[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013181183A - High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same - Google Patents

High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same Download PDF

Info

Publication number
JP2013181183A
JP2013181183A JP2012044048A JP2012044048A JP2013181183A JP 2013181183 A JP2013181183 A JP 2013181183A JP 2012044048 A JP2012044048 A JP 2012044048A JP 2012044048 A JP2012044048 A JP 2012044048A JP 2013181183 A JP2013181183 A JP 2013181183A
Authority
JP
Japan
Prior art keywords
less
steel sheet
plane anisotropy
yield strength
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012044048A
Other languages
Japanese (ja)
Inventor
Kaneharu Okuda
金晴 奥田
Kenji Kawamura
健二 河村
周作 ▲高▼木
Shusaku Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012044048A priority Critical patent/JP2013181183A/en
Priority to ZA2012/08370A priority patent/ZA201208370B/en
Priority to CN201210505904.0A priority patent/CN103290310B/en
Priority to MYPI2012005461A priority patent/MY171985A/en
Priority to BR102013004716-3A priority patent/BR102013004716B1/en
Priority to RU2013109050/02A priority patent/RU2534703C2/en
Publication of JP2013181183A publication Critical patent/JP2013181183A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet having low in-plane anisotropy of yield strength and excellent press formability.SOLUTION: A high strength cold rolled steel sheet has a composition comprising by mass%, C: 0.06 to 0.12%, Si: not more than 0.7%, Mn: 1.2 to 2.6%, P: not more than 0.020%, S: not more than 0.03%, sol. Al: 0.01 to 0.5%, and N: not more than 0.005%, with the balance being Fe and inevitable impurities, and has a structure comprising a ferrite phase in a volume ratio of 60% or more as a main phase and a martensite phase in a volume ratio of 5% or more and not more than 20%, relative to the whole steel sheet structure, with a three dimensional crystal orientation distribution function at {φ1, Φ, φ2}={0°, 35°, 45°} made to be not higher than 2.5.

Description

本発明は、自動車用鋼板等の使途に有用な、降伏強度の面内異方性が小さい高強度冷延鋼板およびその製造方法に関する。   The present invention relates to a high-strength cold-rolled steel sheet having a low in-plane anisotropy of yield strength, which is useful for the use of steel sheets for automobiles, and a method for producing the same.

近年、地球環境保全の観点から、COの排出量を抑制するため、自動車の燃費改善が要求されている。加えて、衝突時における乗員の安全を確保するため、自動車車体の衝突特性を中心とした安全性向上も要求されている。このため、自動車車体の軽量化および強化が積極的に進められている。
自動車車体の軽量化と強化を同時に満たすには、部品素材を高強度化することにより、剛性に問題とならない範囲で板厚を薄肉化することが効果的であり、最近では高強度鋼板が自動車用部品に積極的に使用されている。
In recent years, in order to suppress CO 2 emissions from the viewpoint of global environmental conservation, there has been a demand for improved fuel efficiency of automobiles. In addition, in order to ensure the safety of passengers in the event of a collision, it is also required to improve safety centering on the collision characteristics of the automobile body. For this reason, the weight reduction and reinforcement of the automobile body are being actively promoted.
In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is effective to reduce the plate thickness within the range where rigidity does not become a problem by increasing the strength of component materials. Actively used for parts.

軽量化効果は、鋼板が高強度であるほど大きく、自動車業界では、例えば衝撃吸収用の骨格構造用材料として、引張強度(TS)が500MPa以上、あるいはさらに590MPa以上の鋼板を使用する動向にある。
一方で、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車用鋼板は優れたプレス成形性を有していることが必要とされる。しかしながら、高強度鋼板は、通常の軟鋼板に比べてプレス成形性、延性、深絞り性が大きく劣化するため、その改善が求められている。
The weight reduction effect increases as the strength of the steel plate increases. In the automobile industry, for example, as a skeletal structure material for absorbing shock, there is a trend to use a steel plate having a tensile strength (TS) of 500 MPa or more, or even 590 MPa or more. .
On the other hand, since many automobile parts made of steel plates are formed by press working, the automobile steel plates are required to have excellent press formability. However, high strength steel sheets are required to be improved because press formability, ductility, and deep drawability are greatly deteriorated as compared with ordinary mild steel sheets.

高強度鋼板としては、例えば440MPa級までは、成形性に優れる極低炭素鋼板にTi、Nbを固溶C、固溶Nを固定する量添加し、IF化(Interstitial free)した鋼をベースとして、これにSi、Mn、Pなどの固溶強化元素を添加した鋼板がある。
また、500MPa以上、あるいはさらに590MPa以上では、複合組織鋼板が実用化されており、フェライトとマルテンサイトの2相組織を有するDP鋼板や、残留γを活用したTRIP鋼板がある。前者は、マルテンサイトの周囲における残留歪により、低降伏強度かつ加工硬化能が高いという特長をもつ。後者は、塑性誘起マルテンサイト変態により、均一伸びが高くなるという特長をもつ。
For example, up to 440 MPa class, high strength steel sheets are based on steel that has been converted to IF (Interstitial free) by adding Ti and Nb in solid solution C and solid solution N to a very low carbon steel sheet with excellent formability. There are steel sheets to which solid solution strengthening elements such as Si, Mn, and P are added.
Further, at 500 MPa or higher, or even 590 MPa or higher, a composite structure steel plate is put into practical use, and there are a DP steel plate having a two-phase structure of ferrite and martensite and a TRIP steel plate utilizing residual γ. The former is characterized by low yield strength and high work hardening ability due to residual strain around martensite. The latter has a feature that uniform elongation is increased by plasticity-induced martensitic transformation.

一般に、高強度鋼板の機械的特性は圧延直角方向等の特定方向における引張特性により、面内異方性はランクフォード値(r値)の面内異方性Δrにより評価されることがある。ここで、Δrは、圧延方向に対して0°(L方向)、45°(D方向)および90°方向(C方向)のランクフォード値r、r、rにより、次式によって求められる。
Δr=(r+r−2r)/2
In general, the mechanical properties of a high-strength steel sheet may be evaluated by tensile properties in a specific direction such as a direction perpendicular to rolling, and the in-plane anisotropy may be evaluated by an in-plane anisotropy Δr of Rankford value (r value). Here, Δr is obtained by the following formula using Rankford values r L , r D , r C in 0 ° (L direction), 45 ° (D direction) and 90 ° direction (C direction) with respect to the rolling direction. It is done.
Δr = (r L + r C −2r D ) / 2

しかしながら、実際のプレス成形を解析したところ、部品成形後の形状凍結性や面歪が降伏強度の面内異方性に大きく影響されることも判明してきた。従って、降伏強度の面内異方性を低減することにより、プレス成形性の改善が期待できる。   However, analysis of actual press forming has revealed that the shape freezing property and surface distortion after forming a part are greatly influenced by the in-plane anisotropy of the yield strength. Therefore, improvement in press formability can be expected by reducing the in-plane anisotropy of yield strength.

面内異方性が小さい鋼板については、例えば特許文献1には、焼付硬化性に優れ、かつ面内異方性が小さい自動車外板パネル部品用冷延鋼板およびその製造方法が開示されている。この技術は、C量および冷間圧延時における圧下率によりΔrを規定し、面内異方性と耐デント性とを両立することができるとしている。また、熱間圧延後2秒以内に冷却を開始し、100℃以上の温度域にわたり70℃/s以上の冷却速度で冷却する必要がある。しかしながら、ここでいう面内異方性はΔrであり、降伏強度の面内異方性とは必ずしも一致しない。   Regarding a steel sheet having a small in-plane anisotropy, for example, Patent Document 1 discloses a cold-rolled steel sheet for automobile outer panel components having excellent bake hardenability and a small in-plane anisotropy, and a method for manufacturing the same. . In this technique, Δr is defined by the amount of C and the rolling reduction during cold rolling, and both in-plane anisotropy and dent resistance can be achieved. Moreover, it is necessary to start cooling within 2 seconds after hot rolling and to cool at a cooling rate of 70 ° C./s or more over a temperature range of 100 ° C. or more. However, the in-plane anisotropy here is Δr and does not necessarily match the in-plane anisotropy of the yield strength.

