[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013164311A - Fluid handing device and manufacturing method therefor - Google Patents

Fluid handing device and manufacturing method therefor Download PDF

Info

Publication number
JP2013164311A
JP2013164311A JP2012026970A JP2012026970A JP2013164311A JP 2013164311 A JP2013164311 A JP 2013164311A JP 2012026970 A JP2012026970 A JP 2012026970A JP 2012026970 A JP2012026970 A JP 2012026970A JP 2013164311 A JP2013164311 A JP 2013164311A
Authority
JP
Japan
Prior art keywords
resin substrate
adhesive layer
pet film
resin
polyethylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012026970A
Other languages
Japanese (ja)
Inventor
Ken Kitamoto
健 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2012026970A priority Critical patent/JP2013164311A/en
Priority to PCT/JP2013/000420 priority patent/WO2013118447A1/en
Publication of JP2013164311A publication Critical patent/JP2013164311A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4835Heat curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • B29C66/73118Tg, i.e. glass transition temperature of different glass transition temperature, i.e. the glass transition temperature of one of the parts to be joined being different from the glass transition temperature of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91935Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined lower than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91943Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91945Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined lower than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/032Gluing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Micromachines (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a fluid handling device, capable of firmly bonding a PET film to a resin substrate while preventing adhesive from entering into a flow channel.SOLUTION: A resin substrate 120 having a groove 129 formed on its one surface and a PET film 140 having an adhesive layer 160 containing an acrylic resin component and a urethane resin content disposed on its one surface are prepared. The PET film 140 is disposed on one surface of the resin substrate 120 in such a manner that the adhesive layer 160 is disposed between the resin substrate 120 and the PET film 140. The resin substrate 120 and the PET film 140 are bonded by heating the adhesive layer 160 by a prescribed bonding temperature. A glass-transition temperature (Tg) of the resin substrate 120, a melting point (Tm) of the PET film, a glass-transition temperature (Tg) of the adhesive layer 160 and the bonding temperature (Tp) satisfy Tg<Tp<Tg<Tm.

Description

本発明は、液体試料の分析や処理などに用いられる流体取扱装置およびその製造方法に関する。   The present invention relates to a fluid handling apparatus used for analysis and processing of a liquid sample and a method for manufacturing the same.

近年、生化学や分析化学などの科学分野または医学分野において、タンパク質や核酸(例えばDNA)などの微量な物質の分析を高精度かつ高速に行うために、マイクロ分析システムが使用されている。   2. Description of the Related Art In recent years, microanalysis systems have been used in the scientific field or medical field such as biochemistry and analytical chemistry in order to perform analysis of trace amounts of substances such as proteins and nucleic acids (for example, DNA) with high accuracy and high speed.

マイクロ分析システムに用いるマイクロ流路チップ(流体取扱装置)として、2枚の樹脂基板を接着剤で貼り合わせた構造のマイクロ流路チップが提案されている(例えば、特許文献1参照)。特許文献1には、一方の面に溝が形成された第1樹脂基板と、第1樹脂基板の溝が形成されている面上に配置された第2樹脂基板と、第1樹脂基板と第2樹脂基板とを接着する接着剤層とを有するマイクロ流路チップが開示されている。特許文献1のマイクロ流路チップでは、第1樹脂基板および第2樹脂基板として、同一の厚さのアクリル樹脂基板を使用している。   As a micro-channel chip (fluid handling device) used in a micro-analysis system, a micro-channel chip having a structure in which two resin substrates are bonded together with an adhesive has been proposed (for example, see Patent Document 1). In Patent Document 1, a first resin substrate having a groove formed on one surface, a second resin substrate disposed on a surface of the first resin substrate on which a groove is formed, a first resin substrate, A microchannel chip having an adhesive layer that bonds two resin substrates is disclosed. In the microchannel chip of Patent Document 1, acrylic resin substrates having the same thickness are used as the first resin substrate and the second resin substrate.

特開2000−248076号公報JP 2000-248076 A

特許文献1のマイクロ流路チップでは、第1樹脂基板および第2樹脂基板として、同一の厚さのアクリル樹脂基板を使用しているが、製造性の向上および製造コストの低減の観点から、第2樹脂基板として樹脂フィルム(アクリル樹脂フィルム)を使用することが考えられる。   In the microchannel chip of Patent Document 1, acrylic resin substrates having the same thickness are used as the first resin substrate and the second resin substrate. From the viewpoint of improving the productivity and reducing the manufacturing cost, It is conceivable to use a resin film (acrylic resin film) as the two-resin substrate.

しかしながら、アクリル樹脂フィルムは、傷やフィッシュアイ(塊)などの欠陥が生じやすいという問題がある。そこで、本発明者は、アクリル樹脂フィルムの代わりに、良品質で安価なポリエチレンテレフタレート(PET)からなるPETフィルムを使用することを検討した。ところが、従来の製造方法によりPETフィルムを用いて流体取扱装置を製造したところ、PETフィルムと樹脂基板との接着強度が不十分であったり、溝に接着剤が入り込んで流路が狭くなってしまったりして、高精度かつ高強度の流体取扱装置を効率よく製造することができなかった。   However, the acrylic resin film has a problem that defects such as scratches and fish eyes (lumps) are likely to occur. Then, this inventor examined using PET film which consists of a polyethylene terephthalate (PET) of good quality and cheap instead of an acrylic resin film. However, when a fluid handling device is manufactured using a PET film by a conventional manufacturing method, the adhesive strength between the PET film and the resin substrate is insufficient, or an adhesive enters the groove and the flow path becomes narrow. As a result, it was not possible to efficiently manufacture a fluid handling device with high accuracy and high strength.

