[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013149425A - Halogen-free flame-retardant insulated wire - Google Patents

Halogen-free flame-retardant insulated wire Download PDF

Info

Publication number
JP2013149425A
JP2013149425A JP2012008068A JP2012008068A JP2013149425A JP 2013149425 A JP2013149425 A JP 2013149425A JP 2012008068 A JP2012008068 A JP 2012008068A JP 2012008068 A JP2012008068 A JP 2012008068A JP 2013149425 A JP2013149425 A JP 2013149425A
Authority
JP
Japan
Prior art keywords
mass
insulating layer
resin
parts
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012008068A
Other languages
Japanese (ja)
Other versions
JP2013149425A5 (en
Inventor
Kenji Hori
賢治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012008068A priority Critical patent/JP2013149425A/en
Priority to CN2013100207040A priority patent/CN103219076A/en
Publication of JP2013149425A publication Critical patent/JP2013149425A/en
Publication of JP2013149425A5 publication Critical patent/JP2013149425A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a halogen-free flame-retardant insulated wire capable of reducing leakage current at high voltage while satisfying the required characteristics of flame retardancy and heat resistance suitable for a railroad vehicle, and having sufficient insulation characteristics for a high voltage current even with a thin insulation layer, and useful for reduction of the environmental load.SOLUTION: A halogen-free flame-retardant insulated wire comprises a conductor, a first insulation layer covering the conductor, and a second insulation layer covering the first insulation layer. The conductor has a cross-sectional area of 0.5-5.5 mm. The first insulation layer comprises a resin composition containing 5-70 pts.mass of nitrogen-based flame retardants based on 100 pts.mass of resin component containing 20-50 pts.mass of polyester resin, 20-50 pts.mass of polyphenylene ether-based resin, and 30-60 pts.mass of styrene-based elastomer. Total thickness of the first and second insulation layers to the conductor diameter is 15-65%, and the thickness ratio of the first and second insulation layers is 4:1-5:2.

Description

本発明は、ハロゲンフリー難燃絶縁電線に関し、耐熱性、難燃性に優れ、絶縁層の厚さが比較的に薄く、車両用(特に鉄道車両)に好適に使用されるハロゲンフリー難燃絶縁電線に関する。   The present invention relates to a halogen-free flame-retardant insulated wire, which is excellent in heat resistance and flame retardancy, has a relatively thin insulating layer, and is suitably used for vehicles (especially railway vehicles). Regarding electric wires.

電車等のような車両に用いられる車両用電線は、600V、または、1500V等の高圧電力を供給する配線経路に使用される。従来の代表的な車両用電線では、スズメッキ軟銅可撓より線により形成される導体の周囲にセパレータを被覆し、その周囲に、所定の厚さの絶縁体を被覆している。車両用電線には、難燃性と、軽量化、省スペース化が求められている。   A vehicular electric wire used in a vehicle such as a train is used for a wiring path for supplying high-voltage power such as 600V or 1500V. In a conventional representative electric wire for a vehicle, a separator is covered around a conductor formed by a tin-plated annealed copper flexible strand, and an insulator having a predetermined thickness is covered around the conductor. Vehicle wires are required to have flame retardancy, light weight, and space saving.

車両用に限らず、難燃性が求められる絶縁電線として、特許文献1には、シングルサイト型メタロセン触媒で重合された超低密度ポリエチレン、ハロゲン系難燃剤、及び亜鉛華を含有する難燃性樹脂組成物を絶縁層として用いた絶縁電線が開示されている。この絶縁層に用いる難燃性樹脂組成物の誘電率は3.3未満と低く、絶縁層の厚みを薄くしても高電圧電流の漏れ電流を低減できる。   As an insulated wire that is required not only for vehicles but also for flame retardancy, Patent Document 1 discloses flame retardancy containing ultra-low density polyethylene polymerized with a single-site metallocene catalyst, a halogen flame retardant, and zinc white. An insulated wire using a resin composition as an insulating layer is disclosed. The flame retardant resin composition used for the insulating layer has a low dielectric constant of less than 3.3, and the leakage current of high voltage current can be reduced even if the thickness of the insulating layer is reduced.

一方、環境負荷の低減に対する要求に応えるために、ハロゲン元素を含まないハロゲンフリーの絶縁電線が求められている。絶縁電線にハロゲン元素が含まれると、使用後の絶縁電線を焼却処理する際に塩化水素等の有毒ガスが発生する可能性があるからである。   On the other hand, in order to meet the demand for reducing the environmental burden, a halogen-free insulated wire that does not contain a halogen element is required. This is because when the insulated wire contains a halogen element, a toxic gas such as hydrogen chloride may be generated when the insulated wire after use is incinerated.

一般に、ハロゲンフリー電線の被覆材料としては、ポリプロピレン等のポリオレフィン系樹脂に水酸化マグネシウムや水酸化アルミニウムなどの金属水酸化物を配合して難燃化した樹脂組成物が使用されている。例えば、特許文献2には、エチレン−酢酸ビニル共重合体(EVA)に、難燃剤として水酸化マグネシウムを配合した難燃性樹脂組成物を絶縁層として使用する絶縁電線が開示されている。しかし、難燃性評価の厳しい基準であるVW−1試験と称される垂直燃焼試験に合格させるためには、ポリオレフィン系樹脂中に多量の金属水酸化物を配合する必要がある。その結果、絶縁層の誘電率が高くなり、高電圧用途では漏れ電流が多くなる。また柔軟性が低下するという問題もある。   Generally, as a coating material for halogen-free electric wires, a resin composition that is flame-retardant by blending a polyolefin-based resin such as polypropylene with a metal hydroxide such as magnesium hydroxide or aluminum hydroxide is used. For example, Patent Document 2 discloses an insulated wire using a flame retardant resin composition in which magnesium hydroxide is blended as a flame retardant in an ethylene-vinyl acetate copolymer (EVA) as an insulating layer. However, in order to pass the vertical combustion test called the VW-1 test, which is a strict standard for flame retardancy evaluation, it is necessary to blend a large amount of metal hydroxide in the polyolefin resin. As a result, the dielectric constant of the insulating layer increases, and the leakage current increases in high voltage applications. There is also the problem of reduced flexibility.

車両用絶縁電線の軽量化、省スペース化のため、電線の絶縁層の肉厚を薄くする要求が高まってきた。しかしながら、絶縁層の肉厚を例えば0.4mm以下と薄くし、かつ、金属水和物を配合すると、絶縁電線のカットスルー抵抗が大幅に低下するという問題がある。特許文献3には、カットスルー抵抗に優れ、かつ燃焼時に有毒な腐食性ガスを発生しない、薄肉難燃絶縁電線が開示されている。   In order to reduce the weight of an insulated wire for vehicles and save space, there has been an increasing demand for reducing the thickness of the insulating layer of the wire. However, when the thickness of the insulating layer is reduced to, for example, 0.4 mm or less and a metal hydrate is blended, there is a problem that the cut-through resistance of the insulated wire is significantly reduced. Patent Document 3 discloses a thin-walled flame-retardant insulated wire that has excellent cut-through resistance and does not generate toxic corrosive gas during combustion.

