JP2013182976A - 埋め込み型光半導体素子 - Google Patents
埋め込み型光半導体素子 Download PDFInfo
- Publication number
- JP2013182976A JP2013182976A JP2012045099A JP2012045099A JP2013182976A JP 2013182976 A JP2013182976 A JP 2013182976A JP 2012045099 A JP2012045099 A JP 2012045099A JP 2012045099 A JP2012045099 A JP 2012045099A JP 2013182976 A JP2013182976 A JP 2013182976A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- semiconductor layer
- semi
- ridge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
【課題】電流ブロック層を流れるリーク電流を十分に低減する。
【解決手段】p型InP基板1上にp型InPクラッド層2、活性層3、及びn型InPクラッド層4が順に積層され、これらはリッジ5を構成している。リッジ5の側部を電流ブロック層6が埋め込んでいる。リッジ5及び電流ブロック層6上にn型InPコンタクト層7が設けられている。電流ブロック層6は、p型InP基板1上に順に積層されたp型InP層8、RuドープInP層9、及びFeドープInP層10を有する。p型InP層8はリッジ5の側面と底面を覆う。RuドープInP層9は電子よりもホールを多くトラップし、FeドープInP層10はホールよりも電子を多くトラップする。RuドープInP層9とn型InPコンタクト層7の間にFeドープInP層10が配置されていて、RuドープInP層9がn型InPコンタクト層7と直接に接していない。
【選択図】図1
【解決手段】p型InP基板1上にp型InPクラッド層2、活性層3、及びn型InPクラッド層4が順に積層され、これらはリッジ5を構成している。リッジ5の側部を電流ブロック層6が埋め込んでいる。リッジ5及び電流ブロック層6上にn型InPコンタクト層7が設けられている。電流ブロック層6は、p型InP基板1上に順に積層されたp型InP層8、RuドープInP層9、及びFeドープInP層10を有する。p型InP層8はリッジ5の側面と底面を覆う。RuドープInP層9は電子よりもホールを多くトラップし、FeドープInP層10はホールよりも電子を多くトラップする。RuドープInP層9とn型InPコンタクト層7の間にFeドープInP層10が配置されていて、RuドープInP層9がn型InPコンタクト層7と直接に接していない。
【選択図】図1
Description
本発明は、リッジの側部を電流ブロック層で埋め込んだ埋め込み型光半導体素子に関する。
従来の埋め込み型光半導体素子では、電流ブロック層として、サイリスタ構造、ポリイミド埋め込み構造、1種類の半絶縁性材料を含む構造などがある。
サイリスタ構造はp型とn型の半導体をp−n−p−nと積層したものである。しかし、p―n接合界面を含むため、空乏層に起因する容量成分があり、光通信用途などの高速変調の帯域を狭くする。
絶縁材料であるポリイミドは電流ブロック効果を有し、かつ容量を低減できる。しかし、ポリイミドと半導体は熱膨張係数が大きく違うため、ポリイミド電流ブロック層の形成は技術的難度が高い。また、ポリイミドと半導体の比熱の違いによる放熱性不良の問題がある。
半絶縁性材料は電流ブロック効果を有し、かつ容量を低減できる。従って、半絶縁性材料を電流ブロック層に用いれば、リーク電流を抑制することができ、光通信における高速変調に耐えることができる。しかし、多くの半絶縁性材料は電子とホールの一方しかトラップできない。従って、電子をトラップする材料の場合には、その周囲をn型半導体で覆ってホールの流入を抑制する必要がある。一方、ホールをトラップする材料の場合には、その周囲をp型半導体で覆って電子の流入を抑制する必要がある。
また、両性トラップ材料として知られるRuは、主にホールをトラップし、電子トラップによる電子電流に対する電流ブロック効果は弱い。従って、Ruドープ半導体の周囲をp型半導体で覆って電子の流入を抑制する必要がある。
