[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013149403A - Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof - Google Patents

Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof Download PDF

Info

Publication number
JP2013149403A
JP2013149403A JP2012007616A JP2012007616A JP2013149403A JP 2013149403 A JP2013149403 A JP 2013149403A JP 2012007616 A JP2012007616 A JP 2012007616A JP 2012007616 A JP2012007616 A JP 2012007616A JP 2013149403 A JP2013149403 A JP 2013149403A
Authority
JP
Japan
Prior art keywords
negative electrode
layer
particle size
lithium ion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012007616A
Other languages
Japanese (ja)
Inventor
Takaaki Suzuki
孝明 鈴木
Etsuko Nishimura
悦子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012007616A priority Critical patent/JP2013149403A/en
Publication of JP2013149403A publication Critical patent/JP2013149403A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery negative electrode having excellent lifetime characteristics, such as cycle characteristics and high-temperature storage characteristics, and to provide a lithium ion secondary battery using the lithium ion secondary battery negative electrode, and a manufacturing method thereof.SOLUTION: A lithium ion secondary battery negative electrode includes a negative electrode collector, and a negative electrode mixture layer formed thereon. The negative electrode mixture layer includes a negative electrode first layer and a negative electrode second layer formed thereon. The negative electrode first layer contains a large particle size negative electrode active material, while the negative electrode second layer contains a small particle size negative electrode active material. The large particle size negative electrode active material and the small particle size negative electrode active material are graphite-based materials, and the average particle size of the small particle size negative electrode active material is smaller than that of the large particle size negative electrode active material.

Description

本発明は、リチウムイオン二次電池負極、リチウムイオン二次電池負極を用いたリチウムイオン二次電池、および、それらの製造方法に関する。   The present invention relates to a lithium ion secondary battery negative electrode, a lithium ion secondary battery using a lithium ion secondary battery negative electrode, and methods for producing the same.

リチウムイオン二次電池に代表される非水電解質二次電池は、出力が大きく且つエネルギー密度が高いことから、電気自動車用や電力貯蔵用として注目されている。電気自動車用としては、たとえば、エンジンを搭載しないゼロエミッション電気自動車やエンジンと二次電池の双方を搭載したハイブリッド電気自動車、系統電源から直接充電するプラグインハイブリッド電気自動車等への適用が進められている。また、電力貯蔵用としては、たとえば通常の電力系統が遮断された非常時に、予め貯蔵した電力を所望の箇所に供給する定置式電力貯蔵システムへの適用が期待されている。   Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are attracting attention for use in electric vehicles and power storage because of their high output and high energy density. Applications for electric vehicles include, for example, zero-emission electric vehicles that are not equipped with an engine, hybrid electric vehicles that are equipped with both an engine and a secondary battery, and plug-in hybrid electric vehicles that are directly charged from a system power source. Yes. For power storage, for example, it is expected to be applied to a stationary power storage system that supplies power stored in advance to a desired location in an emergency when a normal power system is cut off.

ところで、上記するような電気自動車等にリチウムイオン二次電池を適用する場合、出力やエネルギー密度等の出力特性と共に寿命特性が当該分野における重要な課題の一つとなっている。具体的には、リチウムイオン二次電池は、長期に亘って充放電を繰り返すことにより当該電池の容量が劣化してしまうことが問題となっている。その要因の一つとしては、例えば充放電反応に伴う活物質の体積膨張及び収縮によって合剤層の一部が離脱し、接触抵抗が増大する、いわゆる活物質の電気的孤立が生じ電極の機能が低下する。   By the way, when a lithium ion secondary battery is applied to an electric vehicle or the like as described above, life characteristics as well as output characteristics such as output and energy density are one of important issues in the field. Specifically, the lithium ion secondary battery has a problem that the capacity of the battery is deteriorated by repeated charging and discharging over a long period of time. As one of the factors, for example, the volume of the active material that accompanies the charge / discharge reaction causes part of the mixture layer to be detached, increasing the contact resistance, so-called electrical isolation of the active material, and the function of the electrode. Decreases.

