[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013184072A - Gas dissolving method, and gas dissolving apparatus - Google Patents

Gas dissolving method, and gas dissolving apparatus Download PDF

Info

Publication number
JP2013184072A
JP2013184072A JP2012048442A JP2012048442A JP2013184072A JP 2013184072 A JP2013184072 A JP 2013184072A JP 2012048442 A JP2012048442 A JP 2012048442A JP 2012048442 A JP2012048442 A JP 2012048442A JP 2013184072 A JP2013184072 A JP 2013184072A
Authority
JP
Japan
Prior art keywords
gas
aqueous solution
bubbles
surfactant
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012048442A
Other languages
Japanese (ja)
Other versions
JP5985838B2 (en
Inventor
Ryoji Muraki
良爾 村木
Chobe Yamabe
長兵衛 山部
Tomiya Ishimaru
富也 石丸
Keisuke Hiragaki
圭介 平垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohnit Co Ltd
Original Assignee
Ohnit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohnit Co Ltd filed Critical Ohnit Co Ltd
Priority to JP2012048442A priority Critical patent/JP5985838B2/en
Publication of JP2013184072A publication Critical patent/JP2013184072A/en
Application granted granted Critical
Publication of JP5985838B2 publication Critical patent/JP5985838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas dissolving method for dissolving predetermined gas in an aqueous solution containing a predetermined surfactant so as to exceed an equilibrium concentration proposed before, and a gas dissolving apparatus.SOLUTION: In a gas dissolving method, gas is mixed with an aqueous solution containing a surfactant to generate air bubbles, the gas in the air bubbles is dissolved in liquid films constituting the air bubbles, the air bubbles are defoamed to separate the liquid constituting the air bubbles and the gas is dissolved in the aqueous solution containing the surfactant. The gas dissolving apparatus is also provided.

Description

本発明は、界面活性剤を含む水溶液に対してオゾン、酸素等の気体を、従来提唱されてきた気液の平衡濃度を越えて溶解させる方法、及び装置に関する。 The present invention relates to a method and an apparatus for dissolving a gas such as ozone and oxygen in an aqueous solution containing a surfactant beyond the equilibrium concentration of gas and liquid which has been conventionally proposed.

オゾン、酸素等の難溶解性の溶質を含む溶液が、気相と液相のガス分圧と平衡にあるときには、気相内のオゾン、酸素等の溶質の分圧(P)は、溶液中の濃度(X)に比例することが知られており、次式1の関係が成立する(ヘンリーの法則)。

Figure 2013184072
ここで、Hはヘンリー定数(atm/mol fraction)である。 When a solution containing a hardly soluble solute such as ozone or oxygen is in equilibrium with the gas partial pressure of the gas phase and the liquid phase, the partial pressure (P) of the solute such as ozone and oxygen in the gas phase is It is known that it is proportional to the concentration (X), and the relationship of the following formula 1 is established (Henry's law).
Figure 2013184072
Here, H is the Henry constant (atm / mol fraction).

上記の数式1を変形すると、次式2のようになり、ヘンリー定数が小さいほど、溶液中のオゾン、酸素等の溶質の濃度が高くなる。

Figure 2013184072
When the above Equation 1 is transformed, the following Equation 2 is obtained. The smaller the Henry constant, the higher the concentration of solutes such as ozone and oxygen in the solution.
Figure 2013184072

オゾンのヘンリー定数については、多くの研究者が実験からヘンリー定数を求め報告している。その中でも、以下の非特許文献1で報告されたRoth & Sullivanの次式が最も近似する。

Figure 2013184072
Regarding the Henry's constant of ozone, many researchers have determined and reported the Henry's constant from experiments. Among them, the following equation of Roth & Sullivan reported in Non-Patent Document 1 below is most approximate.
Figure 2013184072

従来、上記の数式3を基に気液平衡濃度は算出されてきたが、この気液平衡濃度を越えて、気相の溶質を液体に溶解される技術は未だ提案されていない。例えば、気相の溶質を所定の水溶液に溶解させるには、従来、充填塔、曝気槽、エゼクタ等が用いられてきた。これらの方法は、液相/気相の体積比(L/G)が非常に大きく、すなわち気相と液相の接触面積が小さいことから、気体を液体に溶解させる効率が悪かった。特に気体がオゾンガスである場合は、水に触れると容易に分解してしまうため、オゾン水を製造するにあたってオゾンガスを高濃度に溶解させる方法の開発が望まれていた。 Conventionally, the vapor-liquid equilibrium concentration has been calculated based on the above Equation 3, but no technology has been proposed for dissolving the gas phase solute in the liquid beyond the vapor-liquid equilibrium concentration. For example, in order to dissolve a gas phase solute in a predetermined aqueous solution, a packed tower, an aeration tank, an ejector, and the like have been conventionally used. In these methods, the volume ratio (L / G) of the liquid phase / gas phase is very large, that is, the contact area between the gas phase and the liquid phase is small, so the efficiency of dissolving the gas in the liquid is poor. In particular, when the gas is ozone gas, it is easily decomposed when it comes into contact with water. Therefore, it has been desired to develop a method for dissolving ozone gas at a high concentration in producing ozone water.

ところで、気体を所定の水溶液に溶解させる技術は多くの分野で実用化されており、例えば、特許文献1のように、オゾンガスを石鹸水に溶解させて手洗い、洗濯の際の洗浄溶液として使用することが提案されている。 By the way, a technique for dissolving a gas in a predetermined aqueous solution has been put into practical use in many fields. For example, as in Patent Document 1, ozone gas is dissolved in soapy water and used as a washing solution for washing and washing. It has been proposed.

特許文献1の生成装置から供給される洗浄溶液は常に泡として供給されるので、洗浄液の体積が大きく、用途が限定されるという問題があった。また、気泡は自然には流動しないため、菌体周辺や汚染物質周辺での気泡の入れ替えが生じにくく、洗浄能力や殺菌能力に劣るという問題があった。 Since the cleaning solution supplied from the generating device of Patent Document 1 is always supplied as foam, there is a problem that the volume of the cleaning solution is large and the use is limited. Further, since the bubbles do not flow naturally, there is a problem that the bubbles are not easily replaced around the cells and the contaminants, and the cleaning ability and the sterilizing ability are inferior.

実用新案登録第3136370号Utility model registration No. 3136370

Solubility of Ozone in Water, Industrial & Engineering Chemistry
Fundamentals, 1981, 20, 137-140頁
Solubility of Ozone in Water, Industrial & Engineering Chemistry
Fundamentals, 1981, 20, pp. 137-140

所定の気体を、界面活性剤を含む水溶液に対して、従来提唱されてきた平衡濃度を越えて溶解させる気体溶解方法、及び気体溶解装置を提供することを目的とする。 It is an object of the present invention to provide a gas dissolving method and a gas dissolving apparatus for dissolving a predetermined gas in an aqueous solution containing a surfactant beyond an equilibrium concentration which has been conventionally proposed.

界面活性剤を含む水溶液に対して気体を混合して気泡を発生させ、気泡を構成する液膜に気泡内の気体を溶解させ、該気泡を消泡させることで気泡を構成する液体を分離し、界面活性剤を含む水溶液に前記気体を溶解させることを特徴とする気体溶解方法により、上記の課題を解決する。 A gas is mixed with an aqueous solution containing a surfactant to generate bubbles, the gas in the bubbles is dissolved in a liquid film that forms the bubbles, and the bubbles are separated by separating the liquid from the bubbles. The above-mentioned problem is solved by a gas dissolving method characterized by dissolving the gas in an aqueous solution containing a surfactant.

