JP2013164311A - Fluid handing device and manufacturing method therefor - Google Patents
Fluid handing device and manufacturing method therefor Download PDFInfo
- Publication number
- JP2013164311A JP2013164311A JP2012026970A JP2012026970A JP2013164311A JP 2013164311 A JP2013164311 A JP 2013164311A JP 2012026970 A JP2012026970 A JP 2012026970A JP 2012026970 A JP2012026970 A JP 2012026970A JP 2013164311 A JP2013164311 A JP 2013164311A
- Authority
- JP
- Japan
- Prior art keywords
- resin substrate
- adhesive layer
- pet film
- resin
- polyethylene terephthalate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/483—Reactive adhesives, e.g. chemically curing adhesives
- B29C65/4835—Heat curing adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/50—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
- B29C65/5057—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/53—Joining single elements to tubular articles, hollow articles or bars
- B29C66/534—Joining single elements to open ends of tubular or hollow articles or to the ends of bars
- B29C66/5346—Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
- B29C66/53461—Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
- B29C66/712—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7311—Thermal properties
- B29C66/73117—Tg, i.e. glass transition temperature
- B29C66/73118—Tg, i.e. glass transition temperature of different glass transition temperature, i.e. the glass transition temperature of one of the parts to be joined being different from the glass transition temperature of the other part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
- B29C66/91411—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91921—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
- B29C66/91931—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
- B29C66/91935—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined lower than said fusion temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91921—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
- B29C66/91941—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
- B29C66/91943—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91921—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
- B29C66/91941—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
- B29C66/91945—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined lower than said glass transition temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C3/00—Assembling of devices or systems from individually processed components
- B81C3/001—Bonding of two components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0877—Flow chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/756—Microarticles, nanoarticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/05—Microfluidics
- B81B2201/058—Microfluidics not provided for in B81B2201/051 - B81B2201/054
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2203/00—Forming microstructural systems
- B81C2203/03—Bonding two components
- B81C2203/032—Gluing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Micromachines (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
本発明は、液体試料の分析や処理などに用いられる流体取扱装置およびその製造方法に関する。 The present invention relates to a fluid handling apparatus used for analysis and processing of a liquid sample and a method for manufacturing the same.
近年、生化学や分析化学などの科学分野または医学分野において、タンパク質や核酸(例えばDNA)などの微量な物質の分析を高精度かつ高速に行うために、マイクロ分析システムが使用されている。 2. Description of the Related Art In recent years, microanalysis systems have been used in the scientific field or medical field such as biochemistry and analytical chemistry in order to perform analysis of trace amounts of substances such as proteins and nucleic acids (for example, DNA) with high accuracy and high speed.
マイクロ分析システムに用いるマイクロ流路チップ(流体取扱装置)として、2枚の樹脂基板を接着剤で貼り合わせた構造のマイクロ流路チップが提案されている(例えば、特許文献1参照)。特許文献1には、一方の面に溝が形成された第1樹脂基板と、第1樹脂基板の溝が形成されている面上に配置された第2樹脂基板と、第1樹脂基板と第2樹脂基板とを接着する接着剤層とを有するマイクロ流路チップが開示されている。特許文献1のマイクロ流路チップでは、第1樹脂基板および第2樹脂基板として、同一の厚さのアクリル樹脂基板を使用している。 As a micro-channel chip (fluid handling device) used in a micro-analysis system, a micro-channel chip having a structure in which two resin substrates are bonded together with an adhesive has been proposed (for example, see Patent Document 1). In Patent Document 1, a first resin substrate having a groove formed on one surface, a second resin substrate disposed on a surface of the first resin substrate on which a groove is formed, a first resin substrate, A microchannel chip having an adhesive layer that bonds two resin substrates is disclosed. In the microchannel chip of Patent Document 1, acrylic resin substrates having the same thickness are used as the first resin substrate and the second resin substrate.
特許文献1のマイクロ流路チップでは、第1樹脂基板および第2樹脂基板として、同一の厚さのアクリル樹脂基板を使用しているが、製造性の向上および製造コストの低減の観点から、第2樹脂基板として樹脂フィルム(アクリル樹脂フィルム)を使用することが考えられる。 In the microchannel chip of Patent Document 1, acrylic resin substrates having the same thickness are used as the first resin substrate and the second resin substrate. From the viewpoint of improving the productivity and reducing the manufacturing cost, It is conceivable to use a resin film (acrylic resin film) as the two-resin substrate.