本発明は、かかる点に鑑みてなされたものであり、流路に接着剤を入り込ませることなく、かつ樹脂基板に対してPETフィルムを強固に接着することができる流体取扱装置の製造方法、およびそれにより得られる流体取扱装置を提供することを目的とする。   The present invention has been made in view of such points, and a method of manufacturing a fluid handling apparatus capable of firmly bonding a PET film to a resin substrate without allowing an adhesive to enter the flow path, and It aims at providing the fluid handling apparatus obtained by it.

本発明の流体取扱装置は、一方の面に溝が形成された樹脂基板と、前記樹脂基板の前記一方の面上に配置され、前記溝の開口部を覆うポリエチレンテレフタレートフィルムと、前記樹脂基板と前記ポリエチレンテレフタレートフィルムの間に配置され、アクリル樹脂成分およびウレタン樹脂成分を含む接着剤層とを有し、前記樹脂基板および前記ポリエチレンテレフタレートフィルムは、前記接着剤層を所定の接着温度で加熱することで互いに接着されており、前記樹脂基板のガラス転移温度をTgとし、前記ポリエチレンテレフタレートフィルムの融点をTmとし、前記接着剤層のガラス転移温度をTgとし、前記接着温度をTpとしたとき、Tg<Tp<Tg<Tm、を満たす、構成を採る。 The fluid handling device of the present invention includes a resin substrate having a groove formed on one surface thereof, a polyethylene terephthalate film disposed on the one surface of the resin substrate and covering an opening of the groove, and the resin substrate. An adhesive layer that is disposed between the polyethylene terephthalate film and includes an acrylic resin component and a urethane resin component, and the resin substrate and the polyethylene terephthalate film heat the adhesive layer at a predetermined bonding temperature. The glass transition temperature of the resin substrate is Tg A , the melting point of the polyethylene terephthalate film is Tm B , the glass transition temperature of the adhesive layer is Tg C , and the adhesion temperature is Tp. When Tg C <Tp <Tg A <Tm B is satisfied.

本発明の流体取扱装置の製造方法は、一方の面に溝が形成された樹脂基板を準備する工程と、一方の面にアクリル樹脂成分およびウレタン樹脂成分を含む接着剤層が配置されたポリエチレンテレフタレートフィルムを準備する工程と、前記樹脂基板の前記一方の面上に、前記接着剤層が前記樹脂基板と前記ポリエチレンテレフタレートフィルムとの間に位置するように前記ポリエチレンテレフタレートフィルムを配置する工程と、前記接着剤層を所定の接着温度で加熱して、前記樹脂基板と前記ポリエチレンテレフタレートフィルムとを接着する工程と、を有し、前記樹脂基板のガラス転移温度をTgとし、前記ポリエチレンテレフタレートフィルムの融点をTmとし、前記接着剤層のガラス転移温度をTgとし、前記接着温度をTpとしたとき、Tg<Tp<Tg<Tm、を満たす、構成を採る。 The method of manufacturing a fluid handling device of the present invention includes a step of preparing a resin substrate having a groove formed on one surface, and a polyethylene terephthalate in which an adhesive layer containing an acrylic resin component and a urethane resin component is disposed on one surface A step of preparing a film, a step of disposing the polyethylene terephthalate film on the one surface of the resin substrate such that the adhesive layer is positioned between the resin substrate and the polyethylene terephthalate film, Heating the adhesive layer at a predetermined bonding temperature to bond the resin substrate and the polyethylene terephthalate film, the glass transition temperature of the resin substrate is Tg A, and the melting point of the polyethylene terephthalate film was a Tm B, the glass transition temperature of the adhesive layer and Tg C, the bonding temperature T When a, Tg C <Tp <Tg A <Tm B, meet, a configuration.

本発明によれば、流路形状を高精度に制御しつつ、樹脂基板に対するPETフィルムの接着強度が十分に高い流体取扱装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fluid handling apparatus with sufficiently high adhesive strength of the PET film with respect to a resin substrate can be provided, controlling a flow path shape with high precision.

図1Aは、実施の形態のマイクロ流路チップの平面図である。図1Bは、図1Aに示すA−A線の断面図である。図1Cは、実施の形態のマイクロ流路チップの底面図である。FIG. 1A is a plan view of the microchannel chip of the embodiment. 1B is a cross-sectional view taken along line AA shown in FIG. 1A. FIG. 1C is a bottom view of the microchannel chip according to the embodiment. 図2Aは、樹脂基板の平面図である。図2Bは、樹脂基板の底面図である。FIG. 2A is a plan view of the resin substrate. FIG. 2B is a bottom view of the resin substrate. 図3A,Bは、マイクロ流路チップの製造工程を示す断面図である。3A and 3B are cross-sectional views showing the manufacturing process of the microchannel chip.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。以下の説明では、本発明の流体取扱装置の代表例として「マイクロ流路チップ」について説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, a “microchannel chip” will be described as a representative example of the fluid handling apparatus of the present invention.

[マイクロ流路チップの構成]
図1は、本発明の一実施の形態に係るマイクロ流路チップ100の構成を示す図である。図1Aは、マイクロ流路チップ100の平面図である。図1Bは、図1Aに示すA−A線の断面図である。図1Cは、マイクロ流路チップ100の底面図である。
[Configuration of microchannel chip]
FIG. 1 is a diagram showing a configuration of a microchannel chip 100 according to an embodiment of the present invention. FIG. 1A is a plan view of the microchannel chip 100. 1B is a cross-sectional view taken along line AA shown in FIG. 1A. FIG. 1C is a bottom view of the microchannel chip 100.

図1に示されるように、マイクロ流路チップ100は、樹脂基板120、ポリエチレンテレフタレート(PET)フィルム140および接着剤層160を有する。マイクロ流路チップ100は、樹脂基板120、接着剤層160およびPETフィルム140を順番に積層した状態で、熱圧着することで作製される。   As shown in FIG. 1, the microchannel chip 100 includes a resin substrate 120, a polyethylene terephthalate (PET) film 140, and an adhesive layer 160. The microchannel chip 100 is manufactured by thermocompression bonding in a state where the resin substrate 120, the adhesive layer 160, and the PET film 140 are sequentially laminated.

