JP2013168311A - 燃料電池システム - Google Patents
燃料電池システム Download PDFInfo
- Publication number
- JP2013168311A JP2013168311A JP2012031723A JP2012031723A JP2013168311A JP 2013168311 A JP2013168311 A JP 2013168311A JP 2012031723 A JP2012031723 A JP 2012031723A JP 2012031723 A JP2012031723 A JP 2012031723A JP 2013168311 A JP2013168311 A JP 2013168311A
- Authority
- JP
- Japan
- Prior art keywords
- target
- fuel cell
- output
- stoichiometric ratio
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
【課題】コストを抑えつつ発電効率の低下を抑制することが可能な燃料電池システムを提供する。
【解決手段】触媒層に低EWのアイオノマを用いた複数のセルを備えた燃料電池に水素及び空気を供給し、これら水素と空気中の酸素とをセルで電気化学反応させて発電する燃料電池システムであって、燃料電池での目標出力Ptと実測出力Pとの出力差ΔPが所定値を超えた際に、予め設定されたアイオノマの収縮率Δδと発熱量Qとの関係から目標発熱量Qtを求め、目標発熱量Qtから目標出力電圧Etを算出し、さらに、予め設定された出力電圧Eとストイキ比STとの関係から目標ストイキ比STtを求め、目標ストイキ比STtとなるように燃料電池へ空気を供給する拡散抵抗抑制運転が行われる。
【選択図】図2
【解決手段】触媒層に低EWのアイオノマを用いた複数のセルを備えた燃料電池に水素及び空気を供給し、これら水素と空気中の酸素とをセルで電気化学反応させて発電する燃料電池システムであって、燃料電池での目標出力Ptと実測出力Pとの出力差ΔPが所定値を超えた際に、予め設定されたアイオノマの収縮率Δδと発熱量Qとの関係から目標発熱量Qtを求め、目標発熱量Qtから目標出力電圧Etを算出し、さらに、予め設定された出力電圧Eとストイキ比STとの関係から目標ストイキ比STtを求め、目標ストイキ比STtとなるように燃料電池へ空気を供給する拡散抵抗抑制運転が行われる。
【選択図】図2
Description
本発明は、触媒層に低EWのアイオノマが用いられた燃料電池を備える燃料電池システムに関する。
近年、反応ガス(燃料ガス及び酸化ガス)の電気化学反応によって発電する燃料電池をエネルギ源とする燃料電池システムが注目されている。燃料電池システムは、燃料電池のアノードに燃料ガスとしての水素を供給するとともに、カソードに酸化ガスとしての空気を供給し、これら燃料ガスと酸化ガスとを電気化学反応させ、起電力を発生させるものである。
燃料電池システムに用いられる燃料電池として、電解質膜の上に形成された第1触媒層とこの第1触媒層の上に形成された第1触媒層より厚さの厚い第2触媒層とからなる燃料電池用電極触媒層において、第1触媒層を構成する触媒担持カーボン粒子の触媒の担持密度と電解質比率は第2触媒層より高くし、電解質アイオノマのEW値と水浸pHは第2触媒層より低くしたものが知られている(例えば、特許文献1参照)。
ところで、触媒層のアイオノマのスルホン酸当量EW(Equivalent Weight)が高いと、高温でドライアップして出力低下を生じてしまう。したがって、燃料電池システムでは、燃料電池を高温無加湿で効率的に発電させるために、触媒層のアイオノマのスルホン酸当量EWを低くすることが有効である。しかし、低EWアイオノマを用いた燃料電池では、常温域において、アイオノマの膨潤によって拡散抵抗が増加して出力低下を招き、目標出力に対して実際の出力が十分得られなくなるおそれがあった。
この場合、触媒層の水分量を判定する判定装置などを設け、この判定装置の判定結果に基づいて触媒層の水分量を制御することが考えられるが、新たに判定装置を追加することによるコストアップを招いてしまう。
本発明は、上記事情に鑑みてなされたもので、コストを抑えつつ発電効率の低下を抑制することが可能な燃料電池システムを提供することを目的としている。
上記目的を達成するために、本発明の燃料電池システムは、
触媒層に低EWのアイオノマを用いた複数のセルを備えた燃料電池に水素及び空気を供給し、これら水素と空気中の酸素とを前記セルで電気化学反応させて発電する燃料電池システムであって、
