JP2013157161A - Electronic component, manufacturing method of the same and seal material paste used therefor - Google Patents
Electronic component, manufacturing method of the same and seal material paste used therefor Download PDFInfo
- Publication number
- JP2013157161A JP2013157161A JP2012016047A JP2012016047A JP2013157161A JP 2013157161 A JP2013157161 A JP 2013157161A JP 2012016047 A JP2012016047 A JP 2012016047A JP 2012016047 A JP2012016047 A JP 2012016047A JP 2013157161 A JP2013157161 A JP 2013157161A
- Authority
- JP
- Japan
- Prior art keywords
- sealing material
- oxide
- glass
- electronic component
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000000463 material Substances 0.000 title claims abstract description 7
- 239000011521 glass Substances 0.000 claims abstract description 165
- 239000000758 substrate Substances 0.000 claims abstract description 150
- 238000002844 melting Methods 0.000 claims abstract description 111
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001392 phosphorus oxide Inorganic materials 0.000 claims abstract description 7
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 7
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 7
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001935 vanadium oxide Inorganic materials 0.000 claims abstract description 7
- 239000003566 sealing material Substances 0.000 claims description 128
- 230000008018 melting Effects 0.000 claims description 62
- 239000011347 resin Substances 0.000 claims description 42
- 229920005989 resin Polymers 0.000 claims description 42
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 34
- 125000006850 spacer group Chemical group 0.000 claims description 34
- 230000002093 peripheral effect Effects 0.000 claims description 33
- 239000000945 filler Substances 0.000 claims description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 22
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 19
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 239000011787 zinc oxide Substances 0.000 claims description 17
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 9
- 238000005304 joining Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 6
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- OJLGWNFZMTVNCX-UHFFFAOYSA-N dioxido(dioxo)tungsten;zirconium(4+) Chemical compound [Zr+4].[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O OJLGWNFZMTVNCX-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 3
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 3
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 3
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 3
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 3
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 3
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 claims description 3
- 229910001950 potassium oxide Inorganic materials 0.000 claims description 3
- 229910001923 silver oxide Inorganic materials 0.000 claims description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- -1 and 1 of WO 3 Inorganic materials 0.000 claims 2
- 229910052720 vanadium Inorganic materials 0.000 claims 1
- 239000011368 organic material Substances 0.000 abstract description 13
- 230000003685 thermal hair damage Effects 0.000 abstract description 5
- 238000004031 devitrification Methods 0.000 abstract description 3
- 239000002245 particle Substances 0.000 description 22
- 238000007789 sealing Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000010408 film Substances 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 11
- 238000002425 crystallisation Methods 0.000 description 10
- 230000008025 crystallization Effects 0.000 description 10
- 238000004455 differential thermal analysis Methods 0.000 description 10
- 238000002834 transmittance Methods 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000000975 dye Substances 0.000 description 6
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical group CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 5
- 239000001856 Ethyl cellulose Substances 0.000 description 5
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical group CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920001249 ethyl cellulose Polymers 0.000 description 5
- 235000019325 ethyl cellulose Nutrition 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000005357 flat glass Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910000174 eucryptite Inorganic materials 0.000 description 2
- OCVXZQOKBHXGRU-UHFFFAOYSA-N iodine(1+) Chemical compound [I+] OCVXZQOKBHXGRU-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910000502 Li-aluminosilicate Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910001456 vanadium ion Inorganic materials 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/24—Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/21—Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/871—Self-supporting sealing arrangements
- H10K59/8722—Peripheral sealing arrangements, e.g. adhesives, sealants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Glass Compositions (AREA)
- Electroluminescent Light Sources (AREA)
- Hybrid Cells (AREA)
Abstract
Description
本発明は、2枚の透明基板の間に有機素子或いは有機材料が内蔵され、その外周部を封止材料を用いて接合した電子部品に関する。 The present invention relates to an electronic component in which an organic element or an organic material is incorporated between two transparent substrates, and the outer peripheral portion thereof is bonded using a sealing material.
2枚の透明基板の間に有機素子や有機材料が内蔵された電子部品では、それら有機素子や有機材料を湿気、水分等から保護するために、2枚の透明基板の外周部を樹脂の封止材料で接合したり、さらに乾燥剤を電子部品の内部に設置したり等している。しかし、樹脂での接合は、ガスバリア性(気密性)が不十分であり、徐々に水分子が浸透し、十分な信頼性が得られていなかった。一方、低融点ガラスを用いた封止材料では、ガスバリア性(気密性)の高い接合が可能であるが、樹脂の封止材料より、接合温度が著しく高く、電子部品に内蔵される有機素子や有機材料の耐熱性を越えてしまう。 In an electronic component in which an organic element or organic material is embedded between two transparent substrates, the outer periphery of the two transparent substrates is sealed with resin in order to protect the organic element or organic material from moisture, moisture, and the like. They are joined with a stop material, and a desiccant is installed inside the electronic component. However, the bonding with the resin has insufficient gas barrier properties (airtightness), and water molecules gradually permeated, and sufficient reliability has not been obtained. On the other hand, a sealing material using low-melting glass can be bonded with a high gas barrier property (air tightness), but the bonding temperature is significantly higher than that of a resin sealing material, and organic elements and It exceeds the heat resistance of organic materials.
そこで、考案されたのが、局部的に加熱できるレーザ封止である。封止材料としては、気密な接合ができる低融点ガラスが使用される。この低融点ガラスは、使用するレーザ光を吸収することによって加熱され、そして軟化流動することが重要である。このような方法をとれば、2枚の透明基板の外周部のみの加熱ができることから、電子部品に内蔵される有機素子や有機材料に熱的なダメージを与えることなく、ガスバリア性(気密性)の高いガラス接合が可能となる。 In view of this, laser sealing that can be locally heated has been devised. As the sealing material, low-melting glass capable of airtight bonding is used. It is important that this low-melting glass is heated by absorbing the laser light used and then softens and flows. By adopting such a method, only the outer peripheral portion of the two transparent substrates can be heated, so that the gas barrier property (airtightness) can be achieved without causing thermal damage to the organic elements and organic materials incorporated in the electronic component. High glass bonding is possible.
有機発光ダイオード(OLED)が内蔵されるディスプレイ等では、封止材料を外周部に仮焼成したガラス基板と、もう一方のOLEDを形成したガラス基板とを合わせ、ガラス基板越しにレーザを照射することによって、封止材料中の低融点ガラスを軟化流動させ、2枚のガラス基板を接合する。特許文献1では、OLEDディスプレイにおいて、外周部をレーザで接合できる封止材料が提案されている。この封止材料には、レーザによって加熱できるV2O5−P2O5−Sb2O3系低融点ガラスと、熱膨張係数を低下させるためのリチウム・アルミノ・シリケート(β−ユークリプタイト)のフィラー粒子が含まれている。さらに、この低融点ガラスには、K2O、Fe2O3、ZnO、TiO2、Al2O3、B2O3、WO3のいずれかが含まれ、転移点Tgが350℃未満である。特許文献2でも、特許文献1と同様な封止材料を適用したガラスパッケージが提案されている。封止材料に含まれる低融点ガラスも特許文献1と同様なもので、空気より酸素量が少ない低酸化雰囲気中でガラス基板外周部に仮焼成することによって、3価または4価のバナジウムイオンが5価へ変化することを阻止し、それによりレーザ照射による軟化流動性が劣化することやレーザ封止後の接合部の耐湿性や耐水性が低下することを防止している。 In a display or the like in which an organic light emitting diode (OLED) is built, a glass substrate on which an encapsulating material is pre-fired is combined with a glass substrate on which the other OLED is formed, and the laser is irradiated through the glass substrate. Thus, the low melting point glass in the sealing material is softened and fluidized to join the two glass substrates. In patent document 1, the sealing material which can join an outer peripheral part with a laser is proposed in an OLED display. This sealing material includes a V 2 O 5 —P 2 O 5 —Sb 2 O 3 low melting point glass that can be heated by a laser, and lithium aluminosilicate (β-eucryptite for reducing the thermal expansion coefficient). ) Filler particles. Further, this low melting point glass contains any of K 2 O, Fe 2 O 3 , ZnO, TiO 2 , Al 2 O 3 , B 2 O 3 , and WO 3 and has a transition point T g of less than 350 ° C. It is. Patent Document 2 also proposes a glass package to which the same sealing material as Patent Document 1 is applied. The low-melting glass contained in the sealing material is also the same as that of Patent Document 1, and trivalent or tetravalent vanadium ions are formed by pre-baking on the outer peripheral portion of the glass substrate in a low-oxidation atmosphere in which the amount of oxygen is less than that of air. The change to pentavalent is prevented, thereby preventing the softening fluidity due to laser irradiation from being deteriorated and the moisture resistance and water resistance of the joint after laser sealing from being lowered.
前述した封止材料は、それに含まれるV2O5−P2O5−Sb2O3系低融点ガラスが失透(結晶化)を起こしやすく、失透するとレーザ照射による軟化流動性や接着性が低下するため、より低温で時間をかけて仮焼成する必要があった。レーザ出力を上げることによって軟化流動性や接着性は改善できるが、これにより電子部品に内蔵される有機素子や有機材料に熱的なダメージがかかる可能性が十分にあった。また、レーザで接合した後の耐湿性や耐水性を確保するためには、レーザ封止前の仮焼成を低酸素雰囲気中で行う必要があった。 In the sealing material described above, the V 2 O 5 —P 2 O 5 —Sb 2 O 3 -based low-melting glass contained therein is liable to be devitrified (crystallized). Therefore, it was necessary to perform preliminary firing at a lower temperature over time. By increasing the laser output, softening fluidity and adhesion can be improved, but this has sufficiently caused the possibility of thermal damage to organic elements and organic materials incorporated in electronic components. Moreover, in order to ensure the moisture resistance and water resistance after joining with a laser, it was necessary to perform temporary baking before laser sealing in a low oxygen atmosphere.
そこで、本発明の目的は、電子部品に内蔵される有機素子や有機材料に対する熱的なダメージを低減し、電子部品を効率的に製造し、ガラス接合層の失透を低減することにある。 Accordingly, an object of the present invention is to reduce thermal damage to an organic element or an organic material incorporated in an electronic component, efficiently manufacture the electronic component, and reduce devitrification of the glass bonding layer.
上記課題を解決するために、本発明は、2枚の透明基板の間に有機部材を有し、前記2枚の透明基板の外周部を低融点ガラスを含む封止材料で接合した電子部品であって、前記低融点ガラスが酸化バナジウム、酸化テルル、酸化リン及び酸化鉄を含み、次の酸化物換算でV2O5+TeO2+P2O5+Fe2O3≧75質量%であり、V2O5>TeO2>P2O5≧Fe2O3(質量%)であることを特徴とする。 In order to solve the above-described problems, the present invention provides an electronic component having an organic member between two transparent substrates, and joining the outer peripheral portions of the two transparent substrates with a sealing material containing low-melting glass. The low-melting glass contains vanadium oxide, tellurium oxide, phosphorus oxide and iron oxide, V 2 O 5 + TeO 2 + P 2 O 5 + Fe 2 O 3 ≧ 75% by mass in terms of the following oxide, V 2 O 5 > TeO 2 > P 2 O 5 ≧ Fe 2 O 3 (mass%).
また、本発明は、低融点ガラスと樹脂バインダーと溶剤とを含む封着材料ペーストであって、前記低融点ガラスが酸化バナジウム、酸化テルル、酸化リン及び酸化鉄を含み、次の酸化物換算でV2O5+TeO2+P2O5+Fe2O3≧75質量%であり、V2O5>TeO2>P2O5≧Fe2O3(質量%)であることを特徴とする。 Further, the present invention is a sealing material paste comprising a low-melting glass, a resin binder, and a solvent, wherein the low-melting glass contains vanadium oxide, tellurium oxide, phosphorus oxide, and iron oxide, V 2 O 5 + TeO 2 + P 2 O 5 + Fe 2 O 3 ≧ 75% by mass, and V 2 O 5 > TeO 2 > P 2 O 5 ≧ Fe 2 O 3 (% by mass).
本発明によれば、電子部品に内蔵される有機素子や有機材料に対する熱的なダメージを低減し、電子部品を効率的に製造し、ガラス接合層の失透を低減することができる。 ADVANTAGE OF THE INVENTION According to this invention, the thermal damage with respect to the organic element and organic material which are incorporated in an electronic component can be reduced, an electronic component can be manufactured efficiently, and the devitrification of a glass joining layer can be reduced.
以下、本発明を説明する。本発明における実施形態の電子部品2種類の上面概略図とその封止部分の断面概略図を図1及び図2に示す。図1は、2枚の透明基板1と2の間に1つ以上の有機部材3(有機素子或いは有機材料)を有し、その2枚の透明基板1と2の外周部を低融点ガラスを含む封止材料5で接合した電子部品である。図2は、2枚の透明基板1と2の間隔が大きい場合で、スペーサ6を介して封止材料5と5′で接合した電子部品である。 The present invention will be described below. FIG. 1 and FIG. 2 show a schematic top view of two types of electronic components according to an embodiment of the present invention and a schematic cross-sectional view of the sealed portion. FIG. 1 has one or more organic members 3 (organic elements or organic materials) between two transparent substrates 1 and 2, and the outer peripheral portion of the two transparent substrates 1 and 2 is made of low melting glass. It is an electronic component joined with a sealing material 5 included. FIG. 2 shows an electronic component in which the distance between the two transparent substrates 1 and 2 is large and is joined with sealing materials 5 and 5 ′ via spacers 6.