界面活性剤を含む水溶液を供給する水溶液供給部と、気体を供給する気体供給部と、前記水溶液供給部及び気体供給部を接続して水溶液供給部から供給される界面活性剤を含む水溶液と気体供給部から供給される気体とを混合して発泡させる気泡発生器と、からなる気体溶解装置であって、気泡発生器は、多孔質板からなる気泡発生部と、該気泡発生部で発生させた気泡を通して気泡径を調整する気泡径調整部とを備えることを特徴とする気体溶解装置により、上記の課題を解決する。 An aqueous solution supply unit for supplying an aqueous solution containing a surfactant, a gas supply unit for supplying a gas, and an aqueous solution and a gas containing a surfactant supplied from the aqueous solution supply unit by connecting the aqueous solution supply unit and the gas supply unit A gas dissolving device comprising a bubble generator for mixing and foaming a gas supplied from a supply unit, wherein the bubble generator is generated by the bubble generation unit comprising a porous plate and the bubble generation unit. The above-described problem is solved by a gas dissolving device comprising a bubble diameter adjusting unit that adjusts the bubble diameter through the opened bubbles.

前記気泡発生器としては、水溶液供給部から供給される界面活性剤を含む水溶液の流入路となる水溶液供給管と、気体供給部から供給される気体の流入路となる気体供給管と、水溶液供給管及び気体供給管の下流に配される多孔質板からなる気泡発生部と、該気泡発生部の下流に配される気泡径調整部と、該気泡径調整部の下流に配される吐出管とを備え、水溶液供給管から供給される界面活性剤を含む水溶液と、気体供給管から供給される気体とは、多孔質板上で混合されて発泡するように構成したものを好適に使用することができる。 The bubble generator includes an aqueous solution supply pipe serving as an inflow path for an aqueous solution containing a surfactant supplied from an aqueous solution supply section, a gas supply pipe serving as an inflow path for a gas supplied from the gas supply section, and an aqueous solution supply. A bubble generating portion comprising a porous plate disposed downstream of the tube and the gas supply tube, a bubble diameter adjusting portion disposed downstream of the bubble generating portion, and a discharge pipe disposed downstream of the bubble diameter adjusting portion The aqueous solution containing the surfactant supplied from the aqueous solution supply pipe and the gas supplied from the gas supply pipe are preferably used in such a manner that they are mixed and foamed on the porous plate. be able to.

気泡発生器で発生させた気泡が消滅するのに時間を要する場合がある。その場合は、気体溶解装置は消泡器を備える構成とすることが好ましい。消泡器としては、気泡発生器の吐出管から供給される気泡を受け入れる受入容器と、受入容器の上に配置される吸引ファンと、吸引ファンを回転させる駆動原と、前記受入容器及び吸引ファンを収容する貯留槽とを備え、気泡は吸引ファンによって吸い上げられて、吸引ファンの回転による遠心力によって半径方向に飛ばされて貯留槽の壁面に衝突させて消泡させるように構成したものを好適に使用することができる。 It may take time for the bubbles generated by the bubble generator to disappear. In that case, it is preferable that the gas dissolving apparatus includes a defoamer. The defoamer includes a receiving container for receiving bubbles supplied from the discharge pipe of the bubble generator, a suction fan disposed on the receiving container, a driving source for rotating the suction fan, and the receiving container and the suction fan. And a storage tank for storing the bubbles, the bubbles are sucked up by a suction fan, and are blown in the radial direction by the centrifugal force generated by the rotation of the suction fan and collide with the wall surface of the storage tank to eliminate the bubbles. Can be used for

本発明の方法及び装置によれば、界面活性剤を含む水溶液と、気体の接触面積を増大させて、すなわち、液相/気相の体積比(L/G)を減少させて、気体を界面活性剤を含む水溶液に対して高濃度に溶解させることが可能になる。しかも、本発明の方法及び装置によれば、気体を溶解させた界面活性剤を含む水溶液を泡ではなく、液体で提供することができる。 According to the method and apparatus of the present invention, the contact area between an aqueous solution containing a surfactant and a gas is increased, that is, the volume ratio (L / G) of the liquid phase / gas phase is decreased, and the gas is interfaced. It becomes possible to dissolve in a high concentration in an aqueous solution containing an active agent. Moreover, according to the method and apparatus of the present invention, an aqueous solution containing a surfactant in which a gas is dissolved can be provided as a liquid instead of a foam.

本発明の気体溶解装置を示したブロック図である。It is the block diagram which showed the gas dissolving apparatus of this invention. 本発明の気体溶解装置の別の実施例を示すブロック図である。It is a block diagram which shows another Example of the gas dissolving apparatus of this invention. 気泡発生器の断面図である。It is sectional drawing of a bubble generator. 消泡器の断面図である。It is sectional drawing of a defoamer. 実施例1及び2、比較例1及び2の殺菌能力を示したグラフである。It is the graph which showed Example 1 and 2, and the disinfection ability of Comparative Examples 1 and 2.

本発明は、界面活性剤を含む水溶液(以下、界面活性剤水溶液と呼ぶ)に対して気体を混合して気泡を発生させ、気泡を構成する液膜に気泡内の気体を溶解させ、該気泡を消泡させることで気泡を構成する液体を分離することを特徴とする。すなわち、本発明の方法は、気体を気泡の中に包み込み、気体と水溶液の接触面積を増大させて、気体を、気泡を構成する液膜に溶解させるものである。気泡内の気体を、気泡を構成する液膜に溶解させた後に、気泡を回収してこれを消泡すれば、目的の気体が高濃度に溶解した界面活性剤水溶液を得ることができる。換言すると、気泡の形成は気体を界面活性剤水溶液に溶解させる手段に過ぎず、気体を溶解させた後は、気泡は消滅させて構わない。気体の溶解は泡の液膜と、気泡内の気体の界面で行われる。 In the present invention, a gas is mixed with an aqueous solution containing a surfactant (hereinafter referred to as a surfactant aqueous solution) to generate bubbles, and the gas in the bubbles is dissolved in a liquid film constituting the bubbles. The liquid which comprises a bubble is isolate | separated by defoaming, It is characterized by the above-mentioned. That is, in the method of the present invention, gas is encapsulated in bubbles, the contact area between the gas and the aqueous solution is increased, and the gas is dissolved in the liquid film constituting the bubbles. If the gas in the bubbles is dissolved in the liquid film constituting the bubbles and then the bubbles are recovered and defoamed, a surfactant aqueous solution in which the target gas is dissolved at a high concentration can be obtained. In other words, the formation of bubbles is only a means for dissolving the gas in the surfactant aqueous solution, and the bubbles may disappear after the gas is dissolved. The gas is dissolved at the interface between the bubble liquid film and the gas in the bubbles.

本発明は、界面活性剤水溶液からなる気泡ではなくて、液状の界面活性剤水溶液を調整する方法である。したがって、本発明では、気泡の状態で気体を界面活性剤水溶液に溶解させた後は、必ず消泡させる。消泡させる方法は、界面活性剤の種類やその濃度を最適化することによって、気泡が自然消滅しやすいように調整したり、後述する気泡発生器の気泡径調整部の流路の内径を調節することにより気泡の径が大きくなるようにすればよい。また、後述するような消泡器を用いて強制的に気泡を消滅させるようにしてもよい。 The present invention is a method for preparing a liquid surfactant aqueous solution, not bubbles comprising a surfactant aqueous solution. Therefore, in the present invention, after the gas is dissolved in the surfactant aqueous solution in the form of bubbles, the bubbles are always removed. Defoaming can be achieved by optimizing the type and concentration of the surfactant so that bubbles are easily lost or adjusting the inner diameter of the flow path of the bubble diameter adjustment section of the bubble generator described later. By doing so, the diameter of the bubbles may be increased. Alternatively, the bubbles may be forcibly extinguished using a defoamer as described later.