延性の面内異方性に関する鋼板については、例えば特許文献2には、形状凍結性に優れた鋼板およびその製造方法が開示されている。かかる鋼板は、フェライトまたはベイナイトの体積分率を最大とし、体積分率で1%以上25%以下のマルテンサイトを含む複合組織鋼であり、少なくとも1/2板厚から1/4板厚における板面の、
(1){100}<011>〜{223}<110>方位群のX線ランダム強度比の 平均値(A)が4.0以上、
(2){554}<225>、{111}<112>および{111}<110>の 3つの結晶方位のX線ランダム強度比の平均値(B)が5.5以下、
(3)(A)/(B)≧1.5
(4){100}<011>X線反射ランダム強度比が、{211}<011>X線 ランダム強度比以上、
の全てを満足し、かつ、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.7以下であり、さらに、均一伸びの異方性ΔuElが4%以下、局部伸びの異方性△LElが2%以上で、かつ、ΔuElがΔLEl以下であることを特徴としている。
ただし、
△uEl={|uEl(L)−uEl(45°)|+|uEl(C)
−uEl(45°)|}/2
△LEl={|LEl(L)−LEl(45°)|+|LEl(C)
−LEl(45°)|}/2
であり、圧延方向と平行(L方向)、垂直(C方向)および45°方向の均一伸びを、それぞれuEl(L)、uEl(C)およびuEl(45°)とし、圧延方向と平行(L方向)、垂直(C方向)および45°方向の局部伸びを、それぞれLEl(L)、LEl(C)およびLEl(45°)とする。また、熱延仕上条件の最適化とMn当量に応じた臨界温度以下での巻き取りが必要である。
As for steel sheets relating to ductile in-plane anisotropy, for example, Patent Document 2 discloses a steel sheet having excellent shape freezing property and a method for manufacturing the same. Such a steel sheet is a composite structure steel having a volume fraction of ferrite or bainite as a maximum and containing martensite in a volume fraction of 1% or more and 25% or less, and is a sheet having a thickness of at least 1/2 to 1/4. Surface,
(1) The average value (A) of the X-ray random intensity ratio of {100} <011> to {223} <110> orientation group is 4.0 or more,
(2) The average value (B) of the X-ray random intensity ratio of the three crystal orientations of {554} <225>, {111} <112> and {111} <110> is 5.5 or less,
(3) (A) / (B) ≧ 1.5
(4) {100} <011> X-ray reflection random intensity ratio is equal to or greater than {211} <011> X-ray random intensity ratio,
And at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction is 0.7 or less, and the anisotropy ΔuE1 of uniform elongation is 4% or less, and the local elongation is The anisotropy ΔLE1 is 2% or more and ΔuEl is ΔLE1 or less.
However,
ΔuEl = {| uEl (L) −uEl (45 °) | + | uEl (C)
-UEl (45 °) |} / 2
ΔLEl = {| LEl (L) −LEl (45 °) | + | LEl (C)
-LEl (45 °) |} / 2
The uniform elongation in the direction parallel to the rolling direction (L direction), vertical (C direction) and 45 ° is defined as uEl (L), uEl (C) and uEl (45 °), respectively, and parallel to the rolling direction (L Direction), vertical (C direction), and local elongation in the 45 ° direction are denoted by LEl (L), LEl (C), and LEl (45 °), respectively. In addition, it is necessary to optimize the hot rolling finishing conditions and to perform winding at a critical temperature or lower according to the Mn equivalent.

しかしながら、{100}<011>の集合組織の発達が絞り性を低下させるという点で問題があり、さらに降伏強度の面内異方性との関係は明確ではない。   However, there is a problem in that the development of the {100} <011> texture decreases the drawability, and the relationship between the yield strength and the in-plane anisotropy is not clear.

特開2004−197155号公報JP 2004-197155 A 特開2005−256020号公報JP 2005-256020 A

上述したとおり、従来の自動車用鋼板では、r値や伸びを向上させて成形性を良好にすることに主眼が置かれてきた。しかしながら、特許文献1のように、r値の面内異方性の小さい鋼板とするため、熱延後に急速冷却を行いベイナイト組織とする手法では、強度レベルが限られるという問題があった。また、特許文献2では、製造条件の変動に伴って組織の相比率が変化し易く、組織が変化すると必ずしも面内異方性、特に降伏強度の面内異方性を小さくできないという問題があった。   As described above, conventional steel sheets for automobiles have focused on improving the r value and elongation to improve the formability. However, as disclosed in Patent Document 1, in order to obtain a steel sheet having a small r-value in-plane anisotropy, the technique of rapid cooling after hot rolling to obtain a bainite structure has a problem that the strength level is limited. Further, in Patent Document 2, there is a problem that the phase ratio of the structure is likely to change as the manufacturing conditions change, and that the in-plane anisotropy, particularly the in-plane anisotropy of the yield strength, cannot be reduced when the structure changes. It was.

本発明は、上記の問題を有利に解決するもので、特に降伏強度に着目し、その面内異方性を低減することによってプレス成形性を改善し、引張強さ(TS)が500MPa以上、あるいはさらに590MPa以上という高強度であっても降伏強度の面内異方性が極めて小さい高強度冷延鋼板を、その製造方法とともに提供することを目的とする。   The present invention advantageously solves the above problems, particularly focusing on the yield strength, improving the press formability by reducing the in-plane anisotropy, the tensile strength (TS) is 500 MPa or more, Alternatively, another object is to provide a high-strength cold-rolled steel sheet having a very low in-plane anisotropy of yield strength even with a high strength of 590 MPa or more together with its manufacturing method.

一般に、冷延鋼板の集合組織では、<100>方向がRD方向に平行になるαファイバーおよび<111>方向がND方向に平行になるγファイバーが発達するといわれており、特に後者が発達するとr値が高くなる。
ここで、冷延鋼板の集合組織で現れるαファイバーの方位群は{001}<110>〜{111}<110>であり、オイラー角の3変数を直角座標軸にとった3次元方位空間で表すとφ1=0°、φ2=45°、Φ=0〜55°となる。
Generally, in the texture of cold-rolled steel sheets, it is said that an α fiber whose <100> direction is parallel to the RD direction and a γ fiber whose <111> direction is parallel to the ND direction are developed. The value becomes higher.
Here, the orientation group of α fibers appearing in the texture of the cold-rolled steel sheet is {001} <110> to {111} <110>, and is represented by a three-dimensional orientation space in which three variables of Euler angles are taken as a rectangular coordinate axis. Φ1 = 0 °, φ2 = 45 °, and φ = 0-55 °.

本発明者らは、上記課題を解決すべく鋭意研究を重ねたところ、機械的特性、特に降伏強度の面内異方性は、αファイバーのある特定方位({φ1,Φ,φ2}={0°,35°,45°})における3次元結晶方位分布関数と強い相関があり、他の方位、例えば、深絞り性の指標であるr値に関係するγファイバーの集積には関係しないことを見出した。
さらに研究を進めたところ、降伏強度の面内異方性は、ミクロ組織の影響も受け、{φ1,Φ,φ2}={0°,35°,45°}における3次元結晶方位分布関数と鋼板組織全体に対するマルテンサイト相の体積分率を制御することにより、安定して降伏強度の面内異方性を小さくできることを見出した。
The inventors of the present invention have made extensive studies to solve the above-mentioned problems. As a result, the mechanical characteristics, particularly the in-plane anisotropy of the yield strength, have a specific orientation ({φ1, Φ, φ2} = { 0 °, 35 °, 45 °}) and strongly correlated with the three-dimensional crystal orientation distribution function, and not related to the accumulation of γ fibers related to other orientations, for example, the r value, which is an index of deep drawability. I found.
As a result of further research, the in-plane anisotropy of yield strength is affected by the microstructure, and the three-dimensional crystal orientation distribution function at {φ1, Φ, φ2} = {0 °, 35 °, 45 °} It was found that the in-plane anisotropy of the yield strength can be stably reduced by controlling the volume fraction of the martensite phase with respect to the entire steel sheet structure.