しかしながら、アクリル樹脂フィルムは、傷やフィッシュアイ(塊)などの欠陥が生じやすいという問題がある。そこで、本発明者は、アクリル樹脂フィルムの代わりに、良品質で安価なポリエチレンテレフタレート(PET)からなるPETフィルムを使用することを検討した。ところが、従来の製造方法によりPETフィルムを用いて流体取扱装置を製造したところ、PETフィルムと樹脂基板との接着強度が不十分であったり、溝に接着剤が入り込んで流路が狭くなってしまったりして、高精度かつ高強度の流体取扱装置を効率よく製造することができなかった。 However, the acrylic resin film has a problem that defects such as scratches and fish eyes (lumps) are likely to occur. Then, this inventor examined using PET film which consists of a polyethylene terephthalate (PET) of good quality and cheap instead of an acrylic resin film. However, when a fluid handling device is manufactured using a PET film by a conventional manufacturing method, the adhesive strength between the PET film and the resin substrate is insufficient, or an adhesive enters the groove and the flow path becomes narrow. As a result, it was not possible to efficiently manufacture a fluid handling device with high accuracy and high strength.
本発明は、かかる点に鑑みてなされたものであり、流路に接着剤を入り込ませることなく、かつ樹脂基板に対してPETフィルムを強固に接着することができる流体取扱装置の製造方法、およびそれにより得られる流体取扱装置を提供することを目的とする。 The present invention has been made in view of such points, and a method of manufacturing a fluid handling apparatus capable of firmly bonding a PET film to a resin substrate without allowing an adhesive to enter the flow path, and It aims at providing the fluid handling apparatus obtained by it.
本発明の流体取扱装置は、一方の面に溝が形成された樹脂基板と、前記樹脂基板の前記一方の面上に配置され、前記溝の開口部を覆うポリエチレンテレフタレートフィルムと、前記樹脂基板と前記ポリエチレンテレフタレートフィルムの間に配置され、アクリル樹脂成分およびウレタン樹脂成分を含む接着剤層とを有し、前記樹脂基板および前記ポリエチレンテレフタレートフィルムは、前記接着剤層を所定の接着温度で加熱することで互いに接着されており、前記樹脂基板のガラス転移温度をTgAとし、前記ポリエチレンテレフタレートフィルムの融点をTmBとし、前記接着剤層のガラス転移温度をTgCとし、前記接着温度をTpとしたとき、TgC<Tp<TgA<TmB、を満たす、構成を採る。 The fluid handling device of the present invention includes a resin substrate having a groove formed on one surface thereof, a polyethylene terephthalate film disposed on the one surface of the resin substrate and covering an opening of the groove, and the resin substrate. An adhesive layer that is disposed between the polyethylene terephthalate film and includes an acrylic resin component and a urethane resin component, and the resin substrate and the polyethylene terephthalate film heat the adhesive layer at a predetermined bonding temperature. The glass transition temperature of the resin substrate is Tg A , the melting point of the polyethylene terephthalate film is Tm B , the glass transition temperature of the adhesive layer is Tg C , and the adhesion temperature is Tp. When Tg C <Tp <Tg A <Tm B is satisfied.
本発明の流体取扱装置の製造方法は、一方の面に溝が形成された樹脂基板を準備する工程と、一方の面にアクリル樹脂成分およびウレタン樹脂成分を含む接着剤層が配置されたポリエチレンテレフタレートフィルムを準備する工程と、前記樹脂基板の前記一方の面上に、前記接着剤層が前記樹脂基板と前記ポリエチレンテレフタレートフィルムとの間に位置するように前記ポリエチレンテレフタレートフィルムを配置する工程と、前記接着剤層を所定の接着温度で加熱して、前記樹脂基板と前記ポリエチレンテレフタレートフィルムとを接着する工程と、を有し、前記樹脂基板のガラス転移温度をTgAとし、前記ポリエチレンテレフタレートフィルムの融点をTmBとし、前記接着剤層のガラス転移温度をTgCとし、前記接着温度をTpとしたとき、TgC<Tp<TgA<TmB、を満たす、構成を採る。 The method of manufacturing a fluid handling device of the present invention includes a step of preparing a resin substrate having a groove formed on one surface, and a polyethylene terephthalate in which an adhesive layer containing an acrylic resin component and a urethane resin component is disposed on one surface A step of preparing a film, a step of disposing the polyethylene terephthalate film on the one surface of the resin substrate such that the adhesive layer is positioned between the resin substrate and the polyethylene terephthalate film, Heating the adhesive layer at a predetermined bonding temperature to bond the resin substrate and the polyethylene terephthalate film, the glass transition temperature of the resin substrate is Tg A, and the melting point of the polyethylene terephthalate film was a Tm B, the glass transition temperature of the adhesive layer and Tg C, the bonding temperature T When a, Tg C <Tp <Tg A <Tm B, meet, a configuration.