上記の様な問題を回避するために、性質の異なる黒鉛を積層する電極構造が特許文献1に開示されている。特許文献1に開示されている電池用電極は、負極集電体に近い側の第一の負極層に天然黒鉛よりもサイクル特性が良好とされる人造黒鉛を形成し、前記負極集電体から遠い側の第二の負極層の負極活物質が天然黒鉛を形成する構造を特徴としている。   In order to avoid the above problems, Patent Document 1 discloses an electrode structure in which graphites having different properties are laminated. In the battery electrode disclosed in Patent Document 1, artificial graphite having better cycle characteristics than natural graphite is formed in the first negative electrode layer on the side close to the negative electrode current collector. From the negative electrode current collector, It is characterized by a structure in which the negative electrode active material of the second negative electrode layer on the far side forms natural graphite.

特開2009−64574号公報JP 2009-64574 A

特許文献1では、負極集電体に近い側の第一負極層に人造黒鉛を形成し、前記負極集電体から遠い側の第二負極層に天然黒鉛を形成する積層構造である。   Patent Document 1 has a laminated structure in which artificial graphite is formed on the first negative electrode layer on the side close to the negative electrode current collector, and natural graphite is formed on the second negative electrode layer on the side far from the negative electrode current collector.

前記積層構造において、第一負極層の人造黒鉛でサイクル寿命特性を向上させている。
しかし、前記積層構造の場合、人造黒鉛の膜厚が天然黒鉛より薄くなった場合、サイクル寿命特性の低下が考えられる。また、人造黒鉛は天然黒鉛よりも結晶性が低いことが知られている。理論容量(372mAh/g)に近づけるためには、特殊な表面処理などを施すことが必要となる。
In the laminated structure, cycle life characteristics are improved by artificial graphite of the first negative electrode layer.
However, in the case of the laminated structure, when the thickness of the artificial graphite is thinner than that of natural graphite, the cycle life characteristics may be deteriorated. Artificial graphite is known to have lower crystallinity than natural graphite. In order to approach the theoretical capacity (372 mAh / g), it is necessary to perform a special surface treatment or the like.

本発明の目的は、サイクル特性および高温保存特性などの寿命特性に優れたリチウムイオン二次電池負極、リチウムイオン二次電池負極を用いたリチウムイオン二次電池、および、それらの製造方法を提供することにある。   An object of the present invention is to provide a lithium ion secondary battery negative electrode having excellent life characteristics such as cycle characteristics and high temperature storage characteristics, a lithium ion secondary battery using a lithium ion secondary battery negative electrode, and a method for producing the same. There is.