本発明は、上記の知見に基づき開発されたもので、その要旨は以下の通りである。
(1)質量%で、
C:0.06〜0.12%、
Si:0.7%以下、
Mn:1.2〜2.6%、
P:0.020%以下、
S:0.03%以下、
sol.Al:0.01〜0.5%および
N:0.005%以下
を含有し、残部はFeおよび不可避的不純物からなり、鋼板組織全体に対する体積分率で、フェライト相を主相として60%以上含み、かつマルテンサイト相を5%以上20%以下含み、さらに{φ1,Φ,φ2}={0°,35°,45°}における3次元結晶方位分布関数が2.5以下であることを特徴とする降伏強度の面内異方性が小さい高強度冷延鋼板。
The present invention has been developed based on the above findings, and the gist thereof is as follows.
(1) In mass%,
C: 0.06 to 0.12%,
Si: 0.7% or less,
Mn: 1.2 to 2.6%
P: 0.020% or less,
S: 0.03% or less,
sol.Al: 0.01 to 0.5% and N: 0.005% or less, the balance is made of Fe and inevitable impurities, and is a volume fraction relative to the whole steel sheet structure, with the ferrite phase as the main phase. %, And the martensite phase is 5% to 20%, and the three-dimensional crystal orientation distribution function at {φ1, Φ, φ2} = {0 °, 35 °, 45 °} is 2.5 or less. A high-strength cold-rolled steel sheet with low in-plane anisotropy of yield strength.

(2)前記鋼板が、さらに質量%で、Cr:0.5%以下およびMo:0.5%以下のうちから選んだ少なくとも1種を含有することを特徴とする前記(1)に記載の降伏強度の面内異方性の小さい高強度冷延鋼板。 (2) The steel sheet further contains at least one selected from Cr: 0.5% or less and Mo: 0.5% or less in terms of mass%, as described in (1) above High strength cold-rolled steel sheet with low in-plane anisotropy of yield strength.

(3)前記(1)乃至(2)のいずれかに記載の成分組成を有する鋼スラブを、仕上温度:840℃以上950℃以下で熱間圧延し、ついで30%以上70%以下の圧下率で冷間圧延した後、800℃以上A点以下の温度で焼鈍し、焼鈍温度から400℃までの温度域を下記式で表される臨界冷却速度CR(℃/s)以上の速度で冷却することを特徴とする降伏強度の面内異方性が小さい高強度冷延鋼板の製造方法。

logCR=−3.50[%Mo]−1.20[%Mn]−2.0[%Cr]−0.32[%P]+3.50
ただし、[%M]はM元素の鋼中含有量(質量%)である。
(3) A steel slab having the component composition according to any one of (1) to (2) above is hot-rolled at a finishing temperature of 840 ° C. or higher and 950 ° C. or lower, and then a reduction rate of 30% or higher and 70% or lower. After cold rolling, annealing is performed at a temperature of 800 ° C. or more and A 3 points or less, and the temperature range from the annealing temperature to 400 ° C. is cooled at a rate equal to or higher than the critical cooling rate CR (° C./s) represented by the following formula. A method for producing a high-strength cold-rolled steel sheet having low in-plane anisotropy of yield strength.
Record
logCR = −3.50 [% Mo] −1.20 [% Mn] −2.0 [% Cr] −0.32 [% P] +3.50
However, [% M] is the content of element M in steel (mass%).

本発明によれば、降伏強度の面内異方性が小さく、プレス成形性に優れた高強度冷延鋼板を得ることができる。従って、本発明の高強度冷延鋼板は、自動車用部品に適用して極めて有用である。   According to the present invention, a high-strength cold-rolled steel sheet having low in-plane anisotropy of yield strength and excellent press formability can be obtained. Therefore, the high-strength cold-rolled steel sheet of the present invention is extremely useful when applied to automobile parts.

以下、本発明を具体的に説明する。
まず、成分組成を前記の範囲に限定した理由について説明する。なお、各元素の含有量の単位は、特に断りがない限り質量%とする。
C:0.06〜0.12%
Cは、所定量の第2相分率を確保して高強度化および降伏強度の面内異方性を制御するために必要な元素である。C量が0.06%未満では、マルテンサイト相5%以上を確保するのが難しくなるので好ましくない。一方、C量が0.12%を超えると、フェライト相以外の組織である第2相の割合が大きくなり、フェライト相の体積分率を60%以上とすることができなくなり、延性が低下する。また、マルテンサイト相などの第2相がネットワークを組み、フェライトを囲むようになるため、フェライト相の集合組織の影響が発現しにくくなり、降伏強度の面内異方性の制御が困難となる。従って、C量は0.06〜0.12%の範囲とする。好ましくは0.06〜0.10%の範囲である。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition is limited to the above range will be described. The unit of the content of each element is mass% unless otherwise specified.
C: 0.06 to 0.12%
C is an element necessary for ensuring a predetermined amount of the second phase fraction and increasing the strength and controlling the in-plane anisotropy of the yield strength. If the amount of C is less than 0.06%, it is difficult to ensure 5% or more of the martensite phase, which is not preferable. On the other hand, if the amount of C exceeds 0.12%, the proportion of the second phase, which is a structure other than the ferrite phase, increases, and the volume fraction of the ferrite phase cannot be increased to 60% or more, resulting in reduced ductility. . In addition, since the second phase such as the martensite phase forms a network and surrounds the ferrite, the influence of the texture structure of the ferrite phase is difficult to be exhibited, and it is difficult to control the in-plane anisotropy of the yield strength. . Accordingly, the C content is in the range of 0.06 to 0.12%. Preferably it is 0.06 to 0.10% of range.

Si:0.7%以下
Siは、微量で、熱間圧延でのスケール生成を遅延させて表面品質を改善する効果の他、めっき浴中あるいは合金化処理中の地鉄と亜鉛の合金化反応を適度に遅延させる効果、フェライト相の加工硬化能を上げる効果等がある。この観点からは、0.01%程度以上含有させることが好ましい。しかしながら、Si量が0.7%を超えると、外観品質が劣化する。従って、Si量は0.7%以下とする。好ましくは0.3%以下とする。
Si: 0.7% or less
In addition to the effect of improving the surface quality by delaying the scale formation in hot rolling, Si has an effect of moderately delaying the alloying reaction between the iron and zinc in the plating bath or alloying treatment, This has the effect of increasing the work hardening ability of the ferrite phase. From this viewpoint, it is preferable to contain approximately 0.01% or more. However, when the Si content exceeds 0.7%, the appearance quality deteriorates. Therefore, the Si content is 0.7% or less. Preferably it is 0.3% or less.

Mn:1.2〜2.6%
Mnは、焼入性を高め、第2相におけるマルテンサイトの比率を増加させるため、添加される。このような複合組織化の観点から、Mn量の下限は1.2%とする。一方、Mn量が多くなりすぎると、焼鈍過程におけるα→γ変態温度が低くなり、再結晶直後の微細なフェライト粒界あるいは再結晶途中の回復粒の界面にγ粒が生成する。このため、第2相が微細化し、延性の低下を招くだけではなく、降伏強度の面内異方性が制御できなくなる。このような観点から、Mn量の上限は2.6%とする。好ましくは1.2〜2.1%の範囲である。
なお、焼鈍後の冷却速度によってマルテンサイトの生成量が変化するため、後述するようにMn、Cr、Moの量に応じて冷却速度を制御する必要がある。
Mn: 1.2 to 2.6%
Mn is added to increase hardenability and increase the ratio of martensite in the second phase. From the viewpoint of such complex organization, the lower limit of the Mn content is 1.2%. On the other hand, if the amount of Mn is too large, the α → γ transformation temperature in the annealing process is lowered, and γ grains are formed at the fine ferrite grain boundaries immediately after recrystallization or at the interface between recovered grains in the middle of recrystallization. For this reason, not only does the second phase become fine and ductility is lowered, but also the in-plane anisotropy of the yield strength cannot be controlled. From such a viewpoint, the upper limit of the Mn content is 2.6%. Preferably it is 1.2 to 2.1% of range.
Since the amount of martensite produced varies depending on the cooling rate after annealing, it is necessary to control the cooling rate in accordance with the amounts of Mn, Cr, and Mo as will be described later.