本発明は、封止材料5,5′に含まれる低融点ガラスが、酸化バナジウム、酸化テルル、酸化リン及び酸化鉄を含み、次の酸化物換算でV2O5、TeO2、P2O5及びFe2O3の合計が75質量%以上であり、しかもV2O5>TeO2>P2O5≧Fe2O3(質量%)であることを特徴とする。この条件を満たす低融点ガラスは、特にレーザの照射によって、その波長を効率的に吸収し、かつ加熱され、容易に軟化流動する。すなわち、この低融点ガラスとレーザを用いることによって、所望のところのみの加熱に留めることができ、有機部材3に熱的なダメージを与えることなく、2枚の透明基板1と2の外周部を接合できる。 In the present invention, the low-melting glass contained in the sealing materials 5 and 5 ′ contains vanadium oxide, tellurium oxide, phosphorus oxide and iron oxide, and is converted into V 2 O 5 , TeO 2 , P 2 O in terms of the following oxides. 5 and Fe 2 O 3 are 75% by mass or more, and V 2 O 5 > TeO 2 > P 2 O 5 ≧ Fe 2 O 3 (% by mass). The low-melting glass satisfying this condition absorbs the wavelength efficiently by laser irradiation, and is heated and softened and flows easily. That is, by using the low melting point glass and the laser, it is possible to keep heating only at a desired place, and without causing the organic member 3 to be thermally damaged, the outer peripheral portions of the two transparent substrates 1 and 2 are formed. Can be joined.
使用するレーザの波長としては、この低融点ガラスが効率的に吸収し、しかも透明基板を透過する400〜1100nmの範囲が有効である。波長が400nm未満では、透明基板や、その内部の有機素子や有機材料が加熱されたり、劣化してしまう恐れがある。一方、波長が1100nmを越えると、この低融点ガラスの吸収が減り、良好な軟化流動性を示さなくなったり、また水分が含まるような箇所があると、加熱されて悪影響を及ぼすことがある。 As the wavelength of the laser to be used, a range of 400 to 1100 nm in which the low melting point glass efficiently absorbs and transmits through the transparent substrate is effective. If the wavelength is less than 400 nm, the transparent substrate and the organic elements and organic materials inside the transparent substrate may be heated or deteriorated. On the other hand, if the wavelength exceeds 1100 nm, the absorption of the low-melting-point glass is reduced, and no good softening fluidity can be exhibited.
低融点ガラスとしては、酸化物換算でV2O5を最も多く含有されることが重要であり、これによって400〜1100nmの波長範囲を効率よく吸収し、加熱される。同時に低融点ガラスの軟化点Tsを低温化でき、400〜1100nmの波長範囲にあるレーザを照射することによって容易に軟化流動させることが可能となる。 As the low melting point glass, it is important to contain the most V 2 O 5 in terms of oxides, thereby efficiently absorbing the wavelength range of 400 to 1100 nm and heating. At the same time, the softening point T s of the low-melting glass can be lowered, and it can be easily softened and flowed by irradiation with a laser having a wavelength range of 400 to 1100 nm.
TeO2とP2O5はガラス化させるための重要な成分である。ガラスでないと、低温で軟化流動させることができない。また、レーザ照射によっても容易に軟化流動させることができない。P2O5はTeO2よりガラス化する効果が大きく、しかも低熱膨張化に有効であるが、TeO2以上の含有量とすると、耐湿性や耐水性が低下したり、軟化点Tsが上昇してしまう。しかし、一方でTeO2の含有量を多くしていくと、熱膨張係数が大きくなる傾向があり、大きくなり過ぎると、レーザ照射によるヒートショックで低融点ガラスが軟化流動する前に破損してしまうことがある。 TeO 2 and P 2 O 5 are important components for vitrification. If it is not glass, it cannot soften and flow at low temperatures. Also, it cannot be softened and flowed easily by laser irradiation. P 2 O 5 has a greater effect of vitrification than TeO 2 and is effective for lowering thermal expansion. However, when the content is higher than TeO 2 , the moisture resistance and water resistance are lowered, and the softening point T s is increased. Resulting in. However, on the other hand, if the content of TeO 2 is increased, the thermal expansion coefficient tends to increase, and if it is too large, the low melting point glass is damaged before it softens and flows due to heat shock caused by laser irradiation. Sometimes.
Fe2O3は、特にP2O5に作用して低融点ガラスの耐湿性や耐水性を向上する成分である。また、V2O5同様に400〜1100nmの波長範囲を効率的に吸収する成分でもある。しかし、P2O5を超える含有量とすると、低融点ガラスが加熱により結晶化してしまう。この結晶化は低融点ガラスの軟化流動性を妨げる現象であり、好ましいことではない。 Fe 2 O 3 is a component that acts on P 2 O 5 in particular to improve the moisture resistance and water resistance of the low-melting glass. Further, like V 2 O 5 , it is also a component that efficiently absorbs a wavelength range of 400 to 1100 nm. However, if the content exceeds P 2 O 5 , the low melting point glass will be crystallized by heating. This crystallization is a phenomenon that hinders the softening fluidity of the low-melting glass and is not preferable.
以上述べたV2O5、TeO2、P2O5及びFe2O3のそれぞれの役割やその効果は、それらの含有量の合計が75質量%以上であることにより、レーザ照射による信頼性(接着性、密着性、耐湿性、耐水性等)の高い接合部が得られる。 The roles and effects of V 2 O 5 , TeO 2 , P 2 O 5 and Fe 2 O 3 described above are based on the reliability of laser irradiation because the total content is 75% by mass or more. A joint having high adhesion (adhesion, adhesion, moisture resistance, water resistance, etc.) can be obtained.
低融点ガラスの特に有効な組成範囲は、次の酸化物換算でV2O5が35〜55質量%、TeO2が19〜30質量%、P2O5が7〜20質量%、Fe2O3が5〜15質量%である。 The particularly effective composition range of the low melting point glass is 35 to 55% by mass of V 2 O 5, 19 to 30% by mass of TeO 2 , 7 to 20% by mass of P 2 O 5 in terms of the following oxides, Fe 2 O 3 is 5-15 wt%.
結晶化の防止や抑制にはWO3、MoO3、Ta2O5、ZnO、BaO、SrOの含有、耐湿性や耐水性の向上にはMnO2、Sb2O3、Bi2O3、BaO、SrO、Ag2O、K2Oの含有、熱膨張係数の低減にはNb2O5、Ta2O5、ZnOの含有、軟化点Tsの低温化にはMoO3、Ag2O、K2Oの含有が有効である。一方、結晶化を促進してしまう成分はNb2O5、MnO2、Sb2O3、Bi2O3、Ag2O、K2O、軟化点Tsを上昇させてしまう成分はSb2O3、Bi2O3、BaO、SrO、熱膨張係数を増加してしまう成分はMoO3、BaO、SrO、Ag2O、K2O、耐湿性や耐水性を低下してしまう成分はMoO3、Nb2O5、Ta2O5、ZnOである。このため、WO3、MoO3、Nb2O5、Ta2O5、MnO2、Sb2O3、Bi2O3、ZnO、BaO、SrO、Ag2O、K2Oの含有は、一長一短であり、V2O5、TeO2、P2O5及びFe2O3からなるベース組成の特性を十分に配慮した上で含有させる成分とその含有量を決定する必要がある。 In order to prevent or suppress crystallization, it contains WO 3 , MoO 3 , Ta 2 O 5 , ZnO, BaO, SrO, and in order to improve moisture resistance and water resistance, MnO 2 , Sb 2 O 3 , Bi 2 O 3 , BaO , SrO, Ag 2 O, K 2 O, Nb 2 O 5 , Ta 2 O 5 , ZnO for reduction of thermal expansion coefficient, MoO 3 , Ag 2 O for lowering the softening point T s The inclusion of K 2 O is effective. On the other hand, components that promote crystallization are Nb 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , Ag 2 O, K 2 O, and components that increase the softening point T s are Sb 2. O 3 , Bi 2 O 3 , BaO, SrO, components that increase the coefficient of thermal expansion are MoO 3 , BaO, SrO, Ag 2 O, K 2 O, and components that decrease moisture resistance and water resistance are MoO 3 3 , Nb 2 O 5 , Ta 2 O 5 , and ZnO. For this reason, the inclusion of WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , ZnO, BaO, SrO, Ag 2 O, K 2 O has advantages and disadvantages. Therefore, it is necessary to determine the component to be contained and the content thereof with sufficient consideration of the characteristics of the base composition composed of V 2 O 5 , TeO 2 , P 2 O 5 and Fe 2 O 3 .
次の酸化物換算でWO3、MoO3、Nb2O5、Ta2O5、MnO2、Sb2O3、Bi2O3、ZnO、SrO、BaO、Ag2O、K2Oのうち1種以上の合計が25質量%以下にすることが好ましい。これらの含有量の合計が、25質量%を超えると、軟化点Tsが上昇したり、熱膨張係数が大きくなったり、或いは結晶化傾向が大きくなったりする場合がある。また、WO3、MoO3、Nb2O5、Ta2O5、MnO2、Sb2O3、Bi2O3、ZnO、SrO、BaO、Ag2O、K2Oのうち1種以上の合計が0〜20質量%であることがより好ましい。 Of the following oxide conversions, WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , ZnO, SrO, BaO, Ag 2 O, K 2 O The total of one or more types is preferably 25% by mass or less. When the total of these contents exceeds 25% by mass, the softening point T s may increase, the thermal expansion coefficient may increase, or the crystallization tendency may increase. Also, one or more of WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , ZnO, SrO, BaO, Ag 2 O, K 2 O The total is more preferably 0 to 20% by mass.
V2O5が35質量%未満では、波長が400〜1100nmの範囲にあるレーザを照射しても、容易に軟化流動しづらくなる場合がある。一方、55質量%を越えると、耐湿性、耐水性等の信頼性が低下する場合がある。TeO2が19質量%未満では、結晶化傾向が大きくなったり、また軟化点Tsが上昇したり、耐湿性、耐水性等の信頼性が低下する場合がある。一方30質量%を越えると、軟化点Tsを低温化しやすくなるが、熱膨張係数が大きくなり、レーザ照射によるヒートショックで低融点ガラスが軟化流動する前に破損することがある。 If V 2 O 5 is less than 35% by mass, it may be difficult to soften and flow easily even when irradiated with a laser having a wavelength in the range of 400 to 1100 nm. On the other hand, when it exceeds 55% by mass, reliability such as moisture resistance and water resistance may be lowered. If TeO 2 is less than 19% by mass, the crystallization tendency may increase, the softening point T s may increase, or the reliability such as moisture resistance and water resistance may decrease. On the other hand, if it exceeds 30% by mass, the softening point T s tends to be lowered, but the thermal expansion coefficient becomes large, and the low melting point glass may be broken before it softens and flows due to heat shock caused by laser irradiation.
P2O5が7質量%未満では、結晶化傾向が増加し、しかもレーザ照射により軟化流動しにくくなる場合がある。一方、20質量%を越えると、軟化点Tsが上昇してしまい、レーザを照射しても容易に軟化流動しにくくなる場合がある。さらに、耐湿性、耐水性等の信頼性も低下する場合がある。Fe2O3が5質量%未満では、耐湿性、耐水性等の信頼性が低下し、一方15質量%を越えると結晶化が促進する場合がある。 When P 2 O 5 is less than 7% by mass, the tendency to crystallize increases, and it may become difficult to soften and flow by laser irradiation. On the other hand, if it exceeds 20% by mass, the softening point T s increases, and it may be difficult to soften and flow easily even when irradiated with a laser. Further, reliability such as moisture resistance and water resistance may be lowered. When Fe 2 O 3 is less than 5% by mass, reliability such as moisture resistance and water resistance is lowered, while when it exceeds 15% by mass, crystallization may be accelerated.
WO3、MoO3、Nb2O5、Ta2O5、MnO2、Sb2O3、Bi2O3、ZnO、SrO、BaO、Ag2O、K2Oのうち1種以上の合計が20質量%を越えると、含有成分によっては、軟化点Tsが上昇したり、熱膨張係数が大きくなったり、或いは結晶化傾向が大きくなったりすることがある。 The total of one or more of WO 3 , MoO 3 , Nb 2 O 5 , Ta 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , ZnO, SrO, BaO, Ag 2 O, K 2 O If it exceeds 20% by mass, the softening point T s may be increased, the thermal expansion coefficient may be increased, or the crystallization tendency may be increased depending on the contained component.