本発明によれば、流路形状を高精度に制御しつつ、樹脂基板に対するPETフィルムの接着強度が十分に高い流体取扱装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the fluid handling apparatus with sufficiently high adhesive strength of the PET film with respect to a resin substrate can be provided, controlling a flow path shape with high precision.
以下、本発明の実施の形態について、図面を参照して詳細に説明する。以下の説明では、本発明の流体取扱装置の代表例として「マイクロ流路チップ」について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, a “microchannel chip” will be described as a representative example of the fluid handling apparatus of the present invention.
[マイクロ流路チップの構成]
図1は、本発明の一実施の形態に係るマイクロ流路チップ100の構成を示す図である。図1Aは、マイクロ流路チップ100の平面図である。図1Bは、図1Aに示すA−A線の断面図である。図1Cは、マイクロ流路チップ100の底面図である。
[Configuration of microchannel chip]
FIG. 1 is a diagram showing a configuration of a
図1に示されるように、マイクロ流路チップ100は、樹脂基板120、ポリエチレンテレフタレート(PET)フィルム140および接着剤層160を有する。マイクロ流路チップ100は、樹脂基板120、接着剤層160およびPETフィルム140を順番に積層した状態で、熱圧着することで作製される。
As shown in FIG. 1, the
図2Aは、樹脂基板120の平面図である。図2Bは、樹脂基板120の底面図である。図2に示されるように、樹脂基板120は、透明な略矩形の基板であり、2つの貫通孔と、これらの貫通孔を繋ぐ溝129とを有する。2つの貫通孔(第1貫通孔121および第2貫通孔122)は、PETフィルム140により一方の開口部が閉塞されることで、有底の凹部(第1凹部125および第2凹部126)となる。溝129は、樹脂基板120の一方の面に形成され、第1貫通孔121および第2貫通孔122を連通する。溝129は、PETフィルム140によりその開口部が閉塞されることで、第1凹部125および第2凹部126を連通する流路130となる。
FIG. 2A is a plan view of the
樹脂基板120の厚さは、特に限定されないが、例えば1〜10mmである。各貫通孔の形状は、特に限定されないが、例えば略円柱状である。各貫通孔の直径は、特に限定されないが、例えば2mm程度である。溝129の断面形状は、特に限定されないが、例えば略矩形である。溝129の大きさは、特に限定されないが、例えば幅が40μm程度であり、深さが25μm程度である。
Although the thickness of the
樹脂基板120を構成する樹脂の種類は、樹脂基板120のガラス転移温度(TgA)が後述する熱圧着時の接着温度(Tp)より高く、かつPETフィルム140の融点(TmB;200℃)より低ければ、特に限定されない。すなわち、樹脂基板120を構成する樹脂の種類は、Tp<TgA<TmBの式を満たすようなものであればよい。樹脂基板120のガラス転移温度(TgA)が、接着温度(Tp)より低い場合、熱圧着時に樹脂基板120が軟化して、流路形状が崩れてしまう。樹脂基板120を構成する樹脂の種類の例には、ポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)などが含まれる。なお、本実施の形態で用いたPMMAのガラス転移温度(TgA)は約97℃であり、一般的なPCのガラス転移温度(TgA)は約135℃であり、PETのガラス転移温度(TgA)は約70℃である。
The type of resin constituting the
PETフィルム140は、樹脂基板120の一方の面上に配置された、透明な略矩形のPET製の樹脂フィルムである。たとえば、PETフィルム140は、接着剤層160を介して樹脂基板120の溝129が形成されている面に接着されており、溝129の開口部を覆う。PETは、品質および価格の観点から、マイクロ流路チップ100のフィルムの材料として最適である。PETフィルム140の厚さは、特に限定されないが、例えば100μm程度である。なお、PETフィルム140を構成する樹脂(PET)の一般的なガラス転移温度(TgB)は約70℃であり、融点(TmB)は約200℃である。
The PET
接着剤層160は、樹脂基板120とPETフィルム140との間に配置されており、所定の接着温度(Tp)で加熱されることにより樹脂基板120とPETフィルム140を接着する。具体的には、接着剤層160は、樹脂基板120の溝129が形成された面(溝129の開口部を除く)とPETフィルム140を隙間なく接着する。接着剤層160は、樹脂基板120とPETフィルム140の密着性向上の観点から、アクリル樹脂成分とウレタン樹脂成分を含むことが必要である。
The
接着温度(Tp)は、接着剤層160を構成する樹脂のガラス転移温度(TgC)を考慮して決める必要がある。接着剤層160のガラス転移温度(TgC)が、接着温度(Tp)よりも低い場合、樹脂基板120にPETフィルム140を適切に接着することができない。たとえば、本発明において、接着剤層160を構成する樹脂のガラス転移温度(TgC)は40〜50℃である。