図2Aは、樹脂基板120の平面図である。図2Bは、樹脂基板120の底面図である。図2に示されるように、樹脂基板120は、透明な略矩形の基板であり、2つの貫通孔と、これらの貫通孔を繋ぐ溝129とを有する。2つの貫通孔(第1貫通孔121および第2貫通孔122)は、PETフィルム140により一方の開口部が閉塞されることで、有底の凹部(第1凹部125および第2凹部126)となる。溝129は、樹脂基板120の一方の面に形成され、第1貫通孔121および第2貫通孔122を連通する。溝129は、PETフィルム140によりその開口部が閉塞されることで、第1凹部125および第2凹部126を連通する流路130となる。   FIG. 2A is a plan view of the resin substrate 120. FIG. 2B is a bottom view of the resin substrate 120. As illustrated in FIG. 2, the resin substrate 120 is a transparent, substantially rectangular substrate, and includes two through holes and a groove 129 that connects these through holes. The two through holes (the first through hole 121 and the second through hole 122) have a bottomed concave portion (the first concave portion 125 and the second concave portion 126) by closing one opening portion with the PET film 140. Become. The groove 129 is formed on one surface of the resin substrate 120 and communicates the first through hole 121 and the second through hole 122. The opening of the groove 129 is blocked by the PET film 140, thereby forming a flow path 130 that communicates the first recess 125 and the second recess 126.

樹脂基板120の厚さは、特に限定されないが、例えば1〜10mmである。各貫通孔の形状は、特に限定されないが、例えば略円柱状である。各貫通孔の直径は、特に限定されないが、例えば2mm程度である。溝129の断面形状は、特に限定されないが、例えば略矩形である。溝129の大きさは、特に限定されないが、例えば幅が40μm程度であり、深さが25μm程度である。   Although the thickness of the resin substrate 120 is not specifically limited, For example, it is 1-10 mm. Although the shape of each through-hole is not specifically limited, For example, it is a substantially cylindrical shape. Although the diameter of each through-hole is not specifically limited, For example, it is about 2 mm. The cross-sectional shape of the groove 129 is not particularly limited, but is substantially rectangular, for example. The size of the groove 129 is not particularly limited. For example, the width is about 40 μm and the depth is about 25 μm.

樹脂基板120を構成する樹脂の種類は、樹脂基板120のガラス転移温度(Tg)が後述する熱圧着時の接着温度(Tp)より高く、かつPETフィルム140の融点(Tm;200℃)より低ければ、特に限定されない。すなわち、樹脂基板120を構成する樹脂の種類は、Tp<Tg<Tmの式を満たすようなものであればよい。樹脂基板120のガラス転移温度(Tg)が、接着温度(Tp)より低い場合、熱圧着時に樹脂基板120が軟化して、流路形状が崩れてしまう。樹脂基板120を構成する樹脂の種類の例には、ポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)などが含まれる。なお、本実施の形態で用いたPMMAのガラス転移温度(Tg)は約97℃であり、一般的なPCのガラス転移温度(Tg)は約135℃であり、PETのガラス転移温度(Tg)は約70℃である。 The type of resin constituting the resin substrate 120 is such that the glass transition temperature (Tg A ) of the resin substrate 120 is higher than the bonding temperature (Tp) at the time of thermocompression bonding described later, and the melting point (Tm B ; 200 ° C.) of the PET film 140. If it is lower, it is not particularly limited. That is, the kind of resin constituting the resin substrate 120 only needs to satisfy the formula of Tp <Tg A <Tm B. When the glass transition temperature (Tg A ) of the resin substrate 120 is lower than the adhesion temperature (Tp), the resin substrate 120 is softened at the time of thermocompression bonding, and the flow path shape is collapsed. Examples of the type of resin constituting the resin substrate 120 include polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), and the like. The glass transition temperature (Tg A ) of PMMA used in this embodiment is about 97 ° C., the glass transition temperature (Tg A ) of general PC is about 135 ° C., and the glass transition temperature of PET ( Tg A ) is about 70 ° C.

PETフィルム140は、樹脂基板120の一方の面上に配置された、透明な略矩形のPET製の樹脂フィルムである。たとえば、PETフィルム140は、接着剤層160を介して樹脂基板120の溝129が形成されている面に接着されており、溝129の開口部を覆う。PETは、品質および価格の観点から、マイクロ流路チップ100のフィルムの材料として最適である。PETフィルム140の厚さは、特に限定されないが、例えば100μm程度である。なお、PETフィルム140を構成する樹脂(PET)の一般的なガラス転移温度(Tg)は約70℃であり、融点(Tm)は約200℃である。 The PET film 140 is a transparent substantially rectangular PET resin film disposed on one surface of the resin substrate 120. For example, the PET film 140 is bonded to the surface of the resin substrate 120 where the groove 129 is formed via the adhesive layer 160 and covers the opening of the groove 129. PET is optimal as a material for the film of the microchannel chip 100 from the viewpoint of quality and price. The thickness of the PET film 140 is not particularly limited, but is about 100 μm, for example. Incidentally, typical glass transition temperature of the resin (PET) constituting the PET film 140 (Tg B) is about 70 ° C., a melting point (Tm B) is about 200 ° C..