気体を界面活性剤水溶液に効率的に溶解させるには、いったん気泡を形成し、気泡を破壊することが必要である。したがって、界面活性剤水溶液の濃度は、多孔質板等を通過した際に気泡が発生する程度の濃度にする必要がある。具体的な濃度は、界面活性剤の種類と、溶解させる気体の種類に応じて調整する。本発明で使用する界面活性剤の種類は特に限定されず、溶解させるガスと反応して界面活性剤の性質が損なわれるようなもの以外であれば使用可能である。例えば、非イオン性界面活性剤を好適に使用することができる。界面活性剤水溶液に溶解させる気体の種類も特に限定されず、例えばオゾンガス、酸素ガス等を好適に使用することができる。 In order to efficiently dissolve the gas in the surfactant aqueous solution, it is necessary to once form bubbles and destroy the bubbles. Therefore, the concentration of the surfactant aqueous solution needs to be set to such a level that bubbles are generated when passing through a porous plate or the like. The specific concentration is adjusted according to the type of surfactant and the type of gas to be dissolved. The type of the surfactant used in the present invention is not particularly limited, and any surfactant other than those which react with the gas to be dissolved and impair the properties of the surfactant can be used. For example, a nonionic surfactant can be preferably used. The kind of gas dissolved in the surfactant aqueous solution is not particularly limited, and for example, ozone gas, oxygen gas, and the like can be suitably used.

気泡の大きさは、小さければ小さいほど、気体と界面活性剤水溶液の接触面積が増大し、気体が溶解しやすくなる。しかし、過度に気泡を小さくすると消泡する際に時間を要するので直径0.1〜2.0mmとすることが好ましく、より好ましくは直径0.2〜1.6mmである。 The smaller the size of the bubbles, the greater the contact area between the gas and the surfactant aqueous solution and the easier the gas dissolves. However, since it takes time to defoam if the bubbles are excessively small, the diameter is preferably 0.1 to 2.0 mm, more preferably 0.2 to 1.6 mm.

上述の気体溶解方法を実施するには、例えば図1のブロック図に示した気体溶解装置を用いればよい。図1のブロック図に示したように、本装置は、界面活性剤水溶液を供給する水溶液供給部1と、気体を供給する気体供給部2と、前記水溶液供給部1及び気体供給部2を接続してそれらから供給される界面活性剤水溶液と気体とを混合して発泡させる気泡発生器3とからなる。 In order to carry out the above-described gas dissolving method, for example, the gas dissolving apparatus shown in the block diagram of FIG. 1 may be used. As shown in the block diagram of FIG. 1, this apparatus connects an aqueous solution supply unit 1 that supplies a surfactant aqueous solution, a gas supply unit 2 that supplies gas, and the aqueous solution supply unit 1 and the gas supply unit 2. And a bubble generator 3 for mixing and foaming the surfactant aqueous solution and the gas supplied from them.

水溶液供給部1は、気泡発生器3に界面活性剤水溶液を供給する部分である。水溶液供給部1の構成は特に限定されないが、例えば、図1のように、界面活性剤水溶液を貯留するタンク11と、タンク11に貯留された界面活性剤水溶液を引き込んで気泡発生器3に圧送するポンプ12から構成する。 The aqueous solution supply unit 1 is a part that supplies a surfactant aqueous solution to the bubble generator 3. The configuration of the aqueous solution supply unit 1 is not particularly limited. For example, as illustrated in FIG. 1, a tank 11 that stores a surfactant aqueous solution, and a surfactant aqueous solution stored in the tank 11 is drawn into the bubble generator 3. The pump 12 is made up of.

気体供給部2は、気泡発生器3に気体を供給する部分である。気体供給部2の構成は特に限定されないが、例えば、後述するようにオゾンガスを界面活性剤水溶液に溶解させる場合は、図1に示したように、コンプレッサー21と、オゾン発生器22とから構成する。この場合、使用するオゾン発生器22は特に限定されず、例えば、再表2008−108331号公報に記載されたオゾン発生装置を用いればよい。 The gas supply unit 2 is a part that supplies gas to the bubble generator 3. The configuration of the gas supply unit 2 is not particularly limited. For example, when ozone gas is dissolved in a surfactant aqueous solution as described later, the gas supply unit 2 includes a compressor 21 and an ozone generator 22 as shown in FIG. . In this case, the ozone generator 22 to be used is not particularly limited, and, for example, an ozone generator described in Table No. 2008-108331 may be used.

気泡発生器3は、気体供給部2から供給される気体と、水溶液供給部1から供給される界面活性剤水溶液を混合して発泡させる機器である。図3に気泡発生器3の断面図を示す。図3の気泡発生器3は、水溶液供給部1から供給される界面活性剤水溶液の流入路となる水溶液供給管31と、気体供給部2から供給される気体の流入路となる気体供給管32と、水溶液供給管31及び気体供給管32の下流に配される気泡発生部33と、該気泡発生部33の下流に配され気泡発生部33で発生させた気泡の径を調節する気泡径調整部34と、気泡径調整部35の下流に配される吐出管35とを備える。 The bubble generator 3 is a device that mixes and foams the gas supplied from the gas supply unit 2 and the surfactant aqueous solution supplied from the aqueous solution supply unit 1. FIG. 3 shows a cross-sectional view of the bubble generator 3. The bubble generator 3 in FIG. 3 includes an aqueous solution supply pipe 31 serving as an inflow path for the surfactant aqueous solution supplied from the aqueous solution supply section 1 and a gas supply pipe 32 serving as an inflow path for the gas supplied from the gas supply section 2. A bubble generation unit 33 arranged downstream of the aqueous solution supply pipe 31 and the gas supply pipe 32, and a bubble diameter adjustment that adjusts the diameter of the bubbles generated downstream of the bubble generation unit 33 and generated by the bubble generation unit 33 And a discharge pipe 35 disposed downstream of the bubble diameter adjusting unit 35.

本発明の気泡発生器3は、多孔質板からなる気泡発生部33と、気泡発生部33で発生させた気泡の径を調節する気泡径調整部34を備えることを特徴とする。すなわち、水溶液供給管31から供給される界面活性剤水溶液と、気体供給管32から供給される気体は気泡発生部33上で混合され、気体を包含する気泡を発生させるのであるが、そのままでは、気泡が大きすぎたり、気泡が小さすぎて容易に消滅し難かったりする。そこで、本発明では、生じた気泡を気泡径調整部34の流路341に通すのである。このとき流路341の内径Aを水溶液供給管31の内径Bより大きく構成すると(すなわち、流路を拡径管とすると)、水溶液供給管内の圧力を逃がし、気泡が大きくなって速やかに消滅し殺菌能力の高いオゾン水を速やかに生成することが可能になる。一方、流路341の内径Aを水溶液供給管31の内径Bよりも小さく構成すると(すなわち、流路を縮径管とすると)、水溶液供給管内の圧力を高めて、気泡の径を小さくし、液相/気相の体積比(L/G)を減少させて、気体の溶解効率を高めることができる。流路341の内径は、界面活性剤水溶の濃度、吐出される気泡の性質等により、調節すればよい。 The bubble generator 3 of the present invention includes a bubble generation unit 33 made of a porous plate and a bubble diameter adjustment unit 34 that adjusts the diameter of the bubbles generated by the bubble generation unit 33. That is, the surfactant aqueous solution supplied from the aqueous solution supply pipe 31 and the gas supplied from the gas supply pipe 32 are mixed on the bubble generation unit 33 to generate bubbles including the gas. Bubbles are too large or bubbles are too small to easily disappear. Therefore, in the present invention, the generated bubbles are passed through the flow path 341 of the bubble diameter adjusting unit 34. At this time, if the inner diameter A of the flow path 341 is configured to be larger than the inner diameter B of the aqueous solution supply pipe 31 (that is, the flow path is a diameter expansion pipe), the pressure in the aqueous solution supply pipe is released, and the bubbles become larger and disappear quickly. It becomes possible to quickly generate ozone water having a high sterilizing ability. On the other hand, if the inner diameter A of the flow path 341 is configured to be smaller than the inner diameter B of the aqueous solution supply pipe 31 (that is, the flow path is a reduced diameter pipe), the pressure in the aqueous solution supply pipe is increased to reduce the bubble diameter, The volumetric ratio (L / G) of the liquid phase / gas phase can be reduced to increase the gas dissolution efficiency. The inner diameter of the channel 341 may be adjusted according to the concentration of the surfactant aqueous solution, the properties of the discharged bubbles, and the like.