P:0.020%以下
P量が0.020%を超えると、溶接性の劣化や偏析による表面欠陥が発生する。従って、P量は0.020%以下とする。
P: 0.020% or less When the amount of P exceeds 0.020%, surface defects due to deterioration of weldability or segregation occur. Therefore, the P content is 0.020% or less.

S:0.03%以下
Sは、鋼板の1次スケールの剥離性を向上させ、めっき外観品質を向上させる作用がある。しかしながら、S量が多くなると、鋼中に析出するMnSが多くなりすぎ、鋼板の伸びや伸びフランジ性といった延性を低下させ、プレス成形性を低下させる。また、スラブを熱間圧延する際の熱間延性を低下させ、表面欠陥を発生させやすくする。さらには、耐食性をわずかに低下させる。このような観点から、S量は0.03%以下とする。好ましくは0.01%以下、より好ましくは0.005%以下、さらに好ましくは0.002%以下である。
S: 0.03% or less S has an effect of improving the primary scale peelability of the steel sheet and improving the plating appearance quality. However, when the amount of S increases, the amount of MnS precipitated in the steel increases too much, reducing the ductility such as the elongation and stretch flangeability of the steel sheet, and the press formability. Moreover, the hot ductility at the time of hot-rolling a slab is reduced, and surface defects are easily generated. Furthermore, the corrosion resistance is slightly reduced. From such a viewpoint, the S amount is set to 0.03% or less. Preferably it is 0.01% or less, More preferably, it is 0.005% or less, More preferably, it is 0.002% or less.

sol.Al:0.01〜0.5%
sol.Alは、鋼の脱酸元素として有用であるほか、不純物として存在する固溶Nを固定して耐常温時効性を向上させる作用があるため、sol.Al量を0.01%以上とする。一方、sol.Al量が0.5%を超えると、コストアップにつながり、さらには表面欠陥を誘発する。従って、sol.Al量は0.01〜0.5%とする。
sol.Al: 0.01 to 0.5%
In addition to being useful as a deoxidizing element for steel, sol.Al has the effect of improving the normal temperature aging resistance by fixing solute N present as an impurity, so the amount of sol.Al is 0.01% or more. To do. On the other hand, if the amount of sol.Al exceeds 0.5%, it leads to an increase in cost and further induces surface defects. Therefore, the amount of sol.Al is 0.01 to 0.5%.

N:0.005%以下
Nは多すぎると耐常温時効性を劣化させ、また、固溶Nを固定するために多量のAlや Tiの添加が必要となるため、できるだけ低減することが好ましい。このような観点から、N量は0.005%以下とする。
N: 0.005% or less When N is too much, the aging resistance at room temperature is deteriorated, and a large amount of Al or Ti is required to fix solute N, so it is preferable to reduce it as much as possible. From such a viewpoint, the N amount is set to 0.005% or less.

以上、基本成分については説明したが、本発明ではその他にも必要に応じて、次の元素を適宜添加することができる。
Cr:0.5%以下
Crは、Mnと同様、複合組織化により高強度化に寄与する元素である。この効果を得るためには、Cr量は0.1%以上であることが好ましい。しかしながら、過剰のCr添加は、この効果が飽和するだけでなく、コストアップにつながる。従って、Cr量は0.5%以下とする。
Although the basic components have been described above, in the present invention, the following elements can be appropriately added as needed.
Cr: 0.5% or less
Cr, like Mn, is an element that contributes to high strength through complex organization. In order to obtain this effect, the Cr content is preferably 0.1% or more. However, excessive addition of Cr not only saturates this effect, but also increases costs. Therefore, the Cr content is 0.5% or less.

Mo:0.5%以下
Moは、焼入性を向上させてパーライトの生成を抑制し、高強度化に寄与する元素である。この効果を得るためには、Mo量は0.1%以上であることが好ましい。しかしながら、Moは極めて高価な元素であり、その添加量が多いと著しいコストアップにつながる。このような観点から、Mo量は0.5%以下とする。
なお、焼鈍後の冷却速度によってマルテンサイトの生成量が変化するため、後述するようにMn、Cr、Moの量に応じて冷却速度を制御する必要がある。
Mo: 0.5% or less
Mo is an element that improves hardenability, suppresses the formation of pearlite, and contributes to high strength. In order to obtain this effect, the Mo amount is preferably 0.1% or more. However, Mo is an extremely expensive element, and a large amount of addition leads to a significant cost increase. From such a viewpoint, the Mo amount is set to 0.5% or less.
Since the amount of martensite produced varies depending on the cooling rate after annealing, it is necessary to control the cooling rate in accordance with the amounts of Mn, Cr, and Mo as will be described later.

本発明の鋼板において、上記以外の成分はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲であれば、上記以外の成分の含有を拒むものではない。   In the steel sheet of the present invention, components other than those described above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.

次に、本発明の鋼板において、鋼組織の比率を前記の範囲に限定した理由を説明する。
フェライト相:体積分率で60%以上
本発明では、フェライトの集合組織を制御しており、フェライト相が少なくなりすぎる、すなわち、フェライト以外の相である第2相が増加すると、集合組織制御による降伏強度の面内異方性の制御が困難になる。さらには、マルテンサイト相などの第2相がフェライトの周囲をネットワーク上に取り囲むようになり、鋼板のマクロ的塑性挙動がフェライトの結晶方位に依存しなくなる。このような観点から、フェライト相は鋼板の組織全体に対する体積分率で60%以上含ませるものとする。好ましくは75%以上である。
Next, the reason why the steel structure ratio in the steel sheet of the present invention is limited to the above range will be described.
Ferrite phase: 60% or more in volume fraction In the present invention, the ferrite texture is controlled, and if the ferrite phase becomes too small, that is, if the second phase, which is a phase other than ferrite, increases, the texture is controlled. It becomes difficult to control the in-plane anisotropy of the yield strength. Furthermore, the second phase such as the martensite phase surrounds the periphery of the ferrite on the network, so that the macro plastic behavior of the steel sheet does not depend on the crystal orientation of the ferrite. From such a viewpoint, the ferrite phase is included in a volume fraction of 60% or more with respect to the entire structure of the steel sheet. Preferably it is 75% or more.

マルテンサイト相:体積分率で5%以上20%以下
マルテンサイト相は、高強度化に寄与するだけでなく、降伏比を低下させて形状凍結性を向上させる有用な組織である。このような観点から、マルテンサイト相は鋼板の組織全体に対する体積分率で5%以上含ませるものとする。一方、降伏強度の面内異方性を制御するという観点からは、マルテンサイト相が20%を超えると、マルテンサイトがフェライトの周囲をネットワーク上に取り囲むようになり、フェライトの集合組織を制御する意味がなくなり好ましくない。従って、マルテンサイト相は、鋼板組織全体に対する体積分率で5%以上20%以下の範囲とした。
なお、本発明の鋼板は、上記したフェライト相を主相とし、第2相は主にマルテンサイト相により構成することが好ましい。上記したフェライト相およびマルテンサイト相以外のその他の相は、好ましくは鋼板の組織全体に対する体積分率で5%以下、より好ましくは3%以下である。
Martensite phase: 5% or more and 20% or less in volume fraction The martensite phase is a useful structure that not only contributes to increasing the strength, but also reduces the yield ratio and improves the shape freezing property. From such a viewpoint, the martensite phase is included in a volume fraction of 5% or more with respect to the entire structure of the steel sheet. On the other hand, from the viewpoint of controlling the in-plane anisotropy of the yield strength, when the martensite phase exceeds 20%, the martensite surrounds the periphery of the ferrite on the network, thereby controlling the texture of the ferrite. The meaning is lost and it is not preferable. Accordingly, the martensite phase is in the range of 5% or more and 20% or less in terms of volume fraction relative to the entire steel sheet structure.
In the steel sheet of the present invention, it is preferable that the above-described ferrite phase is a main phase and the second phase is mainly composed of a martensite phase. The other phases other than the above-described ferrite phase and martensite phase are preferably 5% or less, more preferably 3% or less, in terms of volume fraction relative to the entire structure of the steel sheet.