上記課題を解決するための特徴は、例えば、以下の通りである。
(1)負極集電体と、負極集電体上に形成された負極合剤層と、を含むリチウムイオン二次電池用電極であって、負極合剤層は、負極第一層および負極第一層上に形成された負極第二層を含み、負極第一層は、大粒径負極活物質を含み、負極第二層は、小粒径負極活物質を含み、大粒径負極活物質および小粒径負極活物質は黒鉛系材料であり、小粒径負極活物質の平均粒径が大粒径負極活物質の平均粒径よりも小さいことを特徴とするリチウムイオン二次電池用負極。
(2)上記において、大粒径負極活物質および小粒径負極活物質は、同一種類の活物質を用いることを特徴とするリチウムイオン二次電池用負極。
(3)上記において、大粒径負極活物質の平均粒径が15μm以上35μm以下であるリチウムイオン二次電池用負極。
(4)上記において、小粒径負極活物質の平均粒径が5μm以上15μm以下であるリチウムイオン二次電池用負極。
(5)上記において、大粒径負極活物質の平均粒径が、小粒径負極活物質の平均粒径の1.5倍以上であるリチウムイオン二次電池用負極。
(6)上記において、負極第二層の膜厚は、負極合剤層の膜厚の50%より薄いリチウムイオン二次電池用負極。
(7)上記において、負極第一層または負極第二層にバインダが含まれ、負極第一層中のバインダまたは負極第二層中のバインダは、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリビニルピリジンのいずれか一種以上であるリチウムイオン二次電池用負極。
(8)上記において、負極第一層または負極第二層にバインダが含まれ、負極第一層中のバインダまたは負極第二層中のバインダは、水を希釈剤に用いることが可能なバインダであるリチウムイオン二次電池用負極。
(9)上記において、負極第一層および負極第二層にバインダが含まれ、負極第一層中のバインダの濃度と、負極第二層中のバインダの濃度と、が同量であるリチウムイオン二次電池用負極。
(10)上記において、負極第一層および負極第二層にバインダが含まれ、負極第一層中のバインダの濃度が、負極第二層中のバインダの濃度よりも多くするリチウムイオン二次電池用負極。
(11)上記のいずれかのリチウムイオン二次電池用負極の製造方法であって、以下の工程を含むリチウムイオン二次電池用負極の製造方法。(A)負極集電体上に大粒径負極活物質を含む負極合剤スラリーを塗布、乾燥し、更にプレス加工されて負極第一層が形成される工程、(B)(A)の工程後に、小粒径負極活物質を含む負極合剤スラリーを塗布、乾燥し、更にプレス加工されて負極第二層を形成される工程。
(12)上記のいずれかのリチウムイオン二次電池用負極の製造方法であって、以下の工程を含むリチウムイオン二次電池用負極の製造方法。(A)負極集電体上に大粒径負極活物質を含む負極合剤スラリーを塗布および乾燥される工程、(B)(A)の工程後に、小粒径負極活物質を含む負極合剤スラリーが塗布および乾燥される工程、(C)(B)の工程後に、大粒径負極活物質を含む負極合剤層および小粒径負極活物質を含む負極合剤層がプレス加工されて負極第一層および負極第二層が形成される工程。
(13)上記のいずれかのリチウムイオン二次電池用負極と、リチウムイオン二次電池用正極と、リチウムイオン二次電池用正極とリチウムイオン二次電池用負極との間に介装配置されるセパレータと、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極およびセパレータを浸漬させる有機電解液と、を備えるリチウムイオン二次電池。
Features for solving the above-described problems are, for example, as follows.
(1) An electrode for a lithium ion secondary battery comprising a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector, wherein the negative electrode mixture layer comprises a negative electrode first layer and a negative electrode layer A negative electrode second layer formed on one layer, a negative electrode first layer containing a large particle size negative electrode active material, a negative electrode second layer containing a small particle size negative electrode active material, and a large particle size negative electrode active material And the negative electrode active material having a small particle size is a graphite material, and the average particle size of the small particle size negative electrode active material is smaller than the average particle size of the large particle size negative electrode active material, .
(2) In the above, a negative electrode for a lithium ion secondary battery, wherein the large particle size negative electrode active material and the small particle size negative electrode active material use the same type of active material.
(3) The negative electrode for a lithium ion secondary battery, wherein the average particle size of the large particle size negative electrode active material is 15 μm or more and 35 μm or less.
(4) The negative electrode for a lithium ion secondary battery, wherein the average particle size of the small particle size negative electrode active material is 5 μm or more and 15 μm or less.
(5) The negative electrode for a lithium ion secondary battery, wherein the average particle size of the large particle size negative electrode active material is 1.5 times or more than the average particle size of the small particle size negative electrode active material.
(6) In the above, the negative electrode for a lithium ion secondary battery in which the thickness of the second negative electrode layer is less than 50% of the thickness of the negative electrode mixture layer.
(7) In the above, the negative electrode first layer or the negative electrode second layer contains a binder, and the binder in the negative electrode first layer or the binder in the negative electrode second layer is made of polyvinylidene fluoride (PVDF), polytetrafluoroethylene, A negative electrode for a lithium ion secondary battery, which is at least one of polyvinylpyridines.
(8) In the above, the negative electrode first layer or the negative electrode second layer contains a binder, and the binder in the negative electrode first layer or the binder in the negative electrode second layer is a binder that can use water as a diluent. A negative electrode for a lithium ion secondary battery.
(9) In the above, a lithium ion in which the negative electrode first layer and the negative electrode second layer contain a binder, and the binder concentration in the negative electrode first layer and the binder concentration in the negative electrode second layer are the same amount Negative electrode for secondary battery.
(10) In the above, a lithium ion secondary battery in which the negative electrode first layer and the negative electrode second layer include a binder, and the concentration of the binder in the negative electrode first layer is higher than the concentration of the binder in the negative electrode second layer Negative electrode.
(11) A method for producing a negative electrode for a lithium ion secondary battery according to any one of the above, comprising the following steps. (A) The process of apply | coating and drying the negative mix slurry containing a large particle-size negative electrode active material on a negative electrode electrical power collector, drying, and also press-processing, and forming the negative electrode 1st layer, (B) The process of (A) Later, a process in which a negative electrode mixture slurry containing a small particle size negative electrode active material is applied, dried, and further pressed to form a negative electrode second layer.
(12) A method for producing a negative electrode for a lithium ion secondary battery according to any one of the above, comprising the following steps. (A) A step of applying and drying a negative electrode mixture slurry containing a large particle size negative electrode active material on a negative electrode current collector, (B) A negative electrode mixture containing a small particle size negative electrode active material after the step (A) After the steps of applying and drying the slurry, and the steps (C) and (B), the negative electrode mixture layer containing the large particle size negative electrode active material and the negative electrode mixture layer containing the small particle size negative electrode active material are pressed to form the negative electrode Forming a first layer and a second negative electrode layer;
(13) The lithium ion secondary battery negative electrode, the lithium ion secondary battery positive electrode, the lithium ion secondary battery positive electrode, and the lithium ion secondary battery negative electrode are interposed between any of the above. A lithium ion secondary battery comprising: a separator; a positive electrode for a lithium ion secondary battery; a negative electrode for a lithium ion secondary battery; and an organic electrolyte that immerses the separator.