p型InP層とTiドープ半絶縁性半導体層が積層された電流ブロック層も提案されている(例えば、特許文献1参照)。電子は有効質量が小さいため、特に高温動作時にn側からp型InP層をオーバーフローしてTiドープ半絶縁性半導体層に流入する。その電子とTiドープ半絶縁性半導体層にトラップされたホールが再結合することでリーク電流が発生し、特性が劣化する。これを避けるためにp型InP層を高濃度化・厚膜化すると、キャリア吸収による損失や、p型InP層を流れるリーク電流の増大などにより、レーザ特性が劣化する。
半導体レーザ動作では、注入電流が大きく、かつ広い動作温度範囲を求められる。特に高温動作時には、キャリアオーバーフローによるリーク電流が生じやすく、電流ブロック層へのキャリアの流入を避けることができない。しかし、上記のように1種類の半絶縁性材料だけを用いた電流ブロック構造の場合、その半絶縁性材料がトラップできないキャリアの流入を十分に抑制することができない。これに対して、電子をトラップするFeドープ半導体層とホールをトラップするRuドープ半導体層を積層した電流ブロック層が提案されている(例えば、特許文献2参照)。
しかし、Feドープ半導体層とRuドープ半導体層を積層した従来の電流ブロックでは、電子に対するトラップ効果が弱いRuドープ半導体層がn型コンタクト層に直接に接していた。このため、n型コンタクト層から熱的にオーバーホールする電子に起因するリーク電流を十分に低減することができなかった。電子のオーバーフローによるリーク電流はレーザ特性に特に悪影響を与える。
本発明は、上述のような課題を解決するためになされたもので、その目的は電流ブロック層を流れるリーク電流を十分に低減することができる埋め込み型光半導体素子を得るものである。
本発明に係る埋め込み型光半導体素子は、p型半導体基板と、前記p型半導体基板上に順に積層されたp型クラッド層、活性層、及びn型クラッド層を有するリッジと、前記リッジの側部を埋め込む電流ブロック層と、前記リッジ及び前記電流ブロック層上に設けられたn型コンタクト層とを備え、前記電流ブロック層は、前記p型半導体基板上に順に積層されたp型半導体層、ホールトラップ半絶縁性半導体層、及び電子トラップ半絶縁性半導体層を有し、前記p型半導体層は前記リッジの側面と底面を覆い、前記ホールトラップ半絶縁性半導体層は、電子よりもホールを多くトラップし、前記電子トラップ半絶縁性半導体層は、ホールよりも電子を多くトラップし、前記ホールトラップ半絶縁性半導体層と前記n型コンタクト層の間に前記電子トラップ半絶縁性半導体層が配置されていて、前記ホールトラップ半絶縁性半導体層が前記n型コンタクト層と直接に接していないことを特徴とする。
本発明により、電流ブロック層を流れるリーク電流を十分に低減することができる。
本発明の実施の形態に係る埋め込み型光半導体素子について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
図1は、本発明の実施の形態1に係る埋め込み型光半導体素子を示す断面図である。p型InP基板1上にp型InPクラッド層2、発光領域である量子井戸構造の活性層3、及びn型InPクラッド層4が順に積層され、これらはリッジ5を構成している。リッジ5の側部を電流ブロック層6が埋め込んでいる。リッジ5及び電流ブロック層6上にn型InPコンタクト層7が設けられている。ただし、各層の材料や活性層3の構造などは半導体レーザの目的を達するものであればどのようなものでもよい。
図1は、本発明の実施の形態1に係る埋め込み型光半導体素子を示す断面図である。p型InP基板1上にp型InPクラッド層2、発光領域である量子井戸構造の活性層3、及びn型InPクラッド層4が順に積層され、これらはリッジ5を構成している。リッジ5の側部を電流ブロック層6が埋め込んでいる。リッジ5及び電流ブロック層6上にn型InPコンタクト層7が設けられている。ただし、各層の材料や活性層3の構造などは半導体レーザの目的を達するものであればどのようなものでもよい。
電流ブロック層6は、p型InP基板1上に順に積層された、p型InP層8、RuドープInP層9、及びFeドープInP層10を有する。
p型InP層8はリッジ5の側面と底面を覆っている。これは、RuドープInP層9が活性層3とn型InPクラッド層4に接しないようにするためで、p型InP層8が、少なくとも、リッジ5のn型InPクラッド層4の側面と活性層3の側面を覆っていれば、p型InPクラッド層2を覆わなくてもよい。