特許第3279206号公報Japanese Patent No. 3279206 特開2000−219814号公報JP 2000-211981 特開平11−219626号公報JP-A-11-219626

上記のように、ノンハロゲン難燃剤として金属水酸化物を用いた難燃性樹脂組成物では、難燃性を満たすために金属水酸化物の配合量を増やすと誘電率が高くなり漏れ電流が多くなる。一方、誘電率を下げるために金属水酸化物の配合量を減らすと、難燃性を満たすことができない。
また、特許文献3に開示の薄肉難燃絶縁電線は、難燃性については、60℃傾斜難燃試験での評価では不十分であり、また、鉄道車両用に求められる、耐熱性についての評価が示されていない。
これらの事情に鑑み、本発明は、高電圧での漏れ電流を低減できると共に鉄道車両に適した難燃性および耐熱性の要求特性を満たし、薄い絶縁層であっても高圧電流に対して十分な絶縁特性を有し、かつ環境負荷の低減に役立つハロゲンフリー難燃絶縁電線を提供することを課題とする。
As described above, in a flame retardant resin composition using a metal hydroxide as a non-halogen flame retardant, increasing the compounding amount of the metal hydroxide to satisfy the flame retardancy increases the dielectric constant and increases the leakage current. Become. On the other hand, if the compounding amount of the metal hydroxide is reduced in order to lower the dielectric constant, the flame retardancy cannot be satisfied.
Moreover, the thin-walled flame-retardant insulated wire disclosed in Patent Document 3 is not sufficient in terms of flame retardancy in the evaluation at the 60 ° C. incline flame retardancy test, and is also evaluated for heat resistance required for railway vehicles. Is not shown.
In view of these circumstances, the present invention can reduce the leakage current at a high voltage and satisfy the required characteristics of flame retardancy and heat resistance suitable for railway vehicles. It is an object of the present invention to provide a halogen-free flame-retardant insulated wire that has excellent insulation characteristics and is useful for reducing environmental burden.

本発明者らは、鋭意検討の結果、上記課題が下記の手段により解決されることを見出した。
(1)導体、該導体を被覆する第1絶縁層、及び該第1絶縁層を被覆する第2絶縁層を有するハロゲンフリー難燃絶縁電線であって、
前記導体の断面積が0.5〜5.5mmであり、
前記第1絶縁層が、ポリエステル樹脂20〜50質量部、ポリフェニレンエーテル系樹脂20〜50質量部、及び、スチレン系エラストマー30〜60質量部を含有する樹脂成分100質量部に対して窒素系難燃剤を5〜70質量部含有する樹脂組成物からなり、
前記導体直径に対する前記第1絶縁層と前記第2絶縁層との総厚が15〜65%であり、
前記第1絶縁層と前記第2絶縁層の厚さの比が4:1〜5:2であることを特徴とする、ハロゲンフリー難燃絶縁電線。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means.
(1) A halogen-free flame-retardant insulated electric wire having a conductor, a first insulating layer covering the conductor, and a second insulating layer covering the first insulating layer,
The conductor has a cross-sectional area of 0.5 to 5.5 mm 2 ;
A nitrogen-based flame retardant with respect to 100 parts by mass of a resin component in which the first insulating layer contains 20 to 50 parts by mass of a polyester resin, 20 to 50 parts by mass of a polyphenylene ether resin, and 30 to 60 parts by mass of a styrene elastomer. A resin composition containing 5 to 70 parts by mass of
The total thickness of the first insulating layer and the second insulating layer with respect to the conductor diameter is 15 to 65%;
A halogen-free flame-retardant insulated wire, wherein the thickness ratio of the first insulating layer to the second insulating layer is 4: 1 to 5: 2.

(2)前記第1絶縁層を構成する樹脂組成物の樹脂成分が、ポリブチレンテレフタレート20〜30質量部、変性ポリフェニレンエーテル20〜30質量部、及び、スチレンエチレンブチレンスチレン共重合体45〜55質量部の比率で含有することを特徴とする、前記(1)記載のハロゲンフリー難燃絶縁電線。 (2) The resin component of the resin composition constituting the first insulating layer is a polybutylene terephthalate 20 to 30 parts by mass, a modified polyphenylene ether 20 to 30 parts by mass, and a styrene ethylene butylene styrene copolymer 45 to 55 parts by mass. The halogen-free flame-retardant insulated electric wire according to (1), which is contained in a ratio of parts.

本発明によれば、高電圧での漏れ電流を低減できると共に難燃性および耐熱性の要求特性を満たし、薄い絶縁層であっても高圧電流に対して十分な絶縁特性を有し、かつ環境負荷の低減に役立つハロゲンフリー難燃絶縁電線を提供することができる。   According to the present invention, the leakage current at high voltage can be reduced, the required characteristics of flame retardancy and heat resistance can be satisfied, and even a thin insulating layer has sufficient insulation characteristics against high voltage current, and the environment It is possible to provide a halogen-free flame-retardant insulated wire that is useful for reducing the load.

以下、本発明を詳細に説明する。
本発明のハロゲンフリー難燃絶縁電線(以下単に、「絶縁電線」とも称する)は導体断面積が0.5mm〜5.5mmのサイズの電線である。機器内、機器間の信号伝送、給電等に使用される。その第1絶縁層を構成する樹脂組成物(以下単に、「第1の樹脂組成物」とも称する)は、ポリエステル樹脂20〜50質量部、ポリフェニレンエーテル系樹脂20〜50質量部、及び、スチレン系エラストマー30〜60質量部を含有する樹脂成分100質量部に対して窒素系難燃剤を5〜70質量部含有する。
第1の樹脂組成物は、上記の組成により、その誘電率を3.2以下とすることができる。3.2以下の低誘電率材料である上記第1の樹脂組成物を、導体に接する第1絶縁層(内層)部分に用いることにより、漏れ電流を効果的に低減することができる。
また第1の樹脂組成物は、ポリフェニレンエーテル(PPE)系樹脂と窒素系難燃剤、ポリエステル樹脂の相乗効果によってある程度の難燃性も付与される。
Hereinafter, the present invention will be described in detail.
Halogen-free flame燃絶edge wire (hereinafter simply referred to as "insulated wire") of the present invention the conductor cross-sectional area is wire size of 0.5mm 2 ~5.5mm 2. Used for signal transmission, power supply, etc. within and between devices. The resin composition constituting the first insulating layer (hereinafter also simply referred to as “first resin composition”) is 20 to 50 parts by mass of a polyester resin, 20 to 50 parts by mass of a polyphenylene ether-based resin, and a styrene-based resin. The nitrogen-based flame retardant is contained in an amount of 5 to 70 parts by mass with respect to 100 parts by mass of the resin component containing 30 to 60 parts by mass of the elastomer.
The first resin composition can have a dielectric constant of 3.2 or less by the above composition. By using the first resin composition, which is a low dielectric constant material of 3.2 or less, for the first insulating layer (inner layer) portion in contact with the conductor, the leakage current can be effectively reduced.
In addition, the first resin composition also has a certain degree of flame retardancy due to the synergistic effect of the polyphenylene ether (PPE) resin, the nitrogen flame retardant, and the polyester resin.

