carbon fiber layer 18 may be laminated | stacked. In this way, a large number of carbon fiber layers are formed so that six or more layers are formed, and the number of layers (boundary surfaces) between the helically wound carbon fiber layer and the hoop-wrapped carbon fiber layer is six or more.

炭素繊維層による補強は、周方向の強度についてはフープ巻き炭素繊維層12、14、16、18の厚さの総和に依存して強度が増加し、軸方向の強度についてはヘリカル巻き炭素繊維層13、15、17の厚さの総和に依存して強度が増加するが、やがて厚さ増加に対する強度の増加率が低下する。フープ巻き炭素繊維層とヘリカル巻き炭素繊維層とも、総和厚さは破裂圧力とサイクル回数がともに設計値を満足する範囲に設定しており、具体的には総和厚さがフープ巻き炭素繊維層は11.9mm(1層あたり約3mm)、ヘリカル巻き厚さは13.7mm(1層あたり約4.6mm)としている。各炭素繊維層の一層あたりの厚さは、0.8mmとしたガラス繊維層11の厚さよりはるかに大きく設定して、ガラス繊維層11に補強の効果の一部を負担させることなく専ら各炭素繊維層が補強層として働くようにしている。   In the reinforcement by the carbon fiber layer, the strength in the circumferential direction increases depending on the sum of the thicknesses of the hoop-wrapped carbon fiber layers 12, 14, 16, and 18, and the helical strength in the axial direction is increased. Although the strength increases depending on the sum of the thicknesses of 13, 15, and 17, the rate of increase in strength with respect to the increase in thickness eventually decreases. For both the hoop-wrapped carbon fiber layer and the helical-wrapped carbon fiber layer, the total thickness is set in a range where the burst pressure and the number of cycles satisfy the design values. 11.9 mm (about 3 mm per layer), and the helical winding thickness is 13.7 mm (about 4.6 mm per layer). The thickness of each carbon fiber layer is set to be much larger than the thickness of the glass fiber layer 11 set to 0.8 mm, and each carbon fiber layer 11 is exclusively made without burdening the glass fiber layer 11 with a part of the reinforcing effect. The fiber layer works as a reinforcing layer.

このようにして製造した35MPa用長尺高圧容器Aは、以下に説明する耐久性能実験データ(T6)で示されるように、破裂圧力が200MPa以上、35MPaでのサイクル回数試験で50000回を超す耐久性能が得られ、優れた長尺高圧容器を得ることができた。   The 35 MPa long high-pressure vessel A produced in this way has a durability exceeding 50,000 times in the cycle number test at a burst pressure of 200 MPa or more and 35 MPa as shown in the durability performance test data (T6) described below. Performance was obtained, and an excellent long high pressure vessel could be obtained.

(35MPa、45MPa耐久性能実験)
本発明の具体的な実施例について説明する。いくつかの長尺高圧容器の比較例とともに、図1に示した本発明の長尺高圧容器を製造し、耐久性能として、破裂するまで圧力を上昇し続けたときの破裂圧力(耐高圧性)と、35MPaまたは45MPaで繰り返し加圧減圧を繰り返したときのサイクル回数(耐疲労性)について測定することにより、耐久性能を比較した。テストに用いた長尺高圧容器の形態と計測結果を表1、表2に示す。テストT1〜T5は比較品による比較例であり、T6は本発明の実施例である。
(35MPa, 45MPa durability performance experiment)
Specific examples of the present invention will be described. With the comparative example of several long high-pressure containers, the long high-pressure container of the present invention shown in FIG. 1 is manufactured, and the burst pressure (high pressure resistance) when the pressure continues to rise until it bursts as durability performance The durability performance was compared by measuring the number of cycles (fatigue resistance) when repeated pressurization and pressure reduction was repeated at 35 MPa or 45 MPa. Tables 1 and 2 show the form and measurement results of the long high-pressure vessel used for the test. Tests T1 to T5 are comparative examples using comparative products, and T6 is an example of the present invention.

