[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013170918A - Calibration method of measuring instrument - Google Patents

Calibration method of measuring instrument Download PDF

Info

Publication number
JP2013170918A
JP2013170918A JP2012034700A JP2012034700A JP2013170918A JP 2013170918 A JP2013170918 A JP 2013170918A JP 2012034700 A JP2012034700 A JP 2012034700A JP 2012034700 A JP2012034700 A JP 2012034700A JP 2013170918 A JP2013170918 A JP 2013170918A
Authority
JP
Japan
Prior art keywords
probe
measuring instrument
axis
calibration jig
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012034700A
Other languages
Japanese (ja)
Other versions
JP5984418B2 (en
Inventor
吉言 ▲柳▼瀬
Yoshikoto Yanase
Ryuzo Hayashi
竜造 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012034700A priority Critical patent/JP5984418B2/en
Publication of JP2013170918A publication Critical patent/JP2013170918A/en
Application granted granted Critical
Publication of JP5984418B2 publication Critical patent/JP5984418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calibration method of a measuring instrument with which a gauge can be calibrated easily and with high accuracy regardless of a size of an object to be measured.SOLUTION: According to a calibration method of a measuring instrument, a shape of a work W mounted to a rotary table 11 is measured by bringing a gauge 22 into contact with a tooth surface Wa of the work W and detecting a position of the gauge 22 during the contact. The calibration method includes swiveling a reference cylinder 30 placed at an arbitrary position on the rotary table 11 at an equal swivel angle φ in both right and left directions, positioning the reference cylinder at both right and left sides of an X axis, bringing the gauge 22 into contact with the positioned reference cylinder 30, determining positional errors ΔX and ΔY of the gauge 22 and, thereafter, calibrating the position of the gauge 22 in accordance with the positional errors ΔX and ΔY.

Description

本発明は、測定子を被測定物の表面に接触させて、当該被測定物の形状を測定する測定器の校正方法に関する。   The present invention relates to a calibration method for a measuring instrument in which a measuring element is brought into contact with the surface of an object to be measured and the shape of the object to be measured is measured.

従来、歯車研削盤によって研削された歯車の加工精度は、その歯車研削盤とは別に設けた歯車測定機を使用して測定されていた。しかしながら、このように、歯車研削盤と歯車測定機とを別々に設けると、これらの間の歯車の移動や、それぞれの機械での歯車の着脱及び心出し等の段取りが必要となるため、作業性の低下を招いていた。   Conventionally, the processing accuracy of a gear ground by a gear grinder has been measured using a gear measuring machine provided separately from the gear grinder. However, if a gear grinding machine and a gear measuring machine are provided separately in this way, it is necessary to move gears between them, and to set up and remove gears and center them with each machine. It was causing a decline in sex.

そこで、近年、上述した作業性の向上を図ることを目的として、加工後の歯車を加工時の取付位置に取り付けたままの状態で、その加工精度を測定可能とした歯車研削盤が提供されている。そして、このような、歯車測定機能を有する歯車研削盤では、回転テーブルによる歯車の回転と、測定器による測定子の移動とを制御することにより、測定子を歯車の歯面に接触させて、当該歯車の歯形や歯厚を測定するようにしている。   Therefore, in recent years, for the purpose of improving the workability described above, there has been provided a gear grinding machine capable of measuring the machining accuracy in a state where the machined gear is attached to the attachment position at the time of machining. Yes. And, in such a gear grinding machine having a gear measurement function, by controlling the rotation of the gear by the rotary table and the movement of the measuring element by the measuring instrument, the measuring element is brought into contact with the tooth surface of the gear, The tooth profile and tooth thickness of the gear are measured.

また、上述したような、歯車研削盤では、歯車を高精度に測定するために、必要に応じて、回転テーブルや測定器等の駆動部を校正することが一般的となっており、例えば、特許文献1には、被測定物を取り付けるための回転テーブルの校正方法が開示されている。   Moreover, in the gear grinding machine as described above, in order to measure the gear with high accuracy, it is common to calibrate the drive unit such as a rotary table or a measuring instrument as necessary. Patent Document 1 discloses a method for calibrating a rotary table for attaching an object to be measured.

特開平6−249641号公報Japanese Patent Laid-Open No. 6-249641

同様に、歯車測定機能を有する歯車研削盤では、歯車を高精度に測定するために、測定器を校正することも重要な要素となっている。一般的に、歯車研削盤においては、その直交3軸座標系の原点が、回転テーブルの中心となっているため、測定器の校正は、その測定子を回転テーブルの中心まで移動させ、測定子の中心と回転テーブルの中心とを一致させる必要がある。   Similarly, in a gear grinding machine having a gear measurement function, in order to measure a gear with high accuracy, it is also an important factor to calibrate the measuring instrument. In general, in a gear grinding machine, the origin of the orthogonal triaxial coordinate system is the center of the rotary table. Therefore, calibration of the measuring instrument is performed by moving the probe to the center of the rotary table. It is necessary to match the center of the rotary table with the center of the rotary table.