さらに、上記低融点ガラスは、転移点Tgが320℃以下及び軟化点Tsが380℃以下であることが有効である。後で詳細は説明するが、ここで言う転移点Tg及び軟化点Tsは、示差熱分析(DTA)による特性温度であり、転移点Tgは第一吸熱ピークの開始温度、軟化点Tsは第二吸熱ピーク温度である。転移点Tgが320℃を越えると、急熱急冷をともなうレーザ封止で大きな残留歪が発生することがある。また、軟化点Tsが380℃を超えると、レーザ照射時に容易に軟化流動させにくくなってしまう。また、上記低融点ガラスは、30〜250℃での熱膨張係数が100×10-7/℃以下であることが有効である。熱膨張係数が100×10-7/℃を越えると、レーザ照射時のヒートショックでクラックが発生することがある。 Furthermore, it is effective that the low melting point glass has a transition point Tg of 320 ° C. or lower and a softening point T s of 380 ° C. or lower. Although described in detail later, the transition point T g and the softening point T s mentioned here are characteristic temperatures by differential thermal analysis (DTA), and the transition point T g is the start temperature of the first endothermic peak, the softening point T. s is the second endothermic peak temperature. When transition point T g exceeds 320 ° C., there is a large residual strain in the laser sealing with a rapid heating and quenching occurs. On the other hand, when the softening point T s exceeds 380 ° C., it becomes difficult to soften and flow easily during laser irradiation. In addition, it is effective that the low-melting glass has a coefficient of thermal expansion at 30 to 250 ° C. of 100 × 10 −7 / ° C. or less. If the thermal expansion coefficient exceeds 100 × 10 −7 / ° C., cracks may occur due to heat shock during laser irradiation.
また、本発明は、図1及び図2に示した電子部品において、封止材料5に上記低融点ガラスの他、例えば熱膨張係数を小さくするためにフィラーが含有されてもよく、そのフィラーがリン酸タングステン酸ジルコニウム(Zr2(WO4)(PO4)2)、酸化ニオブ(Nb2O5)、シリコン(Si)のうち1種以上であることが好ましい。これらのフィラーは、本低融点ガラスより熱膨張係数が小さい上に、本低融点ガラスとのぬれ性や密着性が良好であるために、封止材料5としての熱膨張係数を小さくすることができる。 Further, in the electronic component shown in FIGS. 1 and 2, the present invention may include a filler in the sealing material 5 in addition to the low-melting glass, for example, in order to reduce the thermal expansion coefficient. One or more of zirconium tungstate phosphate (Zr 2 (WO 4 ) (PO 4 ) 2 ), niobium oxide (Nb 2 O 5 ), and silicon (Si) are preferable. These fillers have a smaller coefficient of thermal expansion than the present low-melting glass, and also have good wettability and adhesion to the present low-melting glass, so that the thermal expansion coefficient as the sealing material 5 can be reduced. it can.
封止材料5の熱膨張係数を下げる効果は、Zr2(WO4)(PO4)2が一番大きく、次にSi、そしてNb2O5の順である。ただし、Siは波長が400〜1100nmの範囲にあるレーザを吸収し発熱できることや、熱伝導が他の2つのフィラーや低融点ガラスよりも良好であるため、レーザ封止には特に有効である。封止材料中の上記フィラーの含有量は、本低融点ガラス100体積部に対し、35体積部以下とすることが好ましい。 The effect of lowering the thermal expansion coefficient of the sealing material 5 is Zr 2 (WO 4 ) (PO 4 ) 2 having the largest effect, followed by Si, and then Nb 2 O 5 . However, since Si absorbs a laser having a wavelength in the range of 400 to 1100 nm and can generate heat, and heat conduction is better than the other two fillers and low melting point glass, it is particularly effective for laser sealing. The filler content in the sealing material is preferably 35 parts by volume or less with respect to 100 parts by volume of the low-melting glass.
しかし、35体積部を越えると、封止材料中の低融点ガラスの軟化流動性が低下し、レーザ照射時に接着性が弱くなる場合がある。 However, if it exceeds 35 parts by volume, the softening fluidity of the low-melting glass in the sealing material is lowered, and the adhesiveness may be weakened during laser irradiation.
また、図1で示した本発明の電子部品において、封止材料5による接合層の厚みが20μm以下であることが好ましい。20μmを越えると、レーザ照射される透明基板側から遠い封止材料5に含まれる低融点ガラスが軟化流動しにくいため、封止材料5の厚み方向に対し全体的に良好な軟化流動性を示さなくなってしまう。また、図2で示した電子部品では、2枚の透明基板1と2の間隔が大きく、特にその間隔が100μm以上の場合には、スペーサ6を介して接合することが望ましい。その際の接合層の厚みは、封止材料5,5′ともに上記同様に20μm以下とすることが好ましい。 In the electronic component of the present invention shown in FIG. 1, the thickness of the bonding layer made of the sealing material 5 is preferably 20 μm or less. If the thickness exceeds 20 μm, the low melting point glass contained in the sealing material 5 far from the laser-irradiated transparent substrate side is difficult to soften and flow, and therefore exhibits an overall good softening fluidity in the thickness direction of the sealing material 5. It will disappear. In addition, in the electronic component shown in FIG. 2, it is desirable that the distance between the two transparent substrates 1 and 2 is large, particularly when the distance is 100 μm or more, to be joined via the spacer 6. In this case, the thickness of the bonding layer is preferably 20 μm or less for both the sealing materials 5 and 5 ′ as described above.
さらに、図1と図2で示した本発明の電子部品において、透明基板1と2、或いはスペーサ6は、ガラス製或いは樹脂製である。これらは、透明であることから400〜1100nmの波長の吸収率が少なく、しかも透過率が高い。このため、波長が400〜1100nmの範囲にあるレーザが照射されても、ほとんど加熱されることなく、レーザが透過し、所望の部分の封止材料5或いは5′のみへ照射できる。レーザが照射された封止材料5或いは5′は、それに含まれる低融点ガラスが軟化流動することから、透明基板1と2の外周部を接合できる。 Furthermore, in the electronic component of the present invention shown in FIGS. 1 and 2, the transparent substrates 1 and 2 or the spacer 6 are made of glass or resin. Since these are transparent, they have a low absorptance at wavelengths of 400 to 1100 nm and a high transmittance. For this reason, even if a laser having a wavelength in the range of 400 to 1100 nm is irradiated, the laser is transmitted almost without being heated, and only a desired portion of the sealing material 5 or 5 'can be irradiated. Since the sealing material 5 or 5 'irradiated with the laser softens and flows the low melting point glass contained therein, the outer peripheral portions of the transparent substrates 1 and 2 can be joined.
以上、本発明は、有機発光ダイオードが内蔵されたディスプレイ、有機色素が内蔵された色素増感型太陽電池、光電変換素子が内蔵され、樹脂で張り合わせられた太陽電池等へ有効に適用されるものである。また、本発明は、電子部品の内部に耐熱性が低い素子や材料が適用されている場合にも適用でき、上記電子部品だけに限られたものではない。 As described above, the present invention is effectively applied to a display incorporating an organic light emitting diode, a dye-sensitized solar cell incorporating an organic dye, a solar cell incorporating a photoelectric conversion element and bonded with a resin, and the like. It is. The present invention can also be applied to the case where an element or material having low heat resistance is applied inside the electronic component, and is not limited to the electronic component.
また、本発明は、上記低融点ガラスの粉末と、樹脂バインダーと、溶剤とを含む封止材料ペーストである。樹脂バインダーと溶剤を含むことで、スクリーン印刷等のように基板に塗布し易くなる。封止材料ペーストを基板に塗布した後乾燥させて樹脂バインダーと溶剤を揮発させるので、焼成時に気泡が発生せず、形成された封止材料の気密性を高めることができる。この低融点ガラスの粒径としては、平均粒径が3μm以下であることが好ましい。また、樹脂バインダーとしては、エチルセルロース或いはニトロセルロース、溶剤としては、ブチルカルビトールアセテートが好ましい。さらに、この封止材料ペーストには、フィラー粒子が含有されてもよい。このフィラー粒子の粒径としては、平均粒径が上記低融点ガラスの平均粒径より大きいことが好ましい。また、このフィラー粒子の含有量は、本低融点ガラスの粉末100体積部に対し、35体積部以下であることが好ましい。35体積部以上であると、上述したように接着性が弱くなる場合がある。 Moreover, this invention is the sealing material paste containing the powder of the said low melting glass, a resin binder, and a solvent. By including the resin binder and the solvent, it becomes easy to apply to the substrate as in screen printing. Since the sealing material paste is applied to the substrate and then dried to volatilize the resin binder and the solvent, bubbles are not generated during firing, and the airtightness of the formed sealing material can be improved. As the particle size of the low-melting glass, the average particle size is preferably 3 μm or less. The resin binder is preferably ethyl cellulose or nitrocellulose, and the solvent is preferably butyl carbitol acetate. Further, the sealing material paste may contain filler particles. The filler particles preferably have an average particle size larger than the average particle size of the low-melting glass. Moreover, it is preferable that content of this filler particle is 35 volume parts or less with respect to 100 volume parts of powder of this low melting glass. When it is 35 parts by volume or more, the adhesiveness may be weakened as described above.
次に、本発明の電子部品の製法について説明する。図1に示した電子部品の製法を図3〜図5に簡単に示す。図3に示すように、透明基板1の外周部に低融点ガラスを含む封止材料5を形成する。その形成方法は、先ずは封止材料5となる上記封止材料ペーストを透明基板1の外周部に塗布し、乾燥する。透明基板1にガラス基板を用いる場合には、焼成炉或いは400〜1100nmの波長範囲にあるレーザ7の照射によって、封止材料5に含まれる低融点ガラスを軟化流動させ、透明基板1へ焼成、形成する。透明基板1に樹脂基板を用いる場合には、樹脂の耐熱性が低く、焼成炉を使用できないため、上記レーザ7の照射によって封止材料5を透明基板1の外周部に焼成、形成する。 Next, the manufacturing method of the electronic component of this invention is demonstrated. A method for manufacturing the electronic component shown in FIG. 1 is briefly shown in FIGS. As shown in FIG. 3, a sealing material 5 including a low melting point glass is formed on the outer peripheral portion of the transparent substrate 1. In the formation method, first, the sealing material paste to be the sealing material 5 is applied to the outer peripheral portion of the transparent substrate 1 and dried. When using a glass substrate for the transparent substrate 1, the low-melting glass contained in the sealing material 5 is softened and flowed by firing with a firing furnace or laser 7 in the wavelength range of 400 to 1100 nm, and fired to the transparent substrate 1. Form. When a resin substrate is used for the transparent substrate 1, the heat resistance of the resin is low and a firing furnace cannot be used. Therefore, the sealing material 5 is fired and formed on the outer peripheral portion of the transparent substrate 1 by irradiation with the laser 7.
次に、図4に示すように、1つ以上の有機部材3を形成したもう一方の透明基板2を作製する。透明基板2は、ガラス基板、樹脂基板のどちらでもよいが、透明基板1の材質と合わせることが好ましい。透明基板1の封止材料5が形成された面と透明基板2の有機部材3が形成された面とを図5に示すように対向して、2枚の透明基板1,2を位置合わせし、透明基板1,2と封止材料5とで形成される内部空間に有機部材3を配置する。なお、封止材料5を塗布した透明基板1をレーザ照射によって焼成する場合は、透明基板1の外周部以外は加熱されにくいため、有機部材3を透明基板1に形成してもよい。400〜1100nmの波長範囲にあるレーザ7を透明基板越しに封止材料5へ照射する。レーザ7は何れの透明基板の外側から封止材料5へ照射してもよいが、封止材料5は透明基板1に予め形成されているので、透明基板2の外側から封止材料5へ照射すると、より効率良く封止することができる。その際に電子部品に内蔵される有機部材3にレーザ7が照射されないよう注意しなければならない。有機部材3がレーザ7の照射によって損傷或いは劣化する可能性が十分にあるためである。封止材料5は、上記レーザ7の照射によって、封止材料5に含まれる低融点ガラスを軟化流動させ、2枚の透明基板1と2の外周部を接合する。 Next, as shown in FIG. 4, another transparent substrate 2 on which one or more organic members 3 are formed is produced. The transparent substrate 2 may be either a glass substrate or a resin substrate, but is preferably matched with the material of the transparent substrate 1. The surface of the transparent substrate 1 on which the sealing material 5 is formed and the surface of the transparent substrate 2 on which the organic member 3 is formed are opposed to each other as shown in FIG. The organic member 3 is disposed in an internal space formed by the transparent substrates 1 and 2 and the sealing material 5. In addition, when baking the transparent substrate 1 which apply | coated the sealing material 5 by laser irradiation, since it is hard to heat except the outer peripheral part of the transparent substrate 1, you may form the organic member 3 in the transparent substrate 1. FIG. A sealing material 5 is irradiated with a laser 7 in a wavelength range of 400 to 1100 nm through a transparent substrate. The laser 7 may irradiate the sealing material 5 from the outside of any transparent substrate. However, since the sealing material 5 is formed on the transparent substrate 1 in advance, the sealing material 5 is irradiated from the outside of the transparent substrate 2. Then, it can seal more efficiently. At that time, care must be taken not to irradiate the organic member 3 incorporated in the electronic component with the laser 7. This is because there is a possibility that the organic member 3 is damaged or deteriorated by the irradiation of the laser 7. The sealing material 5 softens and flows the low-melting glass contained in the sealing material 5 by irradiation with the laser 7, and joins the outer peripheral portions of the two transparent substrates 1 and 2.