Figure 2013108521
Figure 2013108521

Figure 2013108521
Figure 2013108521

T1〜T6はすべてフープ巻き炭素繊維層の厚さの総和を11.9mmとしてあるが、その層数についてはT1、T2は1層とし、T3については2層(1層あたり約6mm)、T4、T5については3層(1層あたり約4mm)、T6については4層(1層あたり約3mm)としている。
ヘリカル巻き炭素繊維層については厚さの総和を0mm〜13.7mmの範囲で変化させているが、T3は1層、T4は2層(1層あたり約3.2mm)、T5は4層(1層あたり3.4mm)、T6については3層(1層あたり約4.6mm)としている。さらに、T6では0.8mmのガラス繊維層を設けている。
T1 to T6 all have a total thickness of the hoop-wrapped carbon fiber layer of 11.9 mm, but the number of layers is T1, T2 is one layer, T3 is two layers (about 6 mm per layer), T4 , T5 has three layers (about 4 mm per layer), and T6 has four layers (about 3 mm per layer).
For the helically wound carbon fiber layer, the total thickness is changed in the range of 0 mm to 13.7 mm, but T3 is one layer, T4 is two layers (about 3.2 mm per layer), and T5 is four layers ( 3.4 mm per layer), and T6 is 3 layers (about 4.6 mm per layer). Further, at T6, a glass fiber layer of 0.8 mm is provided.

その結果、比較例のうち、T1、T2のヘリカル巻き炭素繊維層がないものは、35MPaまで加圧するまでに破裂してしまった。T3、T4、T5ではヘリカル巻き炭素繊維層の厚さの総和が増加するにつれて、破裂圧力、サイクル回数とも増大するようになり、T5では35MPaでは30000回以上、45MPaでは10000回以上のサイクル回数をクリアした。   As a result, among the comparative examples, those without the helically wound carbon fiber layers of T1 and T2 were ruptured before being pressurized to 35 MPa. At T3, T4, and T5, as the total thickness of the helically wound carbon fiber layer increases, both the burst pressure and the number of cycles increase. At T5, the number of cycles is 30,000 or more at 35 MPa, and 10,000 or more at 45 MPa. Cleared.

一方、本発明の実施例であるT6では、比較例のT5に比べて0.8mmの薄い厚さのガラス繊維層を絶縁層として設けたものであるが、T5に比べてサイクル回数が35MPaで50000回のサイクル回数、45MPaでは20000回以上のサイクル回数まで増加し、耐疲労性が格段に向上した。
図3は表2の45MPaでの耐久性能試験でのサイクル回数とヘリカル巻き炭素繊維数の厚さ(Th)との関係をグラフ化した図である。
On the other hand, in T6 which is an example of the present invention, a glass fiber layer having a thickness of 0.8 mm thinner than that of T5 of the comparative example is provided as an insulating layer, but the number of cycles is 35 MPa compared to T5. The number of cycles increased to 50,000, and the number of cycles increased to 20000 or more at 45 MPa, and the fatigue resistance was remarkably improved.
FIG. 3 is a graph showing the relationship between the number of cycles in the durability performance test at 45 MPa in Table 2 and the thickness (Th) of the helically wound carbon fibers.

本来、ガラス繊維は炭素繊維よりも強度的には弱いので、T5とT6との差異である0.8mm程度の薄いガラス繊維層を絶縁層として追加するだけでは、補強効果にはほとんど影響がないと思われたが、サイクル回数の増加に大きな改善が見られた。
この結果から、強度(特に耐疲労性であるサイクル回数)には、ヘリカル巻き炭素繊維層の厚さの総和以外に、最内層であるガラス繊維層からなる絶縁層が重要な役割を果たしていることが判明した。
Originally, glass fibers are weaker than carbon fibers, so that the reinforcing effect is hardly affected by simply adding a thin glass fiber layer of about 0.8 mm, which is the difference between T5 and T6, as an insulating layer. However, there was a big improvement in the increase in the number of cycles.
From this result, the insulating layer consisting of the innermost glass fiber layer plays an important role in the strength (especially the number of cycles that are fatigue resistant) in addition to the total thickness of the helically wound carbon fiber layer. There was found.