一方、大きな歯車を研削する大形歯車研削盤においては、加工対象物となる歯車が大きくなる分、これを取り付けるための回転テーブルも、大きなものとなっている。しかしながら、このような大形歯車研削盤に、上述した歯車測定機能を採用しようとすると、測定器と機械との間の干渉等の問題によって、測定器の移動範囲(測定範囲)に制限が生じるため、測定子の中心が回転テーブルの中心に届かない場合がある。   On the other hand, in a large gear grinding machine that grinds a large gear, the rotating table for mounting the gear becomes larger because the gear to be processed becomes larger. However, if the gear measuring function described above is to be adopted in such a large gear grinding machine, the movement range (measurement range) of the measuring instrument is limited due to problems such as interference between the measuring instrument and the machine. Therefore, the center of the probe may not reach the center of the rotary table.

また、このような問題を解決するため、測定器の移動範囲を拡大することも考えられるが、このような構成を採用すると、大形歯車研削盤の更なる大型化を招いてしまう。これにより、特に、歯車測定機能を有する大形歯車研削盤においては、測定器の校正が困難となっている。   In order to solve such a problem, it is conceivable to expand the moving range of the measuring instrument. However, if such a configuration is adopted, the large gear grinding machine will be further increased in size. This makes it difficult to calibrate the measuring instrument particularly in a large gear grinding machine having a gear measuring function.

従って、本発明は上記課題を解決するものであって、被測定物の大きさに関わらず、測定子の位置を、容易に、且つ、高精度に校正することができる測定器の校正方法を提供することを目的とする。   Accordingly, the present invention solves the above-described problems, and provides a measuring instrument calibration method that can easily and accurately calibrate the position of the measuring element regardless of the size of the object to be measured. The purpose is to provide.

上記課題を解決する第1の発明に係る測定器の校正方法は、
測定子を、回転テーブルに取り付けられた被測定物の表面に接触させて、この接触時における前記測定子の位置を検出することにより、前記被測定物の形状を測定する測定器の校正方法において、
円筒状の校正用治具を前記回転テーブル上における任意の位置に載置して、この任意の位置に載置した前記校正用治具の中心位置を基準位置とし、
前記回転テーブルを一方向及び他方向に回転させることにより、前記基準位置に配置された前記校正用治具を、一方向及び他方向に同じ旋回角度で旋回させて、前記回転テーブルの回転軸と直交する基準軸を中心として、当該基準軸の一方側及び他方側に位置決めし、
前記基準軸の一方側及び他方側に位置決めした前記校正用治具の外周面に対して、前記測定子をそれぞれ異なった位置で複数回接触させ、
前記測定子が前記基準軸の一方側に位置決めした前記校正用治具に接触したときに検出された当該測定子の中心位置、前記測定子の径、及び、前記校正用治具の径を用いて、前記基準軸の一方側に位置決めした前記校正用治具の中心位置を求め、
前記測定子が前記基準軸の他方側に位置決めした前記校正用治具に接触したときに検出された当該測定子の中心位置、前記測定子の径、及び、前記校正用治具の径を用いて、前記基準軸の他方側に位置決めした前記校正用治具の中心位置を求め、
前記基準軸の一方側及び他方側に位置決めした前記校正用治具の中心位置を用いて、前記測定子の位置誤差を求め、
前記位置誤差に応じて、前記測定子の位置を校正する
ことを特徴とする。
The calibration method of the measuring instrument according to the first invention for solving the above-mentioned problem is as follows.
In a calibration method of a measuring instrument for measuring the shape of the object to be measured by bringing the probe into contact with the surface of the object to be measured attached to the rotary table and detecting the position of the measuring element at the time of the contact. ,
A cylindrical calibration jig is placed at an arbitrary position on the rotary table, and the center position of the calibration jig placed at the arbitrary position is set as a reference position.
By rotating the turntable in one direction and the other direction, the calibration jig arranged at the reference position is turned at the same turning angle in one direction and the other direction, and the rotation axis of the turntable Positioning on one side and the other side of the reference axis around the orthogonal reference axis,
With respect to the outer peripheral surface of the calibration jig positioned on one side and the other side of the reference axis, the measuring element is contacted a plurality of times at different positions, respectively.
Using the center position of the probe detected when the probe contacts the calibration jig positioned on one side of the reference axis, the diameter of the probe, and the diameter of the calibration jig The center position of the calibration jig positioned on one side of the reference axis is obtained,
Using the center position of the probe, the diameter of the probe, and the diameter of the calibration jig detected when the probe contacts the calibration jig positioned on the other side of the reference axis. Obtaining the center position of the calibration jig positioned on the other side of the reference axis,
Using the center position of the calibration jig positioned on one side and the other side of the reference axis, obtain the position error of the probe,
The position of the measuring element is calibrated according to the position error.

上記課題を解決する第2の発明に係る測定器の校正方法は、
前記基準円筒を、複数の異なった旋回角度で一方向及び他方向に旋回させ、
その複数の異なった前記旋回角度ごとに、前記測定子の位置誤差を求め、
前記旋回角度ごとに求めた前記位置誤差に応じて、前記測定子の位置を校正する
ことを特徴とする。
The calibration method of the measuring instrument according to the second invention for solving the above-described problem is as follows.
Swiveling the reference cylinder in one and other directions at a plurality of different swivel angles;
For each of the plurality of different turning angles, determine the position error of the probe.
The position of the measuring element is calibrated in accordance with the position error obtained for each turning angle.