ポリフェニレンエーテル系樹脂とスチレン系エラストマーを含有する樹脂組成物は、常温において弾性率が高く硬いポリフェニレンエーテル系樹脂を島に、伸びが大きく柔らかいスチレン系エラストマーを海とする海島構造を持つポリマーアロイであると推定される。ここにポリエステル樹脂を更に添加すると3成分のポリマーアロイとなる。ポリエステル樹脂は結晶性樹脂であり、ガラス転移温度以上の温度であっても適度な弾性率を保ち、柔軟性、伸張性を保持することができる。また、スチレン系エラストマーとの相溶性が比較的高く、スチレン系エラストマー中に均一に分散させることができれば全体として引張強さや引張強度が発現する。このような樹脂成分に窒素系難燃剤を含有させることで、柔軟性を発現できると共に誘電率が低く、かつある程度の難燃性を持たせることができる。   A resin composition containing a polyphenylene ether resin and a styrene elastomer is a polymer alloy having a sea-island structure in which a hard polyphenylene ether resin having a high elastic modulus at normal temperature is used as an island and a styrene elastomer having a large elongation is used as a sea. It is estimated to be. If a polyester resin is further added thereto, a three-component polymer alloy is obtained. The polyester resin is a crystalline resin, and can maintain an appropriate elastic modulus and maintain flexibility and extensibility even at a temperature higher than the glass transition temperature. Moreover, if the compatibility with a styrene-type elastomer is comparatively high and it can disperse | distribute uniformly in a styrene-type elastomer, tensile strength and tensile strength will be expressed as a whole. By including a nitrogen-based flame retardant in such a resin component, flexibility can be exhibited, the dielectric constant is low, and a certain degree of flame retardancy can be imparted.

第1の樹脂組成物に用いるポリエステル樹脂としては、PET(ポリエチレンテレフタレート)樹脂やPBT(ポリブチレンテレフタレート)樹脂等が挙げられる。特にPBT樹脂は融点がポリフェニレンエーテルのガラス転移温度に近く、押出加工性が良い。また難燃性にも優れている。   Examples of the polyester resin used in the first resin composition include PET (polyethylene terephthalate) resin and PBT (polybutylene terephthalate) resin. In particular, PBT resin has a melting point close to the glass transition temperature of polyphenylene ether and has good extrudability. It also has excellent flame retardancy.

第1の樹脂組成物に用いるポリフェニレンエーテル系樹脂について説明する。
ポリフェニレンエーテルは、メタノールとフェノールを原料として合成される2,6−キシレノールを酸化重合させて得られるエンジニアリングプラスチックである。またポリフェニレンエーテルの成形加工性を向上させるため、ポリフェニレンエーテルにポリスチレンを溶融ブレンドした材料が変性ポリフェニレンエーテル樹脂として各種市販されている。本発明に用いるポリフェニレンエーテル系樹脂としては、上記のポリフェニレンエーテル樹脂単体、及びポリスチレンを溶融ブレンドした変性ポリフェニレンエーテル樹脂のいずれも使用することができるが、変性ポリフェニレンエーテル樹脂が好ましい。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。
The polyphenylene ether resin used for the first resin composition will be described.
Polyphenylene ether is an engineering plastic obtained by oxidative polymerization of 2,6-xylenol synthesized using methanol and phenol as raw materials. In order to improve the moldability of polyphenylene ether, various materials are commercially available as modified polyphenylene ether resins in which polystyrene is blended with polyphenylene ether. As the polyphenylene ether resin used in the present invention, any of the above-mentioned polyphenylene ether resin alone and a modified polyphenylene ether resin obtained by melt blending polystyrene can be used, but a modified polyphenylene ether resin is preferred. Moreover, what introduce | transduced carboxylic acid, such as maleic anhydride, can also be blended suitably and used.

このようなポリフェニレンエーテル系樹脂においては、ポリスチレンのブレンド比率に応じて加重たわみ温度が変化するが、荷重たわみ温度が95℃以上のものを使用すると電線被膜の引張特性が向上し、機械強度の大きい絶縁層が得られ、また熱変形特性が優れるため好ましい。なお荷重たわみ温度はISO75−1、2の方法により、荷重1.80MPaで測定した値とする。   In such a polyphenylene ether resin, the deflection temperature under load changes depending on the blend ratio of polystyrene. However, when a resin with a deflection temperature under load of 95 ° C. or higher is used, the tensile properties of the wire coating are improved and the mechanical strength is high. An insulating layer is obtained, and it is preferable because it has excellent thermal deformation characteristics. The deflection temperature under load is a value measured at a load of 1.80 MPa by the method of ISO75-1,2.

ポリフェニレンエーテル系樹脂としてポリスチレンをブレンドしていないポリフェニレンエーテル樹脂も使用できる。この場合、低粘度のポリフェニレンエーテル樹脂を使用すると、機械的強度を保持しつつ押出加工時の樹脂圧を低減することができる。ポリフェニレンエーテル系樹脂の固有粘度としては0.1〜0.6dl/gが好ましく、更に好ましい範囲は0.3〜0.5dl/gである。   A polyphenylene ether resin not blended with polystyrene can also be used as the polyphenylene ether resin. In this case, if a low-viscosity polyphenylene ether resin is used, the resin pressure during extrusion can be reduced while maintaining the mechanical strength. The intrinsic viscosity of the polyphenylene ether resin is preferably 0.1 to 0.6 dl / g, and more preferably 0.3 to 0.5 dl / g.

第1の樹脂組成物に使用するスチレン系エラストマーとしては、スチレン・エチレン・ブチレン・スチレン(SEBS)共重合体、スチレン・エチレンプロピレン・スチレン共重合体、スチレン・エチレン・エチレンプロピレン・スチレン共重合体、スチレン・ブチレン・スチレン共重合体等が挙げられ、これらの水素添加ポリマーや部分水素添加ポリマーを例示できる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。その中でも、スチレンエチレンブチレンスチレン共重合体が好ましい。   Styrene elastomers used in the first resin composition include styrene / ethylene / butylene / styrene (SEBS) copolymers, styrene / ethylene propylene / styrene copolymers, and styrene / ethylene / ethylene propylene / styrene copolymers. , Styrene / butylene / styrene copolymers, etc., and examples thereof include hydrogenated polymers and partially hydrogenated polymers. Moreover, what introduce | transduced carboxylic acid, such as maleic anhydride, can also be blended suitably and used. Among these, styrene ethylene butylene styrene copolymer is preferable.

また、スチレンとゴム成分のブロック共重合エラストマーを使用すると、押出加工性が向上することに加え、引張破断伸びが向上し、また耐衝撃性が向上するなどの点で好ましい。またブロック共重合体として、水素化スチレン・ブチレン・スチレンブロック共重合体やスチレン・イソブチレン・スチレン系共重合体等のトリブロック型共重合体、及びスチレン・エチレン共重合体、スチレン・エチレンプロピレン等のジブロック型共重合体を使用することができ、スチレン系エラストマー中トリブロック成分が50質量%以上含まれていると、電線被膜の強度及び硬度が向上するため好ましい。   Use of a block copolymer elastomer of styrene and a rubber component is preferable from the viewpoints of improving extrudability, improving tensile elongation at break, and improving impact resistance. Block copolymers include hydrogenated styrene / butylene / styrene block copolymers, triblock copolymers such as styrene / isobutylene / styrene copolymers, styrene / ethylene copolymers, styrene / ethylene propylene, etc. It is preferable that the triblock component in the styrene elastomer is contained in an amount of 50% by mass or more because the strength and hardness of the electric wire coating is improved.

またスチレン系エラストマー中に含まれるスチレン含有量が20質量%以上のものが機械特性、難燃性の点から好適に使用できる。
更に、分子量の指標となるメルトフローレート(「MFR」と略記;JIS K 7210に従って、230℃×2.16kgfで測定)が0.8〜15g/10minの範囲であることが好ましい。メルトフローレートが0.8g/10min以上であれば押出加工性が向上し、また15g/10min以下であれば機械強度が向上するため好ましい。
Also, those having a styrene content of 20% by mass or more contained in the styrene elastomer can be suitably used from the viewpoint of mechanical properties and flame retardancy.
Further, the melt flow rate (abbreviated as “MFR”; measured at 230 ° C. × 2.16 kgf in accordance with JIS K 7210) serving as an index of molecular weight is preferably in the range of 0.8 to 15 g / 10 min. If the melt flow rate is 0.8 g / 10 min or more, the extrusion processability is improved, and if it is 15 g / 10 min or less, the mechanical strength is improved.