この原因を追及した結果、以下に説明する熱膨張差吸収試験により、ガラス繊維層(絶縁層)は、ライナと最内層との間の層間剥離現象を防ぐ効果を有していることが判明した。   As a result of pursuing this cause, it was found by a thermal expansion difference absorption test described below that the glass fiber layer (insulating layer) has an effect of preventing delamination between the liner and the innermost layer. .

一般に、樹脂含浸の補強繊維層が形成される高圧容器の製造工程では、金属ライナの外周に補強繊維層が巻かれた中間加工品に対し、樹脂を硬化させる樹脂硬化工程が含まれる。樹脂硬化工程では、100℃〜150℃程度に加熱されることになるが、その硬化後の冷却時に、金属ライナと樹脂含浸の補強繊維との間の熱膨張率差の影響で、金属ライナと最内層との層間に軸方向力が働くようになる。
そこで、この樹脂硬化工程後の冷却によって、金属ライナと最内層との境界でどの程度のズレ(層間剥離)が生じるかを測定するため、模擬サンプルを用いて測定した。
In general, a manufacturing process of a high-pressure container in which a resin-impregnated reinforcing fiber layer is formed includes a resin curing process in which a resin is cured on an intermediate processed product in which the reinforcing fiber layer is wound around the outer periphery of a metal liner. In the resin curing step, it is heated to about 100 ° C. to 150 ° C., but at the time of cooling after the curing, due to the influence of the difference in thermal expansion coefficient between the metal liner and the resin-impregnated reinforcing fiber, An axial force works between the innermost layer and the innermost layer.
Therefore, in order to measure how much deviation (delamination) occurs at the boundary between the metal liner and the innermost layer due to cooling after the resin curing step, measurement was performed using a simulation sample.

(熱収縮差吸収試験)
熱膨張の影響を確認するため、図4に示すように、3000mmのアルミパイプ(6061材)の外周面に、非導電層(絶縁層)として樹脂層1(エポキシ)、樹脂層2(アラルダイト)、樹脂含浸ウレタン繊維層、樹脂含浸ガラス繊維層を形成し、さらにヘリカル巻き炭素繊維層を厚さ5mm形成した中間加工品を作成した。この中間加工品の樹脂層、樹脂繊維層は2800mmの幅とし、両端で100mmずつアルミパイプが露出するようにした。
そして、それぞれ樹脂が硬化するまで130℃で所定時間加熱し、樹脂が硬化した後に、加熱を停止し、自然空冷させた。その冷却中のパイプ温度をモニタし、冷却途中でパイプ温度が80−90℃となった第一計測時点と、パイプ温度が25℃まで下がった第二計測時点とで左端のアルミ露出部分の長さL1と右端のアルミ露出部分の長さL2とを測定した。
そして長さL1と長さL2との和を各時点(各温度)の膨張量とし、第一計測時点と第二計測時点との膨張量の差から、これら時点の温度差による層間ズレ量を求めた。表3にその結果を示す。
(Heat shrinkage difference absorption test)
In order to confirm the influence of thermal expansion, as shown in FIG. 4, a resin layer 1 (epoxy) and a resin layer 2 (araldite) are formed as non-conductive layers (insulating layers) on the outer peripheral surface of a 3000 mm aluminum pipe (6061 material). Then, an intermediate processed product was formed in which a resin-impregnated urethane fiber layer and a resin-impregnated glass fiber layer were formed, and a helically wound carbon fiber layer was formed to a thickness of 5 mm. The resin layer and resin fiber layer of this intermediate processed product were 2800 mm wide, and the aluminum pipes were exposed by 100 mm at both ends.
And it heated at 130 degreeC for the predetermined time until each resin hardened | cured, and after the resin hardened | cured, the heating was stopped and it was allowed to cool naturally. The temperature of the pipe during cooling is monitored, and the length of the exposed aluminum part at the left end at the first measurement time when the pipe temperature becomes 80-90 ° C during the cooling and the second measurement time when the pipe temperature drops to 25 ° C. The length L1 and the length L2 of the exposed aluminum portion at the right end were measured.
Then, the sum of the length L1 and the length L2 is used as the expansion amount at each time point (each temperature), and the difference in interlayer displacement due to the temperature difference at these time points is determined from the difference in expansion amount between the first measurement time point and the second measurement time point. Asked. Table 3 shows the results.