従って、本発明に係る測定器の校正方法によれば、回転テーブル上における任意の位置に載置した校正用治具を、両方向に同じ旋回角度で旋回させて位置決めし、この位置決めした校正用治具に対して、測定子を接触させて、当該測定子の位置誤差を求めることにより、被測定物の大きさに関わらず、測定子の位置を、容易に、且つ、高精度に校正することができる。   Therefore, according to the calibration method of the measuring instrument according to the present invention, the calibration jig placed at an arbitrary position on the rotary table is rotated and positioned at the same rotation angle in both directions, and the positioned calibration jig is positioned. Regardless of the size of the object to be measured, the position of the measuring element can be calibrated easily and accurately regardless of the size of the object to be measured by bringing the measuring element into contact with the tool. Can do.

歯車測定機能を有する大形歯車研削盤において、ワークの歯面を測定器により測定する様子を示した図である。It is the figure which showed a mode that the tooth surface of a workpiece | work was measured with a measuring device in the large gear grinding machine which has a gear measurement function. 本発明の一実施例に係る測定器の校正方法を示した概略図である。It is the schematic which showed the calibration method of the measuring device which concerns on one Example of this invention. 本発明の他の実施例に係る測定器の校正方法を示した図である。It is the figure which showed the calibration method of the measuring device which concerns on the other Example of this invention.

以下、本発明に係る測定器の校正方法について、図面を用いて詳細に説明する。   Hereinafter, a calibration method for a measuring instrument according to the present invention will be described in detail with reference to the drawings.

図1及び図2に示すように、大形の歯車研削盤(図示省略)には、円形の回転テーブル11がテーブル回転軸C周りに回転可能に支持されている。そして、回転テーブル11の上面には、歯車であるワーク(被加工歯車、被測定物、被測定歯車)W、及び、後述する、円筒状の校正用治具としての基準円筒30が取付可能となっている。なお、基準円筒30の半径は、長さRに形成されている。   As shown in FIGS. 1 and 2, a circular rotary table 11 is supported by a large gear grinding machine (not shown) so as to be rotatable around a table rotation axis C. On the upper surface of the rotary table 11, a work (gear to be processed, object to be measured, gear to be measured) W that is a gear, and a reference cylinder 30 as a cylindrical calibration jig, which will be described later, can be attached. It has become. The radius of the reference cylinder 30 is formed to a length R.

ここで、歯車研削盤における座標系は、互いに直交する3つの座標軸(X軸(基準軸)、Y軸、Z軸)からなる直交3軸座標系となっており、この直交3軸座標系の原点は、回転テーブル11の中心(テーブル回転軸C上)に設定されている。即ち、テーブル回転軸Cは、Z軸周りの回転軸を示すものとなっている。   Here, the coordinate system in the gear grinding machine is an orthogonal triaxial coordinate system including three coordinate axes (X axis (reference axis), Y axis, Z axis) orthogonal to each other. The origin is set at the center of the rotary table 11 (on the table rotation axis C). That is, the table rotation axis C indicates a rotation axis around the Z axis.

更に、歯車研削盤は、その機上において、加工後のワークWを加工時の取付位置に取り付けたままの状態で、その加工精度を測定可能とする歯車測定機能(歯車測定装置)を有するものであって、歯車測定用(座標測定用)の測定器21を備えている。   Furthermore, the gear grinding machine has a gear measuring function (gear measuring device) that can measure the machining accuracy of the machined workpiece W with the machined work W attached to the mounting position at the time of machining. And the measuring device 21 for gear measurement (for coordinate measurement) is provided.

つまり、歯車研削盤には、測定器21がX軸、Y軸、Z軸方向に移動可能に支持されている。また、測定器21の先端には、球状の測定子22が設けられており、この測定子22は、回転テーブル11上に取り付けられたワークWの歯面Wa、及び、回転テーブル11上に取り付けられた基準円筒30の外周面に接触可能となっている。そして、測定器21においては、測定子22がワークWの歯面Wa及び基準円筒30の外周面に対して、所定の接触圧で接触すると、その測定子22の中心位置(中心座標)が検出されるようになっている。なお、測定子22の半径は、長さrに形成されている。   That is, the measuring device 21 is supported on the gear grinding machine so as to be movable in the X-axis, Y-axis, and Z-axis directions. In addition, a spherical measuring element 22 is provided at the tip of the measuring instrument 21, and the measuring element 22 is attached to the tooth surface Wa of the workpiece W mounted on the rotary table 11 and the rotary table 11. The outer peripheral surface of the reference cylinder 30 thus made can be contacted. In the measuring instrument 21, when the probe 22 contacts the tooth surface Wa of the workpiece W and the outer peripheral surface of the reference cylinder 30 with a predetermined contact pressure, the center position (center coordinate) of the probe 22 is detected. It has come to be. The radius of the measuring element 22 is formed to a length r.