接着剤層160は、樹脂基板120とPETフィルム140との間に配置されており、所定の接着温度(Tp)で加熱されることにより樹脂基板120とPETフィルム140を接着する。具体的には、接着剤層160は、樹脂基板120の溝129が形成された面(溝129の開口部を除く)とPETフィルム140を隙間なく接着する。接着剤層160は、樹脂基板120とPETフィルム140の密着性向上の観点から、アクリル樹脂成分とウレタン樹脂成分を含むことが必要である。   The adhesive layer 160 is disposed between the resin substrate 120 and the PET film 140, and adheres the resin substrate 120 and the PET film 140 by being heated at a predetermined bonding temperature (Tp). Specifically, the adhesive layer 160 bonds the surface of the resin substrate 120 on which the groove 129 is formed (excluding the opening of the groove 129) and the PET film 140 without a gap. From the viewpoint of improving the adhesion between the resin substrate 120 and the PET film 140, the adhesive layer 160 needs to contain an acrylic resin component and a urethane resin component.

接着温度(Tp)は、接着剤層160を構成する樹脂のガラス転移温度(Tg)を考慮して決める必要がある。接着剤層160のガラス転移温度(Tg)が、接着温度(Tp)よりも低い場合、樹脂基板120にPETフィルム140を適切に接着することができない。たとえば、本発明において、接着剤層160を構成する樹脂のガラス転移温度(Tg)は40〜50℃である。 The bonding temperature (Tp) needs to be determined in consideration of the glass transition temperature (Tg C ) of the resin constituting the adhesive layer 160. When the glass transition temperature (Tg C ) of the adhesive layer 160 is lower than the bonding temperature (Tp), the PET film 140 cannot be properly bonded to the resin substrate 120. For example, in the present invention, the glass transition temperature of the resin constituting the adhesive layer 160 (Tg C) is 40 to 50 ° C..

接着剤層160のガラス転移温度(Tg)は、ガラス転移温度の異なる樹脂成分を添加して、その添加量を調整したり、ガラス転移温度の異なる2種類以上の樹脂の単量体を混合して重合し、その単量体の配分比を調整した共重合体を接着剤層160の材料にしたりすることで制御することができる。 The glass transition temperature (Tg C ) of the adhesive layer 160 can be adjusted by adding resin components having different glass transition temperatures and mixing two or more types of resin monomers having different glass transition temperatures. Then, it is possible to control by using a copolymer obtained by polymerization and adjusting the distribution ratio of the monomers as a material for the adhesive layer 160.

接着剤層160の厚みは、特に限定されないが、3〜4μm程度であることが好ましい。接着剤層160の厚みが3μm未満の場合、樹脂基板120とPETフィルム140を十分に接着させることができず、樹脂基板120からPETフィルム140が剥離しやすくなる。一方、接着剤層160が4μm超の場合、熱圧着の際に接着剤層160が流路130内に入り込んでしまうおそれがある。   The thickness of the adhesive layer 160 is not particularly limited, but is preferably about 3 to 4 μm. When the thickness of the adhesive layer 160 is less than 3 μm, the resin substrate 120 and the PET film 140 cannot be sufficiently bonded, and the PET film 140 is easily peeled from the resin substrate 120. On the other hand, when the adhesive layer 160 exceeds 4 μm, the adhesive layer 160 may enter the flow path 130 during thermocompression bonding.

接着剤層160は、アクリル樹脂成分およびウレタン樹脂成分をブロックコポリマーとして有していてもよい。また、アクリル樹脂とウレタン樹脂との混合体であってもよい。さらに、アクリル樹脂とウレタン樹脂との混合体およびブロックコポリマーが混在していてもよい。接着剤層160に含まれるアクリル樹脂成分およびウレタン樹脂成分が相補的な働きをすることで、アクリル樹脂の耐光性およびウレタン樹脂の耐薬品性を併せもつ接着剤層160を形成することができる。   The adhesive layer 160 may have an acrylic resin component and a urethane resin component as a block copolymer. Moreover, the mixture of an acrylic resin and a urethane resin may be sufficient. Furthermore, a mixture of acrylic resin and urethane resin and a block copolymer may be mixed. When the acrylic resin component and the urethane resin component contained in the adhesive layer 160 have complementary functions, the adhesive layer 160 having both the light resistance of the acrylic resin and the chemical resistance of the urethane resin can be formed.

前述の通り、マイクロ流路チップ100は、樹脂基板120、接着剤層160およびPETフィルム140をこの順番に積層した状態で、接着剤層160を所定の接着温度(Tp)で加熱することで作製される。このとき、接着剤層160を加熱する接着温度(Tp)は、接着剤層160のガラス転移温度(Tg)より高く、樹脂基板120のガラス転移温度(Tg;97℃)およびPETフィルム140の融点(Tm)より低ければ、特に限定されない。すなわち、接着温度は、Tg<Tp<Tg<Tmを満たせばよい。接着温度(Tp)が樹脂基板120のガラス転移温度(Tg)より高い場合、熱圧着時に樹脂基板120が軟化してしまう。たとえば、PETフィルム140と、PMMA製の樹脂基板120を用いてマイクロ流路チップ100作製する場合、接着温度(Tp)は、90℃程度である。 As described above, the microchannel chip 100 is manufactured by heating the adhesive layer 160 at a predetermined bonding temperature (Tp) in a state where the resin substrate 120, the adhesive layer 160, and the PET film 140 are laminated in this order. Is done. At this time, the bonding temperature (Tp) for heating the adhesive layer 160 is higher than the glass transition temperature (Tg C ) of the adhesive layer 160, the glass transition temperature (Tg A ; 97 ° C.) of the resin substrate 120, and the PET film 140. if lower than the melting point (Tm B) of not particularly limited. That is, the bonding temperature may satisfy Tg C <Tp <Tg A <Tm B. When the bonding temperature (Tp) is higher than the glass transition temperature (Tg A ) of the resin substrate 120, the resin substrate 120 is softened during thermocompression bonding. For example, when the microchannel chip 100 is manufactured using the PET film 140 and the resin substrate 120 made of PMMA, the bonding temperature (Tp) is about 90 ° C.