さらに、スチレン系エラストマーの一部として、官能基を持つスチレン系エラストマーを含有することが好ましい。官能基を持つスチレン系エラストマーは相溶化剤として働き、ポリエステル樹脂とスチレン系エラストマーとが良好に混合し、密着力、高温特性、引張伸び特性を向上することができる。官能基としてはエポキシ基、オキサゾリン基、酸無水物基、カルボキシル基等が例示され、樹脂の種類に合わせて適宜選択できる。官能基を持つスチレン系エラストマーの含有量は樹脂成分100質量部に対して1〜20質量部が好ましく、さらに好ましい範囲は1〜10重量部である。   Furthermore, it is preferable to contain a styrene elastomer having a functional group as a part of the styrene elastomer. The styrenic elastomer having a functional group acts as a compatibilizing agent, and the polyester resin and the styrenic elastomer can be mixed well to improve adhesion, high temperature characteristics, and tensile elongation characteristics. Examples of the functional group include an epoxy group, an oxazoline group, an acid anhydride group, and a carboxyl group, which can be appropriately selected according to the type of resin. The content of the styrenic elastomer having a functional group is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin component, and more preferably 1 to 10 parts by weight.

第1の樹脂組成物の樹脂成分は、上記ポリエステル樹脂を20〜50質量部、ポリフェニレンエーテル系樹脂を20〜50質量部、スチレン系エラストマーを30〜60質量部含有する。ポリフェニレンエーテル系樹脂の含有量が50質量部を超えると押出加工性が低下し、また20重量部より少ないと機械的強度や難燃性が低下する。同様に、ポリエステル樹脂の含有量が50質量部を超えると押出加工性が低下し、20質量部より少ないと機械的強度や難燃性が低下する。ポリエステル樹脂のさらに好ましい含有量は、25質量部〜40質量部である。
第1の樹脂組成物の樹脂成分は、ポリブチレンテレフタレート20〜30質量部、変性ポリフェニレンエーテル20〜30質量部、及び、スチレンエチレンブチレンスチレン共重合体45〜55質量部の比率で含有することが好ましい。
The resin component of the first resin composition contains 20 to 50 parts by mass of the polyester resin, 20 to 50 parts by mass of a polyphenylene ether resin, and 30 to 60 parts by mass of a styrene elastomer. When the content of the polyphenylene ether-based resin exceeds 50 parts by mass, the extrudability decreases, and when the content is less than 20 parts by weight, the mechanical strength and flame retardancy are decreased. Similarly, when the content of the polyester resin exceeds 50 parts by mass, the extrudability is lowered, and when it is less than 20 parts by mass, the mechanical strength and flame retardancy are lowered. The more preferable content of the polyester resin is 25 to 40 parts by mass.
The resin component of the first resin composition may be contained in a proportion of 20 to 30 parts by mass of polybutylene terephthalate, 20 to 30 parts by mass of modified polyphenylene ether, and 45 to 55 parts by mass of a styrene ethylene butylene styrene copolymer. preferable.

さらに上記樹脂成分としては、本発明の趣旨を損なわない範囲で各種樹脂を混合することが可能である。   Furthermore, as said resin component, it is possible to mix various resin in the range which does not impair the meaning of this invention.

第1の樹脂組成物に使用する窒素系難燃剤としては、メラミン樹脂、メラミンシアヌレート等を例示できる。窒素系難燃剤は使用後に焼却処理してもハロゲン化水素等の有毒ガスが発生せず、環境負荷の低減を図ることができる。窒素系難燃剤としてメラミンシアヌレートを使用すると混合時の熱安定性や難燃性向上効果の面で好ましい。メラミンシアヌレートは、シランカップリング剤やチタネート系カップリング剤で表面処理して使用することも可能である。   Examples of the nitrogen-based flame retardant used in the first resin composition include melamine resin and melamine cyanurate. Nitrogen-based flame retardants do not generate toxic gases such as hydrogen halides even when incinerated after use, and can reduce the environmental burden. When melamine cyanurate is used as a nitrogen-based flame retardant, it is preferable in terms of heat stability at the time of mixing and a flame retardant improvement effect. Melamine cyanurate can also be used after surface treatment with a silane coupling agent or a titanate coupling agent.

前記窒素系難燃剤の含有量は、第1の樹脂組成物の樹脂成分100質量部に対して5〜70質量部である。5質量部を下回ると絶縁電線の難燃性が不充分であり、また70質量部を超えると伸びや押出加工性が低下するからである。窒素系難燃剤の含有量は10〜40質量部がさらに好ましい。   Content of the said nitrogen-type flame retardant is 5-70 mass parts with respect to 100 mass parts of resin components of a 1st resin composition. This is because if the amount is less than 5 parts by mass, the flame resistance of the insulated wire is insufficient, and if it exceeds 70 parts by mass, the elongation and extrusion processability are deteriorated. As for content of a nitrogen-type flame retardant, 10-40 mass parts is further more preferable.

さらに、第1の樹脂組成物には架橋助剤を含有することができる。架橋助剤を含有することで樹脂の可塑化効果が得られ、押出加工性が向上する。また電離放射線の照射時の架橋効率が高まる。架橋助剤としてはトリメチロールプロパントリメタクリレートやトリアリルシアヌレート、トリアリルイソシアヌレート等の分子内に複数の炭素−炭素二重結合を持つ多官能性モノマーが好ましく使用できる。また架橋助剤は常温で液体であることが好ましい。液体であるとポリフェニレンエーテル系樹脂やスチレン系エラストマーとの混合がしやすいからである。特に架橋助剤としてトリメチロールプロパントリメタクリレートは、樹脂との相溶性が良好であり、容易に混合できる点で好ましい。トリメチロールプロパントリメタクリレートは、樹脂成分100質量部に対して0.1〜10質量部含有することが好ましい。
また難燃性を向上するために、リン系難燃剤を添加しても良い。リン系難燃剤としてはリン酸エステルが例示される。
Furthermore, the first resin composition can contain a crosslinking aid. By containing a crosslinking aid, a plasticizing effect of the resin is obtained, and the extrusion processability is improved. Moreover, the crosslinking efficiency at the time of irradiation of ionizing radiation increases. As the crosslinking aid, a polyfunctional monomer having a plurality of carbon-carbon double bonds in the molecule such as trimethylolpropane trimethacrylate, triallyl cyanurate, triallyl isocyanurate and the like can be preferably used. Moreover, it is preferable that a crosslinking adjuvant is a liquid at normal temperature. This is because when it is a liquid, it can be easily mixed with a polyphenylene ether resin or a styrene elastomer. In particular, trimethylolpropane trimethacrylate as a crosslinking aid is preferable because it has good compatibility with the resin and can be easily mixed. It is preferable to contain 0.1-10 mass parts of trimethylolpropane trimethacrylate with respect to 100 mass parts of resin components.
In order to improve flame retardancy, a phosphorus-based flame retardant may be added. Examples of the phosphorus-based flame retardant include phosphate esters.

