[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013108557A - Aerostatic bearing and linear motion guiding device using the same - Google Patents

Aerostatic bearing and linear motion guiding device using the same Download PDF

Info

Publication number
JP2013108557A
JP2013108557A JP2011253340A JP2011253340A JP2013108557A JP 2013108557 A JP2013108557 A JP 2013108557A JP 2011253340 A JP2011253340 A JP 2011253340A JP 2011253340 A JP2011253340 A JP 2011253340A JP 2013108557 A JP2013108557 A JP 2013108557A
Authority
JP
Japan
Prior art keywords
bearing
annular groove
base
static pressure
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011253340A
Other languages
Japanese (ja)
Other versions
JP5929117B2 (en
Inventor
Hikari Sato
光 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Oiles Industry Co Ltd
Original Assignee
Oiles Corp
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp, Oiles Industry Co Ltd filed Critical Oiles Corp
Priority to JP2011253340A priority Critical patent/JP5929117B2/en
Priority to KR1020120120450A priority patent/KR20130055517A/en
Priority to TW101139982A priority patent/TWI491815B/en
Priority to CN2012104257487A priority patent/CN103122932A/en
Priority to CN201280047766.4A priority patent/CN103842672A/en
Priority to PCT/JP2012/007269 priority patent/WO2013073166A1/en
Publication of JP2013108557A publication Critical patent/JP2013108557A/en
Application granted granted Critical
Publication of JP5929117B2 publication Critical patent/JP5929117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0622Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via nozzles, restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/001Bearings for parts moving only linearly adjustable for alignment or positioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/0666Details of hydrostatic bearings independent of fluid supply or direction of load of bearing pads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/067Details of hydrostatic bearings independent of fluid supply or direction of load of bearings adjustable for aligning, positioning, wear or play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive aerostatic bearing and a linear motion guiding device using the same without generating self-excited vibration.SOLUTION: The aerostatic bearing 1 includes: a bearing substrate 2 formed of a thermoplastic synthetic resin or a reinforcing filler-containing thermoplastic synthetic resin comprising 30-50 mass% of glass fiber, glass powder, carbon fiber or an inorganic filler in the thermoplastic synthetic resin, or aluminum or an aluminum alloy; and a synthetic resin bearing body 3 which is glued and united with the bearing substrate 2 using an adhesive and formed of a thermoplastic synthetic resin.

Description

本発明は、静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置に関する。   The present invention relates to a static pressure gas bearing and a linear motion guide device using the static pressure gas bearing.

精密工作機械や半導体露光装置においては、加工工具や基板等の被加工物を高精度で位置決めすることが要求されている。そのため、加工工具や被加工物の載置台の位置決め装置に摩擦のほとんどない静圧気体軸受を装着した直動案内装置が用いられている。このような直動案内装置では、被加工物の載置台としての可動テーブルと、案内部材としてのガイドレールとの間に加圧流体が介在され、この可動テーブルがガイドレールに対して非接触で移動されるように構成されている。   In precision machine tools and semiconductor exposure apparatuses, it is required to position a workpiece such as a processing tool or a substrate with high accuracy. For this reason, a linear motion guide device is used in which a static pressure gas bearing with little friction is mounted on a positioning device for a work tool or a work table. In such a linear motion guide device, a pressurized fluid is interposed between a movable table as a work table and a guide rail as a guide member, and the movable table is not in contact with the guide rail. It is configured to be moved.

この直動案内装置に装着される静圧気体軸受の空気吹出口の絞りの形式としては、多孔質絞り、表面絞り、オリフィス絞り、自成絞り等があり、それぞれ用途に応じて負荷容量及び軸受剛性等を調節しながら使用している。   The form of the air outlet of the static pressure gas bearing mounted on this linear motion guide device includes a porous throttle, a surface throttle, an orifice throttle, and a self-contained throttle. It is used while adjusting the rigidity.

例えば、特許文献1には、被支持体または支持体のいずれか一方に固定され、その軸受部材を介して軸受面に供給される加圧空気により支持体を移動自在に支承するようにした静圧軸受パッドにおいて、軸受部材として、素材粒子の径がほぼ均一で開気孔の均等性が得られる種類のカーボングラファイト系の材料が記載されている。   For example, in Patent Document 1, a static body is fixed to either a supported body or a support body, and the support body is movably supported by pressurized air supplied to the bearing surface via the bearing member. In the pressure bearing pad, as a bearing member, a carbon graphite-based material of a type in which the diameter of material particles is almost uniform and the uniformity of open pores is obtained is described.

また、特許文献2には、比較的高い剛性を保ちながら、高い減衰性を実現した気体軸受装置として、2つの相対向する実質的に平行な軸受面及び両軸受面間の軸受隙間に、オリフィスを通じて気体を供給する少なくとも1つの気体ダクトを有する気体軸受装置が提案されている。   Further, in Patent Document 2, as a gas bearing device that realizes a high damping property while maintaining a relatively high rigidity, an orifice is provided between two opposed substantially parallel bearing surfaces and a bearing gap between both bearing surfaces. A gas bearing device having at least one gas duct for supplying gas through is proposed.

さらに、特許文献3には、多孔質体からなる母材と、この母材上に接合され、予め所望の空気透過量になるように、貫通孔の径及び分布を調整して作製された多孔板からなる表面絞り層とを備え、表面絞り層を介して気体を噴出させ、その静圧によって被支持部材を支持する静圧気体軸受が提案されている。   Furthermore, Patent Document 3 discloses a porous material prepared by adjusting the diameter and distribution of through holes so that a base material made of a porous body is bonded to the base material and a desired air permeation amount is obtained in advance. There has been proposed a static pressure gas bearing including a surface constriction layer made of a plate, jetting gas through the surface constriction layer, and supporting a supported member by the static pressure.

特開昭63−231020号公報JP 63-23310 A 特表2006−510856号公報JP 2006-510856 A 特開2001−56027号公報JP 2001-56027 A 特開2008−82449号公報JP 2008-82449 A

上記従来の静圧気体軸受は、超低摩擦、超高精度及び超高速運動を実現することができるものの、軸受材料として、主に、高強度の金属やセラミックが用いられるとともに、高精度の研削仕上げ等を行う必要があるため、必然的に高価となるという問題がある。   Although the above-mentioned conventional static pressure gas bearings can achieve ultra-low friction, ultra-high precision, and ultra-high-speed motion, high-strength metals and ceramics are mainly used as bearing materials, and high-precision grinding There is a problem that it is inevitably expensive because finishing or the like is necessary.

しかしながら、超低摩擦、超高精度及び超高速運動までは要求されないが、例えば、液晶スクリーン等の物品を非接触で搬送したり、温度変化を生じさせることなく物品を水平移動させたりする場合には、静圧気体軸受を用いると装置の構成が簡略化されるなどの利点を有する反面、静圧気体軸受自体が高価なため、当該用途には広く活用されていないのが実情である。   However, ultra-low friction, ultra-high accuracy, and ultra-high-speed motion are not required, but for example, when an article such as a liquid crystal screen is transported in a non-contact manner or when the article is moved horizontally without causing a temperature change. However, the use of a static pressure gas bearing has the advantage that the configuration of the apparatus is simplified. On the other hand, since the static pressure gas bearing itself is expensive, it is not widely used for this purpose.

上記実情に鑑み、種々の分野で活用可能な安価な静圧気体軸受を提供するべく本出願人は先に、上面に自成絞り形状又はオリフィス絞り形状の複数個の空気吹出口を、下面に該複数の空気吹出口と連通する給気溝を有する樹脂製軸受部材と、該樹脂製軸受部材の下面に前記給気溝を覆うように接合され、該給気溝と連通する給気口を有する基体とを備える静圧気体軸受を提案した(特許文献4)。   In view of the above situation, in order to provide an inexpensive static pressure gas bearing that can be used in various fields, the present applicant has firstly provided a plurality of air outlets having a self-contained throttle shape or an orifice throttle shape on the upper surface, and a lower surface. A resin bearing member having an air supply groove communicating with the plurality of air outlets, and an air supply port connected to the lower surface of the resin bearing member so as to cover the air supply groove and communicating with the air supply groove. The hydrostatic gas bearing provided with the base | substrate which has is proposed (patent document 4).

この特許文献4に記載された静圧気体軸受によれば、静圧気体軸受を構成する樹脂製軸受部材を、金型を用いて射出成形によって形成することができ、機械的な加工を不要とすることができるとともに、基体の構造も樹脂製軸受部材と連通する給気口を形成するのみで、樹脂製軸受部材と基体とを接合するだけで静圧気体軸受を組み立てることができ、静圧気体軸受の大量生産が可能となり、安価な静圧気体軸受を提供することができるというものである。   According to the hydrostatic gas bearing described in Patent Document 4, the resin bearing member constituting the hydrostatic gas bearing can be formed by injection molding using a mold, and mechanical processing is unnecessary. In addition, the structure of the base also forms an air supply port communicating with the resin bearing member, and the static pressure gas bearing can be assembled simply by joining the resin bearing member and the base. Mass production of gas bearings is possible, and an inexpensive static pressure gas bearing can be provided.

しかしながら、特許文献4に記載された静圧気体軸受における空気吹出口は、射出成形で形成されるため、その直径が0.2〜0.4mm程度の比較的大きな直径の自成絞りあるいはオリフィス形状となり、当該空気吹出口からの給気吹出量が多すぎて自励振動を起こす虞があり、やはり実用化するには改良が必要である。   However, since the air outlet in the static pressure gas bearing described in Patent Document 4 is formed by injection molding, a self-contained throttle or orifice shape having a relatively large diameter of about 0.2 to 0.4 mm. Therefore, there is a risk that the amount of air supply from the air outlet will be too large and cause self-excited vibration.