また、図2に示した電子部品の製法を図6と図7に簡単に示す。図6に示すように、スペーサ6の少なくとも接合面に封止材料5と5′を形成する。封止材料5及び5′となる上記封止材料ペーストを、スペーサ6が少なくとも透明基板と接合される接合面に塗布し、乾燥させる。ガラス製のスペーサ6を用いる場合には、焼成炉或いは400〜1100nmの波長範囲にあるレーザ7と7′で透明基板1,2の両外側から照射することによって、封止材料5及び5′に含まれる低融点ガラスを軟化流動させ、スペーサ6へ焼成、形成する。樹脂製のスペーサ6を用いる場合には、樹脂の耐熱性が低く、焼成炉を使用できないため、上記レーザ7と7′の照射によって封止材料5をスペーサ6に焼成、形成する。 Also, a method of manufacturing the electronic component shown in FIG. 2 is simply shown in FIGS. As shown in FIG. 6, sealing materials 5 and 5 ′ are formed on at least the joint surface of the spacer 6. The sealing material paste to be the sealing materials 5 and 5 'is applied to at least the joint surface where the spacer 6 is joined to the transparent substrate and dried. In the case where the glass spacer 6 is used, the sealing materials 5 and 5 ′ are irradiated by irradiation from both outer sides of the transparent substrates 1 and 2 with a firing furnace or lasers 7 and 7 ′ having a wavelength range of 400 to 1100 nm. The contained low melting point glass is softened and fluidized and fired and formed on the spacer 6. When the resin spacer 6 is used, since the heat resistance of the resin is low and a firing furnace cannot be used, the sealing material 5 is fired and formed on the spacer 6 by irradiation with the lasers 7 and 7 '.
封止材料5及び5′を形成したスペーサ6を図7に示すように透明基板1と1つ以上の有機部材3を形成したもう一方の透明基板2を対向させた外周部に設置、固定し、400〜1100nmの波長範囲にあるレーザ7と7′を透明基板越しに封止材料5と5′へ照射する。その際に、上記同様に電子部品に内蔵される有機部材3にレーザ7と7′が照射されないよう注意しなければならない。封止材料5及び5′は、上記レーザ7及び7′の照射によって、封止材料5及び5′に含まれる低融点ガラスを軟化流動させ、2枚の透明基板1と2の外周部を接合する。透明基板1と2は、400〜1100nmの波長範囲の反射率が低く、透過率が高ければ、ガラス基板或いは樹脂基板のどちらでもよい。 As shown in FIG. 7, the spacer 6 on which the sealing materials 5 and 5 'are formed is installed and fixed on the outer peripheral portion where the transparent substrate 1 and the other transparent substrate 2 on which one or more organic members 3 are formed face each other. , Lasers 7 and 7 'in the wavelength range of 400 to 1100 nm are applied to the sealing materials 5 and 5' through the transparent substrate. At that time, care must be taken not to irradiate the organic member 3 incorporated in the electronic component with the lasers 7 and 7 'as described above. The sealing materials 5 and 5 ′ soften and flow the low melting point glass contained in the sealing materials 5 and 5 ′ by the irradiation of the lasers 7 and 7 ′, and join the outer peripheral portions of the two transparent substrates 1 and 2 To do. The transparent substrates 1 and 2 may be either a glass substrate or a resin substrate as long as the reflectance in the wavelength range of 400 to 1100 nm is low and the transmittance is high.
以上より、本発明の電子部品及びその製法、並びにそれに用いる封止材料ペーストは、その電子部品に内蔵される有機素子や有機材料に熱的なダメージを与えることなく、電子部品を効率的に製造でき、しかも接着性、ガスバリア性(気密性)及び耐湿性や耐水性が良好なガラス接合層が得られものである。 As described above, the electronic component of the present invention, the manufacturing method thereof, and the sealing material paste used therefor efficiently manufacture the electronic component without thermally damaging the organic element or the organic material incorporated in the electronic component. In addition, a glass bonding layer having good adhesion, gas barrier properties (air tightness), moisture resistance and water resistance can be obtained.
以下、実施例を用いて更に詳細に説明する。ただし、本発明は、ここで取り上げた実施例の記載に限定されることはなく、適宜組み合わせてもよい。 Hereinafter, it demonstrates in detail using an Example. However, the present invention is not limited to the description of the embodiments taken up here, and may be combined as appropriate.
本実施例では、封止材料に含まれる低融点ガラスの組成と特性について検討した。実施例を表1〜表4、比較例を表5に示す。表1〜表5に示した低融点ガラスの作製には、原料として高純度化学研究所製試薬V2O5、TeO2、P2O5、Fe2O3、WO3、MoO3、Nb2O5、Ta2O5、MnO2、Sb2O3、Bi2O3、ZnO、SrCO3、BaCO3、Ag2O及びK2CO3を用いた。これらの原料を用いて合計200gになるように所定量配合、混合し、白金ルツボに入れ、電気炉にて5〜10℃/分の昇温速度で900〜1000℃まで加熱し、溶融した。この温度で均一なガラスとするために撹拌しながら2時間保持した。その後、ルツボを取り出し、予め150〜200℃に加熱しておいたステンレス板上に流し込んで低融点ガラスを作製した。 In this example, the composition and characteristics of the low-melting glass contained in the sealing material were examined. Examples are shown in Tables 1 to 4 and Comparative Examples are shown in Table 5. For the preparation of the low-melting glass shown in Tables 1 to 5, reagents V 2 O 5 , TeO 2 , P 2 O 5 , Fe 2 O 3 , WO 3 , MoO 3 , Nb manufactured by High Purity Chemical Laboratory are used as raw materials. 2 O 5 , Ta 2 O 5 , MnO 2 , Sb 2 O 3 , Bi 2 O 3 , ZnO, SrCO 3 , BaCO 3 , Ag 2 O and K 2 CO 3 were used. Using these raw materials, a predetermined amount was blended and mixed so as to be a total of 200 g, put into a platinum crucible, heated to 900 to 1000 ° C. at a heating rate of 5 to 10 ° C./min in an electric furnace, and melted. In order to obtain a uniform glass at this temperature, it was held for 2 hours with stirring. Thereafter, the crucible was taken out and poured onto a stainless steel plate heated to 150 to 200 ° C. in advance to produce a low melting point glass.
作製した低融点ガラスをジェットミルで平均粒径が3μm以下になるまで粉砕した。その粉末を用いて5℃/分の昇温速度で500℃まで示差熱分析(DTA)を行うことによって、転移点(Tg)、屈伏点(Mg)、軟化点(Ts)及び結晶化温度(Tcry)を測定した。なお、標準サンプルとしてアルミナ(Al2O3)粉末を用いた。図8に代表的な低融点ガラスのDTA曲線を示す。図8に示すように、Tgは第一吸熱ピークの開始温度、Mgはそのピーク温度、Tsは第二吸熱ピーク温度、Tcryは結晶化による発熱ピークの開始温度とした。ガラスの特性温度は、粘度により定義され、Tg、Mg及びTsは、粘度がそれぞれ1013.3poise、1011.0poise及び107.65poiseに相当する温度と言われている。ガラスを低温で軟化流動させるためには、極力、Tsを低温化する必要がある。また、熱的な残留歪を緩和するためには、極力、Tgを低温化することが好ましい。Tcryは、ガラスが結晶化を開始する温度である。結晶化は、ガラスの軟化流動性を阻害するため、極力、TcryをTsより高温側にすることが望ましい。 The produced low melting point glass was pulverized with a jet mill until the average particle size became 3 μm or less. By performing differential thermal analysis (DTA) up to 500 ° C. using the powder at a rate of temperature increase of 5 ° C./min, the transition point (T g ), yield point (M g ), softening point (T s ) and crystal The crystallization temperature (T cry ) was measured. Note that alumina (Al 2 O 3 ) powder was used as a standard sample. FIG. 8 shows a DTA curve of a typical low melting point glass. As shown in FIG. 8, T g is the first endothermic peak start temperature, Mg is the peak temperature, T s is the second endothermic peak temperature, and T cry is the exothermic peak start temperature due to crystallization. The characteristic temperature of the glass is defined by the viscosity, T g, M g and T s is said temperature corresponding to the viscosity of each 10 13.3 poise, 10 11.0 poise and 10 7.65 poise. In order to soften and flow glass at a low temperature, it is necessary to reduce the temperature of T s as much as possible. Further, in order to mitigate the thermal residual strain, as much as possible, it is preferable to cold the T g. T cry is the temperature at which the glass begins to crystallize. Since crystallization hinders the softening fluidity of the glass, it is desirable to make T cry higher than T s as much as possible.
作製した低融点ガラスをTg〜Mgの温度範囲で熱歪を除去し、4×4×20mmの角柱に加工した。これを用い、熱膨張計で30〜250℃の熱膨張係数、転移温度TG及び変形温度ATを測定した。なお、昇温速度は5℃/分とした。また、標準サンプルとしては、φ5×20mmの円柱の石英ガラスを用いた。図9に体表的な低融点ガラスの熱膨張曲線を示す。図9は、標準サンプルである石英ガラスの伸び量は差し引きされている。30〜250℃の温度範囲における伸び量の勾配から熱膨張係数を算出した。TGは顕著に伸びが開始する温度、ATは荷重により変形する温度である。TGは上記DTAのTgより若干高めに測定された。ATは上記DTAのMg〜Tsの間であった。 The low-melting glasses prepared to remove thermal strain in a temperature range of T g ~M g, was processed into a prism of 4 × 4 × 20mm. Using this, a thermal expansion coefficient of 30 to 250 ° C., a transition temperature TG and a deformation temperature AT were measured with a thermal dilatometer. The rate of temperature increase was 5 ° C./min. Further, as a standard sample, a cylindrical quartz glass having a diameter of 5 × 20 mm was used. FIG. 9 shows a thermal expansion curve of a low-melting glass which is a surface. In FIG. 9, the elongation amount of quartz glass which is a standard sample is subtracted. The thermal expansion coefficient was calculated from the gradient of elongation in the temperature range of 30 to 250 ° C. TG is a temperature at which elongation starts remarkably, and AT is a temperature at which deformation occurs due to a load. T G was determined to slightly higher than the T g of the DTA. A T was between M g ~T s of the DTA.
作製した低融点ガラスの耐湿性試験には、上記熱膨張評価用サンプルの表面を鏡面加工したものを用いた。耐湿性の評価は、温度85℃、湿度85%の条件で10日間実施し、鏡面加工したガラス表面の光沢が維持されている場合には「○」、その光沢が減少した場合には「△」、ガラスが崩壊した場合には「×」と評価した。 For the moisture resistance test of the produced low melting point glass, the surface of the sample for thermal expansion evaluation was mirror-finished. Evaluation of moisture resistance was carried out for 10 days under conditions of a temperature of 85 ° C. and a humidity of 85%. When the gloss of the mirror-finished glass surface was maintained, “◯”, and when the gloss decreased, “△ “If the glass broke down, it was evaluated as“ x ”.
作製した低融点ガラスの軟化流動性は、上記ジェットミルで粉砕したガラス粉末をハンドプレス(1ton/cm2)により圧粉成形し、そのガラス圧粉成形体に透明基板越しで各種レーザを照射することによって評価した。そのガラス圧粉成形体へのレーザ照射実験の概略を図10に示す。ガラス圧粉成形体8のサイズはφ10×2mmとした。そのガラス圧粉成形体8を透明基板1に乗せ、裏側よりガラス圧粉成形体8の中央部に向けてレーザ7を照射した。透明基板1にはスライドガラスを用いた。また、レーザ7には、波長が405nmの半導体レーザ、532nmのYAGレーザの二倍波、630nmの半導体レーザ、805nmの半導体レーザ及び1064nmのYAGレーザを用いた。軟化流動性の評価は、ガラス圧粉成形体8のレーザ照射部が流動した場合には「○」、流動したが、クラックが多発した場合には「●」、軟化した場合には「△」、軟化したが、クラックが多発した場合には「△△」、流動も軟化もできなかった場合には「×」とした。なお、ガラス圧粉成形体8のレーザ照射部の軟化流動性やクラックの発生状態は、透明基板1越しに光学顕微鏡で観察することによって判定した。 The softening fluidity of the produced low melting point glass is that the glass powder crushed by the jet mill is compacted by hand press (1 ton / cm 2 ), and the glass compact is irradiated with various lasers through a transparent substrate. Was evaluated by The outline of the laser irradiation experiment to the glass compacting body is shown in FIG. The size of the glass compact 8 was φ10 × 2 mm. The glass powder compact 8 was placed on the transparent substrate 1 and irradiated with a laser 7 from the back side toward the center of the glass powder compact 8. A slide glass was used for the transparent substrate 1. As the laser 7, a semiconductor laser having a wavelength of 405 nm, a double wave of a YAG laser of 532 nm, a semiconductor laser of 630 nm, a semiconductor laser of 805 nm, and a YAG laser of 1064 nm were used. The softening fluidity is evaluated as “◯” when the laser irradiation portion of the glass compact 8 has flowed, “●” when it has flowed but many cracks occur, and “△” when softening. When the cracks occurred frequently, “ΔΔ” was indicated, and when neither flow nor softening was indicated, “X” was assigned. In addition, the softening fluidity | liquidity of the laser irradiation part of the glass compacting body 8, and the generation | occurrence | production state of a crack were determined by observing with an optical microscope through the transparent substrate 1. FIG.