本発明の絶縁電線は、前記第1絶縁層を被覆する第2絶縁層を有する。
第2絶縁層を構成する樹脂組成物(以下単に、「第2の樹脂組成物」とも称する)は、ハロゲン系難燃剤等を含まない、いわゆるハロゲン元素を含まず、前記第1絶縁層の機能を低下させないものであれば、特に限定されず、目的、用途に応じて適宜選択されてもよい。
The insulated wire of the present invention has a second insulating layer that covers the first insulating layer.
The resin composition constituting the second insulating layer (hereinafter also simply referred to as “second resin composition”) does not contain a halogen-based flame retardant or the like, does not contain a so-called halogen element, and functions of the first insulating layer. As long as it does not decrease the thickness, it is not particularly limited and may be appropriately selected according to the purpose and application.

その中でも1例として、外側の第2絶縁層には、難燃性を重視して、難燃効果の高い金属水酸化物を一定の割合で含有する樹脂組成物を用いる形態が挙げられる、この形態について、以下に説明する。   Among them, as an example, the outer second insulating layer may include a form using a resin composition containing a certain proportion of a metal hydroxide having a high flame retardant effect with an emphasis on flame retardancy. The form will be described below.

上記の難燃性を重視した第2絶縁層の場合、第2の樹脂組成物の誘電率は高くなるが、前述の通り、内層である第1絶縁層の誘電率を低くしていることで、絶縁電線自体の漏れ電流は低減できる。このような構成とすることで、高電圧での漏れ電流の低減と難燃性を両立できる。   In the case of the second insulating layer focusing on the above flame retardancy, the dielectric constant of the second resin composition is increased, but as described above, the dielectric constant of the first insulating layer as the inner layer is lowered. The leakage current of the insulated wire itself can be reduced. By adopting such a configuration, it is possible to achieve both reduction in leakage current at high voltage and flame retardancy.

上記の場合、第2の樹脂組成物に使用する樹脂成分としては、上記の第1の樹脂組成物に用いる樹脂の他、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、及び、エチレン酢酸ビニル共重合体、エチレンメチルアクリレート共重合体、エチレンエチルアクリレート共重合体、エチレンメリルメタクリレート共重合体等のエチレンαオレフィン共重合体等、任意の樹脂を使用することができる。特にエチレン酢酸ビニル共重合体は、樹脂組成物とした場合の押出性と柔軟性の観点から好ましく使用できる。   In the above case, as the resin component used in the second resin composition, in addition to the resin used in the first resin composition, polyolefin resins such as polyethylene and polypropylene, ethylene vinyl acetate copolymer, ethylene Any resin such as an ethylene α-olefin copolymer such as a methyl acrylate copolymer, an ethylene ethyl acrylate copolymer, and an ethylene meryl methacrylate copolymer can be used. In particular, an ethylene vinyl acetate copolymer can be preferably used from the viewpoints of extrudability and flexibility when a resin composition is used.

難燃剤として使用する金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等を例示できる。この中でも押出加工性の観点から、粒子径が0.1〜3μmの範囲にある水酸化マグネシウムが好ましい。   Examples of the metal hydroxide used as the flame retardant include aluminum hydroxide, magnesium hydroxide, calcium hydroxide and the like. Among these, from the viewpoint of extrusion processability, magnesium hydroxide having a particle size in the range of 0.1 to 3 μm is preferable.

金属水酸化物の含有量は、特に限定されないが、樹脂成分100質量部に対して150〜250質量部の範囲が好ましい。150質量部以上であれば絶縁電線の難燃性がより向上し、また250質量部以下であれば伸びや押出加工性がより向上する。さらに好ましい範囲は150質量部〜200質量部である。   Although content of a metal hydroxide is not specifically limited, The range of 150-250 mass parts is preferable with respect to 100 mass parts of resin components. If it is 150 mass parts or more, the flame retardance of an insulated wire will improve more, and if it is 250 mass parts or less, elongation and extrusion processability will improve more. A more preferable range is 150 to 200 parts by mass.

本発明において、第1の樹脂組成物及び第2の樹脂組成物には、必要に応じて酸化防止剤、老化防止剤、滑剤、加工安定剤、着色剤、重金属不活性化材、発泡剤、多官能性モノマー等を適宜混合することができる。これらの材料を短軸押出型混合機、加圧ニーダー、バンバリーミキサー等の既知の溶融混合機を用いて混合して樹脂組成物を作製する。   In the present invention, the first resin composition and the second resin composition include an antioxidant, an anti-aging agent, a lubricant, a processing stabilizer, a colorant, a heavy metal inactivating material, a foaming agent, if necessary. A polyfunctional monomer or the like can be appropriately mixed. These materials are mixed using a known melt mixer such as a short-shaft extrusion mixer, a pressure kneader, or a Banbury mixer to produce a resin composition.

本発明の絶縁電線は、上記第1の樹脂組成物からなる第1絶縁層を導体に被覆し、上記第2の樹脂組成物からなる第2絶縁層を該第1絶縁層に被覆したものである。第1絶縁層及び第2絶縁層を形成するには、既知の押出成形機を用いることができる。製造工程を簡略化するためには、第1絶縁層と第2絶縁層を同時に押出被覆することが好ましい。   The insulated wire of the present invention is obtained by coating a conductor with the first insulating layer made of the first resin composition, and coating the first insulating layer with the second insulating layer made of the second resin composition. is there. A known extruder can be used to form the first insulating layer and the second insulating layer. In order to simplify the manufacturing process, it is preferable that the first insulating layer and the second insulating layer are simultaneously coated by extrusion.

更に第1絶縁層及び第2絶縁層が電離放射線の照射により架橋されていると、耐熱性や機械的強度が向上する点で好ましい。電離放射線源としては、加速電子線やガンマ線、X線、α線、紫外線等が例示できるが、線源利用の簡便さや電離放射線の透過厚み、架橋処理の速度など工業的利用の観点から加速電子線が最も好ましく利用できる。   Furthermore, it is preferable that the first insulating layer and the second insulating layer are crosslinked by irradiation with ionizing radiation from the viewpoint of improving heat resistance and mechanical strength. Examples of ionizing radiation sources include accelerating electron beams, gamma rays, X-rays, α rays, ultraviolet rays, and the like. Lines are most preferably available.

本発明の絶縁電線において、第1絶縁層及び第2絶縁層の厚みは、後述する導体直径に対して、第1絶縁層と前記第2絶縁層との総厚が15〜65%となる範囲である。導体径に対する絶縁層の厚さの比は、導体径の値により異なる。導体断面積が0.5mm(導体径約0.8mm)の場合は、導体径に対する絶縁層の総厚の比が65%程度となり、導体断面積が5.5mm(導体径約2.8mm)の場合は、導体径に対する絶縁層の総厚の比が15%程度となる。第1絶縁層と前記第2絶縁層との総厚が導体直径に対して小さ過ぎると高電圧での漏れ電流を十分に低減することができず、また十分に難燃性および耐熱性が得られない。また、第1絶縁層と前記第2絶縁層との総厚が導体直径に対して大き過ぎると、柔軟性が悪くなり、また、軽量化、省スペース化を目的とした絶縁層の薄層化のために、本発明の第1絶縁層に前期第1の樹脂組成物を使用するという、本発明の技術内容が無意味になる。 In the insulated wire of the present invention, the thicknesses of the first insulating layer and the second insulating layer are such that the total thickness of the first insulating layer and the second insulating layer is 15 to 65% with respect to the conductor diameter described later. It is. The ratio of the thickness of the insulating layer to the conductor diameter varies depending on the value of the conductor diameter. When the conductor cross-sectional area is 0.5 mm 2 (conductor diameter of about 0.8 mm), the ratio of the total thickness of the insulating layer to the conductor diameter is about 65%, and the conductor cross-sectional area is 5.5 mm 2 (conductor diameter of about 2. mm). In the case of 8 mm), the ratio of the total thickness of the insulating layer to the conductor diameter is about 15%. If the total thickness of the first insulating layer and the second insulating layer is too small with respect to the conductor diameter, the leakage current at a high voltage cannot be sufficiently reduced, and sufficient flame retardancy and heat resistance can be obtained. I can't. In addition, if the total thickness of the first insulating layer and the second insulating layer is too large with respect to the conductor diameter, the flexibility is deteriorated, and the insulating layer is thinned for the purpose of weight reduction and space saving. Therefore, the technical content of the present invention that the first resin composition is used for the first insulating layer of the present invention becomes meaningless.