本発明は上記諸点に鑑みてなされたものであり、その目的とするところは、大量生産が可能で安価な静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a static pressure gas bearing that can be mass-produced and is inexpensive, and a linear motion guide device that uses the static pressure gas bearing. is there.

本発明の静圧気体軸受は、基部、該基部の一方の面の外周縁に突設されている円筒突出部及び一端では基部の一方の面で開口している一方、他端では基部の外周面で開口する給気通路を備えた軸受基体と、基部の一方の面に対面している一方の面に形成された円環状凹部、他方の面で開口した環状凹溝及び一端では環状凹溝に連通していると共に他端では円環状凹部の円環状底面で開口した自成絞りとしての複数個の空気吹出孔を有した合成樹脂製の軸受体とを具備しており、該軸受体は、一方の面に隣接する外周面を基部の円筒突出部の内面に嵌合させ、当該嵌合部において接着されて、軸受基体に一体化されており、環状凹溝は、少なくとも0.3mmの幅と、少なくとも0.01mmの深さとを有しており、空気吹出孔は、その一端で少なくとも30μmの直径を有して、円環状凹部と環状凹溝との間で自成絞りを形成していることを特徴とする。   The hydrostatic gas bearing according to the present invention has a base, a cylindrical projecting portion projecting from the outer peripheral edge of one surface of the base, and an opening at one surface of the base at one end, and an outer periphery of the base at the other end. A bearing base having an air supply passage that opens on the surface, an annular recess formed on one surface facing one surface of the base, an annular groove opened on the other surface, and an annular groove on one end And a synthetic resin bearing body having a plurality of air blowing holes as a self-contained aperture opened at the annular bottom surface of the annular recess at the other end. The outer peripheral surface adjacent to one surface is fitted to the inner surface of the cylindrical protrusion of the base, and is bonded to the fitting portion and integrated with the bearing base, and the annular groove is at least 0.3 mm. Having a width and a depth of at least 0.01 mm, and the air blowing hole at one end thereof Have a diameter of 30μm even without, characterized in that it forms a self-formed aperture between the annular recess and the annular groove.

本発明の静圧気体軸受によれば、合成樹脂製の軸受体は、一方の面に隣接する外周面を基部の円筒突出部の内面に嵌合させると共に、当該嵌合部において接着剤により接着されて軸受基体に一体化されており、また、合成樹脂製の軸受体が他方の面で開口した環状凹溝及び一端では環状凹溝に連通していると共に他端では円環状凹部に開口した複数個の空気吹出孔を有しており、環状凹溝が少なくとも0.3mmの幅と、少なくとも0.01mmの深さを有しており、空気吹出孔は、その一端で少なくとも30μmの直径を有して、円環状凹部と環状凹溝との間で自成絞りを形成しており、当該環状凹溝及び複数個の空気吹出孔を機械加工によることなく形成されているため、大量生産が可能で、安価な製作が可能となる。   According to the hydrostatic gas bearing of the present invention, the synthetic resin bearing body is fitted with the outer peripheral surface adjacent to one surface to the inner surface of the cylindrical protruding portion of the base, and is bonded with an adhesive at the fitting portion. The synthetic resin bearing body is connected to the annular concave groove opened at the other surface and the annular concave groove at one end and opened to the annular concave portion at the other end. A plurality of air blowing holes, the annular groove has a width of at least 0.3 mm and a depth of at least 0.01 mm, and the air blowing hole has a diameter of at least 30 μm at one end thereof; A self-contained throttle is formed between the annular recess and the annular groove, and the annular recess and the plurality of air blowing holes are formed without machining, so that mass production is possible. It is possible and inexpensive to manufacture.

好ましい例では、環状凹溝は、0.3〜1.0mm又は0.3〜0.7mmの幅と、0.01〜0.05mm又は0.01〜0.03mmの深さとを有しており、該空気吹出孔は、その一端で30〜120μmの直径を有している。   In a preferred example, the annular groove has a width of 0.3 to 1.0 mm or 0.3 to 0.7 mm and a depth of 0.01 to 0.05 mm or 0.01 to 0.03 mm. The air blowing hole has a diameter of 30 to 120 μm at one end thereof.

環状凹溝及び空気吹出孔の夫々は、好ましくは、レーザー加工により形成されている。加工用レーザーとしては、炭酸ガスレーザー、YAGレーザー、UVレーザー、エキシマレーザー等から選択される。   Each of the annular concave groove and the air blowing hole is preferably formed by laser processing. The processing laser is selected from a carbon dioxide laser, a YAG laser, a UV laser, an excimer laser, and the like.

環状凹溝及び空気吹出孔の夫々をレーザー加工により形成すると、切削等の機械加工等に比較して、瞬時にこれらを形成でき、大量生産が可能となるばかりでなく、安価に製作することができる。   If each of the annular concave groove and the air blowing hole is formed by laser processing, these can be formed instantaneously compared with machining such as cutting, which enables mass production and can be manufactured at low cost. it can.

本発明の静圧気体軸受において、軸受基体の他方の面には、球体受圧凹部が形成されていてもよい。球体受圧凹部は、該他方の面で開口した截頭円錐凹部あるいは凹球部からなり、これらの球体受圧凹部は、軸受基体の他方の面に直接形成されていてもよい。   In the static pressure gas bearing of the present invention, a spherical pressure receiving recess may be formed on the other surface of the bearing base. The spherical pressure receiving concave portion is a frustoconical concave portion or a concave spherical portion opened on the other surface, and these spherical pressure receiving concave portions may be directly formed on the other surface of the bearing base.

本発明の静圧気体軸受において、軸受基体の他方の面には、当該他方の面で開口する円柱状凹部が形成されており、該円柱状凹部には、駒が嵌合固定されており、球体受圧凹部は、軸受基体の他方の面側の該駒の一方の面で開口すると共に当該駒に形成された截頭円錐面を有していてもよい。   In the static pressure gas bearing of the present invention, the other surface of the bearing base is formed with a cylindrical recess that opens on the other surface, and a piece is fitted and fixed to the cylindrical recess. The spherical body pressure-receiving recess may open on one surface of the piece on the other surface side of the bearing base and have a truncated conical surface formed on the piece.

本発明の静圧気体軸受において、軸受基体の他方の面には、当該他方の面で開口する円柱状凹部が形成されており、該円柱状凹部には、駒が嵌合固定されており、球体受圧凹部は、軸受基体の他方の面側の該駒の一方の面で開口すると共に当該駒に形成された凹球面を有していてもよい。   In the static pressure gas bearing of the present invention, the other surface of the bearing base is formed with a cylindrical recess that opens on the other surface, and a piece is fitted and fixed to the cylindrical recess. The spherical body pressure-receiving recess may open on one surface of the piece on the other surface side of the bearing base and have a concave spherical surface formed on the piece.

軸受基体の他方の面に球体受圧凹部を備えた静圧気体軸受においては、該球体受圧凹部に、例えばボールスタッドの球体が摺接して配されることにより、静圧気体軸受に該球体回りの自動調芯機能が付加されるようになっていてもよい。   In a static pressure gas bearing having a spherical pressure receiving recess on the other surface of the bearing base, a ball stud sphere, for example, is placed in sliding contact with the spherical pressure receiving recess, so that the static pressure gas bearing is moved around the sphere. An automatic alignment function may be added.

本発明の静圧気体軸受において、軸受体は、環状凹溝に加えて、その他方の面に形成されていると共に、該環状凹溝の外側に該環状凹溝を囲む大径環状凹溝と、一方の端部が該環状凹溝に開口すると共に他方の端部が大径環状凹溝に開口する複数個の第一の放射状凹溝と、該環状凹溝の内側に形成された小径環状凹溝と、一方の端部が環状凹溝に開口すると共に他方の端部が小径環状凹溝に開口する複数個の第二の放射状凹溝とを具備していてもよく、これら大径環状凹溝、小径環状凹溝並びに第一及び第二の放射状凹溝は、軸受体の他方の面に形成されているとよい。   In the hydrostatic gas bearing of the present invention, the bearing body is formed on the other surface in addition to the annular groove, and a large-diameter annular groove surrounding the annular groove outside the annular groove. A plurality of first radial grooves, one end of which opens into the annular groove and the other end of which opens into the large-diameter groove, and a small-diameter annular formed inside the annular groove. And a plurality of second radial grooves having one end opening into the annular groove and the other end opening into the small-diameter annular groove. The groove, the small-diameter annular groove, and the first and second radial grooves are preferably formed on the other surface of the bearing body.

この自動調芯機能が付加された静圧気体軸受は、被加工物の載置台の位置決め装置としての直動案内装置に用いられて好適である。すなわち、本発明の静圧気体軸受を具備した直動案内装置は、上案内面及び両側案内面を有する案内部材の外側に、上案内面に対面する上板及び両側案内面に対面する一対の側板を備えた横断面コの字型の可動テーブルが配されており、該可動テーブルの上板の下面及び側板の夫々の内面には、夫々ボールスタッドが球体を内方に向けて立設されており、該ボールスタッドと案内部材の上案内面及び両側案内面との間には、上記静圧気体軸受が球体受圧凹部を該ボールスタッドの球体に摺接させると共に、軸受体を案内部材の上案内面及び両側案内面に対面させて配されているとよい。   The static pressure gas bearing to which the automatic alignment function is added is suitable for use in a linear motion guide device as a positioning device for a work table. That is, the linear motion guide device having the static pressure gas bearing according to the present invention has a pair of an upper plate facing the upper guide surface and a pair of opposite guide surfaces on the outer side of the guide member having the upper guide surface and the both side guide surfaces. A U-shaped movable table with a side plate is arranged, and ball studs are erected on the lower surface of the upper plate of the movable table and the inner surfaces of the side plates, with the sphere facing inward. Between the ball stud and the upper guide surface and both guide surfaces of the guide member, the static pressure gas bearing slides the spherical pressure receiving recess into the ball stud sphere, and the bearing member is connected to the guide member. It is good to be arranged facing the upper guide surface and the both side guide surfaces.