p型InP層8はリッジ5の側面と底面を覆っている。これは、RuドープInP層9が活性層3とn型InPクラッド層4に接しないようにするためで、p型InP層8が、少なくとも、リッジ5のn型InPクラッド層4の側面と活性層3の側面を覆っていれば、p型InPクラッド層2を覆わなくてもよい。
RuドープInP層9は、電子とホールの両方をトラップするが主にホールをトラップする。即ち、RuドープInP層9は、電子よりもホールを多くトラップするホールトラップ半絶縁性半導体層である。一方、FeドープInP層10は、電子をトラップする。即ち、FeドープInP層10は、ホールよりも電子を多くトラップする電子トラップ半絶縁性半導体層である。
RuドープInP層9とn型InPコンタクト層7の間にFeドープInP層10が配置されていて、RuドープInP層9がn型InPコンタクト層7と直接に接していない。
続いて、上記素子の製造方法を説明する。図2から図5は、本発明の実施の形態1に係る埋め込み型光半導体素子の製造工程を示す断面図である。
まず、図2に示すように、p型InP基板1上に、p型InPクラッド層2、活性層3、及びn型InPクラッド層4を順にエピタキシャル成長により形成する。
次に、図3に示すように、n型InPクラッド層4上に加工用マスク11をフォトリソグラフィ等により形成する。加工用マスク11はフォトレジスト、酸化シリコン、窒化シリコンなどの誘電体薄膜であり、その種類は問わない。
次に、図4に示すように、加工用マスク11の直下の部分を残しつつ、p型InPクラッド層2、活性層3、及びn型InPクラッド層4をエッチングしてリッジ5を形成する。エッチングは、ドライエッチングやウェットエッチングなどであり、その手法は問わない。
次に、図5に示すように、リッジ5の側部を埋め込む電流ブロック層6をエピタキシャル成長により形成する。加工用マスク11を除去した後に、電極とのコンタクトをとるためのn型InPコンタクト層7をエピタキシャル成長により形成する。
続いて、実施の形態1の効果を比較例と比較して説明する。図6は比較例に係る埋め込み型光半導体素子を示す断面図である。比較例では、FeドープInP層10の代わりにp型InP層12を用いている。即ち、電流ブロック層に1種類の半絶縁性材料だけを用いている。
図7は、実施の形態1と比較例の85℃での電流―光出力特性を示す図である。本実施の形態の方が比較例よりも電流―光出力特性が良好になっている。図8は、実施の形態1の図1と比較例の図6のA−Bにおける電流を示す図である。本実施の形態の方が比較例よりも電流ブロック層を流れる電流が減少している。図9は、比較例の図6のC−Dにおける電流を示す図である。図10は、実施の形態1の図1のC−Dにおける電流を示す図である。本実施の形態の方が比較例よりも活性層3を流れる電流が大きくなっている。
ここで、ホールをトラップする半絶縁性半導体層だけでは電子電流に対する絶縁性を保つことができず、電子をトラップする半絶縁性半導体層ではホール電流に対する絶縁性を保つことができない。そこで、実施の形態1では両者を用いて電子電流とホール電流に対する絶縁性を保っている。これにより、電流ブロック層を流れるリーク電流を低減し、活性層3への電流注入を効率的に行うことができる。この結果、電流―光出力特性が改善する。
また、p型InP層8が無いと、RuドープInP層9とFeドープInP層10の界面が活性層3と同じ高さでなければリーク電流が発生する。しかし、活性層3の層厚は数百nmなので、この要求を満たす加工精度を得るのは困難である。これに対して、本実施の形態では、活性層3の側面をp型InP層8が覆っているため、リーク電流を低減できる。従って、RuドープInP層9とFeドープInP層10の界面の高さについて高い加工精度は要求されないため、安定した特性の半導体レーザを得ることができる。
また、本実施の形態では、RuドープInP層9とn型InPコンタクト層7の間にFeドープInP層10が配置されていて、電子に対するトラップ効果が弱いRuドープInP層9がn型InPコンタクト層7に直接に接していない。このため、n型InPコンタクト層7から熱的にオーバーホールする電子に起因するリーク電流を抑制することができる。よって、電流ブロック層を流れるリーク電流を十分に低減することができる。この結果、良好な電流―光出力特性と、広い動作温度範囲を有する埋め込み型光半導体素子を得ることができる。
実施の形態2.