従って、ワークWの形状(歯形、歯すじ、ピッチ、歯厚等)を測定器21により測定する場合には、ワークWが取り付けられた回転テーブル11をテーブル回転軸C周りに回転させると共に、測定器21をX軸、Y軸、Z軸方向に移動させ、回転するワークWの歯面Waや、所定の回転角度(割り出し角度)に位置決めされたワークWの歯面Waに対して、測定子22を接触させる。そして、このように、測定子22をワークWの歯面Waに接触させると、その測定子22の中心位置が検出され、この検出結果に基づいて、ワークWの形状が測定される。   Accordingly, when measuring the shape of the workpiece W (tooth profile, tooth trace, pitch, tooth thickness, etc.) with the measuring instrument 21, the rotary table 11 to which the workpiece W is attached is rotated around the table rotation axis C and measured. The probe 21 is moved in the X-axis, Y-axis, and Z-axis directions to measure the tooth surface Wa of the rotating workpiece W or the tooth surface Wa of the workpiece W positioned at a predetermined rotation angle (index angle). 22 is brought into contact. Then, when the probe 22 is brought into contact with the tooth surface Wa of the workpiece W as described above, the center position of the probe 22 is detected, and the shape of the workpiece W is measured based on the detection result.

また、測定器21を基準円筒30を用いて校正する場合には、基準円筒30が取り付けられた回転テーブル11をテーブル回転軸C周りに回転させると共に、測定器21をX軸、Y軸、Z軸方向に移動させ、テーブル回転軸C周りに旋回して位置決めされた基準円筒30の外周面に対して、測定子22を接触させる。そして、このように、測定子22を基準円筒30の外周面に接触させると、その測定子22の中心位置が検出され、この検出結果に基づいて、測定子22の位置が校正される。   When the measuring instrument 21 is calibrated using the reference cylinder 30, the rotary table 11 to which the reference cylinder 30 is attached is rotated around the table rotation axis C, and the measuring instrument 21 is rotated along the X, Y, and Z axes. The tracing stylus 22 is brought into contact with the outer peripheral surface of the reference cylinder 30 which is moved in the axial direction and turned around the table rotation axis C. Then, when the probe 22 is brought into contact with the outer peripheral surface of the reference cylinder 30 as described above, the center position of the probe 22 is detected, and the position of the probe 22 is calibrated based on the detection result.

即ち、歯車研削盤では、加工前において、ワークWを回転テーブル11に取り付けていない状態で、予め、測定器21を基準円筒30を用いて校正しておき、加工後において、ワークWを加工時の取付位置に取り付けたままの状態で、その加工精度を、校正した測定器21により測定するようになっている。   That is, in the gear grinding machine, the measuring device 21 is calibrated in advance using the reference cylinder 30 in a state where the workpiece W is not attached to the rotary table 11 before machining, and the workpiece W is machined after machining. The machining accuracy is measured by the calibrated measuring instrument 21 in a state of being attached at the mounting position.

次に、測定器21の校正方法について、図2及び図3を用いて詳細に説明する。   Next, the calibration method of the measuring instrument 21 will be described in detail with reference to FIGS.

図2に示すように、先ず、測定器21を移動させ、その測定子22の中心をX軸上に配置する。次いで、測定器21の校正用治具となる基準円筒30を、回転テーブル11上におけるX軸近傍の任意の位置に載置する。   As shown in FIG. 2, first, the measuring instrument 21 is moved, and the center of the measuring element 22 is arranged on the X axis. Next, the reference cylinder 30 serving as a calibration jig for the measuring instrument 21 is placed on the rotary table 11 at an arbitrary position near the X axis.

ここで、測定子22の中心及び基準円筒30の中心を、基準軸となるX軸上に配置することが好ましい。このように測定子22及び基準円筒30を配置することにより、測定子22の移動と基準円筒30の旋回とによる校正動作を、簡素で、且つ、容易に行うことができる。   Here, it is preferable to arrange the center of the measuring element 22 and the center of the reference cylinder 30 on the X-axis serving as the reference axis. By arranging the measuring element 22 and the reference cylinder 30 in this way, the calibration operation by the movement of the measuring element 22 and the turning of the reference cylinder 30 can be performed simply and easily.

しかしながら、測定器21はX軸、Y軸、Z軸方向に移動可能に支持されているため、その測定子22の中心をX軸上に配置することは容易となる一方、基準円筒30は作業者の目視によって回転テーブル11上に載置されるため、その基準円筒30の中心をX軸上に配置することは困難となる。   However, since the measuring instrument 21 is supported so as to be movable in the X-axis, Y-axis, and Z-axis directions, it is easy to place the center of the measuring element 22 on the X-axis, while the reference cylinder 30 is not Since it is placed on the rotary table 11 by human visual observation, it is difficult to place the center of the reference cylinder 30 on the X axis.

これにより、実際には、回転テーブル11上に載置された基準円筒30は、XY平面内において、その中心と回転テーブル11のテーブル回転軸Cとの間の軸間距離が長さLで、且つ、X軸に対する位相ずれがΔθとなるように配置されることになる。   Thus, in practice, the reference cylinder 30 placed on the turntable 11 has a length L between the center and the table rotation axis C of the turntable 11 in the XY plane. In addition, the phase shift with respect to the X axis is set to Δθ.