また本発明の絶縁電線において、第1絶縁層と第2絶縁層の厚さの比が4:1〜5:2である。第1絶縁層の厚さがこの比よりも小さくなれば、高電圧での漏れ電流を十分に低減することができない。また第1絶縁層の厚さがこの比よりも大きくなっても、これに伴う本発明の効果の向上が得られない。   Moreover, the insulated wire of this invention WHEREIN: The ratio of the thickness of a 1st insulating layer and a 2nd insulating layer is 4: 1-5: 2. If the thickness of the first insulating layer is smaller than this ratio, the leakage current at a high voltage cannot be sufficiently reduced. Further, even if the thickness of the first insulating layer is larger than this ratio, the effect of the present invention accompanying this cannot be obtained.

本発明の絶縁電線において使用する導体としては、導電性に優れ、断面積が、鉄道車両用規格に相当する0.5〜5.5mmのものであれば、特に限定されず、一般的な銅線、アルミニウム線などが使用できる。 The conductor used in the insulated wire of the present invention is not particularly limited as long as it has excellent conductivity and a cross-sectional area of 0.5 to 5.5 mm 2 corresponding to the standard for railway vehicles. Copper wire, aluminum wire, etc. can be used.

また、本発明の絶縁電線は、鉄道車両用に好適に使用することができる。鉄道車両用に好適に使用できる電線とは、鉄道車両に適した難燃性と耐熱性を有するものである。鉄道車両に適した難燃性とは、社団法人日本鉄道車両機械技術協会の鉄道車両用材料燃焼試験に合格し得る水準を意味する。また、150℃での加速老化試験に合格することが要求される。   Moreover, the insulated wire of this invention can be used conveniently for railway vehicles. The electric wire that can be suitably used for a railway vehicle has flame retardancy and heat resistance suitable for the railway vehicle. The flame retardancy suitable for a railway vehicle means a level that can pass the material combustion test for railway vehicles of the Japan Railway Vehicle Machinery Association. It is also required to pass an accelerated aging test at 150 ° C.

次に発明を実施するための最良の形態を実施例により説明する。実施例は本発明の範囲を限定するものではない。
〔実施例1〕
(樹脂組成物1の作製)
二軸混合機(26mmφ、L/D=48)を使用し、シリンダー温度230℃、スクリュー回転数200〜400rpmで溶融混合し、ストランド状に溶融押出し、次いで、溶融ストランドを冷却切断してペレットを作製した。配合例を表1に示す。
Next, the best mode for carrying out the invention will be described by way of examples. The examples are not intended to limit the scope of the invention.
[Example 1]
(Preparation of resin composition 1)
Using a twin-screw mixer (26 mmφ, L / D = 48), melt-mixed at a cylinder temperature of 230 ° C. and a screw rotation speed of 200 to 400 rpm, melt-extruded into a strand, and then cooled and cut the molten strand to produce pellets. Produced. A blending example is shown in Table 1.

Figure 2013149425
Figure 2013149425

上記表1中、数値は質量部を示す。
架橋助剤:トリメチロールプロパントリメタクリレート(TMPTMA)
老化防止剤:チバスペシャリティケミカルズ(株)製Irganox1010
滑剤:日本化成(株)製 スリパックスO
銅害防止剤:旭電化工業(株)製 アデカスタブCDA−1
In Table 1 above, the numerical values indicate parts by mass.
Crosslinking aid: Trimethylolpropane trimethacrylate (TMPTMA)
Anti-aging agent: Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.
Lubricant: Nippon Kasei Co., Ltd. SLIPAX O
Copper damage inhibitor: ADK STAB CDA-1 manufactured by Asahi Denka Kogyo Co., Ltd.

(樹脂組成物2の作製)
下記表2に示す配合処方で各成分を混合した。直径12インチのオープンロール機を使用し、130〜160℃で混合した後、帯出しした試料をペレタイザを用いてペレット化した。
(Preparation of resin composition 2)
Each component was mixed according to the formulation shown in Table 2 below. After mixing at 130 to 160 ° C. using an open roll machine having a diameter of 12 inches, the stripped sample was pelletized using a pelletizer.

Figure 2013149425
Figure 2013149425

上記表2中、数値は質量部を示す。
EVA1:酢酸ビニル量70%のエチレン酢酸ビニル共重合体
EVA2:酢酸ビニル量32%のエチレン酢酸ビニル共重合体
水酸化マグネシウム:平均粒径0.7μm、ステアリン酸表面処理
錫酸亜鉛:日本軽金属(株)社製、FlamtardH
クレー:白石カルシウム(株)社製、バーゲス#30
炭酸カルシウム:白石カルシウム(株)社製、白艶華CCR(ステアリン酸処理)
老化防止剤:チバスペシャリティケミカルズ(株)製Irganox1010
滑剤1:日本化成(株)製 スリパックスO
滑剤2:日本化成(株)製、スリパックスE
銅害防止剤:旭電化工業(株)製 アデカスタブCDA−1
In Table 2 above, the numerical values indicate parts by mass.
EVA1: ethylene vinyl acetate copolymer with 70% vinyl acetate EVA2: ethylene vinyl acetate copolymer with 32% vinyl acetate Magnesium hydroxide: average particle size 0.7μm, stearic acid surface treatment zinc stannate: Nippon Light Metal ( FlammardH manufactured by Co., Ltd.
Clay: Shiraishi Calcium Co., Ltd., Burgess # 30
Calcium carbonate: White Shiraka CCR (stearic acid treatment), manufactured by Shiraishi Calcium Co., Ltd.
Anti-aging agent: Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.
Lubricant 1: Nippon Kasei Co., Ltd. SLIPAX O
Lubricant 2: Sripax E, manufactured by Nippon Kasei Co., Ltd.
Copper damage inhibitor: ADK STAB CDA-1 manufactured by Asahi Denka Kogyo Co., Ltd.

(絶縁電線の作製)
導体には50本撚りの錫めっき銅線(外径1.47mm)を用いた。樹脂組成物1からなる第1の絶縁層(内層)の厚みは0.45mm、樹脂組成物2からなる第2の絶縁層(外層)の厚みは0.15mmとした。押出条件は、導体予熱60℃とし、シリンダーおよびダイスの温度は190〜200℃に設定し、ライン線速25m/minとした。また各絶縁電線には、照射量が120kGrayになるように加速電子線を照射した。
(Production of insulated wires)
A 50-stranded tin-plated copper wire (outer diameter 1.47 mm) was used as the conductor. The thickness of the first insulating layer (inner layer) made of the resin composition 1 was 0.45 mm, and the thickness of the second insulating layer (outer layer) made of the resin composition 2 was 0.15 mm. The extrusion conditions were conductor preheating 60 ° C., cylinder and die temperatures were set to 190-200 ° C., and the line linear velocity was 25 m / min. Each insulated wire was irradiated with an accelerating electron beam so that the irradiation amount was 120 kGray.