気泡径調整部34は、水溶液供給管31の内径に対して拡径又は縮径した内径の流路341を備えるものであれば、その外形状や材質は特に限定されない。図3の気泡調整部34は、ポリ塩化ビニル製の成形体であって、外形状は円柱形状であり、円心に沿うように貫通孔を穿孔して気泡の流路341としている。気泡径調整部34は、着脱可能に構成されており、気泡径調整部34を取り換えることによって流路341の内径を変更することができる。流体を流しながら内径の大きさを調節できる可変弁を使用してもよい。図3の気泡径調整部34は、2枚のメッシュ36で挟み込んである。 If the bubble diameter adjustment part 34 is provided with the flow path 341 of the internal diameter expanded or contracted with respect to the internal diameter of the aqueous solution supply pipe 31, the outer shape and material will not be specifically limited. The bubble adjusting unit 34 in FIG. 3 is a molded body made of polyvinyl chloride, and the outer shape thereof is a columnar shape. A through hole is drilled along the center of the circle to form a bubble channel 341. The bubble diameter adjusting unit 34 is configured to be detachable, and the inner diameter of the flow path 341 can be changed by replacing the bubble diameter adjusting unit 34. A variable valve that can adjust the size of the inner diameter while flowing a fluid may be used. The bubble diameter adjusting unit 34 in FIG. 3 is sandwiched between two meshes 36.

水溶液供給管31から供給される界面活性剤水溶液と、気体供給管32から供給される気体とは、多孔質板33上で混合されて発泡するように構成することが好ましい。このように構成すれば、界面活性剤水溶液と気体をむらなく混合し、生成される気泡に均一な濃度で気体を包含させることが可能になる。多孔質板の素材は特に限定されず、例えば発泡樹脂(スポンジ)を用いることができる。 It is preferable that the surfactant aqueous solution supplied from the aqueous solution supply pipe 31 and the gas supplied from the gas supply pipe 32 are mixed and foamed on the porous plate 33. If comprised in this way, it will become possible to mix surfactant aqueous solution and gas uniformly, and to make gas included in the bubble produced | generated by uniform density | concentration. The material of the porous plate is not particularly limited, and for example, a foamed resin (sponge) can be used.

気泡が消滅し難い場合は、図1の気体溶解装置に加えて、消泡器4を備える構成としてもよい(図2、図4)。消泡器4は、気泡発生器3で発生した気泡を強制的に消泡させる機器であり、気泡発生器3の吐出管35に接続して使用する。消泡器4は、気泡発生器3の吐出管35から供給される気泡(F)を受け入れる受入容器41と、受入容器41の上に配置される吸引ファン42と、吸引ファン42を回転させる駆動原43(電動モーター)とを備える。気泡は吸引ファン42によって吸い上げられ、吸引ファン42の回転による遠心力で半径方向に飛ばされ、貯留槽44の壁面45に衝突して消泡する。壁面45に衝突した液体は壁面45をつたって貯留槽44に溜まり、オゾン水(W)となる。このような装置を用いれば、たとえ気泡発生器3から吐出される気泡に液体が混入していても、気泡だけを吸い上げて消泡し、貯留槽44に消泡した界面活性剤水溶液を分離することができる。この場合、気泡にならなかった液体は受入容器41上に残るので、気泡の液膜を介して気体の溶解が行われなかった液体がオゾン水(W)に混入することがない。 In the case where it is difficult for the bubbles to disappear, the defoamer 4 may be provided in addition to the gas dissolving device of FIG. 1 (FIGS. 2 and 4). The defoamer 4 is a device that forcibly defoams bubbles generated by the bubble generator 3, and is used by being connected to the discharge pipe 35 of the bubble generator 3. The defoamer 4 is a receiving container 41 that receives bubbles (F) supplied from the discharge pipe 35 of the bubble generator 3, a suction fan 42 that is disposed on the receiving container 41, and a drive that rotates the suction fan 42. And 43 (electric motor). The bubbles are sucked up by the suction fan 42, are blown in the radial direction by the centrifugal force generated by the rotation of the suction fan 42, collide with the wall surface 45 of the storage tank 44 and disappear. The liquid that has collided with the wall surface 45 passes through the wall surface 45 and accumulates in the storage tank 44 to become ozone water (W). If such an apparatus is used, even if liquid is mixed in the bubbles discharged from the bubble generator 3, only the bubbles are sucked up and defoamed, and the defoamed surfactant aqueous solution is separated in the storage tank 44. be able to. In this case, since the liquid that has not become bubbles remains on the receiving container 41, the liquid that has not been dissolved in gas through the bubble liquid film is not mixed into the ozone water (W).

次に、実施例と比較例を挙げて本発明をより具体的に説明する。
[実施例1]
上述の図2の気体溶解装置を用いて、以下のようにしてオゾン水を生成した。流速30ml/minで内径4mmの水溶液供給管からpH7、温度15℃、1.2重量%となるように調整したポリオキシエチレンアルキルエーテル水溶液を、気泡発生器の多孔質板に供給するとともに、オーニット株式会社製のオゾナイザー(SRG100)で発生させた1600ppmのオゾンガスを内径4mmの気体供給管を経て流速300ml/minで気泡発生器の多孔質板に供給した。多孔質板は発泡倍率100倍、厚み8mmの発泡メラミン樹脂から構成した。液相/気相の体積比(L/G)は0.1である。気泡径調整部の流路の内径は1mmとした。
Next, the present invention will be described more specifically with reference to examples and comparative examples.
[Example 1]
Using the gas dissolving apparatus of FIG. 2 described above, ozone water was generated as follows. A polyoxyethylene alkyl ether aqueous solution adjusted to pH 7 at a temperature of 15 ° C. and 1.2% by weight from an aqueous solution supply pipe having an inner diameter of 4 mm at a flow rate of 30 ml / min is supplied to the porous plate of the bubble generator, and Ornit 1600 ppm of ozone gas generated by an ozonizer (SRG100) manufactured by Co., Ltd. was supplied to the porous plate of the bubble generator at a flow rate of 300 ml / min through a gas supply pipe having an inner diameter of 4 mm. The porous plate was made of a foamed melamine resin having an expansion ratio of 100 times and a thickness of 8 mm. The volume ratio (L / G) of the liquid phase / gas phase is 0.1. The inner diameter of the flow path of the bubble diameter adjusting unit was 1 mm.

気泡発生器の吐出管から吐出される気泡を、消泡器の受入容器に供給し、吸引ファンを3600rpmで回転させて貯留槽の壁面に衝突させて消泡し、オゾン水を得た。受入容器に供給された気泡の一部を回収し、気泡の直径を測定したところ0.3mmであった。 Bubbles discharged from the discharge pipe of the bubble generator were supplied to the receiving container of the defoamer, and the suction fan was rotated at 3600 rpm to collide with the wall surface of the storage tank to eliminate bubbles, thereby obtaining ozone water. A part of the bubbles supplied to the receiving container was collected, and the diameter of the bubbles was measured and found to be 0.3 mm.