上記直動案内装置によれば、軸受体の複数個の空気吹出孔から案内部材の上案内面及び両側案内面に圧縮空気を噴射することにより、軸受体と上案内面及び両側案内面との間に形成される空気潤滑膜によって可動テーブルを上案内面及び両側案内面に対して非接触の状態に保持することができる。そして、軸受体と上案内面及び両側案内面との間の軸受隙間が不均一であると、軸受隙間各部に圧力差が発生するが、その圧力差により、軸受隙間が均一となる方向に静圧気体軸受が自動調芯され、上案内面及び両側案内面に対して平行な状態が保持される。このため、案内部材及び可動テーブルの平行度、直角度等の部品精度を比較的粗い精度とすることができ、前記静圧気体軸受自体の低コストに加えて、安価な直動案内装置を提供することができる。   According to the above linear motion guide device, the compressed air is injected from the plurality of air blowing holes of the bearing body onto the upper guide surface and the both side guide surfaces of the guide member, whereby the bearing body and the upper guide surface and the both side guide surfaces are separated. The movable table can be held in a non-contact state with respect to the upper guide surface and the both side guide surfaces by the air lubrication film formed therebetween. If the bearing gaps between the bearing body and the upper guide surface and both side guide surfaces are not uniform, a pressure difference will occur in each part of the bearing gap. The pressurized gas bearing is automatically aligned, and a state parallel to the upper guide surface and the both side guide surfaces is maintained. Therefore, the accuracy of parts such as the parallelism and perpendicularity of the guide member and movable table can be made relatively coarse, and in addition to the low cost of the static pressure gas bearing itself, an inexpensive linear motion guide device is provided. can do.

本発明の静圧気体軸受において、軸受体は、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性合成樹脂から形成されているのが好ましく、また軸受基体は、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性合成樹脂又はこれらの熱可塑性合成樹脂にガラス繊維、ガラス粉末、炭素繊維もしくは無機充填材を30〜50質量%含有した補強充填材含有熱可塑性合成樹脂あるいはアルミニウム又はアルミニウム合金から形成されているのが好ましい。これら合成樹脂製の軸受体及び軸受基体は、合成樹脂素材を機械加工して形成しても、金型を用いて射出成形により形成してもよい。   In the hydrostatic gas bearing of the present invention, the bearing body is preferably formed from a thermoplastic synthetic resin such as polyacetal resin, polyamide resin, polyphenylene sulfide resin, and the bearing base is made of polyacetal resin, polyamide resin, polyphenylene sulfide. Reinforced filler-containing thermoplastic synthetic resin or aluminum or aluminum alloy containing 30-50% by mass of glass fiber, glass powder, carbon fiber or inorganic filler in thermoplastic synthetic resin such as resin or these thermoplastic synthetic resins It is preferable. These synthetic resin bearing bodies and bearing bases may be formed by machining a synthetic resin material or by injection molding using a mold.

本発明によれば、大量生産が可能で安価な静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置を提供することができる。   According to the present invention, it is possible to provide an inexpensive static pressure gas bearing capable of mass production and a linear motion guide device using the static pressure gas bearing.

図1は、本発明の実施の形態の好ましい例の平面説明図である。FIG. 1 is an explanatory plan view of a preferred example of an embodiment of the present invention. 図2は、図1のII−II線矢視断面説明図である。2 is a cross-sectional explanatory view taken along the line II-II in FIG. 図3は、図1の底面説明図である。FIG. 3 is an explanatory bottom view of FIG. 図4は、図1の軸受体の底面説明図である。FIG. 4 is an explanatory bottom view of the bearing body of FIG. 図5は、図1の要部拡大断面説明図である。FIG. 5 is an enlarged cross-sectional explanatory diagram of a main part of FIG. 図6は、軸受基体の平面説明図である。FIG. 6 is an explanatory plan view of the bearing base. 図7は、図6のVII−VII線矢視断面説明図である。7 is a cross-sectional explanatory view taken along line VII-VII in FIG. 図8は、軸受体の平面説明図である。FIG. 8 is an explanatory plan view of the bearing body. 図9は、図8のIX−IX線矢視断面説明図である。9 is a cross-sectional explanatory view taken along line IX-IX in FIG. 図10は、図8の底面説明図である。FIG. 10 is an explanatory bottom view of FIG. 図11は、軸受体と軸受基体との組合体の断面説明図である。FIG. 11 is a cross-sectional explanatory view of an assembly of a bearing body and a bearing base. 図12は、軸受体の他の実施の形態の平面説明図である。FIG. 12 is an explanatory plan view of another embodiment of the bearing body. 図13は、軸受基体の他の実施の形態の底面説明図である。FIG. 13 is an explanatory bottom view of another embodiment of the bearing base. 図14は、図13のXIV−XIV線矢視断面説明図である。14 is a cross-sectional explanatory view taken along the line XIV-XIV in FIG. 13. 図15は、軸受体と軸受基体との組合体の断面説明図である。FIG. 15 is a cross-sectional explanatory view of an assembly of a bearing body and a bearing base. 図16は、自動調芯機能を付加した静圧気体軸受の断面説明図である。FIG. 16 is a cross-sectional explanatory view of a static pressure gas bearing to which an automatic alignment function is added. 図17は、軸受基体の更に他の実施の形態の底面説明図である。FIG. 17 is an explanatory bottom view of still another embodiment of the bearing base. 図18は、図17のXVIII−XVIII線矢視断面説明図である。18 is a cross-sectional explanatory view taken along line XVIII-XVIII in FIG. 図19は、軸受体と軸受基体との組合体の断面説明図である。FIG. 19 is a cross-sectional explanatory view of an assembly of a bearing body and a bearing base. 図20は、自動調芯機能を付加した静圧気体軸受の断面説明図である。FIG. 20 is a cross-sectional explanatory view of a static pressure gas bearing to which an automatic alignment function is added. 図21は、軸受基体の他の実施の形態の底面説明図である。FIG. 21 is an explanatory view of the bottom surface of another embodiment of the bearing base. 図22は、図21のXXII−XXII線矢視断面説明図である。22 is a cross-sectional explanatory view taken along the line XXII-XXII in FIG. 図23は、駒の断面説明図である。FIG. 23 is a cross-sectional explanatory diagram of the piece. 図24は、駒を嵌合固定した軸受基体の断面説明図である。FIG. 24 is a cross-sectional explanatory view of a bearing base to which a piece is fitted and fixed. 図25は、軸受体と軸受基体との組合体の断面説明図である。FIG. 25 is a cross-sectional explanatory view of an assembly of a bearing body and a bearing base. 図26は、自動調芯機能を付加した静圧気体軸受の断面説明図である。FIG. 26 is a cross-sectional explanatory view of a static pressure gas bearing to which an automatic alignment function is added. 図27は、駒の他の実施の形態の断面説明図である。FIG. 27 is a cross-sectional explanatory view of another embodiment of the piece. 図28は、駒を嵌合固定した軸受基体の断面説明図である。FIG. 28 is a cross-sectional explanatory view of the bearing base with the pieces fitted and fixed. 図29は、軸受体と軸受基体との組合体の断面説明図である。FIG. 29 is a cross-sectional explanatory view of an assembly of a bearing body and a bearing base. 図30は、自動調芯機能を付加した静圧気体軸受の断面説明図である。FIG. 30 is a cross-sectional explanatory view of a static pressure gas bearing to which an automatic alignment function is added. 図31は、直動案内装置の断面説明図である。FIG. 31 is a cross-sectional explanatory view of the linear motion guide device.

次に本発明を、図に示す好ましい実施の形態の例に基づいて更に詳細に説明する。なお、本発明はこれらの例に何等限定されないのである。   Next, the present invention will be described in more detail based on an example of a preferred embodiment shown in the drawings. The present invention is not limited to these examples.

図1から図5において、静圧気体軸受1は、好ましくは、ポリアセタール樹脂(POM)、ポリアミド樹脂(PA)、ポリフェニレンサルファイド樹脂(PPS)などの熱可塑性合成樹脂、又はこれらの熱可塑性合成樹脂にガラス繊維、ガラス粉末、炭素繊維もしくは無機充填材を30〜50質量%含有した補強充填材含有熱可塑性合成樹脂、あるいはアルミニウム又はアルミニウム合金から形成されている軸受基体2と、軸受基体2に接着剤により接着一体化されていると共に好ましくはポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂などの熱可塑性合成樹脂から形成されている合成樹脂製の軸受体3とを具備している。   1 to 5, the static pressure gas bearing 1 is preferably made of a thermoplastic synthetic resin such as polyacetal resin (POM), polyamide resin (PA), polyphenylene sulfide resin (PPS), or these thermoplastic synthetic resins. Glass fiber, glass powder, carbon fiber or bearing filler 2 made of reinforcing filler-containing thermoplastic synthetic resin containing 30 to 50% by mass or aluminum or aluminum alloy, and adhesive to bearing substrate 2 And a bearing body 3 made of a synthetic resin, preferably made of a thermoplastic synthetic resin such as a polyacetal resin, a polyamide resin, or a polyphenylene sulfide resin.