[マイクロ流路チップの製造方法]
本発明のマイクロ流路チップ100の製造方法は、特に限定されないが、例えば以下の方法により製造されうる。図3A,Bは、マイクロ流路チップ100の製造工程を示す断面図である。
[Method of manufacturing microchannel chip]
Although the manufacturing method of the microchannel chip | tip 100 of this invention is not specifically limited, For example, it can manufacture with the following method. 3A and 3B are cross-sectional views showing the manufacturing process of the microchannel chip 100.

本発明のマイクロ流路チップ100は、1)樹脂基板120を準備する第1の工程と、2)接着剤層160が配置されたPETフィルム140を準備する第2の工程と、3)樹脂基板120と、接着剤層160が配置されたPETフィルム140とを積層する第3の工程と、4)樹脂基板120とPETフィルム140とを接着する第4の工程とを有する。   The microchannel chip 100 of the present invention includes 1) a first step of preparing a resin substrate 120, 2) a second step of preparing a PET film 140 on which an adhesive layer 160 is disposed, and 3) a resin substrate. 120 and a third step of laminating the PET film 140 on which the adhesive layer 160 is disposed, and 4) a fourth step of adhering the resin substrate 120 and the PET film 140 to each other.

図3Aは、第1の工程および第2の工程を示す図である。図3に示されるように、第1の工程では、樹脂基板120を準備する。たとえば、射出成型により、2つの貫通孔と、これらの貫通孔を繋ぐ溝129とを有するPMMA製の樹脂基板120を作製する。   FIG. 3A is a diagram showing a first step and a second step. As shown in FIG. 3, in the first step, a resin substrate 120 is prepared. For example, a resin substrate 120 made of PMMA having two through holes and a groove 129 connecting these through holes is manufactured by injection molding.

同図に示されるように、第2の工程では、一方の面にアクリル樹脂成分およびウレタン樹脂成分を含む接着剤層160が配置されたPETフィルム140を準備する。たとえば、PETフィルム140は、溶融押出成型法や、溶液流延法、カレンダー法などで製造してもよいし、市販のフィルムを使用してもよい。また、PETフィルム140上に接着剤層160を配置する方法は、特に限定されない。たとえば、PETフィルム140の表面にアクリル樹脂成分およびウレタン樹脂成分を含む樹脂組成物を塗布してもよいし(塗布法)、PETフィルム140の表面にアクリル樹脂成分およびウレタン樹脂成分を含む樹脂フィルムを積層してもよい(ラミネート法)。接着剤層160は、ガラス転移温度が40〜50℃となるように調整されている。   As shown in the figure, in the second step, a PET film 140 is prepared in which an adhesive layer 160 containing an acrylic resin component and a urethane resin component is disposed on one surface. For example, the PET film 140 may be manufactured by a melt extrusion method, a solution casting method, a calendar method, or the like, or a commercially available film may be used. Further, the method for disposing the adhesive layer 160 on the PET film 140 is not particularly limited. For example, a resin composition containing an acrylic resin component and a urethane resin component may be applied to the surface of the PET film 140 (application method), or a resin film containing an acrylic resin component and a urethane resin component may be applied to the surface of the PET film 140. Lamination may be performed (lamination method). The adhesive layer 160 is adjusted so that the glass transition temperature is 40 to 50 ° C.

図3Bは、第3の工程および第4の工程を示す図である。図3に示されるように、第3の工程では、樹脂基板120の一方の面上に、接着剤層160が樹脂基板120とPETフィルム140との間に位置するようにPETフィルム140を配置する。たとえば、溝129が形成された面を上に向けた樹脂基板120に対して、接着剤層160が下側に向くようにしたPETフィルム140を上方から積層する。   FIG. 3B is a diagram showing a third step and a fourth step. As shown in FIG. 3, in the third step, the PET film 140 is disposed on one surface of the resin substrate 120 so that the adhesive layer 160 is positioned between the resin substrate 120 and the PET film 140. . For example, a PET film 140 in which the adhesive layer 160 faces downward is laminated on the resin substrate 120 with the surface on which the groove 129 is formed facing upward.

同図に示されるように、第4の工程では、接着剤層160を所定の接着温度で加熱して、樹脂基板120とPETフィルム140とを接着する。たとえば、熱圧着により接着剤層を軟化させた状態で、樹脂基板120に対してPETフィルム140を接合して、マイクロ流路チップ100を形成する。熱圧着は、90℃程度の温度で、10秒間以上行うことが好ましい。熱圧着する時間が10秒未満の場合、樹脂基板120とPETフィルム140が十分に接着されないおそれがある。   As shown in the figure, in the fourth step, the adhesive layer 160 is heated at a predetermined bonding temperature to bond the resin substrate 120 and the PET film 140. For example, in a state where the adhesive layer is softened by thermocompression bonding, the PET film 140 is bonded to the resin substrate 120 to form the microchannel chip 100. The thermocompression bonding is preferably performed at a temperature of about 90 ° C. for 10 seconds or more. If the time for thermocompression bonding is less than 10 seconds, the resin substrate 120 and the PET film 140 may not be sufficiently bonded.

このように、樹脂基板120、接着剤層160およびPETフィルム140の積層体を熱圧着すると、接着剤層160およびPETフィルム140が軟化する。この際、接着温度は、接着剤層160が十分軟化し、PETフィルム140が樹脂基板120の表面形状に追従する程度の温度である。この状態で圧着することで、樹脂基板120とPETフィルム140とが接着剤層160により接着される。   Thus, when the laminated body of the resin substrate 120, the adhesive layer 160, and the PET film 140 is thermocompression bonded, the adhesive layer 160 and the PET film 140 are softened. At this time, the bonding temperature is a temperature at which the adhesive layer 160 is sufficiently softened and the PET film 140 follows the surface shape of the resin substrate 120. By pressure bonding in this state, the resin substrate 120 and the PET film 140 are bonded together by the adhesive layer 160.