前記燃料電池の目標出力と実測出力との出力差が所定値を超えた際に、予め設定された前記アイオノマの収縮率と発熱量との関係から目標発熱量を求め、該目標発熱量から目標出力電圧を算出し、さらに、予め設定された出力電圧とストイキ比との関係から目標ストイキ比を求め、該目標ストイキ比となるように前記燃料電池へ空気を供給する拡散抵抗抑制運転が行われる。
触媒層に低EWのアイオノマを用いた複数のセルを備えた燃料電池に水素及び空気を供給し、これら水素と空気中の酸素とを前記セルで電気化学反応させて発電する燃料電池システムであって、
前記燃料電池の目標出力と実測出力との出力差が所定値を超えた際に、予め設定された前記アイオノマの収縮率と発熱量との関係から目標発熱量を求め、該目標発熱量から目標出力電圧を算出し、さらに、予め設定された出力電圧とストイキ比との関係から目標ストイキ比を求め、該目標ストイキ比となるように前記燃料電池へ空気を供給する拡散抵抗抑制運転が行われる。
この構成によれば、拡散抵抗抑制運転が行われて目標ストイキ比となるように燃料電池へ空気が供給されると、触媒層が目標発熱量で発熱し、触媒層のアイオノマの膨潤が抑制される。これにより、アイオノマの膨潤による拡散抵抗の増加を抑制して出力低下を抑えることができ、燃料電池からの出力を目標出力とすることができる。
特に、アイオノマの膨潤が生じ易い冷間発電時においても、発電効率を良好な状態に維持させることができる。つまり、触媒層の水分量を判定する判定装置などを新たに追加して設けることによるコストアップを招くことなく、発電効率の低下を抑制することができる。
上記構成の燃料電池システムにおいては、前記燃料電池の目標出力と実測出力との出力差が所定値を超えたか否かを判定する出力差判定部と、
予め設定された前記アイオノマの収縮率と発熱量との関係から目標発熱量を求める目標発熱量算定部と、
前記目標発熱量から目標出力電圧を算出する目標出力電圧算出部と、
予め設定された出力電圧とストイキ比との関係から目標ストイキ比を求める目標ストイキ比算出部と、
前記燃料電池への空気供給量を前記目標ストイキ比となるように制御する空気供給量制御部と、を備えていてもよい。
予め設定された前記アイオノマの収縮率と発熱量との関係から目標発熱量を求める目標発熱量算定部と、
前記目標発熱量から目標出力電圧を算出する目標出力電圧算出部と、
予め設定された出力電圧とストイキ比との関係から目標ストイキ比を求める目標ストイキ比算出部と、
前記燃料電池への空気供給量を前記目標ストイキ比となるように制御する空気供給量制御部と、を備えていてもよい。
本発明の燃料電池システムによれば、コストを抑えつつ発電効率の低下を抑制することができる。
まず、本発明に係る燃料電池システムの全体構成を説明する。この燃料電池システムは燃料電池車両の車載発電システムであるが、車両搭載用の燃料電池システム以外にも、船舶,航空機,電車、歩行ロボット等のあらゆる移動体用の燃料電池システムや、例えば燃料電池が建物(住宅、ビル等)用の発電設備として用いられる定置用の燃料電池システムへの適用も可能である。
図1に示される燃料電池システム1において、酸化ガスとしての空気は、空気供給路11を介して燃料電池20の空気供給口に供給される。空気供給路11には、空気から微粒子を除去するエアフィルタA1、空気を加圧するコンプレッサA2、及び空気に所要の水分を加える加湿器A3が設けられている。エアフィルタA1には、空気流量を検出する図示省略のエアフローメータ(流量計)が設けられている。コンプレッサA2は、モータによって駆動される。このモータは、後述の制御部50によって駆動制御される。
燃料電池20から排出される空気オフガス(酸化オフガス)は、排気路12を経て外部に放出される。排気路12には、圧力調整弁A4、及び加湿器A3が設けられている。圧力調整弁A4は、燃料電池20への供給空気圧を設定する調圧(減圧)器として機能する。制御部50は、コンプレッサA2を駆動するモータの回転数及び圧力調整弁A4の開度面積を調整することによって、燃料電池20への供給空気圧や供給空気流量を設定する。
燃料ガスとしての水素ガスは、水素供給源30から水素供給路31を介して燃料電池20の水素供給口に供給される。水素供給源30は、例えば高圧水素タンクが該当するが、いわゆる燃料改質器や水素吸蔵合金等であっても良い。
水素供給路31には、水素供給源30から水素を供給しあるいは供給を停止する遮断弁H1、燃料電池20への水素ガスの供給圧力を減圧して調整する水素調圧弁H2、及び燃料電池20の水素供給口と水素供給路31間を開閉する遮断弁H3が設けられている。水素調圧弁H2としては、例えば機械式の減圧を行う調圧弁を使用できるが、パルスモータで弁の開度がリニアあるいは連続的に調整される弁であっても良い。