本発明によれば、サイクル特性および高温保存特性などの寿命特性に優れたリチウムイオン二次電池負極、リチウムイオン二次電池負極を用いたリチウムイオン二次電池、および、それらの製造方法を提供できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery negative electrode excellent in lifetime characteristics, such as cycling characteristics and high temperature storage characteristics, the lithium ion secondary battery using a lithium ion secondary battery negative electrode, and those manufacturing methods can be provided. . Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明に係るリチウムイオン二次電池用電極が適用される二次電池の一実施の形態の全体構成を示す片側縦断面図。The single-side longitudinal cross-sectional view which shows the whole structure of one Embodiment of the secondary battery with which the electrode for lithium ion secondary batteries which concerns on this invention is applied. 本発明に係るリチウムイオン二次電池用電極の一実施の形態の基本構成を示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view which shows the basic composition of one Embodiment of the electrode for lithium ion secondary batteries which concerns on this invention.

以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.

図1は、本発明に係るリチウムイオン電池用電極が適用される二次電池の一実施の形態の全体構成を示したものである。   FIG. 1 shows an overall configuration of an embodiment of a secondary battery to which an electrode for a lithium ion battery according to the present invention is applied.

二次電池1100は、リチウムイオンを可逆的に吸蔵放出する正極16と負極13と、正極16及び負極13との間に介装配置されたセパレータ17と、リチウムイオンを含む電解質を溶解させた有機電解液115と、から大略構成されている。ここで、正極16は、正極集電体14とその両面に配置された正極合剤層15とから大略構成され、正極16の集電をとるために正極リード18の一端は正極集電体14に溶接されている。また、負極13は、負極集電体11とその両面に配置された負極合剤層12とから大略構成され、負極13の集電をとるために負極リード19の一端は負極集電体11に溶接されている。   The secondary battery 1100 includes a positive electrode 16 and a negative electrode 13 that reversibly occlude and release lithium ions, a separator 17 interposed between the positive electrode 16 and the negative electrode 13, and an organic solution in which an electrolyte containing lithium ions is dissolved. The electrolytic solution 115 is generally configured. Here, the positive electrode 16 is generally composed of a positive electrode current collector 14 and a positive electrode mixture layer 15 disposed on both surfaces thereof, and one end of a positive electrode lead 18 is connected to the positive electrode current collector 14 in order to collect the positive electrode 16. It is welded to. The negative electrode 13 is generally composed of a negative electrode current collector 11 and a negative electrode mixture layer 12 disposed on both surfaces thereof. One end of a negative electrode lead 19 is connected to the negative electrode current collector 11 in order to collect the negative electrode 13. Welded.