図11は、本発明の実施の形態2に係る埋め込み型光半導体素子を示す断面図である。n型InP基板13上に、n型InPクラッド層4、活性層3、及びp型InPクラッド層2が順に積層され、これらはリッジ5を構成している。リッジ5の側部を電流ブロック層6が埋め込んでいる。リッジ5及び電流ブロック層6上にp型InPコンタクト層14が設けられている。
図11は、本発明の実施の形態2に係る埋め込み型光半導体素子を示す断面図である。n型InP基板13上に、n型InPクラッド層4、活性層3、及びp型InPクラッド層2が順に積層され、これらはリッジ5を構成している。リッジ5の側部を電流ブロック層6が埋め込んでいる。リッジ5及び電流ブロック層6上にp型InPコンタクト層14が設けられている。
電流ブロック層6は、n型InP基板13上に順に積層されたp型InP層8、n型InP層15、FeドープInP層10、及び、RuドープInP層9を有する。FeドープInP層10の周囲に設けられたn型InP層15は、ホールがFeドープInP層10に流入するのを抑制する。
p型InP層8はリッジ5の側面と底面を覆う。RuドープInP層9とn型InPクラッド層4の間にFeドープInP層10が配置されていて、電子に対するトラップ効果が弱いRuドープInP層9がn型InPクラッド層4と直接に接していない。このため、n型InPクラッド層4から熱的にオーバーホールする電子に起因するリーク電流を抑制することができる。よって、実施の形態1と同様に、電流ブロック層を流れるリーク電流を十分に低減することができる。この結果、良好な電流―光出力特性と、広い動作温度範囲を有する埋め込み型光半導体素子を得ることができる。
なお、RuドープInP層9及びFeドープInP層10の層厚は、キャリアを十分にトラップできる層厚に設定する必要がある。半絶縁性半導体のキャリアトラップ能力を示す定数として捕獲断面積σ(m2)がある。この捕獲断面積を用いれば、トラップ準位密度n(m−3)からキャリアの平均自由工程L=1/(Cn)を見積もることができる。キャリアを十分にトラップするには、キャリアの平均自由工程に対して十分な層厚を確保する必要がある。捕獲断面積は材料系により異なるため、各々の材料で文献値を参考にする。また、調査が十分でない材料については実験により必要な層厚を知る必要がある。
また、実施の形態1,2では、2種類の半絶縁性半導体を電流ブロック層に用いたが、3種類以上の半絶縁性半導体を用いてもよい。ただし、電子をトラップする半絶縁性半導体とホールをトラップする半絶縁性半導体をそれぞれ少なくとも1種類は含む必要がある。また、両性トラップの半絶縁性半導体を用いる場合でも、優位なトラップキャリア極性が異なる半絶縁性半導体をそれぞれ少なくとも1種類は含む必要がある。
また、実施の形態1,2では活性層構造を有する半導体レーザについて述べたが、これに限らず、本発明は埋め込み構造を有する光半導体素子に適用できる。例えば、端面での反射による光帰還を行うファブリー・ペロー型半導体レーザ、共振器方向に活性層上方又は下方に屈折率摂動を与える回折格子を有し回折格子によって光帰還を行う分布帰還型半導体レーザ、電界吸収型変調器、Mach−Zehnder干渉型変調器などに適用できる。
1 p型InP基板(p型半導体基板)
2 p型InPクラッド層(p型クラッド層)
3 活性層
4 n型InPクラッド層(n型クラッド層)
5 リッジ
6 電流ブロック層
7 n型InPコンタクト層(n型コンタクト層)
8 p型InP層(p型半導体層)
9 RuドープInP層(ホールトラップ半絶縁性半導体層)
10 FeドープInP層(電子トラップ半絶縁性半導体層)
13 n型InP基板(n型半導体基板)
14 p型InPコンタクト層(p型コンタクト層)
2 p型InPクラッド層(p型クラッド層)
3 活性層
4 n型InPクラッド層(n型クラッド層)
5 リッジ
6 電流ブロック層
7 n型InPコンタクト層(n型コンタクト層)
8 p型InP層(p型半導体層)
9 RuドープInP層(ホールトラップ半絶縁性半導体層)
10 FeドープInP層(電子トラップ半絶縁性半導体層)
13 n型InP基板(n型半導体基板)
14 p型InPコンタクト層(p型コンタクト層)
Claims (3)
- p型半導体基板と、
前記p型半導体基板上に順に積層されたp型クラッド層、活性層、及びn型クラッド層を有するリッジと、
前記リッジの側部を埋め込む電流ブロック層と、
前記リッジ及び前記電流ブロック層上に設けられたn型コンタクト層とを備え、
前記電流ブロック層は、前記p型半導体基板上に順に積層されたp型半導体層、ホールトラップ半絶縁性半導体層、及び電子トラップ半絶縁性半導体層を有し、
前記p型半導体層は前記リッジの側面と底面を覆い、
前記ホールトラップ半絶縁性半導体層は、電子よりもホールを多くトラップし、
前記電子トラップ半絶縁性半導体層は、ホールよりも電子を多くトラップし、