燃料電池20で消費されなかった水素ガスは、水素オフガス(燃料オフガス)として水素循環路32に排出され、水素供給路31の水素調圧弁H2の下流側に戻される。水素循環路32には、水素オフガスから水分を回収する気液分離装置H11、回収した生成水を水素循環路32外の図示しないタンク等に回収する排水弁H12、及び水素オフガスを加圧する水素ポンプH13が設けられている。水素ポンプH13は、制御部50によって動作が制御される。水素オフガスは、水素供給路31で水素ガスと合流し、燃料電池20に供給されて再利用される。
水素循環路32は、排出制御弁H14を介して、パージ流路33によって加湿器A3の下流側の排気路12に接続されている。排出制御弁H14は、電磁式の遮断弁であり、制御部50からの指令によって作動することにより、水素オフガスは燃料電池20から排出された空気オフガスとともに外部へ排出(パージ)される。このパージ動作を間欠的に行うことによって、水素ガス中の不純物濃度が増加することによるセル電圧の低下を防止することができる。
燃料電池20の冷却水出入口には、冷却水を循環させる冷却路41が設けられている。冷却路41には、冷却水の熱を外部に放熱するラジエータ(熱交換器)C2、及び冷却水を加圧して循環させるポンプC1が設けられている。また、ラジエータC2には、モータによって回転駆動される冷却ファンC3が設けられている。
燃料電池20は、水素ガスと空気の供給を受けて電気化学反応により発電する単セルを所要数積層してなる燃料電池スタックとして構成されている。燃料電池20が発生した電力は、図示しないパワーコントロールユニットに供給される。パワーコントロールユニットは、車両の駆動モータに電力を供給するインバータと、コンプレッサモータや水素ポンプ用モータなどの各種の補機類に電力を供給するインバータと、二次電池等の蓄電手段への充電や該蓄電手段からのモータ類への電力供給を行うDC−DCコンバータなどが備えられている。
制御部50は、CPU、ROM、RAM、HDD、入出力インタフェース及びディスプレイなどの公知構成から成る制御コンピュータシステムによって構成されており、図示しない車両のアクセル信号などの要求負荷や燃料電池システム1の各部のセンサ(圧力センサ、温度センサ、流量センサ、出力電流計、出力電圧計等)から制御情報を受け取り、システム各部の弁類やモータ類の運転を制御する。
そして、上記燃料電池システム1では、燃料電池20が、水素供給路41を介して供給される水素ガスと、空気供給路11を介して供給される空気とを電気化学反応させ、起電力を発生させる。
本実施形態に係る燃料電池システム1では、高温無加湿で円滑に発電させるために燃料電池20の触媒層として、低EW(Equivalent Weight)のアイオノマが用いられている。しかし、この低EWのアイオノマを触媒層として用いた燃料電池20では、特に、常温域において、アイオノマの膨潤によって拡散抵抗が増加して出力低下を招き、目標出力に対して実際の出力が十分得られなくなるおそれがある。
このため、本実施形態の燃料電池システム1では、拡散抵抗を抑制する拡散抵抗抑制制御を行う。なお、本発明において、低EWとはEWが1000以下のものをいう。
次に、この拡散抵抗抑制制御について、制御部50によって実施される一制御例を図2に示すフローチャートに沿って説明する。なお、以下の説明から明らかなように、本実施形態の制御部50は、本発明に係る出力差判定部、目標発熱量算定部、目標出力電圧算出部、目標ストイキ比算出部、及び空気供給量制御部として機能する。
例えば、常温域での運転において、燃料電池20の実測出力Pと目標出力Ptとを比較する出力比較判定を行う(ステップS01)。この出力比較判定では、出力差ΔP(ΔP=P−Pt)が所定値を超えているか否かを判定する。なお、本実施形態では、所定値を0とし、出力差ΔPが生じて|ΔP|>0となっているか否かが判定される。
この出力比較判定(ステップS01)で、出力差ΔPが生じていないと判定すると(ステップS01:No)、燃料電池20に対して通常制御が行われる。これにより、燃料電池20では、通常に発電が行われる(ステップS02)。
出力比較判定(ステップS01)で、出力差ΔPが生じていると判定すると(ステップS01:Yes)、以降の拡散抵抗抑制制御を行う。
まず、出力差ΔPをなくすために必要となる必要電流向上代ΔI、制御電圧E及び実験やシミュレーションの結果に基づいて設定される所定の点数βとから、次式に基づいて、拡散層で必要となる必要拡散向上代ΔDを算する(ステップS03)。
ΔI=β・E・ΔD
ΔI=β・E・ΔD
次に、必要拡散向上代ΔD及び実験やシミュレーションの結果に基づいて設定される所定の係数αから次式に基づいて、拡散層における目標アイオノマ収縮率Δδtを算出する(ステップS04)。
ΔD=αΔδt
ΔD=αΔδt