次に、本発明に係るリチウムイオン二次電池用負極電極の実施の形態について、図2を参照して説明する。図2は、本発明に係るリチウムイオン二次電池用負極電極の一実施の形態の基本構成を示したものである。図2に示すリチウムイオン二次電池用負極電極は、集電体の片面に電極合剤層を備えたものであるが、図1に示すように集電体の両面に電極合剤層を設けることもできる。   Next, an embodiment of a negative electrode for a lithium ion secondary battery according to the present invention will be described with reference to FIG. FIG. 2 shows a basic configuration of an embodiment of the negative electrode for a lithium ion secondary battery according to the present invention. The negative electrode for a lithium ion secondary battery shown in FIG. 2 has an electrode mixture layer on one side of the current collector, but the electrode mixture layer is provided on both sides of the current collector as shown in FIG. You can also.

本発明の一実施形態では、粒径のことなる負極活物質を積層することで、サイクル特性および高温保存特性を向上させることができる。初めにその原理について図2を用いて説明する。   In one embodiment of the present invention, cycle characteristics and high temperature storage characteristics can be improved by laminating negative electrode active materials having different particle sizes. First, the principle will be described with reference to FIG.

本発明の一実施形態では、負極集電体11上に大粒径活物質12Aを有する負極第一層112Aを形成する。大粒径活物質12Aは、平均粒径15μm以上35μm以下、特に、20μm以上30μm以下のサイズを用いることが望ましい。上記粒径30μmより大きくなると、塗工用スラリー中への分散性の低下や放電容量密度の低下等の悪影響が考えられる。   In one embodiment of the present invention, the negative electrode first layer 112 </ b> A having the large particle size active material 12 </ b> A is formed on the negative electrode current collector 11. The large particle size active material 12A desirably has an average particle size of 15 μm or more and 35 μm or less, particularly 20 μm or more and 30 μm or less. If the particle size is larger than 30 μm, adverse effects such as a decrease in dispersibility in the coating slurry and a decrease in discharge capacity density can be considered.

15μm以上35μm以下のサイズの大粒径活物質12Aを形成することで高温保存特性が向上する。高温保存では、保存中の負極活物質表面の表面反応を低減することが重要であり、その対策の一つとして、比表面積を低くし反応面積を低減することが考えられる。比表面積を低くする方法として、比較的粒径の大きな負極活物質を配置し、高温保存特性を向上させることができる。   By forming the large particle size active material 12A having a size of 15 μm or more and 35 μm or less, high temperature storage characteristics are improved. In high-temperature storage, it is important to reduce the surface reaction on the surface of the negative electrode active material during storage, and one possible countermeasure is to lower the specific surface area and reduce the reaction area. As a method for reducing the specific surface area, a negative electrode active material having a relatively large particle diameter can be disposed to improve high-temperature storage characteristics.

一方、サイクル寿命特性に対しては、通常電極作製する際、電極密度を調整するためにプレス加工を行う。プレス加工後の天然黒鉛粒子の形状は、例えば楕円形状に変形する。
その結果、充放電により黒鉛結晶粒子は、負極合剤層12の膜厚方向に膨張・収縮する(べーサル面に垂直方向)。その時の黒鉛結晶粒子の変位量を考えると、負極集電体11上の一層目の粒子は自身の変位量のみである。二層目の粒子は、自身の変位量に下層粒子分の変位量が累積される。従って、負極13の最表面に近いほど変位量の絶対値が増大し、その結果孤立が生じ易くなると考えられる。
On the other hand, with respect to the cycle life characteristics, press working is usually performed to adjust the electrode density when an electrode is manufactured. The shape of the natural graphite particles after the press working is deformed into an elliptical shape, for example.
As a result, the graphite crystal particles expand and contract in the film thickness direction of the negative electrode mixture layer 12 due to charge and discharge (perpendicular to the basal plane). Considering the amount of displacement of the graphite crystal particles at that time, the first layer of particles on the negative electrode current collector 11 has only its own amount of displacement. In the second layer particles, the displacement amount of the lower layer particles is accumulated in the displacement amount of itself. Therefore, it is considered that the closer to the outermost surface of the negative electrode 13, the greater the absolute value of the displacement amount, and as a result, isolation is likely to occur.