ここで、各相の体積分率は、ポイントカウント法(ASTM E562-83(1988)に準拠)により各相の面積率を測定し、その面積率を、体積分率とした。各相の面積率は、得られた各冷延焼鈍板から試験片を採取し、圧延方向に平行な垂直断面(L断面)について、研磨後ナイタールで腐食し、走査型電子顕微鏡(SEM)を用い、4000倍で観察して相の種類を同定するとともに、主相であるフェライト相の面積率およびマルテンサイト相の面積率を求めた。
なお、組織写真で、フェライトはやや黒いコントラストの領域であり、炭化物がラメラー状もしくは点列状に生成している領域をパーライトおよびベイナイトとし、白いコントラストの付いている粒子をマルテンサイトとした。
Here, the volume fraction of each phase was measured by the point count method (based on ASTM E562-83 (1988)), and the area fraction was defined as the volume fraction. The area ratio of each phase was obtained by collecting a test piece from each of the obtained cold-rolled annealed plates, and corroding the vertical section (L section) parallel to the rolling direction with nital after polishing, and using a scanning electron microscope (SEM). In addition, the type of phase was identified by observation at 4000 times, and the area ratio of the ferrite phase as the main phase and the area ratio of the martensite phase were determined.
In the structure photograph, ferrite is a slightly black contrast region, and the region where carbides are generated in a lamellar or dot array is pearlite and bainite, and particles with white contrast are martensite.

{φ1,Φ,φ2}={0°,35°,45°}における3次元結晶方位分布関数:2.5以下
さらに、本発明の鋼板における集合組織を、3次元結晶方位分布関数により評価した。従来、集合組織の解析にはX線回折(XRD)による極点図が用いられてきた。極点図は、多数の結晶粒に関する統計的な結晶方位分布を表していることから、優先方位の決定に適した方法である。しかしながら、多結晶材料の集合組織は単一の優先方位のみならず、多数の優先方位を示すことが多い。例えば、ある結晶軸の周りに回転した方位群である繊維集合組織では、極点図から個々の方位の存在割合を正確に評価することは困難である。そのため、極点図の情報に基づいて3次元結晶方位分布関数を作成し、個々の方位の存在割合を評価した。
{φ1, Φ, φ2} = 3-dimensional crystal orientation distribution function at {0 °, 35 °, 45 °}: 2.5 or less Further, the texture in the steel sheet of the present invention was evaluated by a three-dimensional crystal orientation distribution function. . Conventionally, pole figures by X-ray diffraction (XRD) have been used for texture analysis. The pole figure represents a statistical crystal orientation distribution regarding a large number of crystal grains, and is therefore a method suitable for determining the preferred orientation. However, the texture of polycrystalline materials often exhibits a number of preferred orientations as well as a single preferred orientation. For example, in a fiber texture that is an orientation group rotated around a certain crystal axis, it is difficult to accurately evaluate the existence ratio of each orientation from the pole figure. Therefore, a three-dimensional crystal orientation distribution function was created based on the information of the pole figure, and the existence ratio of each orientation was evaluated.

上記3次元結晶方位分布関数の評価に際し、反射法により得られた(200)、(211)、(110)の不完全極点図より、級数展開法にて求めた。
その結果、上記のようなフェライト相およびマルテンサイト相の体積分率を有する鋼組織において、αファイバーのある特定方位({φ1,Φ,φ2}={0°,35°,45°})における3次元結晶方位分布関数を2.5以下とした場合に、降伏強度の面内異方性が小さくなることが究明された。ただし、上記のようにフェライト相およびマルテンサイト相の体積分率が制御されていることが重要であり、例えばフェライト単相の場合には、降伏強度の面内異方性を小さくできる最適なフェライト集合組織は、上記と異なるものとなる。
When evaluating the three-dimensional crystal orientation distribution function, it was determined by the series expansion method from the incomplete pole figures of (200), (211), and (110) obtained by the reflection method.
As a result, in the steel structure having the volume fraction of the ferrite phase and martensite phase as described above, the α fiber has a specific orientation ({φ1, Φ, φ2} = {0 °, 35 °, 45 °}). It was investigated that the in-plane anisotropy of the yield strength is reduced when the three-dimensional crystal orientation distribution function is 2.5 or less. However, it is important that the volume fraction of the ferrite phase and martensite phase is controlled as described above. For example, in the case of a ferrite single phase, the optimum ferrite that can reduce the in-plane anisotropy of the yield strength The texture is different from the above.

{φ1,Φ,φ2}={0°,35°,45°}における3次元結晶方位分布関数を2.5以下とした場合に、降伏強度の面内異方性が小さくなる理由は、必ずしも明らかではないが、発明者らは次のように考えている。一般に、{φ1,Φ,φ2}={0°,35°,45°}の結晶方位は、冷間圧延や加工オーステナイトからの変態したフェライトに生じやすいものであり、その3次元結晶方位分布関数が高いと、機械的特性の面内異方性を大きくしてしまいやすい。そのため面内異方性を小さくするには、その3次元結晶方位分布関数をある範囲に制御する必要がある。ただし最適値は、鋼種によって変化する。特に本願が対象とするフェライト相を主相として60%以上含み、かつ、マルテンサイト相を5〜20%含む複合組織鋼板においては、上記3次元結晶方位分布関数が2.5以下であることが最適である。   The reason why the in-plane anisotropy of the yield strength is small when the three-dimensional crystal orientation distribution function at {φ1, Φ, φ2} = {0 °, 35 °, 45 °} is 2.5 or less is not necessarily Although not clear, the inventors think as follows. In general, the crystal orientation of {φ1, Φ, φ2} = {0 °, 35 °, 45 °} is likely to occur in ferrite transformed from cold rolling or processed austenite, and its three-dimensional crystal orientation distribution function If it is high, the in-plane anisotropy of mechanical properties tends to be increased. Therefore, in order to reduce the in-plane anisotropy, it is necessary to control the three-dimensional crystal orientation distribution function within a certain range. However, the optimum value varies depending on the steel type. In particular, in a composite steel sheet containing 60% or more of the ferrite phase as the main phase of the present application and 5 to 20% of the martensite phase, the three-dimensional crystal orientation distribution function may be 2.5 or less. Is optimal.

次に、本発明の製造方法を説明する。
まず、使用する鋼スラブは、成分のマクロ偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、スラブを製造したあと、一旦室温まで冷却し、その後、再度加熱する従来法に加え、冷却せず温片のまま加熱炉に装入し、熱間圧延する直送圧延や、わずかの保熱を行った後、直ちに熱間圧延する直接圧延などの省エネルギープロセスも問題なく適用できる。
Next, the manufacturing method of this invention is demonstrated.
First, the steel slab to be used is desirably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot-making method or a thin slab casting method. In addition to the conventional method in which the slab is manufactured and then cooled to room temperature and then reheated, it is charged directly into the heating furnace without being cooled and placed in a heating furnace and hot rolled, or a little heat retention After carrying out, an energy saving process such as direct rolling which is immediately hot rolled can be applied without any problem.

スラブ加熱温度は、析出物を粗大化させることにより、{111}再結晶集合組織を発達させて深絞り性を改善するため、低いほうが望ましい。しかしながら、スラブ加熱温度が1000℃未満の場合、圧延荷重が増大し、熱間圧延時におけるトラブル発生の危険性が増す。このため、スラブ加熱温度は1000℃以上にすることが好ましい。また、酸化重量の増加に伴うスケールロスの増大などの観点から、スラブ加熱温度の上限は1300℃とすることが好適である。   The slab heating temperature is preferably low because the precipitates are coarsened to develop a {111} recrystallized texture and improve deep drawability. However, when the slab heating temperature is less than 1000 ° C., the rolling load increases, and the risk of trouble occurring during hot rolling increases. For this reason, it is preferable that slab heating temperature shall be 1000 degreeC or more. Further, from the viewpoint of increase in scale loss accompanying an increase in oxidized weight, the upper limit of the slab heating temperature is preferably 1300 ° C.