軸受基体2は、特に、図6及び図7に示すように、基部4と、基部4の一方の平面視円形の面5の外周縁に軸方向Yの上方に向かって一体的に突設されている円筒突出部6と、基部4の他方の平面視円形の面7と、一端8では基部4の平面視円形の面5で開口している円形の開口部9を有する給気穴10と、一端11では給気穴10に連通すると共に他端では基体4の外周面12で開口する給気通路13とを備えている。   As shown in FIGS. 6 and 7, in particular, the bearing base 2 is integrally protruded upward in the axial direction Y at the outer periphery of the base 4 and the circular surface 5 of one of the bases 4 in plan view. A cylindrical projection 6, the other circular surface 7 of the base 4 in plan view, and an air supply hole 10 having a circular opening 9 that is open at one end 8 on the circular surface 5 of the base 4 in plan view. The one end 11 communicates with the air supply hole 10, and the other end includes an air supply passage 13 that opens at the outer peripheral surface 12 of the base 4.

基部4の外周面12に開口する給気通路13の端部内周面14には、雌ねじ15が形成されており、雌ねじ15には給気プラグ16の雄ねじが螺合して、給気プラグ16は軸受基体2の基部4の外周面12に固定される。   A female screw 15 is formed on the inner peripheral surface 14 of the end of the air supply passage 13 that opens to the outer peripheral surface 12 of the base 4, and the male screw of the air supply plug 16 is screwed into the female screw 15. Is fixed to the outer peripheral surface 12 of the base 4 of the bearing base 2.

軸受体3は、特に、図8から図10に示すように、基部4の一方の平面視円形の面5に対面している一方の平面視円形の面17に形成されている円環状凹部18と、他方の平面視円形の面19で開口した環状凹溝20と、一端21では環状凹溝20に連通していると共に他端22では円環状凹部18の円環状底面24に開口した複数個の空気吹出孔25と、一方の平面視円形の面17に隣接する外周面23とを有している。   As shown in FIGS. 8 to 10, the bearing body 3 particularly has an annular recess 18 formed on one planar surface 17 facing the one circular surface 5 of the base 4 facing the planar surface 5. And an annular groove 20 opened on the other circular surface 19 in plan view, and a plurality of one end 21 communicating with the annular groove 20 and the other end 22 opening on the annular bottom surface 24 of the annular recess 18. Air blowing holes 25 and an outer peripheral surface 23 adjacent to one circular surface 17 in plan view.

環状凹溝20は、環状底面26と、互いに対面する円筒側面27とによって規定されており、環状凹溝20は、少なくとも0.3mmの幅Wと、少なくとも0.01mmの深さdとを有しており、空気吹出孔25は、その一端21で、本例では一端21から他端22に亘って少なくとも30μmの直径Dを有して、円環状凹部18と環状凹溝20との間で自成絞りを形成している。   The annular groove 20 is defined by an annular bottom surface 26 and a cylindrical side surface 27 facing each other, and the annular groove 20 has a width W of at least 0.3 mm and a depth d of at least 0.01 mm. The air blowing hole 25 has a diameter D of at least 30 μm at one end 21 in this example from the one end 21 to the other end 22, and between the annular recess 18 and the annular recess 20. A self-contained diaphragm is formed.

円環状凹部18は、空気吹出孔25の他端22が開口する円環状底面24と、円環状底面24の外縁に連接されている外周面28と、円環状底面24の内縁に連接されている内周面29とにより規定されており、外周面28及び内周面29は、夫々円環状底面24から円環状凹部18の開口部30に向けて末広がりに伸びる截頭円錐面31及び32に形成されている。   The annular recess 18 is connected to the annular bottom surface 24 where the other end 22 of the air blowing hole 25 opens, the outer peripheral surface 28 connected to the outer edge of the annular bottom surface 24, and the inner edge of the annular bottom surface 24. The outer peripheral surface 28 and the inner peripheral surface 29 are formed on the frustoconical surfaces 31 and 32 that extend from the annular bottom surface 24 toward the opening 30 of the annular recess 18, respectively. Has been.

軸受体3は、一方の面17に隣接する外周面23を、軸受基体2の円筒突出部6の内面に嵌合させ、当該嵌合部において接着剤により接着されて軸受基体2に一体化される。   In the bearing body 3, the outer peripheral surface 23 adjacent to one surface 17 is fitted to the inner surface of the cylindrical protruding portion 6 of the bearing base 2, and is bonded to the bearing base 2 by an adhesive at the fitting portion. The

静圧気体軸受1においては、軸受体3の面19での幅Wが少なくとも0.3mmで、深さdが少なくとも0.01mmの環状凹溝20と、一端21では環状凹溝20に開口して他端22では円環状凹部18の円環状底面24に開口する直径Dが少なくとも30μmの複数個の自成絞り形状の空気吹出孔25とを例えばレーザー加工により瞬時に形成してもよい。   In the hydrostatic gas bearing 1, an annular groove 20 having a width W on the surface 19 of the bearing body 3 of at least 0.3 mm and a depth d of at least 0.01 mm and an annular groove 20 at one end 21 are opened. At the other end 22, a plurality of self-drawn air blowing holes 25 having a diameter D of at least 30 μm that open to the annular bottom surface 24 of the annular recess 18 may be formed instantaneously by, for example, laser processing.

以上の静圧気体軸受1では、軸受体3は軸受基体2に接着剤により一体化されているので、その製作が容易で、安価とすることができる。また、空気吹出孔25は、少なくとも30μmの直径と極めて小径であり、空気吹出孔25からの多量の空気噴射に起因する自励振動の発生を抑制することができる。   In the above-described hydrostatic gas bearing 1, since the bearing body 3 is integrated with the bearing base 2 with an adhesive, its manufacture is easy and the cost can be reduced. Further, the air blowing hole 25 has a diameter of at least 30 μm and a very small diameter, and can suppress the occurrence of self-excited vibration caused by a large amount of air injection from the air blowing hole 25.

次に図1から図5に示す静圧気体軸受1の製造方法の例を説明すると、まず、図6及び図7に示す補強充填材含有合成樹脂製あるいはアルミニウム又はアルミニウム合金製の軸受基体2と、図8から図10に示す合成樹脂製の軸受体3であって、環状凹溝20及び空気吹出孔25を有していない軸受体3aを準備し、図11に示すように、軸受体3aの円環状凹部18の開口部30を軸受基体2の給気穴10の開口部9に連通させると共に、軸受体3aの一方の面17に隣接する外周面23を、軸受基体2の円筒突出部6の内面に嵌合させたのち、当該嵌合部を接着剤により接着して軸受基体2と軸受体3aとを一体化した組立体33を形成する。   Next, an example of a manufacturing method of the hydrostatic gas bearing 1 shown in FIGS. 1 to 5 will be described. First, a bearing base 2 made of synthetic resin containing reinforcing filler or aluminum or aluminum alloy shown in FIGS. 8 to FIG. 10, a bearing body 3 made of synthetic resin, which does not have the annular groove 20 and the air blowing hole 25, is prepared. As shown in FIG. 11, the bearing body 3a is prepared. The annular recess 18 is communicated with the opening 9 of the air supply hole 10 of the bearing base 2, and the outer peripheral surface 23 adjacent to the one surface 17 of the bearing body 3 a is connected to the cylindrical protrusion of the bearing base 2. 6 is fitted to the inner surface of 6, and the fitting portion is bonded with an adhesive to form an assembly 33 in which the bearing base 2 and the bearing body 3a are integrated.

このように一体化された組立体33における軸受体3aの他方の面19に、レーザー加工機によりレーザー照射し、幅Wが0.3〜1.0mm、深さdが0.01〜0.05mmの環状凹溝20と、環状凹溝20を規定する環状底面26に、環状底面26から軸受体3aを貫通して円環状凹部18の円環状底面24に開口する直径Dが少なくとも30μm、好ましくは30〜120μmの複数個の自成絞り形状の空気吹出孔25とを形成し、静圧気体軸受1を作製する。   The other surface 19 of the bearing body 3a in the assembly 33 thus integrated is irradiated with laser by a laser processing machine, the width W is 0.3 to 1.0 mm, and the depth d is 0.01 to 0.00. An annular groove 20 of 05 mm and an annular bottom surface 26 defining the annular groove 20 have a diameter D of at least 30 μm, preferably penetrating the bearing body 3a from the annular bottom surface 26 and opening to the annular bottom surface 24 of the annular recess 18. Forms a plurality of self-drawn air blowing holes 25 of 30 to 120 μm to produce a static pressure gas bearing 1.

用いる加工用レーザーとしては、炭酸ガスレーザー、YAGレーザー、UVレーザー又はエキシマレーザー等から選択されるが、好ましくは、炭酸ガスレーザーを用いる。   The processing laser to be used is selected from a carbon dioxide laser, a YAG laser, a UV laser, an excimer laser, and the like. Preferably, a carbon dioxide laser is used.

直径30mmの円弧を中心として幅0.5mm、深さ0.05mmの環状凹溝20は、レーザー出力9.5Wの炭酸ガスレーザーを使用して、スキャンスピード1000mm/s、重ね印字数1回、加工時間2秒でポリフェニレンサルファイド樹脂から形成された軸受体3aの面19に形成、加工することができ、また、環状凹溝20の環状底面26に、環状底面26から軸受体3aを貫通して円環状凹部18の円環状底面24で開口する直径0.06mmの自成絞り形状の空気吹出孔25は、レーザー出力14W、加工時間15秒で円周方向に10等配の位置に10個加工することができた。   An annular groove 20 having a width of 0.5 mm and a depth of 0.05 mm centered on an arc having a diameter of 30 mm uses a carbon dioxide laser with a laser output of 9.5 W, a scanning speed of 1000 mm / s, and the number of overprints once. It can be formed and processed on the surface 19 of the bearing body 3a formed from polyphenylene sulfide resin in a processing time of 2 seconds, and passes through the bearing body 3a from the annular bottom surface 26 to the annular bottom surface 26 of the annular groove 20. Ten self-drawn air blow holes 25 having a diameter of 0.06 mm opened at the annular bottom surface 24 of the annular recess 18 are machined at 10 equally spaced positions in the circumferential direction with a laser output of 14 W and a machining time of 15 seconds. We were able to.