そこで、このように載置された基準円筒30の中心位置Ocを基準位置(旋回開始位置)とし、この基準位置に配置された基準円筒30を、左右両方向(一方向及び他方向)に同じ旋回角度φで旋回させて、X軸を中心とした左側(一方側)及び右側(他方側)のそれぞれに位置決めする。   Therefore, the center position Oc of the reference cylinder 30 placed in this way is set as a reference position (turning start position), and the reference cylinder 30 arranged at this reference position is turned in the same direction in both the left and right directions (one direction and the other direction). It is swung at an angle φ and positioned on the left side (one side) and the right side (the other side) around the X axis.

具体的には、回転テーブル11を所定の回転角度φで左回転させることにより、基準位置に配置された基準円筒30を、旋回角度φで左方向に旋回させて、X軸よりも左側(Y軸のマイナス側)に位置決めする。   Specifically, by rotating the turntable 11 counterclockwise at a predetermined rotation angle φ, the reference cylinder 30 disposed at the reference position is turned leftward at the turning angle φ, and leftward from the X axis (Y Position on the negative side of the shaft.

次いで、X軸上に配置した測定器21を移動させ、その測定子22を、X軸の左側に位置決めした基準円筒30の外周面に対して、それぞれ異なった位置で3回以上接触させる。このように、測定子22を基準円筒30に接触させると、各接触時における測定子22の中心位置OmL-1,OmL-2,OmL-3…が検出される。 Next, the measuring instrument 21 arranged on the X axis is moved, and the measuring element 22 is brought into contact with the outer peripheral surface of the reference cylinder 30 positioned on the left side of the X axis three or more times at different positions. Thus, when the probe 22 is brought into contact with the reference cylinder 30, the center positions Om L-1 , Om L-2 , Om L-3, ... Of the probe 22 at the time of each contact are detected.

なお、図2においては、基準円筒30に対して、測定子22を異なった3箇所で接触させる様子を示しているが、以下、上記各接触時における測定子22の中心位置OmL-1,OmL-2,OmL-3…については、中心位置OmL-1,OmL-2,OmL-3のみを代表して記載する。 FIG. 2 shows a state in which the measuring element 22 is brought into contact with the reference cylinder 30 at three different locations. Hereinafter, the center position Om L−1 of the measuring element 22 at the time of each contact will be described. As for Om L-2 , Om L-3 ..., Only the center positions Om L-1 , Om L-2 , Om L-3 are described as representatives.

そして、基準円筒30の半径R、測定子22の半径r、及び、測定子22の中心位置OmL-1,OmL-2,OmL-3を用いて、X軸の左側に位置決めした基準円筒30の中心位置OcLを求める。 Then, using the radius R of the reference cylinder 30, the radius r of the measuring element 22, and the center positions Om L-1 , Om L-2 , and Om L-3 of the measuring element 22, the reference is positioned on the left side of the X axis. The center position Oc L of the cylinder 30 is obtained.

同様に、回転テーブル11を所定の回転角度φで右回転させることにより、基準位置に配置された基準円筒30を、旋回角度φで右方向に旋回させて、X軸よりも右側(Y軸のプラス側)に位置決めする。   Similarly, by rotating the turntable 11 to the right at a predetermined rotation angle φ, the reference cylinder 30 arranged at the reference position is turned to the right at the turning angle φ, and the right side of the X axis (the Y axis Position it on the positive side.

次いで、X軸上に配置した測定器21を移動させ、その測定子22を、X軸の右側に位置決めした基準円筒30の外周面に対して、それぞれ異なった位置で3回以上接触させる。このように、測定子22を基準円筒30に接触させると、各接触時における測定子22の中心位置OmR-1,OmR-2,OmR-3…が検出される。 Next, the measuring instrument 21 arranged on the X axis is moved, and the measuring element 22 is brought into contact with the outer peripheral surface of the reference cylinder 30 positioned on the right side of the X axis three or more times at different positions. In this way, when the probe 22 is brought into contact with the reference cylinder 30, the center positions Om R-1 , Om R-2 , Om R-3, ... Of the probe 22 at the time of each contact are detected.

なお、図2においては、基準円筒30に対して、測定子22を異なった3箇所で接触させる様子を示しているが、以下、上記各接触時における測定子22の中心位置OmR-1,OmR-2,OmR-3…については、中心位置OmR-1,OmR-2,OmR-3のみを代表して記載する。 FIG. 2 shows a state in which the probe 22 is brought into contact with the reference cylinder 30 at three different points. Hereinafter, the center position Om R−1 of the probe 22 at the time of each contact will be described. As for Om R-2 , Om R-3 ..., Only the center positions Om R-1 , Om R-2 , and Om R-3 are described as representatives.

そして、基準円筒30の半径R、測定子22の半径r、及び、測定子22の中心位置OmR-1,OmR-2,OmR-3を用いて、X軸の右側に位置決めした基準円筒30の中心位置OcRを求める。 Then, using the radius R of the reference cylinder 30, the radius r of the probe 22, and the center positions Om R-1 , Om R-2 , and Om R-3 of the probe 22, the reference is positioned on the right side of the X axis. The center position Oc R of the cylinder 30 is obtained.