以上のように、本発明のマイクロ流路チップ100の製造方法は、1)Tg<Tp<Tg<Tmを満たすこと、および2)接着剤層160がアクリル樹脂成分およびウレタン樹脂成分を含むこと、を特徴とする。これにより、流路に接着剤を入り込ませることなく、かつ樹脂基板120に対してPETフィルム140を強固に接着することができる。このように製造された本発明のマイクロ流路チップ100は、高精度かつ高強度であり、流路130から試料が漏出してしまうことがなく、かつ高精度に試料を分析することができる。 As described above, the manufacturing method of the microchannel chip 100 of the present invention includes 1) satisfying Tg C <Tp <Tg A <Tm B , and 2) the adhesive layer 160 containing the acrylic resin component and the urethane resin component. Including. Thereby, the PET film 140 can be firmly bonded to the resin substrate 120 without causing the adhesive to enter the flow path. The microchannel chip 100 of the present invention manufactured as described above has high accuracy and high strength, the sample does not leak from the channel 130, and the sample can be analyzed with high accuracy.

以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited by these Examples.

1.マイクロ流路チップの作製
ポリメタクリル酸メチル(PMMA)を材料として、図2に示される樹脂基板を射出成形により作製した。貫通孔の直径は、2mmである。また、溝の幅は40μmであり、溝の深さは25μmである。
1. Production of microchannel chip The resin substrate shown in FIG. 2 was produced by injection molding using polymethyl methacrylate (PMMA) as a material. The diameter of the through hole is 2 mm. The width of the groove is 40 μm, and the depth of the groove is 25 μm.

表1に示される樹脂を含む接着剤層が形成されたPETフィルム(厚さ100μm)を準備した。   A PET film (thickness: 100 μm) on which an adhesive layer containing the resin shown in Table 1 was formed was prepared.

Figure 2013164311
Figure 2013164311

樹脂基板の溝が形成された面と、接着剤層が配置された面が対向するようにして、PETフィルムを樹脂基板に重ねた。この状態で、90℃で10秒間熱圧着して、PETフィルムを樹脂基板に接着することでマイクロ流路チップを作製した。   The PET film was overlaid on the resin substrate so that the surface of the resin substrate on which the groove was formed and the surface on which the adhesive layer was disposed were opposed to each other. In this state, a microchannel chip was manufactured by thermocompression bonding at 90 ° C. for 10 seconds to adhere the PET film to the resin substrate.

樹脂基板(PMMA)のガラス転移温度(Tg)は97℃である。PETフィルムの融点(Tm)は200℃である。接着剤層のガラス転移温度(Tg)は40〜50℃である。熱圧着の際の接着温度(Tp)は90℃である。したがって、上記いずれの接着剤層を形成した場合であっても、Tg<Tp<Tg<Tm、が満たされている。 The glass transition temperature (Tg A ) of the resin substrate (PMMA) is 97 ° C. The melting point (Tm B ) of the PET film is 200 ° C. The glass transition temperature (Tg C ) of the adhesive layer is 40 to 50 ° C. The bonding temperature (Tp) during thermocompression bonding is 90 ° C. Therefore, even when any of the above adhesive layers is formed, Tg C <Tp <Tg A <Tm B is satisfied.

これらの各ガラス転移温度および融点は、示差走査熱量測定(DSC)装置を用いて測定した値、または使用した樹脂の仕様値である。   Each of these glass transition temperatures and melting points is a value measured using a differential scanning calorimetry (DSC) apparatus or a specification value of the resin used.

2.マイクロ流路チップの評価
各マイクロ流路チップについて、樹脂基板に対するPETフィルムの接着強度と、流路形状を評価した。
2. Evaluation of microchannel chip For each microchannel chip, the adhesive strength of the PET film to the resin substrate and the channel shape were evaluated.

(1)接着強度の評価
接着強度の評価では、樹脂基板からのPETフィルムの剥がれにくさを調べた。マイクロ流路チップの凹部にフォースゲージの先端を挿入し、圧力換算して0.4MPaの応力をPETフィルムに加えた。次いで、樹脂基板とPETフィルムの境界をカメラで撮像して、樹脂基板からPETフィルムが剥離しているか否かを確認した。樹脂基板からPETフィルムが剥離しなかったものを「○」と評価し、樹脂基板からPETフィルムが剥離したものを「×」と評価した。
(1) Evaluation of adhesive strength In the evaluation of adhesive strength, the difficulty of peeling of the PET film from the resin substrate was examined. The tip of a force gauge was inserted into the recess of the microchannel chip, and a pressure of 0.4 MPa was applied to the PET film in terms of pressure. Next, the boundary between the resin substrate and the PET film was imaged with a camera, and it was confirmed whether the PET film was peeled off from the resin substrate. The case where the PET film was not peeled off from the resin substrate was evaluated as “◯”, and the case where the PET film was peeled off from the resin substrate was evaluated as “x”.