表1〜表4で示した実施例G1〜64及び表5で示した比較例G65〜80から分かるとおり、実施例G1〜64の低融点ガラスは、比較例G67,69,73〜76及び78〜80の低融点ガラスより軟化点Tsが低く、しかも比較例G68,70〜73,77及び78の低融点ガラスより熱膨張係数が小さく、さらに比較例G65〜68,70〜74,76,78及び80の低融点ガラスより耐湿性が良好であった。また、実施例G1〜64の低融点ガラスは、比較例G67,69,73〜76及び78〜80の低融点ガラスよりレーザ照射による軟化流動性が良好であり、しかも比較例68,70〜72及び77の低融点ガラスのように軟化流動性が良くてもクラックが多発することはなかった。 As can be seen from Examples G1 to 64 shown in Tables 1 to 4 and Comparative Examples G65 to 80 shown in Table 5, the low melting point glasses of Examples G1 to 64 are Comparative Examples G67, 69, 73 to 76, and 78. The softening point T s is lower than that of the low melting point glass of ˜80, and the thermal expansion coefficient is lower than those of the low melting point glasses of Comparative Examples G68, 70 to 73, 77 and 78, and Comparative Examples G65 to 68, 70 to 74,76, The moisture resistance was better than the low melting glass of 78 and 80. Further, the low melting point glass of Examples G1 to 64 has better softening fluidity by laser irradiation than the low melting point glasses of Comparative Examples G67, 69, 73 to 76 and 78 to 80, and Comparative Examples 68 and 70 to 72. No cracks occurred frequently even if the softening fluidity was good as in the low melting point glass No. 77 and No. 77.
実施例G1〜64の低融点ガラスは、酸化バナジウム、酸化テルル、酸化リン及び酸化鉄を含み、次の酸化物換算でV2O5、TeO2、P2O5及びFe2O3の合計が75質量%以上であり、しかもV2O5>TeO2>P2O5≧Fe2O3(質量%)であった。さらに、ガラス成分として、酸化タングステン、酸化モリブデン、酸化ニオブ、酸化タンタル、酸化マンガン、酸化アンチモン、酸化ビスマス、酸化亜鉛、酸化バリウム、酸化ストロンチウム、酸化銀及び酸化カリウムのうちいずれか1種以上を含んでもよく、次の酸化物換算でWO3+MoO3+Nb2O5+Ta2O5+MnO2+Sb2O3+Bi2O3+ZnO+BaO+SrO+Ag2O+K2O≦25質量%であった。特に有効な組成範囲は、上記条件を満たした上で、次の酸化物換算でV2O5が35〜55質量%、TeO2が19〜30質量%、P2O5が7〜20質量%、Fe2O3が5〜15質量%、及びWO3、MoO3、Nb2O5、Ta2O5、MnO2、Sb2O3、Bi2O3、ZnO、SrO、BaO、Ag2O、K2Oのうち1種以上の合計が0〜20質量%であった。 The low melting point glass of Examples G1 to 64 contains vanadium oxide, tellurium oxide, phosphorus oxide and iron oxide, and is the sum of V 2 O 5 , TeO 2 , P 2 O 5 and Fe 2 O 3 in terms of the following oxides. Was 75% by mass or more and V 2 O 5 > TeO 2 > P 2 O 5 ≧ Fe 2 O 3 (% by mass). Further, as a glass component, any one or more of tungsten oxide, molybdenum oxide, niobium oxide, tantalum oxide, manganese oxide, antimony oxide, bismuth oxide, zinc oxide, barium oxide, strontium oxide, silver oxide and potassium oxide are included. However, WO 3 + MoO 3 + Nb 2 O 5 + Ta 2 O 5 + MnO 2 + Sb 2 O 3 + Bi 2 O 3 + ZnO + BaO + SrO + Ag 2 O + K 2 O ≦ 25 mass% in terms of the following oxides. A particularly effective composition range satisfies the above conditions, and V 2 O 5 is 35 to 55 mass%, TeO 2 is 19 to 30 mass%, and P 2 O 5 is 7 to 20 mass in terms of the following oxides. %, Fe 2 O 3 is 5 to 15 wt%, and WO 3, MoO 3, Nb 2 O 5, Ta 2 O 5, MnO 2, Sb 2 O 3, Bi 2 O 3, ZnO, SrO, BaO, Ag The total of one or more of 2 O and K 2 O was 0 to 20% by mass.
また、実施例G1〜64の低融点ガラスは、波長が400〜1100nmの範囲あるレーザを効率よく吸収し、加熱され、しかも軟化点Tsが380℃以下と低いため、良好な軟化流動性を示した。さらに、転移点Tgが320℃以下と低く、熱膨張係数が100×10-7/℃以下と比較的に小さいため、レーザ照射によるヒートショックでのクラックが少なかった。 In addition, the low melting point glass of Examples G1 to 64 efficiently absorbs and heats a laser having a wavelength in the range of 400 to 1100 nm, and has a low softening point T s of 380 ° C. or less. Indicated. Furthermore, the transition point T g is 320 ° C. or less and low thermal expansion coefficient is relatively small as 100 × 10 -7 / ℃ less, cracks in the heat shock by laser irradiation was small.
本実施例では、表2で示した実施例G19の低融点ガラスと透明基板としてスライドガラスを用いて、レーザ封止実験を行った。ジェットミルで平均粒径が3μm以下に粉砕したG19の低融点ガラス粉末と、樹脂バインダーと、溶剤とを用いて封止材料ペーストを作製した。樹脂バインダーにはニトロセルロース、溶剤にはブチルカルビトールアセテートを用いた。この封止材料ペーストを用い、スクリーン印刷法にて透明基板の外周部へ図11に示すように塗布し、乾燥後に、大気中380℃−30分で焼成した。透明基板1に形成された封止材料5の線幅を1.5mmとし、その焼成膜厚がそれぞれ約5、10、20、30μmになるように塗布量を変えることによって調整した。図12に示すように、透明基板2を対向して設置し、透明基板1の方向から封止材料5へレーザ7を8mm/秒の速度で移動しながら照射し、透明基板1と2の外周部を接合した。レーザ7には、実施例1で用いた4種類のレーザを使用した。どのサンプルも接合でき、気密性(ガスバリア性)と接着性を評価した。評価結果を表6に示す。 In this example, a laser sealing experiment was conducted using the low melting point glass of Example G19 shown in Table 2 and a slide glass as the transparent substrate. A sealing material paste was prepared using a low melting point glass powder of G19 pulverized with a jet mill to an average particle size of 3 μm or less, a resin binder, and a solvent. Nitrocellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent. Using this sealing material paste, it was applied to the outer peripheral portion of the transparent substrate by screen printing as shown in FIG. 11, dried, and then baked in the atmosphere at 380 ° C. for 30 minutes. The line width of the sealing material 5 formed on the transparent substrate 1 was set to 1.5 mm, and the coating amount was adjusted so that the fired film thicknesses were about 5, 10, 20, and 30 μm, respectively. As shown in FIG. 12, the transparent substrate 2 is placed oppositely, the laser 7 is irradiated from the direction of the transparent substrate 1 to the sealing material 5 while moving at a speed of 8 mm / second, and the outer periphery of the transparent substrates 1 and 2. The parts were joined. As the laser 7, the four types of lasers used in Example 1 were used. All samples could be joined and evaluated for airtightness (gas barrier property) and adhesion. The evaluation results are shown in Table 6.
気密性(ガスバリア性)は、ヘリウムリーク試験を実施し、リークしない場合には「○」、リークした場合には「×」と評価した。また、接着性は、剥離試験を実施し、透明基板や封止材料が破損した場合には「○」、透明基板と封止材料の界面から容易に剥離した場合には「×」と評価した。焼成膜厚が20μm以下の場合には、どのレーザを用いても気密性と接着性は良好であった。しかし、焼成膜厚が30μmでは、使用するレーザによって、良好な気密性と接着性が得られない場合があった。波長が532nmと1064nmはYAGレーザを使用しており、他の半導体レーザより高パワーであるために、良好な気密性と接着性が得られたものと考えられる。半導体レーザは、YAGレーザに比べて大変安価なため、レーザ封止には半導体レーザが使えるに越したことはなく、接合層の厚みは20μm以下が好ましい。 The airtightness (gas barrier property) was evaluated by performing a helium leak test and evaluating “◯” when no leak occurred and “×” when leaking. In addition, the adhesion was evaluated as “◯” when a peel test was performed and the transparent substrate or the sealing material was damaged, and “X” when easily peeled from the interface between the transparent substrate and the sealing material. . When the fired film thickness was 20 μm or less, airtightness and adhesiveness were good regardless of which laser was used. However, when the fired film thickness is 30 μm, good airtightness and adhesiveness may not be obtained depending on the laser used. Since YAG lasers are used at wavelengths of 532 nm and 1064 nm, and higher power than other semiconductor lasers, it is considered that good airtightness and adhesiveness were obtained. Since the semiconductor laser is very cheap compared to the YAG laser, the semiconductor laser can never be used for laser sealing, and the thickness of the bonding layer is preferably 20 μm or less.
しかし、透明基板1と2の両面からレーザを照射すると、焼成膜厚が30μmでも良好な気密性と接着性が得られた。すなわち、接着層の厚みが大きい場合には、こう言った方法で対応できる可能性が十分にある。 However, when laser was irradiated from both surfaces of the transparent substrates 1 and 2, good airtightness and adhesiveness were obtained even when the fired film thickness was 30 μm. That is, when the thickness of the adhesive layer is large, there is a possibility that it can be handled by such a method.
図13に実施例G19の低融点ガラスを焼成した塗膜の透過率曲線を示す。300〜2000nmの波長域において、波長が小さいほど透過率が低く、また焼成膜厚が大きいほど、透過率は低下した。表1〜表4で示した他の実施例の低融点ガラスも同様な透過率曲線を有することから、同様な効果が得られることは言うまでもない。 The transmittance | permeability curve of the coating film which baked the low melting glass of Example G19 in FIG. 13 is shown. In the wavelength region of 300 to 2000 nm, the transmittance decreased as the wavelength decreased, and the transmittance decreased as the fired film thickness increased. Needless to say, the low melting point glasses of the other examples shown in Tables 1 to 4 have similar transmittance curves, so that similar effects can be obtained.
次に透明基板にポリカーボネートを用いて上記同様にレーザ封止実験を行った。ポリカーボネートはG19の低融点ガラスより耐熱性が低いため、透明基板に事前に焼成する場合には、波長が805nmの半導体レーザを使用した。このレーザを使用すると、ポリカーボネートをほとんど加熱させることなく、G19の焼成塗膜が得られた。続いて、図12のようにして、各種のレーザを照射して透明基板1と2であるポリカーボネートの外周部を接合して上記同様にして接着性を評価した。透明基板1と2にスライドガラスを用いた場合と同様な結果が得られた。 Next, a laser sealing experiment was conducted in the same manner as described above using polycarbonate as the transparent substrate. Since polycarbonate has lower heat resistance than G19 low-melting glass, a semiconductor laser having a wavelength of 805 nm was used when firing on a transparent substrate in advance. When this laser was used, a fired coating film of G19 was obtained with little heating of the polycarbonate. Subsequently, as shown in FIG. 12, various kinds of lasers were irradiated to join the outer peripheral portions of the polycarbonates 1 and 2, and the adhesion was evaluated in the same manner as described above. The same result as that obtained when the slide glass was used for the transparent substrates 1 and 2 was obtained.
本実施例では、透明基板に熱膨張係数が50×10-7/℃のガラス基板、封止材料に含まれる低融点ガラスに表3で示した実施例G43、さらに封止材料にフィラーとしてリン酸タングステン酸ジルコニウム(Zr2(WO4)(PO4)2)、酸化ニオブ(Nb2O5)及びシリコン(Si)を用いて、実施例2と同様なレーザ封止実験を実施した。 In this example, a glass substrate having a thermal expansion coefficient of 50 × 10 −7 / ° C. on the transparent substrate, Example G43 shown in Table 3 on the low melting point glass contained in the sealing material, and phosphorus as a filler in the sealing material A laser sealing experiment similar to that in Example 2 was performed using zirconium tungstate (Zr 2 (WO 4 ) (PO 4 ) 2 ), niobium oxide (Nb 2 O 5 ), and silicon (Si).