The bonding temperature (Tp) needs to be determined in consideration of the glass transition temperature (Tg C ) of the resin constituting the
接着剤層160のガラス転移温度(TgC)は、ガラス転移温度の異なる樹脂成分を添加して、その添加量を調整したり、ガラス転移温度の異なる2種類以上の樹脂の単量体を混合して重合し、その単量体の配分比を調整した共重合体を接着剤層160の材料にしたりすることで制御することができる。
The glass transition temperature (Tg C ) of the
接着剤層160の厚みは、特に限定されないが、3〜4μm程度であることが好ましい。接着剤層160の厚みが3μm未満の場合、樹脂基板120とPETフィルム140を十分に接着させることができず、樹脂基板120からPETフィルム140が剥離しやすくなる。一方、接着剤層160が4μm超の場合、熱圧着の際に接着剤層160が流路130内に入り込んでしまうおそれがある。
The thickness of the
接着剤層160は、アクリル樹脂成分およびウレタン樹脂成分をブロックコポリマーとして有していてもよい。また、アクリル樹脂とウレタン樹脂との混合体であってもよい。さらに、アクリル樹脂とウレタン樹脂との混合体およびブロックコポリマーが混在していてもよい。接着剤層160に含まれるアクリル樹脂成分およびウレタン樹脂成分が相補的な働きをすることで、アクリル樹脂の耐光性およびウレタン樹脂の耐薬品性を併せもつ接着剤層160を形成することができる。
The
前述の通り、マイクロ流路チップ100は、樹脂基板120、接着剤層160およびPETフィルム140をこの順番に積層した状態で、接着剤層160を所定の接着温度(Tp)で加熱することで作製される。このとき、接着剤層160を加熱する接着温度(Tp)は、接着剤層160のガラス転移温度(TgC)より高く、樹脂基板120のガラス転移温度(TgA;97℃)およびPETフィルム140の融点(TmB)より低ければ、特に限定されない。すなわち、接着温度は、TgC<Tp<TgA<TmBを満たせばよい。接着温度(Tp)が樹脂基板120のガラス転移温度(TgA)より高い場合、熱圧着時に樹脂基板120が軟化してしまう。たとえば、PETフィルム140と、PMMA製の樹脂基板120を用いてマイクロ流路チップ100作製する場合、接着温度(Tp)は、90℃程度である。
As described above, the
[マイクロ流路チップの製造方法]
本発明のマイクロ流路チップ100の製造方法は、特に限定されないが、例えば以下の方法により製造されうる。図3A,Bは、マイクロ流路チップ100の製造工程を示す断面図である。
[Method of manufacturing microchannel chip]
Although the manufacturing method of the microchannel chip | tip 100 of this invention is not specifically limited, For example, it can manufacture with the following method. 3A and 3B are cross-sectional views showing the manufacturing process of the
本発明のマイクロ流路チップ100は、1)樹脂基板120を準備する第1の工程と、2)接着剤層160が配置されたPETフィルム140を準備する第2の工程と、3)樹脂基板120と、接着剤層160が配置されたPETフィルム140とを積層する第3の工程と、4)樹脂基板120とPETフィルム140とを接着する第4の工程とを有する。
The
図3Aは、第1の工程および第2の工程を示す図である。図3に示されるように、第1の工程では、樹脂基板120を準備する。たとえば、射出成型により、2つの貫通孔と、これらの貫通孔を繋ぐ溝129とを有するPMMA製の樹脂基板120を作製する。
FIG. 3A is a diagram showing a first step and a second step. As shown in FIG. 3, in the first step, a
同図に示されるように、第2の工程では、一方の面にアクリル樹脂成分およびウレタン樹脂成分を含む接着剤層160が配置されたPETフィルム140を準備する。たとえば、PETフィルム140は、溶融押出成型法や、溶液流延法、カレンダー法などで製造してもよいし、市販のフィルムを使用してもよい。また、PETフィルム140上に接着剤層160を配置する方法は、特に限定されない。たとえば、PETフィルム140の表面にアクリル樹脂成分およびウレタン樹脂成分を含む樹脂組成物を塗布してもよいし(塗布法)、PETフィルム140の表面にアクリル樹脂成分およびウレタン樹脂成分を含む樹脂フィルムを積層してもよい(ラミネート法)。接着剤層160は、ガラス転移温度が40〜50℃となるように調整されている。
As shown in the figure, in the second step, a
図3Bは、第3の工程および第4の工程を示す図である。図3に示されるように、第3の工程では、樹脂基板120の一方の面上に、接着剤層160が樹脂基板120とPETフィルム140との間に位置するようにPETフィルム140を配置する。たとえば、溝129が形成された面を上に向けた樹脂基板120に対して、接着剤層160が下側に向くようにしたPETフィルム140を上方から積層する。