[実施例2]
上述の図1の気体溶解装置を用いて、以下のようにしてオゾン水を生成した。流速30ml/minで内径4mmの水溶液供給管からpH7、温度15℃、1.2重量%となるように調整したポリオキシエチレンアルキルエーテル水溶液を、気泡発生器の多孔質板に供給するとともに、オーニット株式会社製のオゾナイザー(SRG100)で発生させた1600ppmのオゾンガスを内径4mmの気体供給管を経て流速300ml/minで気泡発生器の多孔質板に供給した。多孔質板は倍率100倍、厚み8mmの発泡メラミン樹脂から構成した。液相/気相の体積比(L/G)は0.1である。気泡径調整部の流路の内径は、8mmとした。図1の気泡発生器の吐出管から吐出された気泡は、消泡器に供給せずに、気泡だけを別の容器に移して1分間静置し、自然に気泡が消えるのを待った。吐出管から吐出された気泡の直径を測定したところ0.6mmであった。
[Example 2]
Using the gas dissolving apparatus of FIG. 1 described above, ozone water was generated as follows. A polyoxyethylene alkyl ether aqueous solution adjusted to pH 7 at a temperature of 15 ° C. and 1.2% by weight from an aqueous solution supply pipe having an inner diameter of 4 mm at a flow rate of 30 ml / min is supplied to the porous plate of the bubble generator, and Ornit 1600 ppm of ozone gas generated by an ozonizer (SRG100) manufactured by Co., Ltd. was supplied to the porous plate of the bubble generator at a flow rate of 300 ml / min through a gas supply pipe having an inner diameter of 4 mm. The porous plate was made of a foamed melamine resin having a magnification of 100 times and a thickness of 8 mm. The volume ratio (L / G) of the liquid phase / gas phase is 0.1. The inner diameter of the flow path of the bubble diameter adjusting unit was 8 mm. The bubbles discharged from the discharge pipe of the bubble generator in FIG. 1 were not supplied to the defoamer, but only the bubbles were transferred to another container and allowed to stand for 1 minute, and waited for the bubbles to disappear naturally. It was 0.6 mm when the diameter of the bubble discharged from the discharge pipe was measured.

[比較例1]
実用新案登録第3136370号公報の図6の装置を用いて、オゾン泡を生成した。界面活性剤水溶液として、pH7、温度15℃、1.2重量%となるように調整したポリオキシエチレンアルキルエーテル水溶液を使用し、オゾン発生器から流速300ml/minで1600ppmのオゾンガスを多孔質板の下に供給した。多孔質板は、発泡倍率100倍、厚み8mmの発泡メラミン樹脂から構成した。石鹸泡放出管から放出されるオゾン泡を容器に受けて、オゾン泡を得た。
[Comparative Example 1]
Using the apparatus of FIG. 6 of Utility Model Registration No. 3136370, ozone bubbles were generated. As the surfactant aqueous solution, a polyoxyethylene alkyl ether aqueous solution adjusted to pH 7, temperature 15 ° C. and 1.2% by weight was used, and 1600 ppm of ozone gas was applied to the porous plate from the ozone generator at a flow rate of 300 ml / min. Supplied below. The porous plate was made of a foamed melamine resin having an expansion ratio of 100 times and a thickness of 8 mm. Ozone bubbles released from the soap bubble discharge tube were received in a container to obtain ozone bubbles.

実施例1及び2のオゾン水のオゾンの溶解濃度(mg/l)を、以下に示すKI法によって測定した。測定結果を表1に示す。測定は3回繰り返し、オゾン濃度を平均化した。
[KI法]
1.過剰量のヨウ化カリウム(KI)と所定量のオゾン水(表1の検水量)をフラスコに入れる。
2.1の混合水溶液に10重量%クエン酸水溶液を約5ml加える。
3.100mlの純粋にデンプン(バレイショ)1gを入れて加熱して作製したデンプン水溶液を、2で得られた混合水溶液に添加して、溶液を紫色にする。
4.0.0001mol/lのチオ硫酸ナトリウムを、3で得られた混合水溶液に滴下し、水溶液が無色になるまでに要したチオ硫酸ナトリウム溶液の量(ml)を計測する。
5.次式によって、オゾン濃度を算出する。
オゾン濃度(mg/l)=滴下したチオ硫酸ナトリウム(ml)×0.0024×1000/検水量(ml)
The dissolved concentration (mg / l) of ozone water in Examples 1 and 2 was measured by the KI method shown below. The measurement results are shown in Table 1. The measurement was repeated three times and the ozone concentration was averaged.
[KI method]
1. An excess amount of potassium iodide (KI) and a predetermined amount of ozone water (sample water amount in Table 1) are placed in a flask.
About 5 ml of 10 wt% aqueous citric acid solution is added to the mixed aqueous solution of 2.1.
3. Add 100 g of pure starch (potato) 1 g of the starch aqueous solution prepared by heating to the mixed aqueous solution obtained in 2 to make the solution purple.
4. Add 0.0001 mol / l sodium thiosulfate dropwise to the mixed aqueous solution obtained in 3 and measure the amount (ml) of sodium thiosulfate solution required until the aqueous solution becomes colorless.
5. The ozone concentration is calculated by the following formula.
Ozone concentration (mg / l) = Dropped sodium thiosulfate (ml) x 0.0024 x 1000 / sample water (ml)

実施例1及び2の検水量、滴下したチオ硫酸ナトリウム、それらから計算したオゾン濃度、及びオゾン濃度から逆算して求めたヘンリー定数を表1に示す。実施例1のオゾン濃度は、3.16mg/lであり、実施例2のオゾン濃度は3.01mg/lであった。比較例1についても、KI法によってオゾン濃度を測定しようとしたが、気泡が消失せず、オゾン濃度を滴定により求めることは不可能であった。 Table 1 shows the amount of water sampled in Examples 1 and 2, the sodium thiosulfate dropped, the ozone concentration calculated from them, and the Henry constant calculated from the ozone concentration. The ozone concentration of Example 1 was 3.16 mg / l, and the ozone concentration of Example 2 was 3.01 mg / l. Also in Comparative Example 1, an attempt was made to measure the ozone concentration by the KI method, but bubbles did not disappear, and it was impossible to determine the ozone concentration by titration.

Figure 2013184072
Figure 2013184072

ところで、オゾンガスと水が気液平衡状態にあるときの水中のオゾン濃度(水中オゾン平衡濃度、ppm)は次式4で計算される。

Figure 2013184072
ここで、Xは液体中のオゾンのモル分率である。 By the way, the ozone concentration in water (ozone equilibrium concentration in water, ppm) when ozone gas and water are in a gas-liquid equilibrium state is calculated by the following equation 4.
Figure 2013184072
Here, X is the molar fraction of ozone in the liquid.

ヘンリーの法則より、次式5の関係が成り立つ。

Figure 2013184072
ここで、Pは気体中のオゾン分圧(atm)、Hはヘンリー定数(atm/mol fraction)である。
式5を変形すると次式6になる。
Figure 2013184072
According to Henry's law, the relationship of the following formula 5 holds.
Figure 2013184072
Here, P is the ozone partial pressure (atm) in the gas, and H is the Henry constant (atm / mol fraction).
When formula 5 is modified, formula 6 is obtained.
Figure 2013184072

気体中のオゾン分圧Pは、次式7により求められる。

Figure 2013184072
ここで、Pは気体中のオゾン分圧(atm)、Ptは気体圧力(atm)、Cは気体中のオゾン濃度(g/Nm)、Tは温度(K)である。 The ozone partial pressure P in the gas is obtained by the following equation 7.
Figure 2013184072
Here, P is the ozone partial pressure (atm) in the gas, Pt is the gas pressure (atm), C is the ozone concentration (g / Nm 3 ) in the gas, and T is the temperature (K).