(2)流路形状の評価
流路形状の評価では、流路内に接着剤層が入り込んでいるか否かを調べた。具体的には、PETフィルムを樹脂基板から剥がした後、フーリエ変換赤外分光光度計により接着剤層の表面形状を流路の幅方向に測定した。流路部分における接着剤層の最大高さと最小高さの高低差が小さいマイクロ流路チップでは、接着剤層が流路内に入り込んでいないと考えられる。一方、高低差が大きいマイクロ流路チップでは、接着剤層が流路内に入り込んでいると考えられる。これらの考えに基づき、流路部分における接着剤層の高低差が1.6μm未満であったものを「○」と評価し、高低差が1.6μm以上であったものを「×」と評価した。
(2) Evaluation of flow path shape In the evaluation of the flow path shape, it was examined whether or not an adhesive layer had entered the flow path. Specifically, after peeling the PET film from the resin substrate, the surface shape of the adhesive layer was measured in the width direction of the flow path by a Fourier transform infrared spectrophotometer. In the micro-channel chip in which the difference in height between the maximum height and the minimum height of the adhesive layer in the channel portion is small, it is considered that the adhesive layer does not enter the channel. On the other hand, in the microchannel chip having a large difference in height, it is considered that the adhesive layer enters the channel. Based on these ideas, if the difference in height of the adhesive layer in the flow path portion was less than 1.6 μm, it was evaluated as “◯”, and if the difference in height was 1.6 μm or more, it was evaluated as “x”. did.

(3)結果
各マイクロ流路チップについての接着強度および流路形状の評価結果を表2に示す。
(3) Results Table 2 shows the evaluation results of the adhesive strength and the channel shape for each microchannel chip.

Figure 2013164311
Figure 2013164311

接着剤層がアクリル樹脂およびウレタン樹脂の少なくとも一方を含まない比較例1〜4のマイクロ流路チップでは、樹脂基板と接着剤層の境界が剥離しており、接着強度が弱かった。一方、接着剤層がアクリル樹脂およびウレタン樹脂の両方を含む実施例のマイクロ流路チップでは、剥離がまったく観察されず、接着強度が強かった。また、前述した式(Tg<Tp<Tg<Tm)を満たしている実施例および比較例1〜4のマイクロ流路チップは、いずれも流路形状が良好であった。 In the microchannel chips of Comparative Examples 1 to 4 in which the adhesive layer did not contain at least one of acrylic resin and urethane resin, the boundary between the resin substrate and the adhesive layer was peeled off, and the adhesive strength was weak. On the other hand, in the microchannel chip of the example in which the adhesive layer contains both acrylic resin and urethane resin, no peeling was observed and the adhesive strength was strong. The micro-channel chip of Examples and Comparative Examples 1 to 4 satisfy the aforementioned equations (Tg C <Tp <Tg A <Tm B) are both the flow path shape was good.

以上の結果から、本発明のマイクロ流路チップは、樹脂基板とPETフィルムの接着強度および流路形状の精度に優れていることがわかる。   From the above results, it can be seen that the microchannel chip of the present invention is excellent in the adhesive strength between the resin substrate and the PET film and the accuracy of the channel shape.

本発明のマイクロ流路チップは、例えば、科学分野や医学分野などにおいて使用されるマイクロ流路チップとして有用である。   The microchannel chip of the present invention is useful as a microchannel chip used in, for example, the scientific field and the medical field.

100 マイクロ流路チップ
120 樹脂基板
121 第1貫通孔
122 第2貫通孔
125 第1凹部
126 第2凹部
129 溝
130 流路
140 PETフィルム
160 接着剤層
DESCRIPTION OF SYMBOLS 100 Microchannel chip 120 Resin substrate 121 1st through-hole 122 2nd through-hole 125 1st recessed part 126 2nd recessed part 129 Groove | channel 130 Flow path 140 PET film 160 Adhesive layer

Claims (4)

一方の面に溝が形成された樹脂基板と、
前記樹脂基板の前記一方の面上に配置され、前記溝の開口部を覆うポリエチレンテレフタレートフィルムと、
前記樹脂基板と前記ポリエチレンテレフタレートフィルムの間に配置され、アクリル樹脂成分およびウレタン樹脂成分を含む接着剤層とを有し、
前記樹脂基板および前記ポリエチレンテレフタレートフィルムは、前記接着剤層を所定の接着温度で加熱することで互いに接着されており、
前記樹脂基板のガラス転移温度をTgとし、前記ポリエチレンテレフタレートフィルムの融点をTmとし、前記接着剤層のガラス転移温度をTgとし、前記接着温度をTpとしたとき、
Tg<Tp<Tg<Tm、を満たす、
流体取扱装置。
A resin substrate with a groove formed on one surface;
A polyethylene terephthalate film disposed on the one surface of the resin substrate and covering the opening of the groove;
Arranged between the resin substrate and the polyethylene terephthalate film, and having an adhesive layer containing an acrylic resin component and a urethane resin component,
The resin substrate and the polyethylene terephthalate film are bonded to each other by heating the adhesive layer at a predetermined bonding temperature,
When the glass transition temperature of the resin substrate is Tg A , the melting point of the polyethylene terephthalate film is Tm B , the glass transition temperature of the adhesive layer is Tg C , and the adhesion temperature is Tp,
Tg C <Tp <Tg A <Tm B is satisfied,
Fluid handling device.
前記接着剤層を前記接着温度で加熱する時間は、10秒以上である、請求項1に記載の流体取扱装置。   The fluid handling apparatus according to claim 1, wherein the time for heating the adhesive layer at the adhesion temperature is 10 seconds or more. 一方の面に溝が形成された樹脂基板を準備する工程と、
一方の面にアクリル樹脂成分およびウレタン樹脂成分を含む接着剤層が配置されたポリエチレンテレフタレートフィルムを準備する工程と、
前記樹脂基板の前記一方の面上に、前記接着剤層が前記樹脂基板と前記ポリエチレンテレフタレートフィルムとの間に位置するように前記ポリエチレンテレフタレートフィルムを配置する工程と、
前記接着剤層を所定の接着温度で加熱して、前記樹脂基板と前記ポリエチレンテレフタレートフィルムとを接着する工程と、を有し、
前記樹脂基板のガラス転移温度をTgとし、前記ポリエチレンテレフタレートフィルムの融点をTmとし、前記接着剤層のガラス転移温度をTgとし、前記接着温度をTpとしたとき、
Tg<Tp<Tg<Tm、を満たす、
流体取扱装置の製造方法。
Preparing a resin substrate having grooves formed on one surface;
Preparing a polyethylene terephthalate film in which an adhesive layer containing an acrylic resin component and a urethane resin component is disposed on one surface;
Disposing the polyethylene terephthalate film on the one surface of the resin substrate such that the adhesive layer is located between the resin substrate and the polyethylene terephthalate film;
Heating the adhesive layer at a predetermined bonding temperature to bond the resin substrate and the polyethylene terephthalate film,
When the glass transition temperature of the resin substrate is Tg A , the melting point of the polyethylene terephthalate film is Tm B , the glass transition temperature of the adhesive layer is Tg C , and the adhesion temperature is Tp,
Tg C <Tp <Tg A <Tm B is satisfied,
Manufacturing method of fluid handling device.
前記接着剤層を前記接着温度で加熱する時間は、10秒以上である、請求項3に記載の流体取扱装置の製造方法。   The method for manufacturing a fluid handling device according to claim 3, wherein the time for heating the adhesive layer at the bonding temperature is 10 seconds or more.
JP2012026970A 2012-02-10 2012-02-10 Fluid handing device and manufacturing method therefor Pending JP2013164311A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012026970A JP2013164311A (en) 2012-02-10 2012-02-10 Fluid handing device and manufacturing method therefor
PCT/JP2013/000420 WO2013118447A1 (en) 2012-02-10 2013-01-28 Fluid handling apparatus and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026970A JP2013164311A (en) 2012-02-10 2012-02-10 Fluid handing device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2013164311A true JP2013164311A (en) 2013-08-22