先ずは、ジェットミルで平均粒径が3μm以下に粉砕したG43の低融点ガラス粉末と、平均粒径が5μm程度のZr2(WO4)(PO4)2、Nb2O5またはSiのフィラー粒子と、樹脂バインダーと、溶剤とを用いて封止材料ペーストを作製した。また、フィラー粒子の含有量は、G43の低融点ガラス100体積部に対し、それぞれ15、25、35、45体積部とした。使用した低融点ガラスG43の密度は3.53g/cm3、Zr2(WO4)(PO4)2の密度は3.80g/cm3、Nb2O5の密度は4.57g/cm3、Siの密度は2.33g/cm3であった。また、樹脂バインダーにはエチルセルロース、溶剤にはブチルカルビトールアセテートを用いた。この封止材料ペーストを用い、スクリーン印刷法にて透明基板の外周部へ図11に示すように塗布し、乾燥後に、大気中400℃−30分で焼成した。透明基板1に形成された封止材料5は、線幅が1.5mm、膜厚が約10μmであった。 First, a low melting point glass powder of G43 pulverized by a jet mill to an average particle size of 3 μm or less, and a Zr 2 (WO 4 ) (PO 4 ) 2 , Nb 2 O 5 or Si filler having an average particle size of about 5 μm. A sealing material paste was prepared using particles, a resin binder, and a solvent. The filler particle content was 15, 25, 35, and 45 parts by volume with respect to 100 parts by volume of the low melting point glass of G43. The density of the low-melting glass G43 used was 3.53g / cm 3, Zr 2 ( WO 4) (PO 4) 2 of the density 3.80g / cm 3, Nb 2 density of O 5 is 4.57 g / cm 3 The density of Si was 2.33 g / cm 3 . Further, ethyl cellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent. Using this sealing material paste, it was applied to the outer peripheral portion of the transparent substrate by screen printing as shown in FIG. 11, dried, and then fired in the atmosphere at 400 ° C. for 30 minutes. The sealing material 5 formed on the transparent substrate 1 had a line width of 1.5 mm and a film thickness of about 10 μm.
図12に示すように、透明基板2を対向して設置し、透明基板1の方向から封止材料5へ波長が805nmの半導体レーザ7を8mm/秒の速度で移動しながら照射し、透明基板1と2の外周部を接合した。実施例2と同様にして気密性(ガスバリア性)と接着性を評価した。その評価結果を表7に示す。 As shown in FIG. 12, the transparent substrate 2 is placed oppositely, and the semiconductor laser 7 having a wavelength of 805 nm is irradiated from the direction of the transparent substrate 1 to the sealing material 5 while moving at a speed of 8 mm / second. The outer peripheries of 1 and 2 were joined. In the same manner as in Example 2, airtightness (gas barrier property) and adhesiveness were evaluated. The evaluation results are shown in Table 7.
本実施例のように透明基板1と2に使用した上記ガラス基板と低融点ガラスG43の熱膨張差が大きい場合は、封止材料5にフィラーを含有することで封止材料5の熱膨張係数を下げることができるので、クラックの発生を防止し、良好な接着性と気密性を得ることができる。本実施例ではZr2(WO4)(PO4)2、Nb2O5またはSiのフィラーを含有させた。フィラーの含有によって良好な気密性と接着性が得られた。フィラーの含有量が45体積部になると、透明基板1と2を接合するための低融点ガラスG43の含有率が少なくなってしまうため他の例と比較して接着性は劣ったものの、良好な気密性は維持されていた。 When the difference in thermal expansion between the glass substrate used for the transparent substrates 1 and 2 and the low melting point glass G43 is large as in this embodiment, the thermal expansion coefficient of the sealing material 5 is obtained by containing a filler in the sealing material 5 Therefore, generation of cracks can be prevented, and good adhesiveness and airtightness can be obtained. In this example, a filler of Zr 2 (WO 4 ) (PO 4 ) 2 , Nb 2 O 5 or Si was contained. Good hermeticity and adhesiveness were obtained by the inclusion of the filler. When the content of the filler is 45 parts by volume, the content of the low-melting glass G43 for joining the transparent substrates 1 and 2 is reduced, so the adhesiveness is inferior compared with other examples, but good. Airtightness was maintained.
以上より、透明基板1と2をレーザで気密かつ強固に接合するには、封止材料5に含まれるフィラー粒子の含有量は、低融点ガラス100体積部に対して、35体積部以下が好ましいと考えられる。本実施例では、フィラー粒子として本低融点ガラスとぬれ性がよいZr2(WO4)(PO4)2、Nb2O5及びSiを選定して検討したが、これらに限られたものではなく、熱膨張係数が小さいβ−ユークリプタイト、コージェライト、リン酸ジルコニウム、ケイ酸ジルコニウム等も使用することができる。 From the above, in order to airtightly and firmly join the transparent substrates 1 and 2 with the laser, the content of the filler particles contained in the sealing material 5 is preferably 35 parts by volume or less with respect to 100 parts by volume of the low-melting glass. it is conceivable that. In this example, Zr 2 (WO 4 ) (PO 4 ) 2 , Nb 2 O 5 and Si, which have good wettability with the low melting point glass, were selected and examined as filler particles. In addition, β-eucryptite, cordierite, zirconium phosphate, zirconium silicate and the like having a small thermal expansion coefficient can also be used.
透明基板1と2の間隔が100μm以上あると、実施例2で示した製法では両面からレーザを照射しても、封止材料5にクラックが発生したり、また封止材料5に含まれる本低融点ガラスの軟化流動性が不十分であったりして、良好な気密性と接着性が得られなかった。そこで、本実施例では、図2で示したように透明基板1と2の間にスペーサ6を介して接合した。透明基板1と2及びスペーサ6には、透過率の高い白板ガラスを用い、図6と図7で示した製法で透明基板1と2を接合した。封止材料5と5′に実施例3と同様に表3で示したG43の低融点ガラス粉末100体積部及びZr2(WO4)(PO4)2フィラー粒子10体積部と、エチルセルロースとブチルカルビトールアセテートからなる封止材料ペーストを用いて、図6で示したようにスペーサ6に塗布し、乾燥後に大気中400℃−20分で焼成した。焼成膜厚はそれぞれ15μmであった。なお、スペーサ6の幅は3mm固定とし、厚みをそれぞれ70,320,500,1000μmとした。封止材料5と5′の厚みを加えるとそれぞれ100,350,530,1030μmである。それらをそれぞれ図7で示したように4辺の外周部に設置し、透明基板1と2の両面から波長が630nmの半導体レーザ7,7′を照射して接合した。レーザの送り速度は、8mm/秒とした。その接着性を実施例2と同様にして評価した。どの厚みのスペーサ6を用いた場合にも良好な接着性が得られ、透明基板1と2の間隔が大きい場合には、スペーサ6を活用することは有効であることが分かった。 If the distance between the transparent substrates 1 and 2 is 100 μm or more, the manufacturing method shown in Example 2 may cause cracks in the sealing material 5 even if the laser is irradiated from both sides, and may be included in the sealing material 5. The softening fluidity of the low melting point glass was insufficient, and good airtightness and adhesiveness could not be obtained. Therefore, in this embodiment, as shown in FIG. 2, the transparent substrates 1 and 2 are joined via the spacer 6. The transparent substrates 1 and 2 and the spacer 6 were made of white glass having high transmittance, and the transparent substrates 1 and 2 were joined by the manufacturing method shown in FIGS. 100 parts by volume of the low melting point glass powder of G43 shown in Table 3 and 10 parts by volume of Zr 2 (WO 4 ) (PO 4 ) 2 filler particles as shown in Table 3 in the same manner as in Example 3 and the sealing materials 5 and 5 ′, ethyl cellulose and butyl Using a sealing material paste made of carbitol acetate, it was applied to the spacer 6 as shown in FIG. 6, dried and then fired in the atmosphere at 400 ° C. for 20 minutes. The fired film thickness was 15 μm. The width of the spacer 6 was fixed to 3 mm, and the thickness was set to 70, 320, 500, and 1000 μm, respectively. When the thicknesses of the sealing materials 5 and 5 ′ are added, they are 100, 350, 530, and 1030 μm, respectively. As shown in FIG. 7, these were respectively installed on the outer periphery of the four sides and joined by irradiating semiconductor lasers 7 and 7 'having a wavelength of 630 nm from both surfaces of the transparent substrates 1 and 2. The laser feed rate was 8 mm / second. The adhesion was evaluated in the same manner as in Example 2. It has been found that good adhesiveness is obtained regardless of the thickness of the spacer 6 and that it is effective to use the spacer 6 when the distance between the transparent substrates 1 and 2 is large.
本実施例では、有機発光ダイオード(OLED)が多数内蔵されたディスプレイを作製し、評価した。このOLEDディスプレイは、図1で示した構造を有している。内蔵される有機素子3であるOLEDは、水分や酸素により劣化しやすいことから、本低融点ガラスを含む封止材料5で透明基板1と2の外周部を気密かつ強固に接合することは大変有効である。本実施例では、透明基板1と2に液晶ディスプレイに使われる無アルカリガラスを用いた。透明基板1の外周部には、表4で示したG55の低融点ガラス粉末100体積部及びZr2(WO4)(PO4)2フィラー粒子20体積部、Siフィラー粒子10体積部、エチルセルロースとブチルカルビトールアセテートからなる封止材料ペーストを用いて、図3に示したように透明基板1の外周部に塗布し、乾燥後に大気中400℃−30分で焼成し、封止材料5を形成した。形成した封止材料は、幅を2.5mm、焼成膜厚を10μmとなるようにした。一方、透明基板2に画素数に対応した多数のOLEDを図4に示したように形成した。その透明基板2と上記透明基板1を図5に示したように対向させて、透明基板1の方向から封止材料5に向けてレーザ7を照射した。レーザ7には、波長が805nmの半導体レーザを用い、8mm/秒の速度で外周部を移動させ、透明基板1と2の外周部を接合した。 In this example, a display having a large number of organic light emitting diodes (OLEDs) built therein was manufactured and evaluated. This OLED display has the structure shown in FIG. Since the OLED which is the built-in organic element 3 is easily deteriorated by moisture and oxygen, it is very difficult to hermetically and firmly join the outer peripheral portions of the transparent substrates 1 and 2 with the sealing material 5 including the low melting point glass. It is valid. In this embodiment, non-alkali glass used for a liquid crystal display is used for the transparent substrates 1 and 2. On the outer periphery of the transparent substrate 1, 100 parts by volume of the low melting glass powder of G55 shown in Table 4, 20 parts by volume of Zr 2 (WO 4 ) (PO 4 ) 2 filler particles, 10 parts by volume of Si filler particles, ethyl cellulose and Using a sealing material paste made of butyl carbitol acetate, as shown in FIG. 3, it is applied to the outer periphery of the transparent substrate 1, dried and then fired in the atmosphere at 400 ° C. for 30 minutes to form the sealing material 5. did. The formed sealing material had a width of 2.5 mm and a fired film thickness of 10 μm. On the other hand, a large number of OLEDs corresponding to the number of pixels were formed on the transparent substrate 2 as shown in FIG. The transparent substrate 2 and the transparent substrate 1 were opposed to each other as shown in FIG. 5, and the laser 7 was irradiated from the direction of the transparent substrate 1 toward the sealing material 5. As the laser 7, a semiconductor laser having a wavelength of 805 nm was used, the outer peripheral portion was moved at a speed of 8 mm / second, and the outer peripheral portions of the transparent substrates 1 and 2 were bonded.
作製直後のOLEDディスプレイの点灯試験を行った結果、問題なく、点灯することを確認した。また、接合部の接着性も良好であった。次にこのディスプレイを85℃−85%Rh−10日間、25日間及び50日間の条件で高温高湿試験を実施し、点灯試験を行った。比較として樹脂で接合したOLEDディスプレイも入れた。なお、この樹脂接合層の幅は3mm、厚みは10μmとした。10日間の高温高湿試験では、どちらのOLEDディスプレイともに問題なく点灯したが、樹脂で接合したディスプレイは25日間以降の点灯で大きな劣化が発生した。これは、樹脂接合部よりディスプレイ内部に水分や酸素が導入されてしまい、OLEDが劣化したためである。一方、本発明は50日間の高温高湿試験でも、OLEDの点灯には劣化が認められず、良好な試験結果となった。これは良好な気密性が維持されていることを示唆した結果である。さらに高温高湿試験後の接合部の接着性も評価した結果、樹脂で接合したような大きな低下は認められず、試験前とほぼ同等であった。 As a result of conducting a lighting test of the OLED display immediately after the production, it was confirmed that the OLED display was lit without problems. Moreover, the adhesiveness of the joint was also good. Next, this display was subjected to a high temperature and high humidity test under conditions of 85 ° C.-85% Rh-10 days, 25 days and 50 days, and a lighting test was performed. For comparison, an OLED display bonded with resin was also included. The resin bonding layer had a width of 3 mm and a thickness of 10 μm. In the high temperature and high humidity test for 10 days, both OLED displays lighted without any problem, but the display joined with the resin was greatly deteriorated by lighting after 25 days. This is because moisture and oxygen are introduced into the display from the resin joint and the OLED deteriorates. On the other hand, in the present invention, even in a high temperature and high humidity test for 50 days, no deterioration was observed in the lighting of the OLED, and the test result was good. This is a result suggesting that good airtightness is maintained. Furthermore, as a result of evaluating the adhesiveness of the joint after the high-temperature and high-humidity test, there was no significant decrease as if it was joined with a resin, which was almost the same as before the test.
以上より、本発明はOLEDディスプレイに有効に適用できることが分かった。また、OLEDが搭載される照明器具等の電子部品にも展開できることは、言うまでもない。 From the above, it has been found that the present invention can be effectively applied to an OLED display. Moreover, it cannot be overemphasized that it can expand also to electronic components, such as a lighting fixture in which OLED is mounted.