FIG. 3B is a diagram showing a third step and a fourth step. As shown in FIG. 3, in the third step, the
同図に示されるように、第4の工程では、接着剤層160を所定の接着温度で加熱して、樹脂基板120とPETフィルム140とを接着する。たとえば、熱圧着により接着剤層を軟化させた状態で、樹脂基板120に対してPETフィルム140を接合して、マイクロ流路チップ100を形成する。熱圧着は、90℃程度の温度で、10秒間以上行うことが好ましい。熱圧着する時間が10秒未満の場合、樹脂基板120とPETフィルム140が十分に接着されないおそれがある。
As shown in the figure, in the fourth step, the
このように、樹脂基板120、接着剤層160およびPETフィルム140の積層体を熱圧着すると、接着剤層160およびPETフィルム140が軟化する。この際、接着温度は、接着剤層160が十分軟化し、PETフィルム140が樹脂基板120の表面形状に追従する程度の温度である。この状態で圧着することで、樹脂基板120とPETフィルム140とが接着剤層160により接着される。
Thus, when the laminated body of the
以上のように、本発明のマイクロ流路チップ100の製造方法は、1)TgC<Tp<TgA<TmBを満たすこと、および2)接着剤層160がアクリル樹脂成分およびウレタン樹脂成分を含むこと、を特徴とする。これにより、流路に接着剤を入り込ませることなく、かつ樹脂基板120に対してPETフィルム140を強固に接着することができる。このように製造された本発明のマイクロ流路チップ100は、高精度かつ高強度であり、流路130から試料が漏出してしまうことがなく、かつ高精度に試料を分析することができる。
As described above, the manufacturing method of the
以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited by these Examples.
1.マイクロ流路チップの作製
ポリメタクリル酸メチル(PMMA)を材料として、図2に示される樹脂基板を射出成形により作製した。貫通孔の直径は、2mmである。また、溝の幅は40μmであり、溝の深さは25μmである。
1. Production of microchannel chip The resin substrate shown in FIG. 2 was produced by injection molding using polymethyl methacrylate (PMMA) as a material. The diameter of the through hole is 2 mm. The width of the groove is 40 μm, and the depth of the groove is 25 μm.
表1に示される樹脂を含む接着剤層が形成されたPETフィルム(厚さ100μm)を準備した。 A PET film (thickness: 100 μm) on which an adhesive layer containing the resin shown in Table 1 was formed was prepared.
樹脂基板の溝が形成された面と、接着剤層が配置された面が対向するようにして、PETフィルムを樹脂基板に重ねた。この状態で、90℃で10秒間熱圧着して、PETフィルムを樹脂基板に接着することでマイクロ流路チップを作製した。 The PET film was overlaid on the resin substrate so that the surface of the resin substrate on which the groove was formed and the surface on which the adhesive layer was disposed were opposed to each other. In this state, a microchannel chip was manufactured by thermocompression bonding at 90 ° C. for 10 seconds to adhere the PET film to the resin substrate.
樹脂基板(PMMA)のガラス転移温度(TgA)は97℃である。PETフィルムの融点(TmB)は200℃である。接着剤層のガラス転移温度(TgC)は40〜50℃である。熱圧着の際の接着温度(Tp)は90℃である。したがって、上記いずれの接着剤層を形成した場合であっても、TgC<Tp<TgA<TmB、が満たされている。 The glass transition temperature (Tg A ) of the resin substrate (PMMA) is 97 ° C. The melting point (Tm B ) of the PET film is 200 ° C. The glass transition temperature (Tg C ) of the adhesive layer is 40 to 50 ° C. The bonding temperature (Tp) during thermocompression bonding is 90 ° C. Therefore, even when any of the above adhesive layers is formed, Tg C <Tp <Tg A <Tm B is satisfied.