Figure 2013108521
Figure 2013108521

繊維層を含まない樹脂層1、樹脂層2を絶縁層としたときは層間ズレ量が4.5mm、3.5mmであるのに対し、ガラス繊維を含む絶縁層の場合は、この温度変化での層間ズレ量は0mmであり、この間の温度変化では剥離が発生していないことが判明した。ガラス繊維に代えてウレタン繊維を含む絶縁層の場合も層間ズレ量は2mmまで抑制され、剥離が抑えられていることが判明した。
130度に加熱した状態での層間ズレ量は計測できていないが、繊維を含まない樹脂のみの絶縁層に代えてガラス繊維(あるいはウレタン繊維)を含む絶縁層にすることで温度変化による層間ズレ量が小さくなることから、これらの繊維を含む絶縁層を形成することにより剥離現象が抑制できることが判明した。
When the resin layer 1 and the resin layer 2 that do not include the fiber layer are the insulating layers, the amount of misalignment is 4.5 mm and 3.5 mm, whereas in the case of the insulating layer that includes the glass fiber, this temperature change The amount of misalignment between the layers was 0 mm, and it was found that no peeling occurred due to the temperature change during this period. Even in the case of an insulating layer containing urethane fiber instead of glass fiber, the amount of misalignment was suppressed to 2 mm, and it was found that peeling was suppressed.
Although the amount of misalignment in the state heated to 130 degrees has not been measured, the amount of misalignment due to temperature change can be determined by using an insulating layer containing glass fibers (or urethane fibers) instead of an insulating layer containing only resin that does not contain fibers. Since the amount is small, it has been found that the peeling phenomenon can be suppressed by forming an insulating layer containing these fibers.

そして、表1、表2におけるT6で、0.8mmのガラス繊維層の絶縁層を設けたことでサイクル回数が大きく改善したのは、当該ガラス繊維層によって、ライナと最内層(絶縁層)との間の層間剥離が抑制されたために、補強効果が大きく改善されたものと考えられる。   And, at T6 in Tables 1 and 2, the number of cycles was greatly improved by providing an insulating layer of a 0.8 mm glass fiber layer by the liner, innermost layer (insulating layer) and the glass fiber layer. It is considered that the reinforcing effect was greatly improved because delamination between the layers was suppressed.

続いて、最内層である絶縁層の適切な厚さについて検討した。ガラス繊維(GFRP)の弾性率は48GPaであり、炭素繊維の弾性率の約25%である。ガラス繊維層を厚く巻くと、ガラス繊維層は隣接する最内の炭素繊維層と1つの合体とみなすことができ、その合体の合成弾性率はガラス繊維層の厚さが増すにつれて、炭素繊維単体の弾性率より小さくなる。小さい弾性率の繊維層(この場合ガラス繊維層)が最内層に存在すると、ライナのひずみが大きくなりサイクル回数が低下することになる。
図5、図6は、炭素繊維層の厚さを一定(3mm、5mm)にして、ガラス繊維層の厚さを変化させたときの合成弾性率を算出したグラフである。ガラス繊維層の増加とともに、合成弾性率は単調に減少する。
Subsequently, an appropriate thickness of the innermost insulating layer was examined. The elastic modulus of glass fiber (GFRP) is 48 GPa, which is about 25% of the elastic modulus of carbon fiber. When the glass fiber layer is wound thickly, the glass fiber layer can be regarded as one coalescence with the adjacent innermost carbon fiber layer, and the synthetic elastic modulus of the coalescence increases as the thickness of the glass fiber layer increases. Smaller than the elastic modulus. If a fiber layer having a small elastic modulus (in this case, a glass fiber layer) is present in the innermost layer, the strain of the liner increases and the number of cycles decreases.
FIG. 5 and FIG. 6 are graphs in which the composite elastic modulus is calculated when the thickness of the carbon fiber layer is changed (3 mm, 5 mm) and the thickness of the glass fiber layer is changed. As the glass fiber layer increases, the synthetic elastic modulus decreases monotonously.