上記の静圧気体軸受1の軸受体3は、一個の環状凹溝20を具備しているが、環状凹溝20に加えて、軸受体3は、図12に示すように、軸受体3の他方の面19に形成されていると共に、環状凹溝20の外側に環状凹溝20を囲むと共に環状凹溝20と同心の大径環状凹溝34と、一方の端部35が環状凹溝20に開口すると共に他方の端部36が大径環状凹溝34に開口する複数個の放射状凹溝37と、環状凹溝20の内側に形成されていると共に環状凹溝20と同心の小径環状凹溝38と、一方の端部39が環状凹溝20に開口すると共に他方の端部40が小径環状凹溝38に開口する複数個の放射状凹溝41とを具備していてもよい。   The bearing body 3 of the static pressure gas bearing 1 includes one annular groove 20. In addition to the annular groove 20, the bearing body 3 includes a bearing body 3 as shown in FIG. 12. A large-diameter annular groove 34 that is formed on the other surface 19 and surrounds the annular groove 20 outside the annular groove 20 and is concentric with the annular groove 20, and one end 35 is the annular groove 20. And a plurality of radial grooves 37 whose other end 36 opens into the large-diameter annular groove 34 and a small-diameter annular groove formed inside the annular groove 20 and concentric with the annular groove 20. The groove 38 and a plurality of radial grooves 41 whose one end 39 opens into the annular groove 20 and whose other end 40 opens into the small-diameter annular groove 38 may be provided.

図12に示す軸受体3を有した静圧気体軸受1では、環状凹溝20に給気された圧縮空気は、放射状溝37及び41を介して大径環状凹溝34及び小径環状凹溝38に供給されるので、供給面積が大きくなり、例えば物品の浮上において、安定した浮上を行うことができる。   In the hydrostatic gas bearing 1 having the bearing body 3 shown in FIG. 12, the compressed air supplied to the annular groove 20 passes through the radial grooves 37 and 41 and the large diameter annular groove 34 and the small diameter annular groove 38. Therefore, the supply area is increased, and stable levitation can be performed, for example, when the article is levitated.

図13から図16は、静圧気体軸受1の他の実施の形態を示すもので、軸受基体2の他方の平面視円形の面7の中央部には、面7に平面視円形の開口部42を有する球体受圧凹部43が形成されており、球体受圧凹部43は、平面視円形の底面44と、底面44から開口部42にかけて末広がりに伸びる截頭円錐面45とによって規定される截頭円錐凹部46を有している。   FIGS. 13 to 16 show another embodiment of the static pressure gas bearing 1, and the center portion of the other circular surface 7 of the bearing base 2 has a circular opening on the surface 7. A spherical pressure receiving recess 43 having 42 is formed, and the spherical pressure receiving recess 43 is a truncated cone defined by a circular bottom surface 44 in plan view and a truncated cone surface 45 extending from the bottom surface 44 to the opening 42 in a divergent manner. A recess 46 is provided.

截頭円錐凹部46を有する球体受圧凹部43を備えた軸受基体2は、静圧気体軸受1と同様に、給気穴10の開口部9を、軸受体3の円環状凹部18の開口部30に連通させると共に、軸受体3の一方の面17に隣接する外周面23を、軸受基体2の円筒突出部6の内面に嵌合させたのち、当該嵌合部を接着剤により接着して軸受基体2と軸受体3とを一体化した組立体47を形成する。   The bearing base 2 including the spherical pressure receiving recess 43 having the truncated conical recess 46 is similar to the static pressure gas bearing 1 in that the opening 9 of the air supply hole 10 is replaced with the opening 30 of the annular recess 18 of the bearing 3. The outer peripheral surface 23 adjacent to the one surface 17 of the bearing body 3 is fitted to the inner surface of the cylindrical protruding portion 6 of the bearing base 2, and then the fitting portion is bonded with an adhesive. An assembly 47 in which the base body 2 and the bearing body 3 are integrated is formed.

このように一体化された組立体47における軸受体3の他方の面19に、レーザー加工機によりレーザー照射し、幅Wが0.3〜1.0mm、深さdが0.01〜0.05mmの環状凹溝20と、環状凹溝20を規定する環状底面26に、環状底面26から軸受体3を貫通して円環状凹部18の円環状底面24で開口する直径Dが少なくとも30μm、好ましくは30〜120μmの複数個の自成絞り形状の空気吹出孔25を形成し、静圧気体軸受1を作製する。   The other surface 19 of the bearing body 3 in the assembly 47 integrated in this way is irradiated with laser by a laser processing machine, and the width W is 0.3 to 1.0 mm and the depth d is 0.01 to 0.00. An annular groove 20 having a diameter of 05 mm and an annular bottom surface 26 defining the annular groove 20 have a diameter D of at least 30 μm, preferably penetrating the bearing body 3 from the annular bottom surface 26 and opening at the annular bottom surface 24 of the annular recess 18. Forms a plurality of self-drawn air blowing holes 25 of 30 to 120 [mu] m to produce a static pressure gas bearing 1.

このように形成された静圧気体軸受1には、図16に示すように、軸受基体2の球体受圧凹部43の截頭円錐面45にボールスタッド48の球体49が摺接して配されることにより、自動調芯機能が付加される。   In the static pressure gas bearing 1 formed in this way, as shown in FIG. 16, a sphere 49 of a ball stud 48 is arranged in sliding contact with a frustoconical surface 45 of a sphere pressure receiving recess 43 of the bearing base 2. Thus, an automatic alignment function is added.

図17から図20は、静圧気体軸受1の更に他の実施の形態を示すもので、軸受基体2の他方の平面視円形の面7の中央部には、面7に平面視円形の開口部42を有する球体受圧凹部43が形成されており、球体受圧凹部43は、平面視円形の底面44と、底面44から開口部42にかけて広がる凹球面50とによって規定される凹球部51を有している。   FIGS. 17 to 20 show still another embodiment of the static pressure gas bearing 1. In the center portion of the other circular surface 7 in the plan view of the bearing base 2, a circular opening in the plan view is formed in the surface 7. A spherical pressure receiving recess 43 having a portion 42 is formed, and the spherical pressure receiving recess 43 has a concave spherical portion 51 defined by a circular bottom surface 44 and a concave spherical surface 50 extending from the bottom surface 44 to the opening 42. doing.

凹球部51を有する球体受圧凹部43を備えた軸受基体2は、静圧気体軸受1と同様に、給気穴10の開口部9を、軸受体3の円環状凹部18の開口部30に連通させると共に、軸受体3の一方の面17に隣接する外周面23を、軸受基体2の円筒突出部6の内面に嵌合させたのち、当該嵌合部を接着剤により接着して軸受基体2と軸受体3とを一体化した組立体52を形成する。   The bearing base 2 provided with the spherical pressure receiving recess 43 having the concave spherical portion 51 has the opening 9 of the air supply hole 10 as the opening 30 of the annular concave portion 18 of the bearing body 3, as in the static pressure gas bearing 1. The outer peripheral surface 23 adjacent to the one surface 17 of the bearing body 3 is fitted to the inner surface of the cylindrical projecting portion 6 of the bearing base 2 and then the fitting portion is adhered with an adhesive. 2 and the bearing body 3 are integrated.

このように一体化された組立体52における軸受体3の他方の面19に、レーザー加工機によりレーザー照射し、幅Wが0.3〜1.0mm、深さdが0.01〜0.05mmの環状凹溝20と、環状凹溝20を規定する環状底面26に、環状底面26から軸受体3を貫通して円環状凹部18の円環状底面24で開口する直径Dが少なくとも30μm、好ましくは30〜120μmの複数個の自成絞り形状の空気吹出孔25を形成し、静圧気体軸受1を作製する。   The other surface 19 of the bearing body 3 in the assembly 52 integrated in this way is irradiated with laser by a laser processing machine, the width W is 0.3 to 1.0 mm, and the depth d is 0.01 to 0.00. An annular groove 20 having a diameter of 05 mm and an annular bottom surface 26 defining the annular groove 20 have a diameter D of at least 30 μm, preferably penetrating the bearing body 3 from the annular bottom surface 26 and opening at the annular bottom surface 24 of the annular recess 18. Forms a plurality of self-drawn air blowing holes 25 of 30 to 120 [mu] m to produce a static pressure gas bearing 1.

このように形成された静圧気体軸受1には、図20に示すように、軸受基体2の球体受圧凹部43の凹球面50にボールスタッド48の球体49が摺接して配されることにより、自動調芯機能が付加される。   In the static pressure gas bearing 1 formed in this way, as shown in FIG. 20, the spherical body 49 of the ball stud 48 is arranged in sliding contact with the concave spherical surface 50 of the spherical body pressure-receiving concave portion 43 of the bearing base 2. An automatic alignment function is added.