これらの各ガラス転移温度および融点は、示差走査熱量測定(DSC)装置を用いて測定した値、または使用した樹脂の仕様値である。 Each of these glass transition temperatures and melting points is a value measured using a differential scanning calorimetry (DSC) apparatus or a specification value of the resin used.
2.マイクロ流路チップの評価
各マイクロ流路チップについて、樹脂基板に対するPETフィルムの接着強度と、流路形状を評価した。
2. Evaluation of microchannel chip For each microchannel chip, the adhesive strength of the PET film to the resin substrate and the channel shape were evaluated.
(1)接着強度の評価
接着強度の評価では、樹脂基板からのPETフィルムの剥がれにくさを調べた。マイクロ流路チップの凹部にフォースゲージの先端を挿入し、圧力換算して0.4MPaの応力をPETフィルムに加えた。次いで、樹脂基板とPETフィルムの境界をカメラで撮像して、樹脂基板からPETフィルムが剥離しているか否かを確認した。樹脂基板からPETフィルムが剥離しなかったものを「○」と評価し、樹脂基板からPETフィルムが剥離したものを「×」と評価した。
(1) Evaluation of adhesive strength In the evaluation of adhesive strength, the difficulty of peeling of the PET film from the resin substrate was examined. The tip of a force gauge was inserted into the recess of the microchannel chip, and a pressure of 0.4 MPa was applied to the PET film in terms of pressure. Next, the boundary between the resin substrate and the PET film was imaged with a camera, and it was confirmed whether the PET film was peeled off from the resin substrate. The case where the PET film was not peeled off from the resin substrate was evaluated as “◯”, and the case where the PET film was peeled off from the resin substrate was evaluated as “x”.
(2)流路形状の評価
流路形状の評価では、流路内に接着剤層が入り込んでいるか否かを調べた。具体的には、PETフィルムを樹脂基板から剥がした後、フーリエ変換赤外分光光度計により接着剤層の表面形状を流路の幅方向に測定した。流路部分における接着剤層の最大高さと最小高さの高低差が小さいマイクロ流路チップでは、接着剤層が流路内に入り込んでいないと考えられる。一方、高低差が大きいマイクロ流路チップでは、接着剤層が流路内に入り込んでいると考えられる。これらの考えに基づき、流路部分における接着剤層の高低差が1.6μm未満であったものを「○」と評価し、高低差が1.6μm以上であったものを「×」と評価した。
(2) Evaluation of flow path shape In the evaluation of the flow path shape, it was examined whether or not an adhesive layer had entered the flow path. Specifically, after peeling the PET film from the resin substrate, the surface shape of the adhesive layer was measured in the width direction of the flow path by a Fourier transform infrared spectrophotometer. In the micro-channel chip in which the difference in height between the maximum height and the minimum height of the adhesive layer in the channel portion is small, it is considered that the adhesive layer does not enter the channel. On the other hand, in the microchannel chip having a large difference in height, it is considered that the adhesive layer enters the channel. Based on these ideas, if the difference in height of the adhesive layer in the flow path portion was less than 1.6 μm, it was evaluated as “◯”, and if the difference in height was 1.6 μm or more, it was evaluated as “x”. did.
(3)結果
各マイクロ流路チップについての接着強度および流路形状の評価結果を表2に示す。
(3) Results Table 2 shows the evaluation results of the adhesive strength and the channel shape for each microchannel chip.
接着剤層がアクリル樹脂およびウレタン樹脂の少なくとも一方を含まない比較例1〜4のマイクロ流路チップでは、樹脂基板と接着剤層の境界が剥離しており、接着強度が弱かった。一方、接着剤層がアクリル樹脂およびウレタン樹脂の両方を含む実施例のマイクロ流路チップでは、剥離がまったく観察されず、接着強度が強かった。また、前述した式(TgC<Tp<TgA<TmB)を満たしている実施例および比較例1〜4のマイクロ流路チップは、いずれも流路形状が良好であった。 In the microchannel chips of Comparative Examples 1 to 4 in which the adhesive layer did not contain at least one of acrylic resin and urethane resin, the boundary between the resin substrate and the adhesive layer was peeled off, and the adhesive strength was weak. On the other hand, in the microchannel chip of the example in which the adhesive layer contains both acrylic resin and urethane resin, no peeling was observed and the adhesive strength was strong. The micro-channel chip of Examples and Comparative Examples 1 to 4 satisfy the aforementioned equations (Tg C <Tp <Tg A <Tm B) are both the flow path shape was good.