このことから、硬化後の収縮差を吸収する緩和層としての機能を維持できる最低限の厚さを備えた上で、絶縁層をできるだけ薄くする方が、強度の点からは好ましい。そのため、硬化後の収縮差を吸収するのに必要な最低限の厚さとして0.3mm以上とする。上限については、絶縁層と炭素繊維層の合成弾性率がガラス繊維を用いないときの80%以上を確保する範囲として最大0.9mmとしている。
この範囲で絶縁層(ガラス繊維層)を形成することで、補強繊維層の厚さについて好ましい状態になる。
From this point of view, it is preferable from the viewpoint of strength that the insulating layer is made as thin as possible while having a minimum thickness capable of maintaining the function as a relaxation layer that absorbs the shrinkage difference after curing. Therefore, the minimum thickness required to absorb the shrinkage difference after curing is set to 0.3 mm or more. About an upper limit, it is set to 0.9 mm at the maximum as a range which ensures 80% or more when the synthetic elastic modulus of an insulating layer and a carbon fiber layer does not use glass fiber.
By forming the insulating layer (glass fiber layer) in this range, the thickness of the reinforcing fiber layer becomes preferable.

次に、強度を増すための補強繊維層の層数について説明する。熱収縮差吸収試験の結果から、製造工程中の熱膨張率差による軸方向力が層間剥離を起こさないようにすることが好ましいことがわかった。そこで熱膨張率差による軸方向力を複数の層間に分散させれば、熱収縮量の差を各層間での分割して吸収されるようになり、これにより剥離を抑制することができ、金属ライナと絶縁層との層間での剥離も抑制できるようになる。   Next, the number of reinforcing fiber layers for increasing the strength will be described. From the results of the heat shrinkage difference absorption test, it was found that it is preferable that the axial force due to the difference in thermal expansion coefficient during the manufacturing process does not cause delamination. Therefore, if the axial force due to the difference in thermal expansion coefficient is dispersed between a plurality of layers, the difference in the amount of thermal shrinkage can be divided and absorbed between the respective layers, thereby suppressing the peeling, and the metal Separation between the liner and the insulating layer can also be suppressed.

具体的にはフープ巻き層とヘリカル巻き層とをそれぞれ3層以上形成することも、表1、表2に示されるようにサイクル回数を増大することに寄与していると考えられる。   Specifically, forming three or more hoop winding layers and helical winding layers is considered to contribute to increasing the number of cycles as shown in Tables 1 and 2.

(82MPa耐久性能実験)
次に、さらに使用圧力が高い長尺高圧容器にするため、表1、表2と同様の方法による他のサンプルでの耐久性能試験を行った。
表4に結果を示す。ここでは比較品T7、T8と本発明の実施品T9とで測定を行った。
(82 MPa durability performance experiment)
Next, in order to make a long high-pressure vessel having a higher working pressure, a durability performance test was performed on other samples by the same method as in Tables 1 and 2.
Table 4 shows the results. Here, measurements were performed on the comparative products T7 and T8 and the product T9 of the present invention.

Figure 2013108521
Figure 2013108521

使用圧力が高いため、ライナ厚さを表1、2のときよりも十分に厚くし、T7〜T9は、いずれも、口部側のドーム部厚さを37.0mm、胴部側のドーム部厚さを20.6mmとした。また、フープ巻き炭素繊維層の厚さの総和を19mmとし、その層数についてはT7が3層(1層あたり6.3mm)、T8、T9が4層(1層あたり4.8mm)とした。ヘリカル巻き炭素繊維層については厚さの総和をT7では24.5mm、T8、T9では36.8mmとし、T7は3層(1層あたり8.2mm)、T8、T9は4層(1層あたり約9.2mm)とした。T9では0.8mmのガラス繊維層を設けている。   Since the working pressure is high, the liner thickness is made sufficiently thicker than in Tables 1 and 2, and T7 to T9 all have a dome thickness of 37.0 mm on the mouth side and a dome portion on the trunk side. The thickness was 20.6 mm. Further, the total thickness of the hoop-wrapped carbon fiber layers was 19 mm. Regarding the number of layers, T7 was 3 layers (6.3 mm per layer), and T8 and T9 were 4 layers (4.8 mm per layer). . For the helically wound carbon fiber layer, the total thickness is 24.5 mm for T7, 36.8 mm for T8 and T9, T7 is 3 layers (8.2 mm per layer), and T8 and T9 are 4 layers (per layer) About 9.2 mm). At T9, a glass fiber layer of 0.8 mm is provided.