式4、式6及び式7をまとめると、次式8になる。

Figure 2013184072
When Expression 4, Expression 6 and Expression 7 are put together, the following Expression 8 is obtained.
Figure 2013184072

オゾンの水に対するヘンリー定数は、Roth &
Sullivanが実験から導き出した次式9が最も近似する。

Figure 2013184072
The Henry constant for ozone water is Roth &
The following equation 9 derived from experiments by Sullivan is the closest approximation.
Figure 2013184072

pH=7([OH]=10−7)、1気圧(Pt=1atm)、水温15℃(K=288.15K、オゾンガス濃度1600ppm(C=3.429g/Nm)とすると、上記の式9からヘンリー定数は約4788と算出され、式8からオゾンガスの平衡濃度は約0.94mg/lと算出される。ところが、KI法で実際に計測されたオゾン濃度は、実施例1は表1に示すように3.16mg/l、実施例2は3.01mg/lであるから、理論上溶解するオゾン濃度の約3倍のオゾンが界面活性剤水溶液に溶解したことがわかる。また、KI法で測定したオゾン濃度からヘンリー定数を逆算すると、表1に示したように実施例1では約1424.31、実施例2では約1495.28となる。従来、オゾンガスの水に対するヘンリー定数は、式9から算出される値が最も近似するとされ、ph7、15℃におけるヘンリー定数は、4788である(表2参照)。ヘンリー定数は易溶解性気体ほど小さくなるので、この点からも本発明の溶解方法は従来の溶解方法に比べて格段にオゾンの溶解度が向上していることが分かる。 When pH = 7 ([OH ] = 10 −7 ), 1 atm (Pt = 1 atm), water temperature 15 ° C. (K = 288.15 K, ozone gas concentration 1600 ppm (C = 3.429 g / Nm 3 )) The Henry constant is calculated to be about 4788 from Equation 9, and the equilibrium concentration of ozone gas is calculated to be about 0.94 mg / l from Equation 8. However, the ozone concentration actually measured by the KI method is shown in Table 1 below. As shown in Fig. 1, it was 3.16 mg / l, and in Example 2 it was 3.01 mg / l, indicating that ozone that is about three times the ozone concentration that is theoretically dissolved was dissolved in the surfactant aqueous solution. When the Henry's constant is calculated backward from the ozone concentration measured by the KI method, it becomes about 1424.31 in Example 1 and about 1495.28 in Example 2 as shown in Table 1. Conventionally, Henry's constant for water of ozone gas. Is the closest approximation to the value calculated from Equation 9, and the Henry's constant at ph7 and 15 ° C. is 4788 (see Table 2). It can be seen that the dissolution method of the invention has significantly improved ozone solubility compared to the conventional dissolution method.

Figure 2013184072
Figure 2013184072

ところで、酸素、オゾン等の気体を溶解させる際には、ほぼ例外なく曝気槽が用いられる。この場合、気液接触面積を大きくするためにできるだけ径の小さいマイクロバブル、ナノバブルが用いられる。このときの液相と気相の体積を比較すると、液相の体積が圧倒的に大きく、気相の体積は極めて小さい。したがって、液中のガス分圧を飽和に近い値とするためには、液を槽内に長時間留めてオゾンガス等の気体を曝気する必要があり、液体を槽内に入れてから排出されるまでの時間は数時間にも及ぶ。この間にオゾンガスが分解してしまう。これに対して、本発明では、界面活性剤水溶液とオゾンガスが混合されて発泡し、消泡してオゾン水となるまでの時間が数分程度に抑えられる。このため、オゾンガスが分解されたとしてもごくわずかであり、この点が曝気槽内でのオゾンの分解を加味したRoth & Sullivanの式で求めた値と大きく異なる要因であると思われる。 By the way, when dissolving gases such as oxygen and ozone, an aeration tank is used almost without exception. In this case, microbubbles and nanobubbles having a diameter as small as possible are used to increase the gas-liquid contact area. Comparing the volume of the liquid phase and the gas phase at this time, the volume of the liquid phase is overwhelmingly large and the volume of the gas phase is extremely small. Therefore, in order to set the gas partial pressure in the liquid to a value close to saturation, it is necessary to keep the liquid in the tank for a long time and to aerate a gas such as ozone gas, and the liquid is discharged after entering the tank. It takes up to several hours. During this time, ozone gas decomposes. On the other hand, in the present invention, the time until the aqueous surfactant solution and ozone gas are mixed and foamed, defoamed to become ozone water can be suppressed to about several minutes. For this reason, even if ozone gas is decomposed, it is negligible, and this point seems to be a factor that is greatly different from the value obtained by the Roth & Sullivan equation taking into account the decomposition of ozone in the aeration tank.

また、化学工学界においては、酸素、オゾン等の難溶解性のガスの水に対する溶解速度は、主として気液界面における液側の境膜内の拡散速度に大きく支配されると考えられている(化学工学便覧改定七版、436頁、8・1ガス吸収の基礎、e項参照)。本発明の方法及び装置では、気泡の状態でオゾンガス等を界面活性剤水溶液に溶解させる。この場合、気泡を構成する液膜の厚さ(液側の境膜の厚さ)は30μm程度であり、かつ液膜の表裏両面がオゾンガス等の気体に接触している。そのため、液側の境膜の抵抗は事実上無視できる程度に小さく、この点も上述のRoth & Sullivanの式で求めた値と大きく異なる要因であると思われる。 Moreover, in the chemical engineering world, it is considered that the dissolution rate of hardly soluble gases such as oxygen and ozone in water is largely governed by the diffusion rate in the liquid film at the gas-liquid interface ( Chemical Engineering Handbook 7th Edition, 436 pages, 8.1 Basics of gas absorption, see e). In the method and apparatus of the present invention, ozone gas or the like is dissolved in an aqueous surfactant solution in the form of bubbles. In this case, the thickness of the liquid film constituting the bubbles (the thickness of the liquid-side boundary film) is about 30 μm, and both the front and back surfaces of the liquid film are in contact with a gas such as ozone gas. For this reason, the resistance of the liquid-side film is so small that it can be virtually ignored.

次に、実施例1及び2のオゾン水と、比較例1のオゾン泡の殺菌能を比較した。試験は、Pseudomonas fluorescensを付着させたPET樹脂製の棒を、実施例1、実施例2のオゾン水、又は比較例1のオゾン泡を入れたビーカーに浸し、浸漬時間と菌数の減少の関係を調べた。比較のために、1.2重量%のポリオキシエチレンアルキルエーテル水溶液についても、殺菌能を調べた(比較例2)。結果を図1のグラフに示す。X軸は浸漬後の経過時間を、Y軸は浸漬前の菌数をNとし、浸漬後所定時間経過後の菌数をNとして、菌数の減少を対数で表示した。 Next, the bactericidal ability of the ozone water of Examples 1 and 2 and the ozone foam of Comparative Example 1 were compared. In the test, a PET resin stick with Pseudomonas fluorescens attached was immersed in a beaker containing the ozone water of Example 1, Example 2 or the ozone bubbles of Comparative Example 1, and the relationship between the immersion time and the decrease in the number of bacteria. I investigated. For comparison, bactericidal ability was also examined for a 1.2% by weight polyoxyethylene alkyl ether aqueous solution (Comparative Example 2). The results are shown in the graph of FIG. The X-axis represents the elapsed time after immersion, the Y-axis represents the number of bacteria before immersion as N 0, and the number of bacteria after a predetermined time after immersion as N c , and the decrease in the number of bacteria was expressed in logarithm.