本実施例では、有機色素が内蔵された色素増感型太陽電池を作製し、評価した。一般に、この太陽電池は、有機色素の分子が多数のチタニア(TiO2)ナノ粒子の表面に形成され、その色素に光が照射されると、励起された電子がTiO2へ注入され、そのナノ粒子内を拡散しながら電極に到達する。一方、対極では、電子が電界質に注入され、ヨウ素(I)が還元される。これにより発電できる。色素増感型太陽電池は、非真空、低温プロセス及びシリコンを使わないことから、低コスト化に有効であるが、信頼性に大きな課題がある。その信頼性を改善するには、封止技術がキーとなる。耐熱性が低い有機色素や電界質が使われるため、封止はそれらの耐熱温度以下の低温で行う必要があり、樹脂による封止が一般的である。しかし、樹脂封止では、長期信頼性が確保できないと言った大きな課題がある。 In this example, a dye-sensitized solar cell containing an organic dye was prepared and evaluated. In general, in this solar cell, organic dye molecules are formed on the surface of a large number of titania (TiO 2 ) nanoparticles, and when the dye is irradiated with light, excited electrons are injected into TiO 2 , It reaches the electrode while diffusing inside the particles. On the other hand, at the counter electrode, electrons are injected into the electrolyte and iodine (I) is reduced. This can generate electricity. Dye-sensitized solar cells are effective in reducing costs because they do not use non-vacuum, low-temperature processes and silicon, but have a significant problem with reliability. Sealing technology is the key to improving the reliability. Since organic dyes and electric fields with low heat resistance are used, sealing must be performed at a temperature lower than their heat resistance temperature, and sealing with resin is generally used. However, resin sealing has a major problem that long-term reliability cannot be ensured.
本発明を実施例5と同様にして色素増感型太陽電池の封止に適用した。透明基板1と2には、透過率が高い白板ガラスを用いた。透明基板1への封止材料5の形成は、実施例4と同じ封止材料ペーストと同じ焼成条件を用いて行った。透明基板2の方には、有機色素等を多数内蔵したセルを形成或いは設置し、実施例5と同様にして透明基板1と2の外周部をレーザの照射によって接合した。強固に接合できており、接着性は良好であった。また、実施例5と同様な高温高湿試験によっても問題がなく、良好な気密性が維持されていた。しかも、高温高湿試験後の接着性も良好であった。さらに、接合部のヨウ素(I)による腐食も認められなかった。しかし、電極がヨウ素(I)によって腐食されていた。このことから、色素増感型太陽電池の封止の他、本発明による低融点ガラスは、電極の被覆にも展開できる。 The present invention was applied to sealing a dye-sensitized solar cell in the same manner as in Example 5. For the transparent substrates 1 and 2, white plate glass having high transmittance was used. The formation of the sealing material 5 on the transparent substrate 1 was performed using the same baking conditions as those of the same sealing material paste as in Example 4. A cell containing a large number of organic dyes or the like was formed or installed on the transparent substrate 2, and the outer peripheral portions of the transparent substrates 1 and 2 were joined by laser irradiation in the same manner as in Example 5. It was able to join firmly and adhesiveness was favorable. Moreover, the high temperature and high humidity test similar to that in Example 5 had no problem and good airtightness was maintained. Moreover, the adhesion after the high temperature and high humidity test was also good. Further, corrosion due to iodine (I) at the joint was not observed. However, the electrode was corroded by iodine (I). From this, besides the sealing of the dye-sensitized solar cell, the low-melting glass according to the present invention can be applied to the covering of the electrode.
以上より、本発明は、色素増感型太陽電池に有効に適用できることが分かった。また、色素増感型太陽電池に限らず、有機太陽電池等の電子部品にも展開できることは、言うまでもない。 From the above, it was found that the present invention can be effectively applied to a dye-sensitized solar cell. Moreover, it cannot be overemphasized that it can expand | deploy not only to a dye-sensitized solar cell but to electronic components, such as an organic solar cell.
本実施例では、多数の光電変換素子が内蔵され、樹脂で張り合わせた太陽電池を作製し、評価した。光電変換素子としては、単結晶シリコン基板を用いた両面受光セルを使用した。また、これらのセルはタブ線によって直列的に接続される。従来は、2枚の透明基板の間にEVAシートによって張り合わせられ、端部がアルミ枠と樹脂の封止材料で固定されている。透明基板には、一般に透過率の高い白板ガラスが適用される。太陽電池の後発事故のほとんどは、内部に浸透してくる水が原因である。EVAシートは高いガスバリア性(気密性)を有しておらず、水分が徐々に長い年月をかけて浸透し、その水分によってセル間を接続しているタブ線やその接続部、そしてセルに形成された電極が腐食されて断線してしまうことがある。このため、水分が浸透しないにすることは、太陽電池の長期信頼性を確保する上で非常に重要である。 In this example, a large number of photoelectric conversion elements were built in and a solar cell bonded with a resin was manufactured and evaluated. A double-sided light receiving cell using a single crystal silicon substrate was used as the photoelectric conversion element. These cells are connected in series by tab wires. Conventionally, an EVA sheet is bonded between two transparent substrates, and ends are fixed with an aluminum frame and a resin sealing material. In general, a white plate glass having a high transmittance is applied to the transparent substrate. Most of the subsequent accidents of solar cells are caused by water penetrating inside. EVA sheet does not have high gas barrier properties (airtightness), and moisture gradually permeates over a long period of time. The formed electrode may be corroded and disconnected. For this reason, it is very important to prevent moisture from penetrating in order to ensure the long-term reliability of the solar cell.
本実施例では、透明基板に上記白板ガラス、張り合わせる樹脂にEVAシートを用いた。使用した両面受光セルの厚みが両面の電極分を含み約250μm、EVAシートによる貼り付け層がセル両面で250μm程度あったため、図2で示したようにスペーサを介して接合することにした。透明基板1と2の間隔が約500μmとなるため、スペーサ6としては、幅が3.5mm、厚みが470μmの白板ガラスを用いた。封止材料ペーストとしては、表4で示したG55の低融点ガラス粉末、Siフィラー粒子、エチルセルロース及びブチルカルビトールアセテートを用いて作製した。Siフィラー粒子の含有量は、G55の低融点ガラス100体積部に対し15体積部とした。先ずは、透明基板1の外周部とスペーサ6の片面にスクリーン印刷法にて幅3mmで封止材料ペーストをそれぞれ塗布し、乾燥した。乾燥後、大気中400℃−30分焼成し、封止材料5を透明基板1に、封止材料5′をスペーサに形成した。その際の焼成膜厚はそれぞれ15μmであった。封止材料5′を形成したスペーサ6を透明基板2に設置し、加重をかけるとともに大気中400℃−30分で加熱することによって、封止材料5′でスペーサ6と透明基板2を接着した。
その際に角の気密性を確保するために、スペーサ6同士のつなぎ目に上記G55の低融点ガラスペーストを施し、同時に焼成した。以上のように作製した透明基板1と2の間に、封止材料5とスペーサ6が向き合うようにして、タブ線で接続したいくつかの両面受光セルを設置し、EVAシートによって張り合わせた。次に透明基板1側より波長が805nmの半導体レーザを8mm/秒の速度で外周部を移動させ、透明基板1と2をスペーサ6を介して封止材料5と5′で接合した。気密性、接着性ともに良好であった。樹脂の封止材料に比べ、より長期的な信頼性が確保できることは言うまでもない。
In this example, the white plate glass was used as the transparent substrate, and the EVA sheet was used as the resin to be bonded. Since the thickness of the double-sided light-receiving cell used was about 250 μm including the electrodes on both sides and the EVA sheet was attached to the both sides of the cell with a thickness of about 250 μm, it was decided to join via spacers as shown in FIG. Since the distance between the transparent substrates 1 and 2 is about 500 μm, the spacer 6 is white plate glass having a width of 3.5 mm and a thickness of 470 μm. As the sealing material paste, G55 low melting point glass powder, Si filler particles, ethyl cellulose and butyl carbitol acetate shown in Table 4 were used. The content of the Si filler particles was 15 parts by volume with respect to 100 parts by volume of the low melting point glass of G55. First, a sealing material paste having a width of 3 mm was applied to the outer peripheral portion of the transparent substrate 1 and one surface of the spacer 6 by a screen printing method, and dried. After drying, baking was performed in the atmosphere at 400 ° C. for 30 minutes to form the sealing material 5 on the transparent substrate 1 and the sealing material 5 ′ on the spacer. The fired film thicknesses at that time were each 15 μm. The spacer 6 on which the sealing material 5 'is formed is placed on the transparent substrate 2, and the spacer 6 and the transparent substrate 2 are bonded with the sealing material 5' by applying weight and heating in the atmosphere at 400 ° C for 30 minutes. .
At that time, in order to ensure the airtightness of the corners, the low melting point glass paste of G55 was applied to the joint between the spacers 6 and fired at the same time. Between the transparent substrates 1 and 2 produced as described above, several double-sided light-receiving cells connected by tab wires were placed so that the sealing material 5 and the spacer 6 faced each other, and they were bonded together using an EVA sheet. Next, the outer peripheral portion of a semiconductor laser having a wavelength of 805 nm was moved from the transparent substrate 1 side at a speed of 8 mm / second, and the transparent substrates 1 and 2 were joined with the sealing materials 5 and 5 ′ via the spacers 6. Both airtightness and adhesiveness were good. Needless to say, long-term reliability can be ensured as compared with a resin sealing material.
本実施例では、両面受光SiセルとEVAシートを用いた太陽電池に関して説明したが、樹脂を用いてセルや透明基板を接着、固定するような太陽電池全般に適用できるものである。たとえば、薄膜太陽電池にも展開できる。 In this embodiment, the solar cell using the double-sided light receiving Si cell and the EVA sheet has been described. However, the present invention can be applied to all types of solar cells in which cells and transparent substrates are bonded and fixed using a resin. For example, it can be applied to a thin film solar cell.
以上、本発明を適用したOLEDディスプレイ、色素増感型太陽電池、Si太陽電池について説明したが、これらに限った発明ではなく、耐熱性が低い有機素子や有機材料が内蔵された電子部品全般に適用でき、その電子部品の信頼性を著しく向上できるものである。 As described above, the OLED display, the dye-sensitized solar cell, and the Si solar cell to which the present invention is applied have been described. However, the present invention is not limited to these, and is generally applied to an electronic component having an organic element or organic material with low heat resistance. It can be applied, and the reliability of the electronic component can be remarkably improved.
1,2 透明基板
3 有機部材
5 封止材料
6 スペーサ
7,7′ レーザ
8 ガラス圧粉成形体
DESCRIPTION OF SYMBOLS 1, 2 Transparent substrate 3 Organic member 5 Sealing material 6 Spacer 7, 7 'Laser 8 Glass compacting body
Claims (25)
請求項15ないし21のいずれかに記載した封止材料ペーストをガラス製の前記透明基板の外周部に塗布する工程と、前記封止材料ペーストを乾燥後に焼成炉或いは400〜1100nmの波長範囲にあるレーザの照射で焼成し、封止材料を形成する工程と、前記ガラス製の透明基板の前記封止材料が形成された面と他のガラス製または樹脂製の前記透明基板とを対向させて2枚の前記透明基板を固定する工程と、400〜1100nmの波長範囲にあるレーザを前記透明基板越しに前記封止材料へ照射する工程と、前記低融点ガラスを軟化流動させる工程とを有することを特徴とする電子部品の製法。 In the manufacturing method of an electronic component having an organic member between two transparent substrates, and joining the outer peripheral portion of the two transparent substrates with a sealing material containing low-melting glass,
A step of applying the sealing material paste according to any one of claims 15 to 21 to an outer peripheral portion of the transparent substrate made of glass, and a drying furnace after drying the sealing material paste or in a wavelength range of 400 to 1100 nm The step of baking by laser irradiation to form a sealing material, the surface of the glass transparent substrate on which the sealing material is formed, and the other transparent substrate made of glass or resin are opposed to each other. A step of fixing the transparent substrate, a step of irradiating the sealing material with a laser having a wavelength range of 400 to 1100 nm through the transparent substrate, and a step of softening and flowing the low-melting glass. A manufacturing method for electronic parts.
請求項15ないし21のいずれかに記載した封止材料ペーストを樹脂製の透明基板の外周部に塗布する工程と、前記封止材料ペーストを乾燥後に400〜1100nmの波長範囲にあるレーザの照射で焼成し、封止材料を形成する工程と、前記樹脂製の透明基板の前記封止材料が形成された面と他のガラス製または樹脂製の前記透明基板とを対向させて2枚の前記透明基板を固定する工程と、400〜1100nmの波長範囲にあるレーザを前記透明基板越しに前記封止材料へ照射する工程と、前記低融点ガラスを軟化流動させる工程とを有することを特徴とする電子部品の製法。 In the manufacturing method of an electronic component having an organic member between two transparent substrates, and joining the outer peripheral portion of the two transparent substrates with a sealing material containing low-melting glass,
A step of applying the sealing material paste according to any one of claims 15 to 21 to an outer peripheral portion of a resin-made transparent substrate; and a laser irradiation in a wavelength range of 400 to 1100 nm after the sealing material paste is dried. The step of baking and forming the sealing material, the surface of the resin transparent substrate on which the sealing material is formed, and the other transparent substrate made of glass or resin are opposed to each other, and the two transparent An electron comprising: a step of fixing a substrate; a step of irradiating a laser having a wavelength range of 400 to 1100 nm to the sealing material through the transparent substrate; and a step of softening and flowing the low melting point glass. How to make parts.