その結果、比較例であるT7、T8ではヘリカル巻き炭素繊維層の厚さの総和が増加するにつれて、破裂圧力、サイクル回数とも増大するようになり、82MPaで、T7では15000回以上、T8では37000回以上のサイクル回数であった。
これに対し、0.8mmのガラス繊維の絶縁層をさらに設けたT9では、T8に比べて、サイクル回数が53000回以上まで増大するようになり、この場合でも最内層のガラス繊維の絶縁層の影響で、軸方向力による剥離が抑制されて耐疲労性が大きく向上するようになった。
As a result, in the comparative examples T7 and T8, as the total thickness of the helically wound carbon fiber layer increases, both the burst pressure and the number of cycles increase. At 82 MPa, T7 is 15000 times or more, and T8 is 37000. It was more than the number of cycles.
On the other hand, in T9 further provided with a 0.8 mm glass fiber insulating layer, the number of cycles increases to 53,000 times or more compared to T8, and even in this case, the innermost glass fiber insulating layer As a result, peeling due to axial force is suppressed, and fatigue resistance is greatly improved.

本発明は、水素その他のガスを加圧充填するために使用される長尺高圧容器に利用される。   The present invention is used for a long high-pressure vessel used for pressurizing and filling hydrogen and other gases.

A 長尺高圧容器
1 金属ライナ
2 胴部
3a,3b ドーム部
4a,4b 口部(ポート部)
10 繊維層
11 ガラス繊維層(非導電性繊維層)
12,14,16,18 フープ巻き炭素繊維層
13,15,17 ヘリカル巻き炭素繊維層
A Long high pressure vessel 1 Metal liner 2 Body 3a, 3b Dome 4a, 4b Mouth (port)
10 Fiber layer 11 Glass fiber layer (non-conductive fiber layer)
12, 14, 16, 18 Hoop winding carbon fiber layer 13, 15, 17 Helical winding carbon fiber layer

Claims (3)

筒状の胴部と当該胴部の両端に延設されるドーム部とを有し、かつ、前記両側のドーム部間の全長が2m以上6m以下となるように形成された金属ライナの外周面に、熱硬化性樹脂が含浸された繊維を巻きつけた構造の長尺高圧容器であって、
前記金属ライナに接する最も内側には非導電性繊維層が絶縁層として形成され、
前記絶縁層の外側に炭素繊維のフープ巻き繊維層と炭素繊維のヘリカル巻き繊維層が交互に少なくとも3層ずつ順次積層されて炭素繊維層が合計6層以上形成され、
前記絶縁層は前記いずれの炭素繊維層よりも薄く形成される長尺高圧容器。
An outer peripheral surface of a metal liner having a cylindrical body portion and dome portions extending at both ends of the body portion, and formed so that the total length between the dome portions on both sides is 2 m or more and 6 m or less. In addition, a long high-pressure container having a structure in which fibers impregnated with a thermosetting resin are wound,
A non-conductive fiber layer is formed as an insulating layer on the innermost side in contact with the metal liner,
At least three layers of carbon fiber hoop-wrapped fiber layers and carbon fiber helically-wrapped fiber layers are sequentially laminated on the outside of the insulating layer to form a total of six or more carbon fiber layers,
The insulating layer is a long high-pressure vessel formed thinner than any of the carbon fiber layers.
絶縁層がガラス繊維層からなる非導電性繊維層であり、前記絶縁層の厚さが0.3mm以上0.9mm以下である請求項1に記載の長尺高圧容器。   The long high-pressure container according to claim 1, wherein the insulating layer is a non-conductive fiber layer made of a glass fiber layer, and the insulating layer has a thickness of 0.3 mm or more and 0.9 mm or less. 前記各炭素繊維層の厚さは3mm以上である請求項2に記載の長尺高圧容器。   The long high-pressure vessel according to claim 2, wherein the thickness of each carbon fiber layer is 3 mm or more.
JP2011251833A 2011-11-17 2011-11-17 Long high pressure vessel Active JP5856447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011251833A JP5856447B2 (en) 2011-11-17 2011-11-17 Long high pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011251833A JP5856447B2 (en) 2011-11-17 2011-11-17 Long high pressure vessel