図5のグラフから明らかなように、1.2重量%のポリオキシエチレンアルキルエーテル水溶液(比較例2)には、殺菌効果は認められなかった。比較例1のオゾン泡は、2分が経過するまでは菌数の減少が観察されたが、その後、菌数の減少は停止し、十分な殺菌効果は得られなかった。一方、オゾンを含有する気泡を消泡させてオゾン水とした実施例1及び2では、浸漬開始後速やかに菌数の低下が観察された。4〜6分経過した時点で、菌数は処理前の1/10000にまで低下し、その後も菌数の低下が続いた。 As apparent from the graph of FIG. 5, the bactericidal effect was not observed in the 1.2 wt% polyoxyethylene alkyl ether aqueous solution (Comparative Example 2). In the ozone bubbles of Comparative Example 1, a decrease in the number of bacteria was observed until 2 minutes passed, but thereafter the decrease in the number of bacteria was stopped, and a sufficient bactericidal effect was not obtained. On the other hand, in Examples 1 and 2 in which bubbles containing ozone were defoamed into ozone water, a decrease in the number of bacteria was observed immediately after the start of immersion. When 4-6 minutes passed, the number of bacteria decreased to 1/10000 before the treatment, and the number of bacteria continued to decrease thereafter.

本発明の方法で製造したオゾン水は、比較例1に比べて強い殺菌能を示す。これは本発明の方法で製造したオゾン水は、従来提唱されてきた平衡濃度を越えるオゾン濃度を溶解していたことに起因すると思われる。また、菌体の周囲のオゾン泡は自然には流動しないため、菌体周辺での気泡の入れ替えが生じにくく、十分な殺菌能力が発揮されなかったものと思われる。 The ozone water produced by the method of the present invention exhibits a stronger bactericidal ability than Comparative Example 1. This is presumably because the ozone water produced by the method of the present invention was dissolved in an ozone concentration exceeding the equilibrium concentration that has been conventionally proposed. In addition, since the ozone bubbles around the cells do not flow naturally, it is difficult for bubbles to be exchanged around the cells, and it is considered that sufficient sterilization ability was not exhibited.

本発明によれば、従来提唱されてきた平衡濃度を越えてオゾンを界面活性剤水溶液に溶解させることが可能になる。比較的低い濃度のオゾンガスであっても、水溶液に十分な濃度のオゾンを溶解させることができるので、水溶液に溶解させるオゾンガスを発生させるに際して濃縮酸素を用いたり、オゾン分解の原因となる水分を脱湿する必要がなくなる。 According to the present invention, ozone can be dissolved in a surfactant aqueous solution exceeding the conventionally proposed equilibrium concentration. Even with a relatively low concentration of ozone gas, sufficient concentration of ozone can be dissolved in the aqueous solution. Therefore, when generating ozone gas to be dissolved in the aqueous solution, concentrated oxygen is used or moisture that causes ozone decomposition is removed. No need to moisten.

1 水溶液供給部
11 タンク
12 ポンプ
2 気体供給部
21 コンプレッサー
22 オゾン発生器
3 気泡発生器
31 水溶液供給管
32 気体供給管
33 気泡発生部
34 気泡径調整部
35 吐出管
36 メッシュ
4 消泡器
41 受入容器
42 吸引ファン
43 駆動原
44 貯留槽
45 壁面
DESCRIPTION OF SYMBOLS 1 Aqueous solution supply part 11 Tank 12 Pump 2 Gas supply part 21 Compressor 22 Ozone generator 3 Bubble generator 31 Aqueous solution supply pipe 32 Gas supply pipe 33 Bubble generation part 34 Bubble diameter adjustment part 35 Discharge pipe 36 Mesh 4 Defoamer 41 Acceptance Container 42 Suction fan 43 Driving source 44 Storage tank 45 Wall surface

Claims (4)

界面活性剤を含む水溶液に対して気体を混合して気泡を発生させ、気泡を構成する液膜に気泡内の気体を溶解させ、該気泡を消泡させることで気泡を構成する液体を分離し、界面活性剤を含む水溶液に前記気体を溶解させることを特徴とする気体溶解方法。 A gas is mixed with an aqueous solution containing a surfactant to generate bubbles, the gas in the bubbles is dissolved in a liquid film that forms the bubbles, and the bubbles are separated by separating the liquid from the bubbles. A gas dissolving method comprising dissolving the gas in an aqueous solution containing a surfactant. 界面活性剤を含む水溶液を供給する水溶液供給部と、気体を供給する気体供給部と、前記水溶液供給部及び気体供給部を接続して水溶液供給部から供給される界面活性剤を含む水溶液と気体供給部から供給される気体とを混合して発泡させる気泡発生器と、からなる気体溶解装置であって、
気泡発生器は、多孔質板からなる気泡発生部と、該気泡発生部で発生させた気泡を通して気泡径を調整する気泡径調整部とを備えることを特徴とする気体溶解装置。
An aqueous solution supply unit for supplying an aqueous solution containing a surfactant, a gas supply unit for supplying a gas, and an aqueous solution and a gas containing a surfactant supplied from the aqueous solution supply unit by connecting the aqueous solution supply unit and the gas supply unit A gas dissolving device comprising a bubble generator for mixing and foaming a gas supplied from a supply unit,
The bubble generator includes a bubble generation unit made of a porous plate and a bubble diameter adjustment unit that adjusts the bubble diameter through the bubbles generated by the bubble generation unit.
気泡発生器は、水溶液供給部から供給される界面活性剤を含む水溶液の流入路となる水溶液供給管と、気体供給部から供給される気体の流入路となる気体供給管と、水溶液供給管及び気体供給管の下流に配される多孔質板からなる気泡発生部と、該気泡発生部の下流に配される気泡径調整部と、気泡径調整部の下流に配される吐出管とを備え、
水溶液供給管から供給される界面活性剤を含む水溶液と、気体供給管から供給される気体とは、多孔質板上で混合されて発泡する請求項2に記載の気体溶解装置。
The bubble generator includes an aqueous solution supply pipe serving as an inflow path for an aqueous solution containing a surfactant supplied from an aqueous solution supply section, a gas supply pipe serving as an inflow path for a gas supplied from the gas supply section, an aqueous solution supply pipe, A bubble generation unit comprising a porous plate disposed downstream of the gas supply pipe, a bubble diameter adjustment unit disposed downstream of the bubble generation unit, and a discharge pipe disposed downstream of the bubble diameter adjustment unit ,
The gas dissolving apparatus according to claim 2, wherein the aqueous solution containing the surfactant supplied from the aqueous solution supply pipe and the gas supplied from the gas supply pipe are mixed and foamed on the porous plate.
気体溶解装置は気体発生器に接続される消泡器をさらに備えており、
該消泡器は、気泡発生器の吐出管から供給される気泡を受け入れる受入容器と、受入容器の上に配置される吸引ファンと、吸引ファンを回転させる駆動原と、前記受入容器及び吸引ファンを収容する貯留槽とを備え、
気泡は吸引ファンによって吸い上げられて、吸引ファンの回転による遠心力によって半径方向に飛ばされて貯留槽の壁面に衝突させて消泡される請求項2に記載の気体溶解装置。

The gas dissolving device further comprises a defoamer connected to the gas generator,
The defoamer includes a receiving container for receiving bubbles supplied from a discharge pipe of a bubble generator, a suction fan disposed on the receiving container, a driving source for rotating the suction fan, and the receiving container and the suction fan. And a storage tank for containing
The gas dissolving device according to claim 2, wherein the bubbles are sucked up by a suction fan, blown in a radial direction by a centrifugal force generated by the rotation of the suction fan, and collided with a wall surface of a storage tank to be defoamed.