次いで、基準円筒30の中心位置OcL,OcRを用いて、測定子22におけるX軸方向の位置誤差ΔX及びY軸方向の位置誤差ΔYを求める。即ち、中心位置OcL,OcRにおけるX座標の平均値が位置誤差ΔXとなり、中心位置OcL,OcRにおけるY座標の差分値が位置誤差ΔYとなる。 Next, the position error ΔX in the X-axis direction and the position error ΔY in the Y-axis direction of the measuring element 22 are obtained using the center positions Oc L and Oc R of the reference cylinder 30. That is, the center position Oc L, the mean value of the position error ΔX next X-coordinate in Oc R, the center position Oc L, the difference value of the Y coordinate in Oc R becomes the position error [Delta] Y.

そして、位置誤差ΔX,ΔYは、XY平面内における測定子22の校正値となるため、位置誤差ΔX,ΔYに応じて、測定子22の位置を校正することにより、ワークWの形状を測定子22によって高精度に測定することができる。   Since the position errors ΔX and ΔY become calibration values of the probe 22 in the XY plane, the shape of the workpiece W can be changed to the probe by calibrating the position of the probe 22 according to the position errors ΔX and ΔY. 22 can be measured with high accuracy.

また、上述したように、校正値となる位置誤差ΔX,ΔYは、基準円筒30を旋回させることにより求められるものであるため、基準円筒30の旋回精度、即ち、回転テーブル11の回転精度(位置決め精度)が、そのまま、測定器21の校正精度に影響を与えることになる。つまり、回転テーブル11の回転精度を向上させることにより、位置誤差ΔX,ΔYの演算精度を向上させることができるが、回転テーブル11の回転精度を向上させるにも限界がある。   Further, as described above, since the position errors ΔX and ΔY serving as calibration values are obtained by turning the reference cylinder 30, the turning accuracy of the reference cylinder 30, that is, the rotation accuracy (positioning) of the rotary table 11 is determined. Accuracy) directly affects the calibration accuracy of the measuring instrument 21. That is, by improving the rotation accuracy of the turntable 11, the calculation accuracy of the position errors ΔX and ΔY can be improved, but there is a limit to improving the rotation accuracy of the turntable 11.

そこで、旋回角度φを段階的に変更しながら、その複数の異なった旋回角度φごとに位置誤差ΔX,ΔYを求めた後、それらを平均化しても構わない。   Therefore, the position errors ΔX and ΔY may be obtained for each of the plurality of different turning angles φ while changing the turning angle φ stepwise, and then averaged.

例えば、図3に示すように、先ず、基準円筒30を、3つの異なった旋回角度φ1,φ2,φ3で旋回させて位置決めした後、これら旋回角度φ1,φ2,φ3における中心位置OcL1,OcR1、中心位置OcL2,OcR2、中心位置OcL3,OcR3を求める。 For example, as shown in FIG. 3, first, the reference cylinder 30 is positioned by turning at three different turning angles φ1, φ2, and φ3, and then the center positions Oc L1 , Oc at the turning angles φ1, φ2, and φ3. R1 , center positions Oc L2 and Oc R2 and center positions Oc L3 and Oc R3 are obtained.

次いで、中心位置OcL1,OcR1を用いて位置誤差ΔX1,ΔY1を求め、また、中心位置OcL2,OcR2を用いて位置誤差ΔX2,ΔY2を求め、更に、中心位置OcL3,OcR3を用いて位置誤差ΔX3,ΔY3を求める。 Next, the position errors ΔX1, ΔY1 are obtained using the center positions Oc L1 , Oc R1 , the position errors ΔX2, ΔY2 are obtained using the center positions Oc L2 , Oc R2 , and the center positions Oc L3 , Oc R3 are further obtained. Using these, position errors ΔX3 and ΔY3 are obtained.

そして、位置誤差ΔX1,ΔX2,ΔX3及び位置誤差ΔY1,ΔY2,ΔY3を、それぞれ平均化して、最終的な位置誤差ΔX,ΔYを求める。   Then, the position errors ΔX1, ΔX2, ΔX3 and the position errors ΔY1, ΔY2, ΔY3 are averaged to obtain final position errors ΔX, ΔY.

これにより、回転テーブル11の回転においては、回転角度φが変わると、その回転角度φ内で、回転角度誤差が発生し、更に、この回転角度誤差にもばらつきが生じるため、複数の異なった回転角度(旋回角度)φ1,φ2,φ3を設定することにより、当該各回転角度φ1,φ2,φ3内の回転角度誤差を容易に抽出することができる。そして、位置誤差ΔX1,ΔX2,ΔX3及び位置誤差ΔY1,ΔY2,ΔY3を、それぞれ平均化することにより、上記各回転角度誤差も平均化されるため、最終的な位置誤差ΔX,ΔYに対して、各回転角度誤差の影響を極力小さくすることができる。この結果、位置誤差ΔX,ΔYの演算精度、即ち、測定器21の校正精度を更に向上させることができる。   Thereby, in the rotation of the turntable 11, if the rotation angle φ is changed, a rotation angle error is generated within the rotation angle φ, and further, the rotation angle error also varies, so that a plurality of different rotations are generated. By setting the angles (turning angles) φ1, φ2, and φ3, it is possible to easily extract the rotation angle errors in the rotation angles φ1, φ2, and φ3. Then, by averaging the position errors ΔX1, ΔX2, ΔX3 and the position errors ΔY1, ΔY2, ΔY3, the rotation angle errors are also averaged, so that the final position errors ΔX, ΔY The influence of each rotation angle error can be minimized. As a result, the calculation accuracy of the position errors ΔX and ΔY, that is, the calibration accuracy of the measuring instrument 21 can be further improved.