前記ホールトラップ半絶縁性半導体層と前記n型コンタクト層の間に前記電子トラップ半絶縁性半導体層が配置されていて、前記ホールトラップ半絶縁性半導体層が前記n型コンタクト層と直接に接していないことを特徴とする埋め込み型光半導体素子。 - n型半導体基板と、
前記n型半導体基板上に順に積層されたn型クラッド層、活性層、及びp型クラッド層を有するリッジと、
前記リッジの側部を埋め込む電流ブロック層と、
前記リッジ及び前記電流ブロック層上に設けられたp型コンタクト層とを備え、
前記電流ブロック層は、前記n型半導体基板上に順に積層された、p型半導体層、n型半導体層、電子トラップ半絶縁性半導体層、及び、ホールトラップ半絶縁性半導体層を有し、
前記p型半導体層は前記リッジの側面と底面を覆い、
前記n型半導体層は前記p型半導体層を覆い、
前記電子トラップ半絶縁性半導体層は、ホールよりも電子を多くトラップし、
前記ホールトラップ半絶縁性半導体層は、電子よりもホールを多くトラップし、
前記電子トラップ半絶縁性半導体層と前記p型コンタクト層の間に前記ホールトラップ半絶縁性半導体層が配置されていて、前記電子トラップ半絶縁性半導体層が前記p型コンタクト層と直接に接していないことを特徴とする埋め込み型光半導体素子。 - 前記電子トラップ半絶縁性半導体層はFeドープ半導体層であり、
前記ホールトラップ半絶縁性半導体層はRuドープ半導体層であることを特徴とする請求項1又は2に記載の埋め込み型光半導体素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012045099A JP2013182976A (ja) | 2012-03-01 | 2012-03-01 | 埋め込み型光半導体素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012045099A JP2013182976A (ja) | 2012-03-01 | 2012-03-01 | 埋め込み型光半導体素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013182976A true JP2013182976A (ja) | 2013-09-12 |
Family
ID=49273437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012045099A Pending JP2013182976A (ja) | 2012-03-01 | 2012-03-01 | 埋め込み型光半導体素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013182976A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9257815B1 (en) | 2014-07-28 | 2016-02-09 | Mitsubishi Electric Corporation | Optical semiconductor device |
WO2019220514A1 (ja) * | 2018-05-14 | 2019-11-21 | 三菱電機株式会社 | 光半導体装置及びその製造方法 |
WO2023228234A1 (ja) * | 2022-05-23 | 2023-11-30 | 三菱電機株式会社 | 半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0349282A (ja) * | 1989-07-17 | 1991-03-04 | Sumitomo Electric Ind Ltd | 半導体発光装置 |
JPH0353582A (ja) * | 1989-07-21 | 1991-03-07 | Nec Corp | 高抵抗半導体層埋め込み型半導体レーザ |
JPH0382184A (ja) * | 1989-08-25 | 1991-04-08 | Nec Corp | 高抵抗埋め込み半導体レーザ及びその製造方法 |
JP2010010622A (ja) * | 2008-06-30 | 2010-01-14 | Sumitomo Electric Ind Ltd | 半導体光素子 |
WO2011098797A2 (en) * | 2010-02-09 | 2011-08-18 | The Centre For Integrated Photonics Limited | Opto-electronic device |
-
2012
- 2012-03-01 JP JP2012045099A patent/JP2013182976A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0349282A (ja) * | 1989-07-17 | 1991-03-04 | Sumitomo Electric Ind Ltd | 半導体発光装置 |