JP2012048442A 2012-03-05 2012-03-05 Gas dissolving method and gas dissolving apparatus Active JP5985838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012048442A JP5985838B2 (en) 2012-03-05 2012-03-05 Gas dissolving method and gas dissolving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012048442A JP5985838B2 (en) 2012-03-05 2012-03-05 Gas dissolving method and gas dissolving apparatus

Publications (2)

Publication Number Publication Date
JP2013184072A true JP2013184072A (en) 2013-09-19
JP5985838B2 JP5985838B2 (en) 2016-09-06

Family

ID=49386022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012048442A Active JP5985838B2 (en) 2012-03-05 2012-03-05 Gas dissolving method and gas dissolving apparatus

Country Status (1)

Country Link
JP (1) JP5985838B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080756A (en) * 2013-10-22 2015-04-27 パナソニック株式会社 Fine bubble generation device and bubble diameter control method
CN112041971A (en) * 2018-05-02 2020-12-04 国立大学法人东北大学 Method for producing heated ozone water, and semiconductor wafer cleaning liquid
CN113035284A (en) * 2019-12-25 2021-06-25 中国石油大学(北京) Henry coefficient equation construction method and mixed hydrocarbon hydrogen solubility prediction method

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141764A (en) * 1974-04-30 1975-11-14
JPH0788742A (en) * 1993-09-22 1995-04-04 Toyota Motor Corp Foaming state machining fluid delivery device
JPH09141072A (en) * 1995-11-24 1997-06-03 Idec Izumi Corp Method for controlling bubble diameter and device therefor
JPH1080626A (en) * 1996-07-19 1998-03-31 Boc Group Plc:The Liquid treatment
JPH1080264A (en) * 1996-09-09 1998-03-31 Oonitto Kk Sterilization with ozone and device for sterilization with ozone
JPH11239971A (en) * 1998-02-24 1999-09-07 Toyota Motor Corp Porous member, working fluid foaming method and working fluid foaming device
JPH11290664A (en) * 1998-04-15 1999-10-26 Ishikawajima Shibaura Mach Co Ltd Foam generator
JP2003311282A (en) * 2002-04-23 2003-11-05 Yaskawa Electric Corp Water treatment method and apparatus therefor
JP2004298840A (en) * 2003-04-01 2004-10-28 Tetsuhiko Fujisato Vessel for adjusting amount of gas to be dissolved
JP3782090B2 (en) * 2004-09-01 2006-06-07 資源開発株式会社 Cleaning device and bubble generating nozzle used in the same
JP3136370U (en) * 2007-08-03 2007-10-25 エコデザイン株式会社 Ozone-containing soap foam generator
WO2008108331A1 (en) * 2007-03-05 2008-09-12 Ohnit Co., Ltd. Low temperature plasma generator
JP2008240428A (en) * 2007-03-28 2008-10-09 Aisin Seiki Co Ltd Bubble mixed water supply device
JP2010029841A (en) * 2008-07-03 2010-02-12 Hiroshima Kasei Ltd Method for producing hydrogenated water
JP2010158672A (en) * 2008-12-10 2010-07-22 Lion Corp Bubble generation method, bubble generation apparatus, and ozone water producing method
JP2011031190A (en) * 2009-08-03 2011-02-17 Panasonic Electric Works Co Ltd Method for generating micro bubble, micro bubble generator, and the like
JP2011206689A (en) * 2010-03-30 2011-10-20 Mie Univ Microbubble forming apparatus

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141764A (en) * 1974-04-30 1975-11-14
JPH0788742A (en) * 1993-09-22 1995-04-04 Toyota Motor Corp Foaming state machining fluid delivery device
JPH09141072A (en) * 1995-11-24 1997-06-03 Idec Izumi Corp Method for controlling bubble diameter and device therefor
JPH1080626A (en) * 1996-07-19 1998-03-31 Boc Group Plc:The Liquid treatment
JPH1080264A (en) * 1996-09-09 1998-03-31 Oonitto Kk Sterilization with ozone and device for sterilization with ozone
JPH11239971A (en) * 1998-02-24 1999-09-07 Toyota Motor Corp Porous member, working fluid foaming method and working fluid foaming device
JPH11290664A (en) * 1998-04-15 1999-10-26 Ishikawajima Shibaura Mach Co Ltd Foam generator
JP2003311282A (en) * 2002-04-23 2003-11-05 Yaskawa Electric Corp Water treatment method and apparatus therefor
JP2004298840A (en) * 2003-04-01 2004-10-28 Tetsuhiko Fujisato Vessel for adjusting amount of gas to be dissolved
JP3782090B2 (en) * 2004-09-01 2006-06-07 資源開発株式会社 Cleaning device and bubble generating nozzle used in the same
WO2008108331A1 (en) * 2007-03-05 2008-09-12 Ohnit Co., Ltd. Low temperature plasma generator
JP2008240428A (en) * 2007-03-28 2008-10-09 Aisin Seiki Co Ltd Bubble mixed water supply device
JP3136370U (en) * 2007-08-03 2007-10-25 エコデザイン株式会社 Ozone-containing soap foam generator
JP2010029841A (en) * 2008-07-03 2010-02-12 Hiroshima Kasei Ltd Method for producing hydrogenated water
JP2010158672A (en) * 2008-12-10 2010-07-22 Lion Corp Bubble generation method, bubble generation apparatus, and ozone water producing method
JP2011031190A (en) * 2009-08-03 2011-02-17 Panasonic Electric Works Co Ltd Method for generating micro bubble, micro bubble generator, and the like
JP2011206689A (en) * 2010-03-30 2011-10-20 Mie Univ Microbubble forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080756A (en) * 2013-10-22 2015-04-27 パナソニック株式会社 Fine bubble generation device and bubble diameter control method
CN112041971A (en) * 2018-05-02 2020-12-04 国立大学法人东北大学 Method for producing heated ozone water, and semiconductor wafer cleaning liquid
US11817309B2 (en) 2018-05-02 2023-11-14 Tohoku University Method of producing heated ozone water, heated ozone water, and semiconductor wafer-cleaning liquid
CN113035284A (en) * 2019-12-25 2021-06-25 中国石油大学(北京) Henry coefficient equation construction method and mixed hydrocarbon hydrogen solubility prediction method
CN113035284B (en) * 2019-12-25 2024-04-05 中国石油大学(北京) Henry coefficient equation construction method and mixed hydrocarbon hydrogen solubility prediction method

Also Published As

Publication number Publication date
JP5985838B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
US7494534B2 (en) Method, device, and system for controlling dissolved amount of gas
JP2011088979A (en) Cleaning liquid, cleaning method, and cleaning liquid production device
JP6384765B2 (en) Microbubble forming method and microbubble forming apparatus
JP2020116575A (en) Gas dissolving device and gas dissolving method
JP2011020005A (en) Nano bubble generator
JP5985838B2 (en) Gas dissolving method and gas dissolving apparatus
JP2011062669A (en) Drinking water, using method of drinking water, refining method of drinking water and drinking water generating device
JP2008520527A (en) Chlorine dioxide generator
KR20050016034A (en) Equipment for producing chlorine dioxide
JP2010158672A (en) Bubble generation method, bubble generation apparatus, and ozone water producing method
JP6837351B2 (en) Mixing aqueous solution manufacturing equipment and manufacturing method
JP2010221180A (en) Ozone water generating apparatus and ozone water generating method
JP4360502B1 (en) Ozone water generator
JP2017131822A (en) Hydrogen water generator and hydrogen water generation method
JP2013094747A (en) Ozone liquid generator and ozone liquid generation method
JP7204211B2 (en) Batch-type microbubble liquid generator and generation method
JP5364313B2 (en) Refractory compound removing apparatus and refractory compound removing method
JP2019195805A (en) Hydrogen dissolved water manufacturing apparatus and method, and hydrogen supply apparatus
JP2004237268A (en) Oxygen water making apparatus
KR101690973B1 (en) Neutralizing agent generation apparatus
JP2002143867A (en) Carbonated hot water preparation device
JP2005144206A (en) Fine ozone bubble liquid generator
JP7268780B1 (en) space purifier
JP2010158671A (en) Method for generating bubble and method for producing ozonized water
JP2881529B2 (en) Ozone water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160804

R150 Certificate of patent or registration of utility model

Ref document number: 5985838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250