以上の結果から、本発明のマイクロ流路チップは、樹脂基板とPETフィルムの接着強度および流路形状の精度に優れていることがわかる。 From the above results, it can be seen that the microchannel chip of the present invention is excellent in the adhesive strength between the resin substrate and the PET film and the accuracy of the channel shape.
本発明のマイクロ流路チップは、例えば、科学分野や医学分野などにおいて使用されるマイクロ流路チップとして有用である。 The microchannel chip of the present invention is useful as a microchannel chip used in, for example, the scientific field and the medical field.
100 マイクロ流路チップ
120 樹脂基板
121 第1貫通孔
122 第2貫通孔
125 第1凹部
126 第2凹部
129 溝
130 流路
140 PETフィルム
160 接着剤層
DESCRIPTION OF
Claims (4)
前記樹脂基板の前記一方の面上に配置され、前記溝の開口部を覆うポリエチレンテレフタレートフィルムと、
前記樹脂基板と前記ポリエチレンテレフタレートフィルムの間に配置され、アクリル樹脂成分およびウレタン樹脂成分を含む接着剤層とを有し、
前記樹脂基板および前記ポリエチレンテレフタレートフィルムは、前記接着剤層を所定の接着温度で加熱することで互いに接着されており、
前記樹脂基板のガラス転移温度をTgAとし、前記ポリエチレンテレフタレートフィルムの融点をTmBとし、前記接着剤層のガラス転移温度をTgCとし、前記接着温度をTpとしたとき、
TgC<Tp<TgA<TmB、を満たす、
流体取扱装置。 A resin substrate with a groove formed on one surface;
A polyethylene terephthalate film disposed on the one surface of the resin substrate and covering the opening of the groove;
Arranged between the resin substrate and the polyethylene terephthalate film, and having an adhesive layer containing an acrylic resin component and a urethane resin component,
The resin substrate and the polyethylene terephthalate film are bonded to each other by heating the adhesive layer at a predetermined bonding temperature,
When the glass transition temperature of the resin substrate is Tg A , the melting point of the polyethylene terephthalate film is Tm B , the glass transition temperature of the adhesive layer is Tg C , and the adhesion temperature is Tp,
Tg C <Tp <Tg A <Tm B is satisfied,
Fluid handling device.
一方の面にアクリル樹脂成分およびウレタン樹脂成分を含む接着剤層が配置されたポリエチレンテレフタレートフィルムを準備する工程と、
前記樹脂基板の前記一方の面上に、前記接着剤層が前記樹脂基板と前記ポリエチレンテレフタレートフィルムとの間に位置するように前記ポリエチレンテレフタレートフィルムを配置する工程と、
前記接着剤層を所定の接着温度で加熱して、前記樹脂基板と前記ポリエチレンテレフタレートフィルムとを接着する工程と、を有し、
前記樹脂基板のガラス転移温度をTgAとし、前記ポリエチレンテレフタレートフィルムの融点をTmBとし、前記接着剤層のガラス転移温度をTgCとし、前記接着温度をTpとしたとき、
TgC<Tp<TgA<TmB、を満たす、
流体取扱装置の製造方法。 Preparing a resin substrate having grooves formed on one surface;
Preparing a polyethylene terephthalate film in which an adhesive layer containing an acrylic resin component and a urethane resin component is disposed on one surface;
Disposing the polyethylene terephthalate film on the one surface of the resin substrate such that the adhesive layer is located between the resin substrate and the polyethylene terephthalate film;
Heating the adhesive layer at a predetermined bonding temperature to bond the resin substrate and the polyethylene terephthalate film,
When the glass transition temperature of the resin substrate is Tg A , the melting point of the polyethylene terephthalate film is Tm B , the glass transition temperature of the adhesive layer is Tg C , and the adhesion temperature is Tp,
Tg C <Tp <Tg A <Tm B is satisfied,
Manufacturing method of fluid handling device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012026970A JP2013164311A (en) | 2012-02-10 | 2012-02-10 | Fluid handing device and manufacturing method therefor |
PCT/JP2013/000420 WO2013118447A1 (en) | 2012-02-10 | 2013-01-28 | Fluid handling apparatus and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012026970A JP2013164311A (en) | 2012-02-10 | 2012-02-10 | Fluid handing device and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013164311A true JP2013164311A (en) | 2013-08-22 |
Family
ID=48947225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012026970A Pending JP2013164311A (en) | 2012-02-10 | 2012-02-10 | Fluid handing device and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013164311A (en) |
WO (1) | WO2013118447A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018102236A (en) * | 2016-12-27 | 2018-07-05 | 東京応化工業株式会社 | Cell culture chip production method |
JP2020056653A (en) * | 2018-10-01 | 2020-04-09 | 旭化成株式会社 | Photosensitive resin laminate for micro flow passage |
JP2021121414A (en) * | 2020-01-31 | 2021-08-26 | 住友ベークライト株式会社 | Micro flow channel chip |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2010005552A (en) | 2007-11-21 | 2010-06-02 | Smith & Nephew | Wound dressing. |