なお、この目標アイオノマ収縮率Δδtは、予め求めておいた拡散向上代ΔDとアイオノマの収縮率Δδとの関係のマップから求めても良い。
さらに、この目標アイオノマ収縮率Δδtから目標発熱量Qtを求める。この目標発熱量Qtは、図3に示すように、予め求めておいたアイオノマの収縮率Δδと発熱量Qとの関係のマップから求める(ステップS05)。この収縮率Δδと発熱量Qとの関係は、触媒層における電解質比率、すなわちカーボン当たりの電解質量(I/C)に応じて特性が変化するものである。
例えば、I/C=0.85、I/C=0.75、I/C=0.65の各種の触媒層のそれぞれについて収縮率Δδと発熱量Qとの関係をそれぞれ求めておく。そして、実際に用いられている触媒層の電解質量が、例えば、I/C=0.75である場合、このマップにおけるI/C=0.75に対応するものを選択して目標発熱量Qtを求める。
次に、目標発熱量Qt、電流値I及び実測電圧E0から次式に基づいて、目標出力電圧Etを算出する(ステップS06)。
Qt=(E0−Et)I
さらに、この目標出力電圧Etから目標ストイキ比STtを求める。この目標ストイキ比STtは、図4に示すように、予め求めておいた出力電圧Eとストイキ比STとの関係のマップから求める(ステップS07)。
目標出力電圧Etと目標ストイキ比STtとを求めたら、目標出力電圧Etで出力させるべく燃料電池20を制御するとともに、目標ストイキ比STtとなるようにコンプレッサA2を制御する(ステップS08)。
すると、燃料電池20では、各セルの拡散層で発熱が生じ、アイオノマの膨潤が抑制される。これにより、アイオノマの膨潤による拡散抵抗の増加が抑制されて出力低下が抑えられ、燃料電池20からの出力Pが目標出力Ptとされる。
燃料電池20の出力低下が抑えられて実測出力Pと目標出力Ptとに出力差ΔPが生じなくなると、燃料電池20は通常制御で運転される(ステップS01,S02)。
このように、上記実施形態に係る燃料電池システムによれば、拡散抵抗抑制運転が行われて目標ストイキ比STtとなるように燃料電池20へ空気が供給されると、触媒層が目標発熱量で発熱し、触媒層のアイオノマの膨潤が抑制される。これにより、アイオノマの膨潤による拡散抵抗の増加を抑制して出力低下を抑えることができ、燃料電池20からの出力Pを目標出力Ptとすることができる。
特に、アイオノマの膨潤が生じ易い冷間発電時においても、発電効率を良好な状態に維持させることができる。つまり、触媒層の水分量を判定する判定装置などを新たに追加して設けることによるコストアップを招くことなく、発電効率の低下を抑制することができる。
1 燃料電池システム
20 燃料電池
50 制御部(出力差判定部、目標発熱量算定部、目標出力電圧算出部、目標ストイキ比算出部、及び空気供給量制御部)
20 燃料電池
50 制御部(出力差判定部、目標発熱量算定部、目標出力電圧算出部、目標ストイキ比算出部、及び空気供給量制御部)
Claims (2)
- 触媒層に低EWのアイオノマを用いた複数のセルを備えた燃料電池に水素及び空気を供給し、これら水素と空気中の酸素とを前記セルで電気化学反応させて発電する燃料電池システムであって、
前記燃料電池の目標出力と実測出力との出力差が所定値を超えた際に、予め設定された前記アイオノマの収縮率と発熱量との関係から目標発熱量を求め、該目標発熱量から目標出力電圧を算出し、さらに、予め設定された出力電圧とストイキ比との関係から目標ストイキ比を求め、該目標ストイキ比となるように前記燃料電池へ空気を供給する拡散抵抗抑制運転が行われる燃料電池システム。 - 前記燃料電池の目標出力と実測出力との出力差が所定値を超えたか否かを判定する出力差判定部と、
予め設定された前記アイオノマの収縮率と発熱量との関係から目標発熱量を求める目標発熱量算定部と、
前記目標発熱量から目標出力電圧を算出する目標出力電圧算出部と、
予め設定された出力電圧とストイキ比との関係から目標ストイキ比を求める目標ストイキ比算出部と、
前記燃料電池への空気供給量を前記目標ストイキ比となるように制御する空気供給量制御部と、
を備える請求項1に記載の燃料電池システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012031723A JP2013168311A (ja) | 2012-02-16 | 2012-02-16 | 燃料電池システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012031723A JP2013168311A (ja) | 2012-02-16 | 2012-02-16 | 燃料電池システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013168311A true JP2013168311A (ja) | 2013-08-29 |