JPH0353582A (ja) * | 1989-07-21 | 1991-03-07 | Nec Corp | 高抵抗半導体層埋め込み型半導体レーザ |
JPH0382184A (ja) * | 1989-08-25 | 1991-04-08 | Nec Corp | 高抵抗埋め込み半導体レーザ及びその製造方法 |
JP2010010622A (ja) * | 2008-06-30 | 2010-01-14 | Sumitomo Electric Ind Ltd | 半導体光素子 |
WO2011098797A2 (en) * | 2010-02-09 | 2011-08-18 | The Centre For Integrated Photonics Limited | Opto-electronic device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9257815B1 (en) | 2014-07-28 | 2016-02-09 | Mitsubishi Electric Corporation | Optical semiconductor device |
JP2016031970A (ja) * | 2014-07-28 | 2016-03-07 | 三菱電機株式会社 | 光半導体装置 |
WO2019220514A1 (ja) * | 2018-05-14 | 2019-11-21 | 三菱電機株式会社 | 光半導体装置及びその製造方法 |
WO2023228234A1 (ja) * | 2022-05-23 | 2023-11-30 | 三菱電機株式会社 | 半導体レーザ、半導体レーザ装置、及び半導体レーザの製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sysak et al. | Hybrid silicon laser technology: A thermal perspective | |
WO2006046276A1 (ja) | アバランシェフォトダイオード | |
JP2009290161A (ja) | 光半導体装置 | |
JP2008053649A (ja) | 埋め込み型半導体レーザ | |
JP2013149665A (ja) | 量子カスケード半導体レーザ | |
TW201432346A (zh) | 用於光子積體電路器件的混合光學調變器 | |
JP6421708B2 (ja) | 半導体光素子を作製する方法及び半導体光素子 | |
JP5898698B2 (ja) | 半導体光素子 | |
KR102661948B1 (ko) | 반도체 레이저 장치 및 그 제조 방법 | |
US9147797B2 (en) | Semiconductor light emitting device and fabrication method thereof | |
JP2016031970A (ja) | 光半導体装置 | |
JP5746222B2 (ja) | 光−電子デバイス | |
US20100003778A1 (en) | Method of manufacturing semiconductor laser | |
JP2013182976A (ja) | 埋め込み型光半導体素子 | |
JP2012089622A (ja) | 半導体レーザ素子 | |
KR100404307B1 (ko) | 매립된 헤테로 구조를 갖는 형태의 레이저 다이오드 | |
JP2016181558A (ja) | 半導体受光素子 | |
US7656921B2 (en) | Semiconductor laser device and method for manufacturing the same semiconductor laser device | |
JP4985298B2 (ja) | アバランシェフォトダイオード | |
JP2008294076A (ja) | 半導体レーザ素子 | |
JP2011040632A (ja) | 半導体光素子 | |
JP6783569B2 (ja) | 光半導体素子 | |
JP2013229568A (ja) | 半導体光装置 | |
JP7410276B2 (ja) | 半導体光デバイス | |
US8981383B1 (en) | Efficient substrate heat transfer layer for photonic devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151027 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160315 |