上記の条件で加熱された鋼スラブに、粗圧延および仕上圧延からなる熱間圧延を施す。 ここで、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従って行えばよい。また、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱するいわゆるシートバーヒータを活用することが有効である。   The steel slab heated under the above conditions is subjected to hot rolling consisting of rough rolling and finish rolling. Here, the steel slab is made into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be performed according to a conventional method. From the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling, it is effective to utilize a so-called sheet bar heater that heats the sheet bar.

仕上温度:840℃以上950℃以下
次いで、シートバーを仕上圧延して熱延鋼板とする。このとき、仕上温度、すなわち仕上圧延出側温度(FT)は840℃以上950℃以下とする。これは、冷間圧延および再結晶焼鈍後における降伏強度の面内異方性に好ましい集合組織を得るためである。FTが840℃未満では、熱間圧延時の負荷が高くなるだけでなく、一部の成分系ではフェライト域圧延となり、集合組織が大きく変化する。一方、FTが950℃を超えると、組織が粗大化するだけでなく、十分にオーステナイト未再結晶状態で圧延できないので、冷延焼鈍後、降伏強度の面内異方性が大きくなる。
Finishing temperature: 840 ° C. or more and 950 ° C. or less Next, the sheet bar is finish-rolled to obtain a hot-rolled steel sheet. At this time, the finishing temperature, that is, the finish rolling outlet temperature (FT) is set to 840 ° C. or more and 950 ° C. or less. This is to obtain a texture preferable for in-plane anisotropy of yield strength after cold rolling and recrystallization annealing. When FT is less than 840 ° C., not only the load during hot rolling becomes high, but also in some component systems, ferrite zone rolling occurs and the texture changes greatly. On the other hand, if the FT exceeds 950 ° C., not only the structure becomes coarse, but also the rolling cannot be sufficiently performed in the austenite non-recrystallized state, so that the in-plane anisotropy of the yield strength increases after cold rolling annealing.

また、熱間圧延時の圧延荷重を低減するため、仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化や材質の均質化の観点から有効である。潤滑圧延の際の摩擦係数は、0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることは、熱間圧延の操業安定性の観点から好ましい。   Moreover, in order to reduce the rolling load at the time of hot rolling, it is good also as lubrication rolling between some or all passes of finishing rolling. Performing the lubrication rolling is effective from the viewpoint of uniforming the shape of the steel sheet and homogenizing the material. The coefficient of friction during lubrication rolling is preferably in the range of 0.10 to 0.25. Furthermore, it is preferable from the viewpoint of the operational stability of hot rolling to join successive sheet bars together and to perform continuous rolling.

コイル巻取温度(CT)は、特に規定するものではないが、400℃以上720℃以下とすることが好ましい。特に、CTが上限を超えると、結晶粒が粗大化し、強度低下を招くこととなる。   The coil winding temperature (CT) is not particularly specified, but is preferably 400 ° C. or higher and 720 ° C. or lower. In particular, when CT exceeds the upper limit, the crystal grains become coarse and the strength is reduced.

冷間圧延における圧下率:30%以上70%以下
上記のようにして得られた熱延鋼板は、冷間圧延される。冷間圧延前の熱延鋼板は、スケールを除去するために冷間圧延前に酸洗を行うことが好ましい。酸洗は通常の条件で行えばよい。冷間圧延時の圧下率が30%未満では、再結晶速度が変化して降伏強度の異方性の制御が困難になる。一方、70%を超えると、熱間圧延時に析出した炭化物の周囲において、局所的に歪が導入され、焼鈍後のフェライトの集合組織が大きく変化し始めるため、所望の集合組織を得ることが困難となる。従って、冷間圧延における圧下率は30%以上70%以下とする。
Reduction ratio in cold rolling: 30% or more and 70% or less The hot-rolled steel sheet obtained as described above is cold-rolled. The hot-rolled steel sheet before cold rolling is preferably pickled before cold rolling in order to remove scale. Pickling may be performed under normal conditions. If the rolling reduction during cold rolling is less than 30%, the recrystallization speed changes and it becomes difficult to control the anisotropy of the yield strength. On the other hand, if it exceeds 70%, strain is locally introduced around the carbide precipitated during hot rolling, and the texture of the ferrite after annealing begins to change greatly, making it difficult to obtain the desired texture. It becomes. Therefore, the rolling reduction in cold rolling is 30% or more and 70% or less.

焼鈍温度:800℃以上A点以下
上記のようにして得られた冷延鋼板は、800℃以上A点以下の範囲まで加熱され、同温度範囲で焼鈍される。焼鈍温度が800℃未満では、均熱時のγ分率が確保できず、冷却後に十分なマルテンサイト相が形成されない。一方、焼鈍温度がA点を超えると、γ分率が高くなり、逆変態後の集合組織が大きく変化し、所望の集合組織を得ることが困難となる。従って、焼鈍温度は800℃以上A点以下とする。
Annealing temperature: 800 ° C. or more and A 3 points or less The cold-rolled steel sheet obtained as described above is heated to a range of 800 ° C. or more and A 3 points or less and annealed in the same temperature range. If the annealing temperature is less than 800 ° C., the γ fraction during soaking cannot be secured, and a sufficient martensite phase cannot be formed after cooling. On the other hand, the annealing temperature is more than three points A, the higher the γ fraction, the texture after the inverse transformation greatly changes, it is difficult to obtain the desired texture. Accordingly, the annealing temperature is set to 800 ° C. or more and A 3 points or less.

焼鈍温度から少なくとも400℃までの温度域における冷却速度:臨界冷却速度CR(℃/s)以上
所定の体積分率のマルテンサイト相を形成させるため、上記のように焼鈍された冷延鋼板を、焼鈍温度から少なくとも400℃までの温度域については次式で表される臨界冷却速度CR(℃/s)以上の速度で冷却する。
logCR=−3.50[%Mo]−1.20[%Mn]−2.0[%Cr]−0.32[%P]+3.50
ただし、[%M]はM元素の鋼中含有量(質量%)である。
Cooling rate in a temperature range from the annealing temperature to at least 400 ° C .: critical cooling rate CR (° C./s) or more In order to form a martensite phase having a predetermined volume fraction, the cold-rolled steel plate annealed as described above is used. The temperature range from the annealing temperature to at least 400 ° C. is cooled at a rate equal to or higher than the critical cooling rate CR (° C./s) represented by the following formula.
logCR = −3.50 [% Mo] −1.20 [% Mn] −2.0 [% Cr] −0.32 [% P] +3.50
However, [% M] is the content of element M in steel (mass%).

上記温度域における平均冷却速度が上記臨界冷却速度未満であると、マルテンサイトが形成されにくく、フェライト単相組織となる。このため、組織強化が不足するだけでなく、降伏強度の面内異方性が制御できなくなる。一方、冷却速度が100℃/sを超えると、連続冷却中に生じるマルテンサイトの自己焼戻しが不十分となり、マルテンサイトが過度に硬質化することにより、降伏強度が上昇し、延性が低下する。従って、冷却速度は100℃/s以下とすることが好ましい。なお、このような冷却速度の制御を行うため、焼鈍は連続焼鈍ラインにて行うことが好ましい。   When the average cooling rate in the temperature range is less than the critical cooling rate, martensite is hardly formed and a ferrite single-phase structure is formed. For this reason, not only is the structure strengthening insufficient, but the in-plane anisotropy of the yield strength cannot be controlled. On the other hand, if the cooling rate exceeds 100 ° C./s, the self-tempering of martensite that occurs during continuous cooling becomes insufficient, and the martensite becomes excessively hardened, resulting in an increase in yield strength and a decrease in ductility. Therefore, the cooling rate is preferably 100 ° C./s or less. In order to control the cooling rate, it is preferable to perform annealing in a continuous annealing line.

以上、本発明の製造方法の基本工程について説明したが、次の工程を加えても良い。
上記の冷延鋼板焼鈍工程の後に電気めっき処理、あるいは溶融めっき処理などの表面処理を施す工程を加えて、鋼板表面にめっき層を形成してもよい。なお、めっき層は純亜鉛めっきや亜鉛系合金めっきに限らず、AlめっきやAl系合金めっきなど、従来鋼板表面に施されている各種めっき層とすることも可能である。
As mentioned above, although the basic process of the manufacturing method of this invention was demonstrated, you may add the following process.
A plating layer may be formed on the surface of the steel sheet by adding a surface treatment such as electroplating or hot dipping after the cold-rolled steel sheet annealing step. The plating layer is not limited to pure zinc plating or zinc-based alloy plating, but may be various plating layers conventionally applied to the steel sheet surface such as Al plating or Al-based alloy plating.