従って、本発明に係る測定器21の校正方法によれば、回転テーブル11上における任意の位置に載置した基準円筒30を、左右両方向に同じ旋回角度φで旋回させて、X軸の左右両側で位置決めし、この2つの位置で位置決めした基準円筒30に対して、測定子22を接触させて、測定子22の位置誤差ΔX,ΔYを求めることにより、回転テーブル11及びこの回転テーブル11に取り付けられるワークWの大きさに関わらず、測定子22の位置を、容易に、且つ、高精度に校正することができる。   Therefore, according to the calibration method of the measuring instrument 21 according to the present invention, the reference cylinder 30 placed at an arbitrary position on the rotary table 11 is swung at the same swivel angle φ in both the left and right directions, so Then, the measuring element 22 is brought into contact with the reference cylinder 30 positioned at these two positions, and the position errors ΔX and ΔY of the measuring element 22 are obtained, so that the rotating table 11 and the rotating table 11 are attached. Regardless of the size of the workpiece W, the position of the probe 22 can be calibrated easily and with high accuracy.

また、基準円筒30を、複数の異なった旋回角度φ1,φ2,φ3で段階的に旋回させることにより、測定子22の位置誤差ΔX,ΔYに対して、回転テーブル11の回転角度誤差の影響を十分に小さくすることができる。これにより、測定子22の位置を更に高精度に校正することができる。   In addition, by rotating the reference cylinder 30 step by step at a plurality of different turning angles φ1, φ2, and φ3, the influence of the rotation angle error of the rotary table 11 on the position errors ΔX and ΔY of the probe 22 is affected. It can be made sufficiently small. Thereby, the position of the measuring element 22 can be calibrated with higher accuracy.

本発明は、測定子を、回転テーブルによって回転する被測定物に接触させながら、その被測定物の三次元形状を測定する三次元測定機の校正方法に適用可能である。   The present invention is applicable to a calibration method for a three-dimensional measuring machine that measures a three-dimensional shape of a measurement object while contacting the measurement object with the measurement object rotated by a rotary table.

11 回転テーブル
21 測定器
22 測定子
30 基準円筒
W ワーク
C テーブル回転軸
r 測定子の半径
R 基準円筒の半径
φ 旋回角度
Oc,OcL,OcR 基準円筒の中心位置
OmL,OmR 測定子の中心位置
ΔX,ΔY 位置誤差
11 Rotary table 21 Measuring instrument 22 Measuring element 30 Reference cylinder W Work C Table rotation axis r Radius of measuring element R Radius of reference cylinder φ Turning angle Oc, Oc L , Oc R Center position of the reference cylinder Om L , Om R measuring element Center position ΔX, ΔY Position error

Claims (2)

測定子を、回転テーブルに取り付けられた被測定物の表面に接触させて、この接触時における前記測定子の位置を検出することにより、前記被測定物の形状を測定する測定器の校正方法において、
円筒状の校正用治具を前記回転テーブル上における任意の位置に載置して、この任意の位置に載置した前記校正用治具の中心位置を基準位置とし、
前記回転テーブルを一方向及び他方向に回転させることにより、前記基準位置に配置された前記校正用治具を、一方向及び他方向に同じ旋回角度で旋回させて、前記回転テーブルの回転軸と直交する基準軸を中心として、当該基準軸の一方側及び他方側に位置決めし、
前記基準軸の一方側及び他方側に位置決めした前記校正用治具の外周面に対して、前記測定子をそれぞれ異なった位置で複数回接触させ、
前記測定子が前記基準軸の一方側に位置決めした前記校正用治具に接触したときに検出された当該測定子の中心位置、前記測定子の径、及び、前記校正用治具の径を用いて、前記基準軸の一方側に位置決めした前記校正用治具の中心位置を求め、
前記測定子が前記基準軸の他方側に位置決めした前記校正用治具に接触したときに検出された当該測定子の中心位置、前記測定子の径、及び、前記校正用治具の径を用いて、前記基準軸の他方側に位置決めした前記校正用治具の中心位置を求め、
前記基準軸の一方側及び他方側に位置決めした前記校正用治具の中心位置を用いて、前記測定子の位置誤差を求め、
前記位置誤差に応じて、前記測定子の位置を校正する
ことを特徴とする測定器の校正方法。
In a calibration method of a measuring instrument for measuring the shape of the object to be measured by bringing the probe into contact with the surface of the object to be measured attached to the rotary table and detecting the position of the measuring element at the time of the contact. ,
A cylindrical calibration jig is placed at an arbitrary position on the rotary table, and the center position of the calibration jig placed at the arbitrary position is set as a reference position.
By rotating the turntable in one direction and the other direction, the calibration jig arranged at the reference position is turned at the same turning angle in one direction and the other direction, and the rotation axis of the turntable Positioning on one side and the other side of the reference axis around the orthogonal reference axis,
With respect to the outer peripheral surface of the calibration jig positioned on one side and the other side of the reference axis, the measuring element is contacted a plurality of times at different positions, respectively.
Using the center position of the probe detected when the probe contacts the calibration jig positioned on one side of the reference axis, the diameter of the probe, and the diameter of the calibration jig The center position of the calibration jig positioned on one side of the reference axis is obtained,
Using the center position of the probe, the diameter of the probe, and the diameter of the calibration jig detected when the probe contacts the calibration jig positioned on the other side of the reference axis. Obtaining the center position of the calibration jig positioned on the other side of the reference axis,
Using the center position of the calibration jig positioned on one side and the other side of the reference axis, obtain the position error of the probe,
A measuring instrument calibration method, wherein the position of the probe is calibrated according to the position error.
請求項1に記載の測定器の校正方法において、
前記基準円筒を、複数の異なった旋回角度で一方向及び他方向に旋回させ、
その複数の異なった前記旋回角度ごとに、前記測定子の位置誤差を求め、
前記旋回角度ごとに求めた前記位置誤差に応じて、前記測定子の位置を校正する
ことを特徴とする測定器の校正方法。
The measuring instrument calibration method according to claim 1,
Swiveling the reference cylinder in one and other directions at a plurality of different swivel angles;
For each of the plurality of different turning angles, determine the position error of the probe.
A measuring instrument calibration method, wherein the position of the probe is calibrated according to the position error obtained for each turning angle.
JP2012034700A 2012-02-21 2012-02-21 How to calibrate the measuring instrument Active JP5984418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034700A JP5984418B2 (en) 2012-02-21 2012-02-21 How to calibrate the measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034700A JP5984418B2 (en) 2012-02-21 2012-02-21 How to calibrate the measuring instrument