図21から図26は、自動調芯機能が付加された静圧気体軸受1の他の実施の形態を示すものである。軸受基体2の他方の平面視円形の面7の中央部には、面7で開口する円形の底面54を有した円柱状凹部55が形成されており、円柱状凹部55には、図23に示すように、円柱体56と、一端57で円柱体56の一方の面58で開口する円孔59と、円孔59の他端60に連接し、他端60から円柱体56の他方の面61に向けて末広がりに伸びると共に他方の面61で開口する截頭円錐面62を有する凹部63を備えた駒64が一方の面58を円柱状凹部55の底面54に向けて、かつ、他方の面61が軸受基体2の他方の面7と面一となって嵌合固定されている。球体受圧凹部43は、斯かる截頭円錐面62を有している。   21 to 26 show another embodiment of the static pressure gas bearing 1 to which an automatic alignment function is added. A cylindrical recess 55 having a circular bottom surface 54 opened at the surface 7 is formed at the center of the other circular surface 7 of the bearing base 2 in plan view. As shown, a cylindrical body 56, a circular hole 59 that opens at one surface 58 of the cylindrical body 56 at one end 57, and the other surface 60 of the cylindrical body 56 from the other end 60 are connected to the other end 60 of the circular hole 59. A piece 64 provided with a recess 63 having a frustoconical surface 62 extending toward the end 61 and opening at the other surface 61 has one surface 58 directed toward the bottom surface 54 of the cylindrical recess 55 and the other The surface 61 is flush with and fixed to the other surface 7 of the bearing base 2. The spherical pressure receiving recess 43 has such a truncated conical surface 62.

駒64を嵌合固定した軸受基体2は、前記静圧気体軸受1と同様に、給気穴10の開口部9を軸受体3の円環状凹部18の開口部30に連通させると共に、軸受体3の一方の面17に隣接する外周面23を、軸受基体2の円筒突出部6の内面に嵌合させたのち、当該嵌合部を接着剤により接着して軸受基体2と軸受体3とを一体化した組立体65を形成する。   The bearing base 2 to which the piece 64 is fitted and fixed communicates the opening 9 of the air supply hole 10 to the opening 30 of the annular recess 18 of the bearing body 3 and the bearing body, as in the static pressure gas bearing 1. 3 is fitted to the inner surface of the cylindrical protrusion 6 of the bearing base 2 and the fitting part is bonded with an adhesive to bond the bearing base 2 and the bearing body 3 to each other. To form an integrated assembly 65.

このように一体化された組立体65における軸受体3の他方の面19に、レーザー加工機によりレーザー照射し、幅Wが0.3〜1.0mm、深さdが0.01〜0.05mmの環状凹溝20と、環状凹溝20を規定する環状底面26に、環状底面26から軸受体3を貫通して円環状凹部18の円環状底面24で開口する直径Dが少なくとも30μm、好ましくは30〜120μmの複数個の自成絞り形状の空気吹出孔25を形成し、静圧気体軸受1を作製する。   The other surface 19 of the bearing body 3 in the assembly 65 integrated in this way is irradiated with a laser by a laser processing machine, the width W is 0.3 to 1.0 mm, and the depth d is 0.01 to 0.00. An annular groove 20 having a diameter of 05 mm and an annular bottom surface 26 defining the annular groove 20 have a diameter D of at least 30 μm, preferably penetrating the bearing body 3 from the annular bottom surface 26 and opening at the annular bottom surface 24 of the annular recess 18. Forms a plurality of self-drawn air blowing holes 25 of 30 to 120 [mu] m to produce a static pressure gas bearing 1.

このように形成された静圧気体軸受1には、図26に示すように、軸受基体2の円柱状凹部55に嵌合固定された駒64の凹部63の截頭円錐面62にボールスタッド48の球体49が摺接して配されることにより、自動調芯機能が付加される。   As shown in FIG. 26, the static pressure gas bearing 1 formed in this way has a ball stud 48 on the truncated conical surface 62 of the recess 63 of the piece 64 fitted and fixed to the cylindrical recess 55 of the bearing base 2. The spherical body 49 is arranged so as to be in sliding contact with each other, whereby an automatic alignment function is added.

図27から図30は、自動調芯機能が付加された静圧気体軸受1の更に他の実施の形態を示すものである。図22に示すように軸受基体2の他方の平面視円形の面7の中央部には、面7で開口する円形の底面54を有する円柱状凹部55が形成されており、円柱状凹部55には、図27に示すように、円柱体56と、一端57で円柱体56の一方の面58で開口する円孔59と、円孔59の他端60に連接し、他端60から円柱体56の他方の面61に向けて他方の面61で開口する凹球面66を有する凹部63を備えた駒64が一方の面58を円柱状凹部55の底面54に向けて、かつ、他方の面61が軸受基体2の他方の面7と面一となって嵌合固定されている。球体受圧凹部43は、斯かる凹球面66を有している。   27 to 30 show still another embodiment of the static pressure gas bearing 1 to which an automatic alignment function is added. As shown in FIG. 22, a cylindrical recess 55 having a circular bottom surface 54 opened at the surface 7 is formed at the center of the other circular surface 7 in plan view of the bearing base 2. 27, a cylindrical body 56, a circular hole 59 opened at one end 58 of the cylindrical body 56 at one end 57, and the other end 60 of the circular hole 59 are connected to each other. A piece 64 having a concave portion 63 having a concave spherical surface 66 that opens at the other surface 61 toward the other surface 61 of 56 has one surface 58 directed toward the bottom surface 54 of the cylindrical concave portion 55 and the other surface. 61 is fitted and fixed to be flush with the other surface 7 of the bearing base 2. The spherical pressure receiving recess 43 has such a concave spherical surface 66.

駒64を嵌合固定した軸受基体2は、前記静圧気体軸受1と同様に、給気穴10の開口部9を軸受体3の円環状凹部18の開口部30に連通させると共に、軸受体3の一方の面17に隣接する外周面23を、軸受基体2の円筒突出部6の内面に嵌合させたのち、当該嵌合部を接着剤により接着して軸受基体2と軸受体3とを一体化した組立体67を形成する。   The bearing base 2 to which the piece 64 is fitted and fixed communicates the opening 9 of the air supply hole 10 to the opening 30 of the annular recess 18 of the bearing body 3 and the bearing body, as in the static pressure gas bearing 1. 3 is fitted to the inner surface of the cylindrical protrusion 6 of the bearing base 2 and the fitting part is bonded with an adhesive to bond the bearing base 2 and the bearing body 3 to each other. Is formed as an integrated body 67.

このように一体化された組立体67における軸受体3の他方の面19に、レーザー加工機によりレーザー照射し、幅Wが0.3〜1.0mm、深さdが0.01〜0.05mmの環状凹溝20と、環状凹溝20を規定する環状底面26に、環状底面26から軸受体3を貫通して円環状凹部18の円環状底面24で開口する直径Dが少なくとも30μm、好ましくは30〜120μmの複数個の自成絞り形状の空気吹出孔25を形成し、静圧気体軸受1を作製する。   The other surface 19 of the bearing body 3 of the assembly 67 integrated in this way is irradiated with laser by a laser processing machine, and the width W is 0.3 to 1.0 mm and the depth d is 0.01 to 0.00. An annular groove 20 having a diameter of 05 mm and an annular bottom surface 26 defining the annular groove 20 have a diameter D of at least 30 μm, preferably penetrating the bearing body 3 from the annular bottom surface 26 and opening at the annular bottom surface 24 of the annular recess 18. Forms a plurality of self-drawn air blowing holes 25 of 30 to 120 [mu] m to produce a static pressure gas bearing 1.

このように形成された静圧気体軸受1には、図30に示すように、軸受基体2の円柱状凹部55に嵌合固定された駒64の凹部63の凹球面66にボールスタッド48の球体49が摺接して配されることにより、自動調芯機能が付加される。   As shown in FIG. 30, the static pressure gas bearing 1 formed in this way has a spherical body of a ball stud 48 on a concave spherical surface 66 of a concave portion 63 of a piece 64 fitted and fixed to a cylindrical concave portion 55 of a bearing base 2. When 49 is placed in sliding contact, an automatic alignment function is added.

軸受基体2の他方の平面視円形の面7の中央部に形成された円柱状凹部55に嵌合固定された駒64を摺動特性に優れた、例えば、ポリアセタール樹脂、ポリアミド樹脂、ポリエステル樹脂等の自己潤滑性を有する熱可塑性合成樹脂、あるいは銅又は銅合金等で形成することにより、駒64の凹部63の截頭円錐面62あるいは凹球面66とボールスタッド48の球体49との摺接を円滑に行わせることができる。   The piece 64 fitted and fixed in the cylindrical recess 55 formed in the center of the other circular surface 7 of the bearing base 2 in a plan view has excellent sliding characteristics, for example, polyacetal resin, polyamide resin, polyester resin, etc. The self-lubricating thermoplastic synthetic resin, or copper or copper alloy is used to make the sliding contact between the truncated conical surface 62 or the concave spherical surface 66 of the concave portion 63 of the piece 64 and the sphere 49 of the ball stud 48. It can be performed smoothly.