さらに、上記のように製造した冷延焼鈍板あるいはめっき鋼板に、形状矯正、表面粗度等の調整の目的で調質圧延またはレベラー加工を施してもよい。調質圧延あるいはレベラー加工の伸び率は合計で0.2〜15%の範囲内であることが好ましい。0.2%未満では、形状矯正、粗度調整の所期の目的が達成できない。一方、15%を超えると、顕著な延性低下をもたらす傾向があるため好ましくない。   Further, temper rolling or leveler processing may be applied to the cold-rolled annealed plate or plated steel plate produced as described above for the purpose of adjusting the shape correction, surface roughness, and the like. The total elongation of temper rolling or leveler processing is preferably in the range of 0.2 to 15%. If it is less than 0.2%, the intended purpose of shape correction and roughness adjustment cannot be achieved. On the other hand, if it exceeds 15%, it tends to cause a significant decrease in ductility, which is not preferable.

表1に示す種々の組成になる溶鋼を、転炉で溶製し、連続鋳造法で鋼スラブとした。これらの鋼スラブを、1250℃に加熱し、粗圧延によりシートバーとした後、表2に示す条件で仕上圧延を施して熱延鋼板とした。これらの熱延鋼板を、酸洗後、表2に示す圧下率の冷間圧延により冷延鋼板とした。次いで、これらの冷延鋼板に連続焼鈍ラインにて、表2に示す条件で連続焼鈍を施した。さらに、得られた冷延焼鈍鋼板に伸び率:0.5%の調質圧延を施した。なお、表1中のA点は熱力学計算ソフトであるThermo-Calc(登録商標)により求めた。 Molten steel having various compositions shown in Table 1 was melted in a converter and made into a steel slab by a continuous casting method. These steel slabs were heated to 1250 ° C. and made into sheet bars by rough rolling, and then subjected to finish rolling under the conditions shown in Table 2 to obtain hot rolled steel sheets. These hot-rolled steel plates were pickled and then made into cold-rolled steel plates by cold rolling at the rolling reduction shown in Table 2. Subsequently, these cold-rolled steel sheets were subjected to continuous annealing in the continuous annealing line under the conditions shown in Table 2. Furthermore, the obtained cold-rolled annealed steel sheet was subjected to temper rolling with an elongation of 0.5%. The following values were determined by A 3 point in Table 1 is a thermodynamic calculation software Thermo-Calc (registered trademark).

Figure 2013181183
Figure 2013181183

かくして得られた冷延焼鈍板について、引張特性および鋼組織を調査した。
(1)引張特性
得られた各冷延焼鈍板の圧延方向に対して0°(L方向)、45°(D方向)および90°方向(C方向)からJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/分で引張試験を行い、降伏強度(YS)、引張強さ(TS)、均一伸び(UEl)を求めた。ここで、引張強さ(TS)、均一伸び(UEl)の代表値は、0°方向から採取した試験片の引張強さTS、均一伸びUElとした。
また、降伏強度の面内異方性の指標として、ΔYPを用いた。このΔYPは、YPで正規化した降伏強度の面内異方性を示すものであり、次式より算出した。
ΔYP={(YP/YP)+(YP/YP)−2(YP/YP)}/2
=(YP+YP−2YP)/(2YP
ただし、
YP=YS/YS
YP=YS/YS
YP=YS/YS
であり、YS、YS、YSは0°(L方向)、45°(D方向)および90°方向(C方向)から採取した試験片の降伏強度を示す。
なお、このΔYPの絶対値が0.03以下であれば、降伏強度の面内異方性に優れていると言える。
The cold rolled annealed sheet thus obtained was examined for tensile properties and steel structure.
(1) Tensile properties JIS No. 5 tensile specimens were sampled from 0 ° (L direction), 45 ° (D direction) and 90 ° direction (C direction) with respect to the rolling direction of each cold-rolled annealed sheet obtained, A tensile test was performed at a crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241 to determine yield strength (YS), tensile strength (TS), and uniform elongation (UEl). Here, the representative values of tensile strength (TS) and uniform elongation (UEl) were the tensile strength TS L and uniform elongation UEl L of the specimens taken from the 0 ° direction.
Further, ΔYP L was used as an index of in-plane anisotropy of yield strength. This ΔYP L indicates the in-plane anisotropy of the yield strength normalized by YP L , and was calculated from the following equation.
ΔYP L = {(YP L / YP L ) + (YP C / YP L ) −2 (YP D / YP L )} / 2
= (YP L + YP C -2YP D ) / (2YP L )
However,
YP L = YS L / YS L
YP D = YS D / YS L
YP C = YS C / YS L
, And the shows the yield strength of YS L, YS D, YS C is 0 ° (L direction), 45 ° (D direction) and the direction of 90 ° (C direction) were taken from the test piece.
If the absolute value of ΔYP L is 0.03 or less, it can be said that the in-plane anisotropy of the yield strength is excellent.

(2)鋼組織
(a) 3次元結晶方位分布関数
得られた各冷延焼鈍板の板厚1/4面における板面のX線回折を行い、反射法により得られた(200)、(211)、(110)の不完全極点図より、級数展開法にて3次元結晶方位分布関数を求め、{φ1,Φ,φ2}={0°,35°,45°}における3次元結晶方位分布関数を評価した。
(2) Steel structure
(a) Three-dimensional crystal orientation distribution function (200), (211), (110) obtained by the reflection method by performing X-ray diffraction of the plate surface at the 1/4 thickness of each cold-rolled annealed plate. ) To obtain the three-dimensional crystal orientation distribution function by the series expansion method, and evaluated the three-dimensional crystal orientation distribution function at {φ1, Φ, φ2} = {0 °, 35 °, 45 °}. .

(b)相の体積分率
各相の体積分率は、前述したポイントカウント法により各相の面積率を測定し、その面積率を体積分率とした。
(b) Volume fraction of phase For the volume fraction of each phase, the area ratio of each phase was measured by the point counting method described above, and the area ratio was defined as the volume fraction.

調査結果を表2に示す。   The survey results are shown in Table 2.

Figure 2013181183
Figure 2013181183

表2から明らかなように、本発明の鋼板ではいずれも、{φ1,Φ,φ2}={0°,35°,45°}における3次元結晶方位分布関数が2.5以下であり、引張強さ(TS)が500MPa以上であっても、降伏強度の面内異方性が低減されていることが分かる。   As is clear from Table 2, in the steel plates of the present invention, the three-dimensional crystal orientation distribution function at {φ1, Φ, φ2} = {0 °, 35 °, 45 °} is 2.5 or less, It can be seen that the in-plane anisotropy of the yield strength is reduced even when the strength (TS) is 500 MPa or more.

本発明に従い得られる降伏強度の面内異方性の小さい高強度冷延鋼板は、自動車用鋼板をはじめとして、家庭用電化製品や飲料缶等の各種分野において、好適に用いられる。   The high-strength cold-rolled steel sheet having low in-plane anisotropy of yield strength obtained according to the present invention is suitably used in various fields such as automobile steel sheets, household appliances and beverage cans.