Family
ID=49178564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012031723A Pending JP2013168311A (ja) | 2012-02-16 | 2012-02-16 | 燃料電池システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013168311A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140081497A1 (en) * | 2012-09-19 | 2014-03-20 | Kia Motors Corporation | System and method for controlling fuel cell system |
JP2016033849A (ja) * | 2014-07-30 | 2016-03-10 | 本田技研工業株式会社 | 燃料電池システム |
CN113140761A (zh) * | 2020-01-16 | 2021-07-20 | 丰田自动车株式会社 | 燃料电池系统和燃料电池系统的控制方法 |
-
2012
- 2012-02-16 JP JP2012031723A patent/JP2013168311A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140081497A1 (en) * | 2012-09-19 | 2014-03-20 | Kia Motors Corporation | System and method for controlling fuel cell system |
JP2016033849A (ja) * | 2014-07-30 | 2016-03-10 | 本田技研工業株式会社 | 燃料電池システム |
CN113140761A (zh) * | 2020-01-16 | 2021-07-20 | 丰田自动车株式会社 | 燃料电池系统和燃料电池系统的控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4524804B2 (ja) | 燃料電池システム | |
JP4868251B2 (ja) | 燃料電池システム、アノードガス生成量推定装置及びアノードガス生成量の推定方法 | |
JP5120594B2 (ja) | 燃料電池システム及びその運転方法 | |
JP4905706B2 (ja) | 燃料電池システム及びその制御方法 | |
JP4424419B2 (ja) | 燃料電池システム | |
JP5476408B2 (ja) | 燃料電池システム | |
US8206860B2 (en) | Method to perform adaptive voltage suppression of a fuel cell stack based on stack parameters | |
US10199666B2 (en) | Fuel cell system | |
US8236460B2 (en) | Fuel cell system | |
JP2007141732A (ja) | 燃料電池システム及びその温度調整方法 | |
US8080342B2 (en) | Fuel cell system | |
JP5012065B2 (ja) | 燃料電池システム | |
US9905864B2 (en) | Fuel cell system and control method thereof | |
JP2013168311A (ja) | 燃料電池システム | |
JP7374061B2 (ja) | 燃料電池システム | |
JP2006092801A (ja) | 燃料電池システム | |
JP5769135B2 (ja) | 燃料電池システムとその運転方法 | |
JP5720584B2 (ja) | 燃料電池システムおよびその制御方法 | |
JP5140993B2 (ja) | 燃料電池システム | |
JP2007141744A (ja) | 燃料電池システム | |
JP2013164938A (ja) | 燃料電池システム及びその運転方法 | |
JP7367611B2 (ja) | 燃料電池システム | |
JP2012129081A (ja) | 燃料電池システムの運転方法 | |
JP2008159407A (ja) | 燃料電池システム | |
JP2009224169A (ja) | 燃料電池システム |