請求項15ないし21のいずれかに記載した封止材料ペーストを棒状のガラススペーサの少なくとも接合面に塗布する工程と、前記封止材料ペーストを乾燥後に焼成炉或いは400〜1100nmの波長範囲にあるレーザの照射で焼成し、封止材料を形成する工程と、前記ガラススペーサをガラス製の前記透明基板と他のガラス製または樹脂製の前記透明基板との外周部の間に固定する工程と、400〜1100nmの波長範囲にあるレーザを前記透明基板越しに前記封止材料へ照射する工程と、前記低融点ガラスを軟化流動させる工程とを有することを特徴とする電子部品の製法。 In the manufacturing method of an electronic component having an organic member between two transparent substrates, and joining the outer peripheral portion of the two transparent substrates with a sealing material containing low-melting glass,
A step of applying the sealing material paste according to any one of claims 15 to 21 to at least a bonding surface of a rod-shaped glass spacer; and a laser having a wavelength in a wavelength range of 400 to 1100 nm after drying the sealing material paste Firing the material to form a sealing material, fixing the glass spacer between the transparent substrate made of glass and the other glass or resin transparent substrate, 400 A method for producing an electronic component, comprising: a step of irradiating the sealing material with a laser having a wavelength range of ˜1100 nm through the transparent substrate; and a step of softening and flowing the low melting point glass.
請求項15ないし21のいずれかに記載した封止材料ペーストを棒状の樹脂スペーサの少なくとも接合面に塗布する工程と、前記封止材料ペーストを乾燥後に400〜1100nmの波長範囲にあるレーザの照射で焼成し、封止材料を形成する工程と、前記樹脂スペーサを樹脂製の前記透明基板と他のガラス製または樹脂製の前記透明基板との外周部の間に固定する工程と、400〜1100nmの波長範囲にあるレーザを前記透明基板越しに前記封止材料へ照射する工程と、前記低融点ガラスを軟化流動させることを特徴とする電子部品の製法。 In the manufacturing method of an electronic component having an organic member between two transparent substrates, and joining the outer peripheral portion of the two transparent substrates with a sealing material containing low-melting glass,
A step of applying the sealing material paste according to any one of claims 15 to 21 to at least a joint surface of a rod-shaped resin spacer, and irradiation of a laser having a wavelength range of 400 to 1100 nm after the sealing material paste is dried. Baking, forming a sealing material, fixing the resin spacer between the transparent substrate made of resin and the other glass or resin transparent substrate, and 400-1100 nm A process for irradiating the sealing material with a laser in a wavelength range through the transparent substrate, and softening and flowing the low melting point glass.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012016047A JP2013157161A (en) | 2012-01-30 | 2012-01-30 | Electronic component, manufacturing method of the same and seal material paste used therefor |
CN201380005016.5A CN104081877A (en) | 2012-01-30 | 2013-01-25 | Electronic component, production method therefor, and sealing material paste used therein |
PCT/JP2013/051625 WO2013115101A1 (en) | 2012-01-30 | 2013-01-25 | Electronic component, production method therefor, and sealing material paste used therein |
TW102103488A TWI501934B (en) | 2012-01-30 | 2013-01-30 | Electronic parts and their manufacturing methods, as well as the use of its sealing material paste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012016047A JP2013157161A (en) | 2012-01-30 | 2012-01-30 | Electronic component, manufacturing method of the same and seal material paste used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013157161A true JP2013157161A (en) | 2013-08-15 |
JP2013157161A5 JP2013157161A5 (en) | 2014-01-09 |
Family
ID=48905141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012016047A Pending JP2013157161A (en) | 2012-01-30 | 2012-01-30 | Electronic component, manufacturing method of the same and seal material paste used therefor |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2013157161A (en) |
CN (1) | CN104081877A (en) |
TW (1) | TWI501934B (en) |
WO (1) | WO2013115101A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016534972A (en) * | 2013-08-27 | 2016-11-10 | コーニング インコーポレイテッド | Antimony-free glass, antimony-free frit, and glass package hermetically sealed with the frit |
JPWO2015087718A1 (en) * | 2013-12-11 | 2017-03-16 | 日立化成株式会社 | Insulating member, low melting point glass composition, and sealing material paste |
KR20170063924A (en) * | 2014-10-01 | 2017-06-08 | 페로 게엠베하 | 420 Tellurate joining glass having processing temperatures 420C |
JP2018507836A (en) * | 2015-01-28 | 2018-03-22 | コーニング インコーポレイテッド | Glass frit and glass assembly sealed with glass frit |
JP2019123637A (en) * | 2018-01-16 | 2019-07-25 | 日立化成株式会社 | Joint material |
JP2021048247A (en) * | 2019-09-18 | 2021-03-25 | 日本電気硝子株式会社 | Package base material, package, and manufacturing method of package base material |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015063445A (en) * | 2013-08-29 | 2015-04-09 | セントラル硝子株式会社 | Lead free glass and sealing material |
CN104150778B (en) * | 2014-08-11 | 2016-07-06 | 海南中航特玻材料有限公司 | A kind of leadless and low-melting point sealing glass |
JP5882507B1 (en) * | 2015-01-19 | 2016-03-09 | 株式会社フジクラ | Photoelectric conversion element |
DE102017216422B3 (en) * | 2017-09-15 | 2019-01-03 | Schott Ag | High-expansion bonded glass with improved water resistance and its applications |
CN108298822B (en) * | 2018-04-08 | 2020-08-04 | 武汉理工大学 | Low-melting-point glass powder for vacuum glass sealing and anodic bonding enhanced packaging method thereof |
JP6927154B2 (en) * | 2018-05-30 | 2021-08-25 | 昭和電工マテリアルズ株式会社 | Lead-free glass composition and glass composites containing it, glass pastes and encapsulation structures |
GB201915010D0 (en) * | 2019-10-17 | 2019-12-04 | Johnson Matthey Plc | Composition, paste and methods |
CN115305035B (en) * | 2021-05-08 | 2024-08-20 | 深圳市首骋新材料科技有限公司 | Glass cement for OLED sealing, encapsulation method of OLED element and OLED device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005251629A (en) * | 2004-03-05 | 2005-09-15 | Tohoku Pioneer Corp | Organic el panel and its manufacturing method |
JP2010052990A (en) * | 2008-08-28 | 2010-03-11 | Yamato Denshi Kk | Lead-free glass material for sealing and organic el display panel using the same |
WO2010067848A1 (en) * | 2008-12-12 | 2010-06-17 | 旭硝子株式会社 | Sealing glass, glass member having sealing material layer, and electronic device and method for producing the same |
JP2010184852A (en) * | 2009-01-16 | 2010-08-26 | Hitachi Powdered Metals Co Ltd | Low melting point glass composition, low-temperature sealing material using the same, and electronic component |
JP2012014971A (en) * | 2010-07-01 | 2012-01-19 | Asahi Glass Co Ltd | Electronic device and its manufacturing method |
WO2012011268A1 (en) * | 2010-07-23 | 2012-01-26 | パナソニック株式会社 | Display panel and production method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5066621A (en) * | 1990-06-21 | 1991-11-19 | Johnson Matthey Inc. | Sealing glass composition and electrically conductive formulation containing same |
KR100732816B1 (en) * | 2006-01-24 | 2007-06-27 | 삼성에스디아이 주식회사 | Organic light-emitting display and the preparing method of the same |
KR100787463B1 (en) * | 2007-01-05 | 2007-12-26 | 삼성에스디아이 주식회사 | A glass frit, a composition for preparing seal material and a light emitting device |
JP2008249839A (en) * | 2007-03-29 | 2008-10-16 | Fujifilm Corp | Organic el panel and manufacturing method therefor |
CN101265024A (en) * | 2008-04-08 | 2008-09-17 | 中国计量学院 | Low-melting point leadless borophosphate seal glass powder and preparation method thereof |
CN101633560B (en) * | 2008-07-23 | 2011-07-27 | 中国科学院过程工程研究所 | Lead-free low-melting-point glass and preparation method thereof |
CN101857371A (en) * | 2010-05-25 | 2010-10-13 | 中国科学院过程工程研究所 | Lead-free low-melting electronic display sealing glass and preparation method thereof |
-
2012
- 2012-01-30 JP JP2012016047A patent/JP2013157161A/en active Pending
-
2013
- 2013-01-25 WO PCT/JP2013/051625 patent/WO2013115101A1/en active Application Filing
- 2013-01-25 CN CN201380005016.5A patent/CN104081877A/en active Pending
- 2013-01-30 TW TW102103488A patent/TWI501934B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005251629A (en) * | 2004-03-05 | 2005-09-15 | Tohoku Pioneer Corp | Organic el panel and its manufacturing method |
JP2010052990A (en) * | 2008-08-28 | 2010-03-11 | Yamato Denshi Kk | Lead-free glass material for sealing and organic el display panel using the same |
WO2010067848A1 (en) * | 2008-12-12 | 2010-06-17 | 旭硝子株式会社 | Sealing glass, glass member having sealing material layer, and electronic device and method for producing the same |
JP2010184852A (en) * | 2009-01-16 | 2010-08-26 | Hitachi Powdered Metals Co Ltd | Low melting point glass composition, low-temperature sealing material using the same, and electronic component |
JP2012014971A (en) * | 2010-07-01 | 2012-01-19 | Asahi Glass Co Ltd | Electronic device and its manufacturing method |
WO2012011268A1 (en) * | 2010-07-23 | 2012-01-26 | パナソニック株式会社 | Display panel and production method thereof |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016534972A (en) * | 2013-08-27 | 2016-11-10 | コーニング インコーポレイテッド | Antimony-free glass, antimony-free frit, and glass package hermetically sealed with the frit |
JPWO2015087718A1 (en) * | 2013-12-11 | 2017-03-16 | 日立化成株式会社 | Insulating member, low melting point glass composition, and sealing material paste |
US10358379B2 (en) | 2013-12-11 | 2019-07-23 | Hitachi Chemical Company, Ltd. | Heat-insulating member, low-melting glass composition, and sealing material paste |
KR20170063924A (en) * | 2014-10-01 | 2017-06-08 | 페로 게엠베하 | 420 Tellurate joining glass having processing temperatures 420C |
KR102005286B1 (en) * | 2014-10-01 | 2019-07-30 | 페로 게엠베하 | Tellurate joining glass having processing temperatures ≤ 420 °C |
JP2018507836A (en) * | 2015-01-28 | 2018-03-22 | コーニング インコーポレイテッド | Glass frit and glass assembly sealed with glass frit |
JP2019123637A (en) * | 2018-01-16 | 2019-07-25 | 日立化成株式会社 | Joint material |
JP2021048247A (en) * | 2019-09-18 | 2021-03-25 | 日本電気硝子株式会社 | Package base material, package, and manufacturing method of package base material |
Also Published As
Publication number | Publication date |
---|---|
TWI501934B (en) | 2015-10-01 |
CN104081877A (en) | 2014-10-01 |
TW201343592A (en) | 2013-11-01 |
WO2013115101A1 (en) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5733279B2 (en) | Electronic component and manufacturing method thereof, and sealing material paste used therefor | |
JP2013157161A (en) | Electronic component, manufacturing method of the same and seal material paste used therefor | |
TWI542065B (en) | Electronic parts and their preparation method, sealing material paste, filler particles | |
JP6256480B2 (en) | Insulating member, low melting point glass composition, and sealing material paste | |
JP6927154B2 (en) | Lead-free glass composition and glass composites containing it, glass pastes and encapsulation structures | |
TW201116497A (en) | Glass member with sealing material layer, electronic device using same, and method for manufacturing the electronic device | |
TWI462829B (en) | Glass member having sealing material layer and method for manufacturing the same, and electronic device and manufacturing method thereof | |
TW201246527A (en) | Glass member with sealing material layer, electronic device using same and method for producing same | |
JP2011126722A (en) | Sealing material for sealing laser, glass member with sealing material layer and solar cell using the member and method for producing the solar cell | |
WO2012090695A1 (en) | Electronic device and method for manufacturing same | |
JP2012113968A (en) | Electric element package | |
JP5935120B2 (en) | Sealed container, electronic device and solar cell module | |
JP5994438B2 (en) | Method for producing glass substrate with sealing material layer | |
WO2014010553A1 (en) | Sealing material for dye-sensitized solar cells | |
JP6090703B2 (en) | Composite sealing material | |
JP6079011B2 (en) | Method for producing glass substrate with sealing material layer | |
TW201222847A (en) | Electronic device and method of manufacturing thereof | |
JP2012121110A (en) | Mems element package | |
JP2014037334A (en) | Lead-free glass for laser sealing and glass ceramic composition using the same | |
JP6156675B2 (en) | Manufacturing method of glass package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131025 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140826 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141111 |