Claims (3)

質量%で、
C:0.06〜0.12%、
Si:0.7%以下、
Mn:1.2〜2.6%、
P:0.020%以下、
S:0.03%以下、
sol.Al:0.01〜0.5%および
N:0.005%以下
を含有し、残部はFeおよび不可避的不純物からなり、鋼板組織全体に対する体積分率で、フェライト相を主相として60%以上含み、かつマルテンサイト相を5%以上20%以下含み、さらに{φ1,Φ,φ2}={0°,35°,45°}における3次元結晶方位分布関数が2.5以下であることを特徴とする降伏強度の面内異方性が小さい高強度冷延鋼板。
% By mass
C: 0.06 to 0.12%,
Si: 0.7% or less,
Mn: 1.2 to 2.6%
P: 0.020% or less,
S: 0.03% or less,
sol.Al: 0.01 to 0.5% and N: 0.005% or less, the balance is made of Fe and inevitable impurities, and is a volume fraction relative to the whole steel sheet structure, with the ferrite phase as the main phase. %, And the martensite phase is 5% to 20%, and the three-dimensional crystal orientation distribution function at {φ1, Φ, φ2} = {0 °, 35 °, 45 °} is 2.5 or less. A high-strength cold-rolled steel sheet with low in-plane anisotropy of yield strength.
前記鋼板が、さらに質量%で、Cr:0.5%以下およびMo:0.5%以下のうちから選んだ少なくとも1種を含有することを特徴とする請求項1に記載の降伏強度の面内異方性の小さい高強度冷延鋼板。   2. The surface of yield strength according to claim 1, wherein the steel sheet further contains at least one selected from Cr: 0.5% or less and Mo: 0.5% or less by mass%. High strength cold-rolled steel sheet with small internal anisotropy. 請求項1乃至2のいずれかに記載の成分組成を有する鋼スラブを、仕上温度:840℃以上950℃以下で熱間圧延し、ついで30%以上70%以下の圧下率で冷間圧延した後、800℃以上A点以下の温度で焼鈍し、焼鈍温度から400℃までの温度域を下記式で表される臨界冷却速度CR(℃/s)以上の速度で冷却することを特徴とする降伏強度の面内異方性が小さい高強度冷延鋼板の製造方法。

logCR=−3.50[%Mo]−1.20[%Mn]−2.0[%Cr]−0.32[%P]+3.50
ただし、[%M]はM元素の鋼中含有量(質量%)である。
A steel slab having the composition according to claim 1 is hot-rolled at a finishing temperature of 840 ° C. or higher and 950 ° C. or lower and then cold-rolled at a rolling reduction of 30% or higher and 70% or lower. And annealing at a temperature of 800 ° C. or more and A 3 points or less, and cooling the temperature range from the annealing temperature to 400 ° C. at a rate equal to or higher than the critical cooling rate CR (° C./s) represented by the following formula. A method for producing a high-strength cold-rolled steel sheet having low in-plane anisotropy of yield strength.
Record
logCR = −3.50 [% Mo] −1.20 [% Mn] −2.0 [% Cr] −0.32 [% P] +3.50
However, [% M] is the content of element M in steel (mass%).
JP2012044048A 2012-02-29 2012-02-29 High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same Pending JP2013181183A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012044048A JP2013181183A (en) 2012-02-29 2012-02-29 High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
ZA2012/08370A ZA201208370B (en) 2012-02-29 2012-11-07 High strength cold rolled steel sheet having yield strength with low planar anisotropy,and method for manufacturing the same
CN201210505904.0A CN103290310B (en) 2012-02-29 2012-11-30 High strength cold rolled steel plate with low planar anisotropic yield strength, and manufacturing method thereof
MYPI2012005461A MY171985A (en) 2012-02-29 2012-12-17 High strength cold rolled steel sheet having yield strength with low planar anisotropy, and method for manufacturing the same
BR102013004716-3A BR102013004716B1 (en) 2012-02-29 2013-02-27 HIGH RESISTANCE COLD LAMINATED STEEL SHEET WITH ELASTICITY LIMIT WITH LOW PLANAR ANISOTROPY AND METHOD FOR PRODUCTION
RU2013109050/02A RU2534703C2 (en) 2012-02-29 2013-02-28 High-strength cold-rolled steel sheet with low in-plane anisotropy of yield point and method of its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044048A JP2013181183A (en) 2012-02-29 2012-02-29 High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same

Publications (1)

Publication Number Publication Date
JP2013181183A true JP2013181183A (en) 2013-09-12

Family

ID=49091828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044048A Pending JP2013181183A (en) 2012-02-29 2012-02-29 High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same

Country Status (6)

Country Link
JP (1) JP2013181183A (en)
CN (1) CN103290310B (en)
BR (1) BR102013004716B1 (en)
MY (1) MY171985A (en)
RU (1) RU2534703C2 (en)
ZA (1) ZA201208370B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503740A (en) * 2014-12-22 2018-02-08 ポスコPosco Hot-rolled steel sheet for high-strength galvanized steel sheet with excellent surface quality and manufacturing method thereof
WO2018168618A1 (en) 2017-03-13 2018-09-20 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for manufacturing same
CN113999962A (en) * 2021-11-09 2022-02-01 攀钢集团攀枝花钢铁研究院有限公司 High-toughness bainite steel rail and production method thereof
WO2024070052A1 (en) * 2022-09-30 2024-04-04 日本製鉄株式会社 Steel plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380660B2 (en) 2015-04-08 2018-08-29 新日鐵住金株式会社 Heat-treated steel plate member and manufacturing method thereof
US10822680B2 (en) 2015-04-08 2020-11-03 Nippon Steel Corporation Steel sheet for heat treatment
CN107429363B (en) 2015-04-08 2019-08-23 日本制铁株式会社 Heat- treated steel board member and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026300A1 (en) * 1995-02-23 1996-08-29 Nippon Steel Corporation Cold-rolled steel sheet and hot-dipped galvanized steel sheet excellent in uniform workability, and process for producing the sheets
EP1325966B1 (en) * 2000-09-12 2009-04-01 JFE Steel Corporation Super-high strength cold-rolled steel sheet and method for production thereof
IT1316030B1 (en) * 2000-12-18 2003-03-26 Acciai Speciali Terni Spa PROCEDURE FOR THE MANUFACTURE OF ORIENTED GRAIN SHEETS.
FR2850671B1 (en) * 2003-02-05 2006-05-19 Usinor PROCESS FOR MANUFACTURING A DUAL-PHASE STEEL BAND HAVING A COLD-ROLLED FERRITO-MARTENSITIC STRUCTURE AND A BAND OBTAINED THEREFROM

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503740A (en) * 2014-12-22 2018-02-08 ポスコPosco Hot-rolled steel sheet for high-strength galvanized steel sheet with excellent surface quality and manufacturing method thereof
WO2018168618A1 (en) 2017-03-13 2018-09-20 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for manufacturing same
KR20190119085A (en) 2017-03-13 2019-10-21 제이에프이 스틸 가부시키가이샤 High strength cold rolled steel sheet and its manufacturing method
US11186900B2 (en) 2017-03-13 2021-11-30 Jfe Steel Corporation High-strength cold rolled steel sheet and method for manufacturing the same
CN113999962A (en) * 2021-11-09 2022-02-01 攀钢集团攀枝花钢铁研究院有限公司 High-toughness bainite steel rail and production method thereof
WO2024070052A1 (en) * 2022-09-30 2024-04-04 日本製鉄株式会社 Steel plate

Also Published As

Publication number Publication date
BR102013004716A2 (en) 2015-10-06
CN103290310A (en) 2013-09-11
RU2534703C2 (en) 2014-12-10
MY171985A (en) 2019-11-11
ZA201208370B (en) 2013-07-31
CN103290310B (en) 2015-05-06
BR102013004716B1 (en) 2019-04-30
RU2013109050A (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP5217395B2 (en) High strength cold-rolled steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP5339005B1 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR101264574B1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
WO2013160928A1 (en) High-strength steel sheet and method for manufacturing same
CN111684096B (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPWO2013121963A1 (en) Steel plate, plated steel plate, and manufacturing method thereof
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP2015113504A (en) High strength hot-dip galvanized steel sheet excellent in processability and method for manufacturing the same
KR20190073469A (en) High strength steel sheet and manufacturing method thereof
JP5958669B1 (en) High strength steel plate and manufacturing method thereof
JP5817671B2 (en) Hot-rolled steel sheet and manufacturing method thereof
KR20200101980A (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet and their manufacturing method
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
JP2017201049A (en) High-strength stainless steel sheet excellent in workability and method for manufacturing the same
JP5817804B2 (en) High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP5817805B2 (en) High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP6007571B2 (en) High-strength cold-rolled steel sheet and high-strength galvanized steel sheet
JP2007138261A (en) High strength steel sheet and its manufacturing method
JP5678695B2 (en) High strength steel plate and manufacturing method thereof