GB0723855D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Apparatus and method for wound volume measurement |
GB201015656D0 (en) | 2010-09-20 | 2010-10-27 | Smith & Nephew | Pressure control apparatus |
US9084845B2 (en) | 2011-11-02 | 2015-07-21 | Smith & Nephew Plc | Reduced pressure therapy apparatuses and methods of using same |
US10046096B2 (en) | 2012-03-12 | 2018-08-14 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
CA2867969C (en) | 2012-03-20 | 2020-03-24 | Smith & Nephew Plc | Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination |
US9427505B2 (en) | 2012-05-15 | 2016-08-30 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
CA2971790A1 (en) | 2014-12-22 | 2016-06-30 | Smith & Nephew Plc | Negative pressure wound therapy apparatus and methods |
US20180326415A1 (en) * | 2015-03-05 | 2018-11-15 | STRATEC CONSUMABLES GmbH | Microfluidic device and method of manufacture of microfluidic device |
JP6394651B2 (en) * | 2016-07-15 | 2018-09-26 | ウシオ電機株式会社 | Substrate bonding method and microchip manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012007920A (en) * | 2010-06-23 | 2012-01-12 | Sumitomo Bakelite Co Ltd | Manufacturing method of micro flow channel device |
-
2012
- 2012-02-10 JP JP2012026970A patent/JP2013164311A/en active Pending
-
2013
- 2013-01-28 WO PCT/JP2013/000420 patent/WO2013118447A1/en active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018102236A (en) * | 2016-12-27 | 2018-07-05 | 東京応化工業株式会社 | Cell culture chip production method |
US10941376B2 (en) | 2016-12-27 | 2021-03-09 | Tokyo Ohka Kogyo Co., Ltd. | Method for producing chip for cell culture |
JP2020056653A (en) * | 2018-10-01 | 2020-04-09 | 旭化成株式会社 | Photosensitive resin laminate for micro flow passage |
JP7216365B2 (en) | 2018-10-01 | 2023-02-01 | 旭化成株式会社 | Photosensitive resin laminate for microchannel |
JP2021121414A (en) * | 2020-01-31 | 2021-08-26 | 住友ベークライト株式会社 | Micro flow channel chip |
Also Published As
Publication number | Publication date |
---|---|
WO2013118447A1 (en) | 2013-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013118447A1 (en) | Fluid handling apparatus and method for manufacturing same | |
KR100572207B1 (en) | Bonding method of plastic microchip | |
CN101048338B (en) | Fluid container composed of two plates | |
CN106531646B (en) | A kind of packaging method of micro-fluidic chip | |
WO2010021264A1 (en) | Process for producing microchannel chip and microchannel chip | |
CN107159329A (en) | A kind of chip and its method for packing for sample detection | |
CN103394382A (en) | Microfluidic chip with optical filtering characteristics | |
US20170326547A1 (en) | Fluid handling device and method for manufacturing fluid handling device | |
JP2007240461A (en) | Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same | |
JP2011214838A (en) | Resin microchannel chip | |
JP2008157644A (en) | Plastic microchip, and biochip or micro analysis chip using the same | |
JP2009166416A (en) | Method for manufacturing microchip, and microchip | |
JP6426977B2 (en) | Microchip and method of manufacturing the same | |
CN101952731A (en) | Microchip and method for manufacturing the same | |
JP2013010076A (en) | Method for manufacturing microchannel device and microchannel chip | |
JP2008076208A (en) | Plastic microchip, biochip using it or microanalyzing chip | |
WO2009125757A1 (en) | Microchip and method for manufacturing microchip | |
JP2017154349A (en) | Method of manufacturing micro flow path chip | |
JP2008304352A (en) | Channel device and method for bonding channel device-use board | |
KR20110075448A (en) | A method for manufacturing a microfluidic device and a microfluidic divice manufactured using the same method | |
JP2015199187A (en) | Production method of resin micro channel device and micro channel device | |
JP2006234600A (en) | Plastic microchip and its manufacturing method | |
JP2019055379A (en) | Micro flow channel chip, and manufacturing method of the same | |
US20100074815A1 (en) | Master and Microreactor | |
JP2010247056A (en) | Microchip |