〔実施例2〕
導体を外径1.82mmに変えた以外は、実施例1と同様にして絶縁電線を作製した。
[Example 2]
An insulated wire was produced in the same manner as in Example 1 except that the conductor was changed to an outer diameter of 1.82 mm.

〔比較例〕
絶縁層樹脂組成物として、酢酸ビニル量15%のエチレン酢酸ビニル共重合体をベース樹脂としたものに、三酸化アンチモンおよび塩素系難燃剤と架橋剤とを適量添加したものを用いて単層の絶縁層とした以外は、実施例1、2と同様にして絶縁電線を作製した。但し、比較例1は導体外径が1.47mmであり絶縁被覆層は0.85mm、比較例2は導体外径が1.82mmであり絶縁被覆層の厚さは0.85mmである。
[Comparative Example]
As the insulating layer resin composition, a single layer using an antimony trioxide, a chlorine-based flame retardant and a cross-linking agent added to an ethylene vinyl acetate copolymer having a vinyl acetate content of 15% as a base resin. An insulated wire was produced in the same manner as in Examples 1 and 2 except that the insulating layer was used. However, the outer diameter of the conductor in Comparative Example 1 is 1.47 mm and the insulating coating layer is 0.85 mm, the outer diameter of the conductor in Comparative Example 2 is 1.82 mm, and the thickness of the insulating coating layer is 0.85 mm.

作製した上記の絶縁電線について以下の項目の評価を行った。評価結果を下記表3に示す。   The following items were evaluated for the manufactured insulated wires. The evaluation results are shown in Table 3 below.

(被覆層の評価:引張特性)
作製した電線から導体を抜き取り、被覆層の引張試験を行った。試験条件は引張速度=500mm/分、標線間距離=25mm、温度=23℃とし、引張強さ(抗張力)と引張破断伸びを各3点の試料で測定し、それらの平均値を求めた。引張強さ(抗張力)が7MPa以上かつ引張破断伸び350%以上のものを「合格」と判定した。
(Evaluation of coating layer: tensile properties)
A conductor was extracted from the produced electric wire, and a tensile test of the coating layer was performed. The test conditions were tensile speed = 500 mm / min, distance between marked lines = 25 mm, temperature = 23 ° C., tensile strength (tensile strength) and tensile elongation at break were measured with three samples each, and the average value was obtained. . Those having a tensile strength (tensile strength) of 7 MPa or more and a tensile elongation at break of 350% or more were judged as “pass”.

(被覆層の評価:老化後伸び残率及び抗張力残率)
150℃で96時間エージングしたサンプルに対して上記と同様の引張試験を行い、抗張力と引張破断伸びを測定し、オリジナルの数値を100として、伸び残率、抗張力残率を求めた。伸び残率70%以上、抗張力残率75%以上のものを「合格」と判定した。
(Evaluation of coating layer: Elongation residual ratio and tensile residual ratio after aging)
A tensile test similar to that described above was performed on a sample aged at 150 ° C. for 96 hours, and the tensile strength and tensile elongation at break were measured. The original numerical value was taken as 100, and the residual elongation rate and residual tensile strength rate were obtained. Those having a residual elongation rate of 70% or more and a tensile strength residual rate of 75% or more were judged as “pass”.

(電線の評価:耐電圧)
導体の絶縁の間に2.2kVの直流電圧を1分間かけ、絶縁破壊のないのものを「合格」と判定した。
(Evaluation of electric wire: withstand voltage)
A DC voltage of 2.2 kV was applied for 1 minute between conductor insulations, and those without dielectric breakdown were judged as “pass”.

(電線の評価:加熱後変形)
120℃で30分間予熱した試料を、荷重2.45Nの重りをのせて120℃30分間置き、厚さを測定し、下記式にて減少率を求めた。
(加熱前の厚さ−加熱後の厚さ)/加熱前の厚さ
減少率が40%以下のものを「合格」と判定した。重りの先端部は直径9.5mmの平らな底面でありその縁はわずかに丸められたものとした。
(Evaluation of electric wire: deformation after heating)
The sample preheated at 120 ° C. for 30 minutes was placed on a weight of 2.45 N and placed at 120 ° C. for 30 minutes, the thickness was measured, and the reduction rate was determined by the following formula.
(Thickness before heating−Thickness after heating) / Thickness before heating A reduction rate of 40% or less was determined as “pass”. The tip of the weight was a flat bottom with a diameter of 9.5 mm, and its edge was slightly rounded.

(電線の評価:加熱巻き付け)
150℃で96時間エージングした電線を、その電線と同じ径のマンドレルに巻き付け、亀裂の有無を目視で観察した。亀裂のないものを「合格」と判定した。
(電線の評価:巻き付け加熱)
電線を、その電線と同じ径のマンドレルに巻き付け、150℃で96時間エージングし、亀裂の有無を目視で観察した。亀裂のないものを「合格」と判定した。
(電線の評価:低温巻き付け)
電線を−25℃の温度下に1時間置いた後、その電線と同じ径のマンドレルに巻き付け、亀裂の有無を目視で観察した。亀裂のないものを「合格」と判定した。
(Evaluation of electric wire: heat winding)
An electric wire aged at 150 ° C. for 96 hours was wound around a mandrel having the same diameter as the electric wire, and the presence or absence of a crack was visually observed. Those without cracks were judged as “pass”.
(Evaluation of electric wire: winding heating)
The electric wire was wound around a mandrel having the same diameter as the electric wire, aged at 150 ° C. for 96 hours, and visually observed for cracks. Those without cracks were judged as “pass”.
(Evaluation of electric wire: cold winding)
After placing the electric wire at a temperature of −25 ° C. for 1 hour, it was wound around a mandrel having the same diameter as the electric wire, and the presence or absence of a crack was visually observed. Those without cracks were judged as “pass”.

(電線の評価:鉄道車両材料燃焼試験)
社団法人日本鉄道車両機械技術協会にて鉄道車両用材料燃焼試験を行った。結果は「難燃性」であった。
(スクレープ摩耗試験)
ISO6722:2006の規定に基づいてスクレープ摩耗試験を実施した。導体が露出するまでのブレードの往復移動回数を表3に示す。
(Evaluation of electric wires: Railway vehicle material combustion test)
A material combustion test for railway vehicles was conducted at the Japan Railway Vehicle Machinery Association. The result was “flame retardant”.
(Scrape wear test)
A scrape wear test was performed according to the provisions of ISO 6722: 2006. Table 3 shows the number of reciprocating movements of the blade until the conductor is exposed.

Figure 2013149425
Figure 2013149425

実施例の電線は、比較例の電線に比べて絶縁層が薄く、小径であるにもかかわらず、比較例の電線と同等に、鉄道車両に適した難燃性及び耐熱性を有し、耐摩耗などの他の特性についても比較例の電線と同様またはそれ以上であった。特に、抗張力、加熱変形に優れている。   Although the electric wire of the example has a thin insulating layer and a small diameter compared to the electric wire of the comparative example, it has flame resistance and heat resistance suitable for a railway vehicle as well as the electric wire of the comparative example. Other characteristics such as wear were the same as or higher than those of the comparative example. In particular, it is excellent in tensile strength and heat deformation.