Publications (2)

Publication Number Publication Date
JP2013108521A true JP2013108521A (en) 2013-06-06
JP5856447B2 JP5856447B2 (en) 2016-02-09

Family

ID=48705481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011251833A Active JP5856447B2 (en) 2011-11-17 2011-11-17 Long high pressure vessel

Country Status (1)

Country Link
JP (1) JP5856447B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753830A (en) * 2014-01-24 2014-04-30 四川省新万兴碳纤维复合材料有限公司 Forming process for annular carbon fiber composite material pull rod
JP2017166543A (en) * 2016-03-15 2017-09-21 三菱ケミカル株式会社 Pressure container
KR101846733B1 (en) * 2016-11-07 2018-04-06 현대자동차주식회사 Pressure vessel using fiber-reinforced composite and method manufacturing thereof
WO2018181290A1 (en) * 2017-03-29 2018-10-04 三井化学株式会社 Laminate and method for producing same
JP2018189178A (en) * 2017-05-09 2018-11-29 三菱ケミカル株式会社 Pressure vessel
JP2019127968A (en) * 2018-01-23 2019-08-01 トヨタ自動車株式会社 Method of manufacturing high-pressure gas tank
WO2020209034A1 (en) * 2019-04-10 2020-10-15 株式会社豊田自動織機 Fiber structure and pressure vessel
EP3667152A4 (en) * 2017-09-21 2021-05-05 Dong Hee Industrial Co., Ltd. High-pressure vessel and manufacturing method thereof
JP2021109615A (en) * 2020-01-15 2021-08-02 マツダ株式会社 Impact absorption member
JP2021139382A (en) * 2020-03-02 2021-09-16 トヨタ自動車株式会社 High pressure tank and method of manufacturing the same
CN114413163A (en) * 2022-01-17 2022-04-29 光年探索(江苏)空间技术有限公司 Intersecting spherical shell lining composite material winding pressure container
KR102452872B1 (en) * 2021-06-07 2022-10-12 일진하이솔루스 주식회사 Filament winding method and high pressure tank thereby
CN115355439A (en) * 2022-09-20 2022-11-18 北京天海氢能装备有限公司 Layering method of high-pressure gas cylinder for vehicle
CN115930015A (en) * 2022-12-07 2023-04-07 核工业理化工程研究院 Flexible connecting structure of composite material thin-wall circular tube and forming method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08216277A (en) * 1995-02-15 1996-08-27 Toray Ind Inc Gas cylinder and its manufacture
JPH08510428A (en) * 1994-05-02 1996-11-05 エアロジェット−ジェネラル コーポレーション High pressure gas mobile storage module and lightweight composite container
JPH10267195A (en) * 1997-03-24 1998-10-09 Kobe Steel Ltd Lightweight pressure vessel
JP2008032088A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510428A (en) * 1994-05-02 1996-11-05 エアロジェット−ジェネラル コーポレーション High pressure gas mobile storage module and lightweight composite container
JPH08216277A (en) * 1995-02-15 1996-08-27 Toray Ind Inc Gas cylinder and its manufacture
JPH10267195A (en) * 1997-03-24 1998-10-09 Kobe Steel Ltd Lightweight pressure vessel
JP2008032088A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Tank