Family

ID=48947225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026970A Pending JP2013164311A (en) 2012-02-10 2012-02-10 Fluid handing device and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2013164311A (en)
WO (1) WO2013118447A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018102236A (en) * 2016-12-27 2018-07-05 東京応化工業株式会社 Cell culture chip production method
JP2020056653A (en) * 2018-10-01 2020-04-09 旭化成株式会社 Photosensitive resin laminate for micro flow passage
JP2021121414A (en) * 2020-01-31 2021-08-26 住友ベークライト株式会社 Micro flow channel chip

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2010005552A (en) 2007-11-21 2010-06-02 Smith & Nephew Wound dressing.
GB0723855D0 (en) 2007-12-06 2008-01-16 Smith & Nephew Apparatus and method for wound volume measurement
GB201015656D0 (en) 2010-09-20 2010-10-27 Smith & Nephew Pressure control apparatus
US9084845B2 (en) 2011-11-02 2015-07-21 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
US10046096B2 (en) 2012-03-12 2018-08-14 Smith & Nephew Plc Reduced pressure apparatus and methods
CA2867969C (en) 2012-03-20 2020-03-24 Smith & Nephew Plc Controlling operation of a reduced pressure therapy system based on dynamic duty cycle threshold determination
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
CA2971790A1 (en) 2014-12-22 2016-06-30 Smith & Nephew Plc Negative pressure wound therapy apparatus and methods
US20180326415A1 (en) * 2015-03-05 2018-11-15 STRATEC CONSUMABLES GmbH Microfluidic device and method of manufacture of microfluidic device
JP6394651B2 (en) * 2016-07-15 2018-09-26 ウシオ電機株式会社 Substrate bonding method and microchip manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007920A (en) * 2010-06-23 2012-01-12 Sumitomo Bakelite Co Ltd Manufacturing method of micro flow channel device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018102236A (en) * 2016-12-27 2018-07-05 東京応化工業株式会社 Cell culture chip production method
US10941376B2 (en) 2016-12-27 2021-03-09 Tokyo Ohka Kogyo Co., Ltd. Method for producing chip for cell culture
JP2020056653A (en) * 2018-10-01 2020-04-09 旭化成株式会社 Photosensitive resin laminate for micro flow passage
JP7216365B2 (en) 2018-10-01 2023-02-01 旭化成株式会社 Photosensitive resin laminate for microchannel
JP2021121414A (en) * 2020-01-31 2021-08-26 住友ベークライト株式会社 Micro flow channel chip

Also Published As

Publication number Publication date
WO2013118447A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
WO2013118447A1 (en) Fluid handling apparatus and method for manufacturing same
KR100572207B1 (en) Bonding method of plastic microchip
CN101048338B (en) Fluid container composed of two plates
CN106531646B (en) A kind of packaging method of micro-fluidic chip
WO2010021264A1 (en) Process for producing microchannel chip and microchannel chip
CN107159329A (en) A kind of chip and its method for packing for sample detection
CN103394382A (en) Microfluidic chip with optical filtering characteristics
US20170326547A1 (en) Fluid handling device and method for manufacturing fluid handling device
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
JP2011214838A (en) Resin microchannel chip
JP2008157644A (en) Plastic microchip, and biochip or micro analysis chip using the same
JP2009166416A (en) Method for manufacturing microchip, and microchip
JP6426977B2 (en) Microchip and method of manufacturing the same
CN101952731A (en) Microchip and method for manufacturing the same
JP2013010076A (en) Method for manufacturing microchannel device and microchannel chip
JP2008076208A (en) Plastic microchip, biochip using it or microanalyzing chip
WO2009125757A1 (en) Microchip and method for manufacturing microchip
JP2017154349A (en) Method of manufacturing micro flow path chip
JP2008304352A (en) Channel device and method for bonding channel device-use board
KR20110075448A (en) A method for manufacturing a microfluidic device and a microfluidic divice manufactured using the same method
JP2015199187A (en) Production method of resin micro channel device and micro channel device
JP2006234600A (en) Plastic microchip and its manufacturing method
JP2019055379A (en) Micro flow channel chip, and manufacturing method of the same
US20100074815A1 (en) Master and Microreactor
JP2010247056A (en) Microchip