本発明の活用例としては、ハロゲンフリー難燃絶縁電線であり、耐熱性、難燃性に優れ、絶縁層の厚さが薄い電線であり、車両用(特に鉄道車両)に好適に活用される。
As an application example of the present invention, it is a halogen-free flame-retardant insulated electric wire, which is excellent in heat resistance and flame retardancy and has a thin insulating layer, and is suitably used for vehicles (particularly railway vehicles). .

Claims (2)

導体、該導体を被覆する第1絶縁層、及び該第1絶縁層を被覆する第2絶縁層を有するハロゲンフリー難燃絶縁電線であって、
前記導体の断面積が0.5〜5.5mmであり、
前記第1絶縁層が、ポリエステル樹脂20〜50質量部、ポリフェニレンエーテル系樹脂20〜50質量部、及び、スチレン系エラストマー30〜60質量部を含有する樹脂成分100質量部に対して窒素系難燃剤を5〜70質量部含有する樹脂組成物からなり、
前記導体直径に対する前記第1絶縁層と前記第2絶縁層との総厚が15〜65%であり、
前記第1絶縁層と前記第2絶縁層の厚さの比が4:1〜5:2であることを特徴とする、ハロゲンフリー難燃絶縁電線。
A halogen-free flame-retardant insulated electric wire having a conductor, a first insulating layer covering the conductor, and a second insulating layer covering the first insulating layer,
The conductor has a cross-sectional area of 0.5 to 5.5 mm 2 ;
A nitrogen-based flame retardant with respect to 100 parts by mass of a resin component in which the first insulating layer contains 20 to 50 parts by mass of a polyester resin, 20 to 50 parts by mass of a polyphenylene ether resin, and 30 to 60 parts by mass of a styrene elastomer. A resin composition containing 5 to 70 parts by mass of
The total thickness of the first insulating layer and the second insulating layer with respect to the conductor diameter is 15 to 65%;
A halogen-free flame-retardant insulated wire, wherein the thickness ratio of the first insulating layer to the second insulating layer is 4: 1 to 5: 2.
前記第1絶縁層を構成する樹脂組成物の樹脂成分が、ポリブチレンテレフタレート20〜30質量部、変性ポリフェニレンエーテル20〜30質量部、及び、スチレンエチレンブチレンスチレン共重合体45〜55質量部の比率で含有することを特徴とする、請求項1記載のハロゲンフリー難燃絶縁電線。   The resin component of the resin composition constituting the first insulating layer is a ratio of polybutylene terephthalate 20 to 30 parts by mass, modified polyphenylene ether 20 to 30 parts by mass, and styrene ethylene butylene styrene copolymer 45 to 55 parts by mass. The halogen-free flame-retardant insulated wire according to claim 1, wherein
JP2012008068A 2012-01-18 2012-01-18 Halogen-free flame-retardant insulated wire Pending JP2013149425A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012008068A JP2013149425A (en) 2012-01-18 2012-01-18 Halogen-free flame-retardant insulated wire
CN2013100207040A CN103219076A (en) 2012-01-18 2013-01-18 No-halogen flame-retardant insulating wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008068A JP2013149425A (en) 2012-01-18 2012-01-18 Halogen-free flame-retardant insulated wire

Publications (2)

Publication Number Publication Date
JP2013149425A true JP2013149425A (en) 2013-08-01
JP2013149425A5 JP2013149425A5 (en) 2013-09-26

Family

ID=48816781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008068A Pending JP2013149425A (en) 2012-01-18 2012-01-18 Halogen-free flame-retardant insulated wire

Country Status (2)

Country Link
JP (1) JP2013149425A (en)
CN (1) CN103219076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098173A (en) * 2016-06-27 2016-11-09 无锡市恒汇电缆有限公司 The environment-friendly type intelligent high ferro anti-interference power cable of Graphene composite shielding and manufacture method thereof
KR101914869B1 (en) 2017-06-19 2018-11-02 엘에스전선 주식회사 Halogen free flame-retardant polyolefin insulation composition and cable having an insulating layer formed from the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878067A (en) * 2017-10-18 2018-11-23 丹阳市遥控天线厂 A kind of manufacturing method of electric wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108627A (en) * 2008-10-28 2010-05-13 Sumitomo Electric Ind Ltd Halogen-free flame-retardant insulating electric wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481770B2 (en) * 2007-01-09 2014-04-23 住友電気工業株式会社 Non-halogen flame retardant resin composition and electric wire and cable using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108627A (en) * 2008-10-28 2010-05-13 Sumitomo Electric Ind Ltd Halogen-free flame-retardant insulating electric wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098173A (en) * 2016-06-27 2016-11-09 无锡市恒汇电缆有限公司 The environment-friendly type intelligent high ferro anti-interference power cable of Graphene composite shielding and manufacture method thereof
KR101914869B1 (en) 2017-06-19 2018-11-02 엘에스전선 주식회사 Halogen free flame-retardant polyolefin insulation composition and cable having an insulating layer formed from the same

Also Published As

Publication number Publication date
CN103219076A (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5481770B2 (en) Non-halogen flame retardant resin composition and electric wire and cable using the same
JP5387944B2 (en) Halogen-free flame retardant insulated wire
JP5494688B2 (en) Halogen-free flame retardant insulated wire
WO2016152432A1 (en) Electrical-wire covering material composition, insulated electrical wire, and wire harness
JP2014101454A (en) Non-halogen crosslinked resin composition and insulated wire, cable
JP4255368B2 (en) Cross-linked flame retardant resin composition, insulated wire and wire harness using the same
JP5182580B2 (en) Halogen-free flame retardant insulated wire
KR20080049032A (en) Flame-retardant resin composition, and electric wire and insulating tube using same
WO2017163868A1 (en) Electrical-wire covering material composition, insulated electrical wire, and wire harness
JP6284673B1 (en) RESIN COMPOSITION, RESIN COATING MATERIAL, AUTOMATIC WIRE HARNESS, AND AUTOMATIC WIRE HARNESS MANUFACTURING METHOD
JP2003183451A (en) Wear-resistant and flame-retardant resin composition and electric wire coated therewith
CN103443873A (en) Electric cable
JP2013149425A (en) Halogen-free flame-retardant insulated wire
JP2007197619A (en) Non-halogen flame-retardant resin composition and electric wire/cable using the same
JP2017160328A (en) Halogen-free flame-retardant resin composition, and halogen-free flame-retardant insulated wire
KR20140049606A (en) Non-halogen flame retardant resin composition and electric wire and cable using same
JP5079412B2 (en) Flame retardant resin composition, electric wire coating material containing the same, and electric wire coated thereby
JP5079411B2 (en) Flame retardant resin composition, electric wire coating material containing the same, and electric wire coated thereby
JP2016134312A (en) Wire coating material composition, insulation wire and wire harness
JP4947829B2 (en) Insulated wire
JP2005322474A (en) Cross-linked external-fault resistant fire retardant insulated wire
JP2006002029A (en) Polyolefin-based flame-retardant resin composition and heat-resistant, wear-resistant and flame-retardant insulation electric wire
JP2010174225A (en) Flame-retardant resin composition and insulation electric wire
JP2006124510A (en) Resin composition and insulated electric wire coated with the same
JP2010144088A (en) Polyolefin composition and electrical wire and cable obtained by using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141118