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753830A (en) * 2014-01-24 2014-04-30 四川省新万兴碳纤维复合材料有限公司 Forming process for annular carbon fiber composite material pull rod
JP2017166543A (en) * 2016-03-15 2017-09-21 三菱ケミカル株式会社 Pressure container
KR101846733B1 (en) * 2016-11-07 2018-04-06 현대자동차주식회사 Pressure vessel using fiber-reinforced composite and method manufacturing thereof
JPWO2018181290A1 (en) * 2017-03-29 2020-01-23 三井化学株式会社 Laminated body and method for producing the same
WO2018181290A1 (en) * 2017-03-29 2018-10-04 三井化学株式会社 Laminate and method for producing same
US11426977B2 (en) 2017-03-29 2022-08-30 Mitsui Chemicals, Inc. Laminate and method for producing same
JP2018189178A (en) * 2017-05-09 2018-11-29 三菱ケミカル株式会社 Pressure vessel
EP3667152A4 (en) * 2017-09-21 2021-05-05 Dong Hee Industrial Co., Ltd. High-pressure vessel and manufacturing method thereof
JP2019127968A (en) * 2018-01-23 2019-08-01 トヨタ自動車株式会社 Method of manufacturing high-pressure gas tank
WO2020209034A1 (en) * 2019-04-10 2020-10-15 株式会社豊田自動織機 Fiber structure and pressure vessel
JP2021109615A (en) * 2020-01-15 2021-08-02 マツダ株式会社 Impact absorption member
JP7380234B2 (en) 2020-01-15 2023-11-15 マツダ株式会社 Shock absorbing member
JP2021139382A (en) * 2020-03-02 2021-09-16 トヨタ自動車株式会社 High pressure tank and method of manufacturing the same
KR102452872B1 (en) * 2021-06-07 2022-10-12 일진하이솔루스 주식회사 Filament winding method and high pressure tank thereby
WO2022260289A1 (en) * 2021-06-07 2022-12-15 일진하이솔루스 주식회사 Method for winding filament and pressure vessel manufactured thereby
CN114413163A (en) * 2022-01-17 2022-04-29 光年探索(江苏)空间技术有限公司 Intersecting spherical shell lining composite material winding pressure container
CN115355439A (en) * 2022-09-20 2022-11-18 北京天海氢能装备有限公司 Layering method of high-pressure gas cylinder for vehicle
CN115355439B (en) * 2022-09-20 2024-04-30 北京天海氢能装备有限公司 Layering method of automotive high-pressure gas cylinder
CN115930015A (en) * 2022-12-07 2023-04-07 核工业理化工程研究院 Flexible connecting structure of composite material thin-wall circular tube and forming method thereof

Also Published As

Publication number Publication date
JP5856447B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5856447B2 (en) Long high pressure vessel
EP2581638B1 (en) High-pressure tank and manufacturing method of high pressure tank.
US8074826B2 (en) Damage and leakage barrier in all-composite pressure vessels and storage tanks
Roh et al. Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles
Wu et al. Stress and damage analyses of composite overwrapped pressure vessel
Madhavi et al. Design and analysis of filament wound composite pressure vessel with integrated-end domes
US20150192251A1 (en) High pressure carbon composite pressure vessel
US9618157B2 (en) Concentric shells for compressed gas storage
CN105443974A (en) Gas storage tank
JP2008169893A (en) Pressure vessel, and its manufacturing method
US11098851B2 (en) High-pressure tank and attachment structure thereof
CN103672388B (en) A kind of design method of head-tube body integration filament-wound composite cylinder
Hu et al. Structural design and experimental investigation on filament wound toroidal pressure vessels
Sharma et al. Effects of dome shape on burst and weight performance of a type-3 composite pressure vessel for storage of compressed hydrogen
CN111368439A (en) Design method of pressure container based on winding forming process
EP2788662B1 (en) Pressure vessel with composite boss having galvanic corrosion protection
JP2010116980A (en) Design method of high pressure tank
KR102322371B1 (en) Pressure vessel including reinforced cylinder part
Kumar et al. Design and Failure analysis of Geodesic Dome of a Composite Pressure vessel
JP6927013B2 (en) High pressure tank
Jung et al. A study on buckling of filament-wound cylindrical shells under hydrostatic external pressure using finite element analysis and buckling formula
JP2015209880A (en) High pressure hydrogen storage container
AU2021104289A4 (en) Manufacturing method of natural gas cylinder and natural gas cylinder
Radhika et al. Design, Fabrication and Testing of Composite Overwrapped Pressure Vessel for CNG Storage
Kumar et al. Analysis of a Composite Overwrapped Pressure Vessel by Analytical and Finite Elemental Approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151211

R150 Certificate of patent or registration of utility model

Ref document number: 5856447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250