図31は、図26に示す静圧気体軸受1を用いた直動案内装置68を示すもので、直動案内装置68は、上案内面69及び両側案内面70及び70を有する案内部材71と、案内部材71の外側に跨って配された上案内面69に対面する上板72及び両側案内面70及び70に対面する一対の側板73及び73を備えた横断面コの字型の可動テーブル74と、可動テーブル74の上板72の下面75及び側板73及び73の夫々の内面76に球体49を内方に向けて立設されたボールスタッド48と、ボールスタッド48と案内部材71の上案内面69及び両側案内面70及び70との間に駒64の截頭円錐面62をボールスタッド48の球体49に摺接させると共に、軸受体3の他方の面19を案内部材71の上案内面69及び両側案内面70及び70に対面させて配された静圧気体軸受1とから形成されている。   FIG. 31 shows a linear motion guide device 68 using the static pressure gas bearing 1 shown in FIG. 26. The linear motion guide device 68 includes an upper guide surface 69 and guide members 71 having both side guide surfaces 70 and 70. Further, a U-shaped movable table having a U-shaped cross section provided with an upper plate 72 facing the upper guide surface 69 and straddling the guide member 71 and a pair of side plates 73 and 73 facing both side guide surfaces 70 and 70. 74, a ball stud 48 erected on the lower surface 75 of the upper plate 72 of the movable table 74 and the inner surfaces 76 of the side plates 73 and 73 with the sphere 49 facing inward, and the ball stud 48 and the guide member 71 The truncated conical surface 62 of the piece 64 is slidably brought into contact with the spherical body 49 of the ball stud 48 between the guide surface 69 and the both side guide surfaces 70 and 70, and the other surface 19 of the bearing body 3 is guided upward of the guide member 71. Surface 69 and both side guide surfaces 0 and is opposed to 70 are formed from the provided a hydrostatic gas bearing 1 Tokyo.

この直動案内装置68によれば、軸受体3の複数個の空気吹出孔25から案内部材71の上案内面69及び両側案内面70及び70に圧縮空気を噴射することにより、軸受体3の他方の面19と案内部材71の上案内面69及び両側案内面70及び70との間に形成される空気潤滑膜によって可動テーブル74を上案内面69及び両側案内面70及び70に対して非接触の状態で保持することができる。そして、軸受体3と上案内面69及び両側案内面70及び70との間の軸受隙間が不均一であると、軸受隙間各部に圧力差が発生するが、その圧力差により、軸受隙間が均一となる方向に静圧気体軸受1が自動調芯され、上案内面69及び両側案内面70及び70に対して平行な状態が保たれる。このため、案内部材71及び可動テーブル74の平行度、直角度等の部品精度を比較的粗い精度とすることができ、静圧気体軸受1自体の低コストに加えて、直動案内装置68の製作の容易化及びコストの低下を図ることができる。   According to this linear motion guide device 68, compressed air is injected from the plurality of air blowing holes 25 of the bearing body 3 to the upper guide surface 69 and the both side guide surfaces 70 and 70 of the guide member 71, thereby The movable table 74 is not moved against the upper guide surface 69 and the both side guide surfaces 70 and 70 by an air lubrication film formed between the other surface 19 and the upper guide surface 69 and both side guide surfaces 70 and 70 of the guide member 71. It can be held in contact. If the bearing gap between the bearing body 3 and the upper guide surface 69 and the both side guide surfaces 70 and 70 is not uniform, a pressure difference is generated in each part of the bearing gap. The bearing gap is uniform due to the pressure difference. In this direction, the static pressure gas bearing 1 is automatically aligned, and a state parallel to the upper guide surface 69 and the both side guide surfaces 70 and 70 is maintained. For this reason, the accuracy of parts such as the parallelism and perpendicularity of the guide member 71 and the movable table 74 can be made relatively coarse, and in addition to the low cost of the static pressure gas bearing 1 itself, Manufacturing can be facilitated and cost can be reduced.

直動案内装置68においては、自動調芯機能が付加された静圧気体軸受1として、図26に示すような静圧気体軸受1を使用したが、これに代えて、図16、図20及び図30に示す静圧気体軸受1を使用してもよい。   In the linear motion guide device 68, the static pressure gas bearing 1 as shown in FIG. 26 is used as the static pressure gas bearing 1 to which the automatic alignment function is added. You may use the static pressure gas bearing 1 shown in FIG.

以上のように、軸受体と軸受基体とは、軸受体の一方の面に隣接する外周面を軸受基体の円筒突出部の内面に嵌合させたのち、当該嵌合部を接着剤により接着して一体化されているので、軸受体と軸受基体との接合面は強固に密封されており、軸受体の一方の面には、幅Wが0.3〜1.0mm、深さdが0.01〜0.05mmの環状凹溝と、環状凹溝を規定する環状底面に、環状底面から軸受体を貫通して円環状凹部の環状底面で開口する直径Dが少なくとも30μmの複数個の自成絞り形状の空気吹出孔が形成されており、当該環状凹溝及び空気吹出孔を機械加工によることなく形成できるので、安価な静圧気体軸受を提供できるばかりでなく、当該静圧気体軸受を用いた製作の容易化及びコストの低下を図ることができる直動案内装置を提供することができる。   As described above, after the outer peripheral surface adjacent to one surface of the bearing body is fitted to the inner surface of the cylindrical protruding portion of the bearing base, the fitting portion is bonded with an adhesive. Therefore, the joint surface between the bearing body and the bearing base is firmly sealed, and the width W is 0.3 to 1.0 mm and the depth d is 0 on one surface of the bearing body. An annular groove having a diameter of 0.01 to 0.05 mm, and an annular bottom surface defining the annular groove, a plurality of self having a diameter D of at least 30 μm that penetrates the bearing body from the annular bottom surface and opens at the annular bottom surface of the annular recess. An air blow hole having an aperture shape is formed, and the annular groove and the air blow hole can be formed without machining, so that not only an inexpensive static pressure gas bearing can be provided, but also the static pressure gas bearing Linear motion guide device that facilitates production and reduces costs It is possible to provide a.

1 静圧基体軸受
2 軸受基体
3 軸受体
4 基部
6 円筒突出部
13 給気通路
18 円環状凹部
20 環状凹溝
23 外周面
25 空気吹出孔
DESCRIPTION OF SYMBOLS 1 Hydrostatic base bearing 2 Bearing base 3 Bearing body 4 Base part 6 Cylindrical protrusion part 13 Supply path 18 Annular recessed part 20 Annular recessed groove 23 Outer peripheral surface 25 Air blowing hole

Claims (10)