Publications (2)

Publication Number Publication Date
JP2013170918A true JP2013170918A (en) 2013-09-02
JP5984418B2 JP5984418B2 (en) 2016-09-06

Family

ID=49264948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034700A Active JP5984418B2 (en) 2012-02-21 2012-02-21 How to calibrate the measuring instrument

Country Status (1)

Country Link
JP (1) JP5984418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114986253A (en) * 2022-06-27 2022-09-02 科德数控股份有限公司 Cylindrical rotation precision detection tool, manufacturing method and detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269649A (en) * 1992-03-25 1993-10-19 Okuma Mach Works Ltd Probe wear calibration and correction method for cylindrical three-dimensional measurement device device
JPH08122050A (en) * 1994-10-25 1996-05-17 Hiromi Yamashita Contour shape-measuring method and tool for measurement
JP2004317159A (en) * 2003-04-11 2004-11-11 Mitsutoyo Corp Reference holder for roundness measuring machines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269649A (en) * 1992-03-25 1993-10-19 Okuma Mach Works Ltd Probe wear calibration and correction method for cylindrical three-dimensional measurement device device
JPH08122050A (en) * 1994-10-25 1996-05-17 Hiromi Yamashita Contour shape-measuring method and tool for measurement
JP2004317159A (en) * 2003-04-11 2004-11-11 Mitsutoyo Corp Reference holder for roundness measuring machines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114986253A (en) * 2022-06-27 2022-09-02 科德数控股份有限公司 Cylindrical rotation precision detection tool, manufacturing method and detection method

Also Published As

Publication number Publication date
JP5984418B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
TWI474891B (en) Calibration method of gear measuring device
JP4163545B2 (en) Reference jig for roundness measuring machine
US8494800B2 (en) Method and program for identifying mechanical errors
TWI416290B (en) Method of calibrating a turning machine, method of determining a position of an axis rotation of a turning machine, method of aligning a swiel axis of a turning machine, non-transitory computer readable medium, and automated turning machine apparatus
TWI714729B (en) Method and device for measuring mechanical accuracy of machine tool
US9506736B2 (en) Measurement system
JP2006231509A (en) Method for measuring program control type machine tool
JP2018069391A5 (en) Grinding apparatus and rolling bearing manufacturing method using the same
JP2013503380A (en) Calibration method for machine tools
US9707649B2 (en) Method for centering grinding wheel in thread grinder and measurement device for centering
JP2019532281A (en) Measurement of toothed articles using multiple sensors
JP5854661B2 (en) Calibration method of probe for shape measurement
JP2016097459A (en) Rotary shaft center position measuring jig, and rotary shaft center position measuring method using the jig
JP2016159397A5 (en) Groove grinding apparatus, groove processing method, and ball bearing manufacturing method
JP5272598B2 (en) Method for specifying jig coordinates of machining apparatus and machining apparatus using the method
JP2011206862A (en) Method of positioning rotary tool in multishaft processing machine
JP2010194623A (en) Thread grinding machine and thread groove grinding method
JP5984418B2 (en) How to calibrate the measuring instrument
TWI647037B (en) Fixture correction device and method
US7228643B2 (en) Method of gaging on gear lapping and testing machines
TW202138087A (en) Machining a workpiece with two gearings
JP2009180700A (en) Cylindrical shape measuring device and cylindrical surface shape measuring method
JP3660920B2 (en) Machine tool and processing method
JP2015039732A (en) Machine tool and work machining portion measuring method using machine tool
RU2571984C1 (en) Method of adjustment of multipurpose machine for five-axis machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5984418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250