基部、該基部の一方の面の外周縁に突設されている円筒突出部及び一端では基部の一方の面で開口している一方、他端では基部の外周面で開口する給気通路を備えた軸受基体と、基部の一方の面に対面している一方の面に形成された円環状凹部、他方の面で開口した環状凹溝及び一端では環状凹溝に連通していると共に他端では円環状凹部の円環状底面で開口した自成絞りとしての複数個の空気吹出孔を有した合成樹脂製の軸受体とを具備しており、該軸受体は、一方の面に隣接する外周面を基部の円筒突出部の内面に嵌合させ、当該嵌合部において接着されて、軸受基体に一体化されており、環状凹溝は、少なくとも0.3mmの幅と、少なくとも0.01mmの深さとを有しており、空気吹出孔は、その一端で少なくとも30μmの直径を有して、円環状凹部と環状凹溝との間で自成絞りを形成していることを特徴とする静圧気体軸受。   A base, a cylindrical projecting portion projecting from the outer peripheral edge of one surface of the base, and an air supply passage opening at one end of the base at one end and opening at the outer peripheral surface of the base at the other end Bearing base, an annular recess formed on one surface facing one surface of the base, an annular groove opened on the other surface, and one end communicating with the annular groove and the other end A synthetic resin bearing body having a plurality of air blowing holes as a self-contained aperture opened at the annular bottom surface of the annular recess, and the bearing body is an outer peripheral surface adjacent to one surface Is fitted to the inner surface of the cylindrical protrusion of the base, and is bonded to the fitting portion to be integrated with the bearing base. The annular groove has a width of at least 0.3 mm and a depth of at least 0.01 mm. And the air outlet hole has a diameter of at least 30 μm at one end thereof. Have been, the externally pressurized gas bearing, characterized in that to form a self-formed aperture between the annular recess and the annular groove. 環状凹溝は、0.3〜1.0mm又は0.3〜0.7mmの幅と、0.01〜0.05mm又は0.01〜0.03mmの深さとを有しており、該空気吹出孔は、その一端で30〜120μmの直径を有している請求項1に記載の静圧気体軸受。   The annular groove has a width of 0.3 to 1.0 mm or 0.3 to 0.7 mm and a depth of 0.01 to 0.05 mm or 0.01 to 0.03 mm. The static pressure gas bearing according to claim 1, wherein the blowout hole has a diameter of 30 to 120 μm at one end thereof. 環状凹溝及び空気吹出孔の夫々は、レーザー加工により形成されている請求項1又は2に記載の静圧気体軸受。   The static pressure gas bearing according to claim 1 or 2, wherein each of the annular concave groove and the air blowing hole is formed by laser processing. 軸受基体の他方の面には、球体受圧凹部が形成されている請求項1から3のいずれか一項に記載の静圧気体軸受。   The hydrostatic gas bearing according to any one of claims 1 to 3, wherein a spherical pressure receiving recess is formed on the other surface of the bearing base. 球体受圧凹部は、軸受基体の他方の面で開口する截頭円錐凹部を有している請求項4に記載の静圧気体軸受。   The hydrostatic gas bearing according to claim 4, wherein the spherical pressure receiving recess has a frustoconical recess that opens on the other surface of the bearing base. 球体受圧凹部は、軸受基体の他方の面で開口する凹球部を有している請求項4に記載の静圧気体軸受。   The static pressure gas bearing according to claim 4, wherein the spherical pressure-receiving recess has a concave spherical portion that opens on the other surface of the bearing base. 軸受基体の他方の面には、当該他方の面で開口する円柱状凹部が形成されており、該円柱状凹部には、駒が嵌合固定されており、球体受圧凹部は、軸受基体の他方の面側の該駒の一方の面で開口すると共に当該駒に形成された截頭円錐面を有している請求項4に記載の静圧気体軸受。   The other surface of the bearing base is formed with a cylindrical recess that opens at the other surface, and a piece is fitted and fixed to the cylindrical recess, and the spherical pressure receiving recess is the other of the bearing base. The static pressure gas bearing according to claim 4, wherein the static pressure gas bearing has an truncated conical surface formed on the piece and opening on one surface of the piece on the surface side. 軸受基体の他方の面には、当該他方の面で開口する円柱状凹部が形成されており、該円柱状凹部には、駒が嵌合固定されており、球体受圧凹部は、軸受基体の他方の面側の該駒の一方の面で開口すると共に当該駒に形成された凹球面を有している請求項4に記載の静圧気体軸受。   The other surface of the bearing base is formed with a cylindrical recess that opens at the other surface, and a piece is fitted and fixed to the cylindrical recess, and the spherical pressure receiving recess is the other of the bearing base. The hydrostatic gas bearing according to claim 4, wherein the static pressure gas bearing has an indented spherical surface formed in the piece and opening in one surface of the piece on the surface side. 軸受体は、環状凹溝に加えて、その他方の面に形成されていると共に、該環状凹溝の外側に該環状凹溝を囲む大径環状凹溝と、一方の端部が該環状凹溝に開口すると共に他方の端部が大径環状凹溝に開口する複数個の第一の放射状凹溝と、該環状凹溝の内側に形成された小径環状凹溝と、一方の端部が環状凹溝に開口すると共に他方の端部が小径環状凹溝に開口する複数個の第二の放射状凹溝とを具備している請求項1から8のいずれか一項に記載の静圧気体軸受。   The bearing body is formed on the other surface in addition to the annular groove, and has a large-diameter annular groove surrounding the annular groove on the outside of the annular groove, and one end portion of the annular groove. A plurality of first radial grooves having an opening in the groove and the other end opening in the large-diameter annular groove; a small-diameter annular groove formed inside the annular groove; The static pressure gas according to any one of claims 1 to 8, further comprising: a plurality of second radial grooves that open in the annular groove and have the other end opening in the small-diameter groove. bearing. 上案内面及び両側案内面を有する案内部材の外側に、上案内面に対面する上板及び両側案内面に対面する一対の側板を備えた横断面コの字型の可動テーブルが配されており、該可動テーブルの上板の下面及び側板の夫々の内面には、夫々ボールスタッドが球体を内方に向けて立設されており、該ボールスタッドと案内部材の上案内面及び両側案内面との間には、請求項1から請求項9のいずれか一項に記載の静圧気体軸受が球体受圧凹部を該ボールスタッドの球体に摺接させると共に、軸受体を案内部材の上案内面及び両側案内面に対面させて配されていることを特徴とする直動案内装置。   On the outside of the guide member having the upper guide surface and the both side guide surfaces, a U-shaped movable table having a U-shaped cross section having an upper plate facing the upper guide surface and a pair of side plates facing the both guide surfaces is arranged. In addition, ball studs are erected on the inner surfaces of the lower surface of the upper plate and the side plates of the movable table with the spheres facing inward, respectively. The static pressure gas bearing according to any one of claims 1 to 9 causes the spherical body pressure receiving recess to slide in contact with the spherical body of the ball stud, and the bearing body is connected to the upper guide surface of the guide member and A linear motion guide device, characterized in that it is arranged facing both side guide surfaces.
JP2011253340A 2011-11-18 2011-11-18 Static pressure gas bearing and linear motion guide device using the static pressure gas bearing Active JP5929117B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011253340A JP5929117B2 (en) 2011-11-18 2011-11-18 Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
KR1020120120450A KR20130055517A (en) 2011-11-18 2012-10-29 Hydrostatic gas bearing and linear motion guide device using thereof
TW101139982A TWI491815B (en) 2011-11-18 2012-10-29 Static pressure gas bearings and the use of the static pressure gas bearing linear motion guide device
CN2012104257487A CN103122932A (en) 2011-11-18 2012-10-30 Hydrostatic gas bearing and linear motion guide device using thereof
CN201280047766.4A CN103842672A (en) 2011-11-18 2012-11-13 Aerostatic bearing and linear motion guiding device using said aerostatic bearing
PCT/JP2012/007269 WO2013073166A1 (en) 2011-11-18 2012-11-13 Aerostatic bearing and linear motion guiding device using said aerostatic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253340A JP5929117B2 (en) 2011-11-18 2011-11-18 Static pressure gas bearing and linear motion guide device using the static pressure gas bearing

Publications (2)

Publication Number Publication Date
JP2013108557A true JP2013108557A (en) 2013-06-06
JP5929117B2 JP5929117B2 (en) 2016-06-01

Family

ID=48429262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253340A Active JP5929117B2 (en) 2011-11-18 2011-11-18 Static pressure gas bearing and linear motion guide device using the static pressure gas bearing

Country Status (5)

Country Link
JP (1) JP5929117B2 (en)
KR (1) KR20130055517A (en)
CN (2) CN103122932A (en)
TW (1) TWI491815B (en)
WO (1) WO2013073166A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161448B2 (en) 2015-06-23 2018-12-25 Roller Bearing Company Of America, Inc. Railway truck having a self-lubricating composite bearing pad disposed therein
KR20210060347A (en) * 2019-11-18 2021-05-26 한양대학교 에리카산학협력단 Hybrid Fluid Film Bearing
US12038047B2 (en) 2019-11-18 2024-07-16 Industry-University Cooperation Foundation Hanyang University Erica Campus Hybrid fluid film bearing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2834615C (en) * 2013-08-28 2020-04-28 Gedex Inc. Single axis rotational gas bearing with feed-through
CN109185339B (en) * 2018-09-06 2020-03-17 西安交通大学 Distributed multi-watershed aerostatic thrust bearing
WO2021194782A1 (en) * 2020-03-27 2021-09-30 Corning Incorporated Positioning devices for radially positioning substrates with respect to an air bearing device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419283A (en) * 1977-07-11 1979-02-13 Dea Spa Machine tool or measuring machine having sliding portion by pneumatic shoe and magnetic shoe
JPS61127927U (en) * 1985-01-29 1986-08-11
JPS63231020A (en) * 1987-03-19 1988-09-27 Canon Inc Static pressure bearing pad
JPH0510330A (en) * 1991-06-29 1993-01-19 Canon Inc Static pressure bearing device
JPH0647135Y2 (en) * 1988-10-18 1994-11-30 エヌティエヌ株式会社 Air slide device
JPH0861369A (en) * 1994-08-12 1996-03-08 Ntn Corp Hydrostatic gas bearing
JPH09296825A (en) * 1996-04-30 1997-11-18 Kuroda Precision Ind Ltd Static pressure gas bearing
JP2008082449A (en) * 2006-08-31 2008-04-10 Oiles Ind Co Ltd Static pressure gas bearing
JP2010060013A (en) * 2008-09-02 2010-03-18 Ckd Corp Levitation unit and contactless support device with the same
JP2010096311A (en) * 2008-10-17 2010-04-30 Ntn Corp Hydrostatic bearing pad, linear guide apparatus, and rotation guide apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419283B2 (en) * 1974-05-18 1979-07-13
GB0416495D0 (en) * 2004-07-23 2004-08-25 Westwind Air Bearings Ltd Air bearing spindles
JP2010106927A (en) * 2008-10-29 2010-05-13 Ntn Corp Hydrostatic bearing unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419283A (en) * 1977-07-11 1979-02-13 Dea Spa Machine tool or measuring machine having sliding portion by pneumatic shoe and magnetic shoe
JPS61127927U (en) * 1985-01-29 1986-08-11
JPS63231020A (en) * 1987-03-19 1988-09-27 Canon Inc Static pressure bearing pad
JPH0647135Y2 (en) * 1988-10-18 1994-11-30 エヌティエヌ株式会社 Air slide device
JPH0510330A (en) * 1991-06-29 1993-01-19 Canon Inc Static pressure bearing device
JPH0861369A (en) * 1994-08-12 1996-03-08 Ntn Corp Hydrostatic gas bearing
JPH09296825A (en) * 1996-04-30 1997-11-18 Kuroda Precision Ind Ltd Static pressure gas bearing
JP2008082449A (en) * 2006-08-31 2008-04-10 Oiles Ind Co Ltd Static pressure gas bearing
JP2010060013A (en) * 2008-09-02 2010-03-18 Ckd Corp Levitation unit and contactless support device with the same
JP2010096311A (en) * 2008-10-17 2010-04-30 Ntn Corp Hydrostatic bearing pad, linear guide apparatus, and rotation guide apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161448B2 (en) 2015-06-23 2018-12-25 Roller Bearing Company Of America, Inc. Railway truck having a self-lubricating composite bearing pad disposed therein
KR20210060347A (en) * 2019-11-18 2021-05-26 한양대학교 에리카산학협력단 Hybrid Fluid Film Bearing
KR102463091B1 (en) * 2019-11-18 2022-11-03 한양대학교 에리카산학협력단 Hybrid Fluid Film Bearing
US12038047B2 (en) 2019-11-18 2024-07-16 Industry-University Cooperation Foundation Hanyang University Erica Campus Hybrid fluid film bearing

Also Published As

Publication number Publication date
CN103122932A (en) 2013-05-29
WO2013073166A1 (en) 2013-05-23
KR20130055517A (en) 2013-05-28
JP5929117B2 (en) 2016-06-01
TWI491815B (en) 2015-07-11
CN103842672A (en) 2014-06-04
TW201326596A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
JP5928106B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP5929117B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP6115021B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP5915088B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
US9046131B2 (en) Hydrostatic gas bearing and method of manufacturing the same
JP5924084B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP6237814B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP2000170767A (en) Static pressure linear guide device
JP2019015612A (en) Gate-shaped movement device and three-dimensional measurement machine
JPS63231019A (en) Static pressure bearing device
JPH0828564A (en) Static pressure bearing and positioning stage using the bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250