そこで、本発明の一実施形態では、負極集電体11より遠い側、つまり負極13の表面付近に粒径の小さな負極活物質である小粒径活物質12Bを有する負極第二層112Bを形成することを特徴とする。粒径が小さいメリットとして、(1)結着点を増やすことができる。(2)粒子一個当たりの変位量が小さい、などが挙げられる。そのようなメリットのある粒径の小さい天然黒鉛を最も変位量の絶対値が大きい負極13の最表面側に配置することで負極活物質の電気的孤立を防止することが可能となる。   Therefore, in one embodiment of the present invention, the negative electrode second layer 112B having the small particle size active material 12B which is a negative electrode active material having a small particle size is formed on the side farther from the negative electrode current collector 11, that is, near the surface of the negative electrode 13. It is characterized by doing. As merits of small particle size, (1) binding points can be increased. (2) The amount of displacement per particle is small. By disposing such natural graphite having a small particle diameter on the outermost surface side of the negative electrode 13 having the largest absolute value of displacement, electrical isolation of the negative electrode active material can be prevented.

粒径の小さな小粒径活物質12Bの粒径は、平均粒径5μm以上15μm以下のサイズを用いることが望ましい。小粒径活物質12Bの粒径が5μmより小さくなると、粉末作製に特殊な製造方法が必要となる。また塗布用合剤スラリー作製の難易度が高くなり、コストの上昇を招き生産性が低下すると考えられる。小粒径活物質12Bの粒径が15μmより大きいと、粒子一個当たりの変位量抑制の効果が小さくなる。小粒径活物質12Bの平均粒径は大粒径活物質12Aの平均粒径よりも小さい。具体的には、大粒径活物質12Aの平均粒径が、小粒径活物質12Bの平均粒径の1.5倍以上、望ましくは2.5倍以上、更に望ましくは3.5倍以上である。   The small particle size active material 12B having a small particle size desirably has an average particle size of 5 μm or more and 15 μm or less. When the particle size of the small particle size active material 12B is smaller than 5 μm, a special manufacturing method is required for powder production. In addition, it is considered that the difficulty of preparing the coating mixture slurry increases, leading to an increase in cost and a decrease in productivity. When the particle size of the small particle size active material 12B is larger than 15 μm, the effect of suppressing the amount of displacement per particle is reduced. The average particle size of the small particle size active material 12B is smaller than the average particle size of the large particle size active material 12A. Specifically, the average particle size of the large particle size active material 12A is 1.5 times or more, preferably 2.5 times or more, more preferably 3.5 times or more the average particle size of the small particle size active material 12B. It is.

本発明の一実施形態において、負極集電体11に近い側の負極第一層112Aと、負極集電体11より遠い側(セパレータ側)の負極第二層112Bとの膜厚は、負極第一層112Aよりも負極第二層112Bを薄く、負極第二層112Bの厚さは、負極合剤層12(片側)のトータル厚みの半分より薄いことが望ましい。負極第二層112Bの厚さが、先に述べた厚みより厚くなると、比表面積が大きい天然黒鉛が増えるため高温保存特性が悪くなる。尚、より望ましくは負極第二層112Bの厚さを負極合剤層12(片側)のトータル厚みに対して30%を超えない程度の膜厚に調整する。   In one embodiment of the present invention, the film thickness of the negative electrode first layer 112A on the side closer to the negative electrode current collector 11 and the negative electrode second layer 112B on the side farther than the negative electrode current collector 11 (separator side) is The negative electrode second layer 112B is thinner than the single layer 112A, and the thickness of the negative electrode second layer 112B is preferably thinner than half of the total thickness of the negative electrode mixture layer 12 (one side). If the thickness of the negative electrode second layer 112B is larger than the thickness described above, the natural graphite having a large specific surface area increases, and the high-temperature storage characteristics deteriorate. More desirably, the thickness of the negative electrode second layer 112B is adjusted to a thickness that does not exceed 30% with respect to the total thickness of the negative electrode mixture layer 12 (one side).

本発明の一実施形態では、負極活物質に天然黒鉛などの黒鉛系材料を用いている。天然黒鉛は、人造黒鉛に比べて結晶性が高いため理論容量に近い高容量が得られる。また、初期充電不可逆容量が小さい、低価格などの特徴を持ち実用化されている。反面、サイクル特性が不十分などの課題も持ち合わせている。   In one embodiment of the present invention, a graphite-based material such as natural graphite is used for the negative electrode active material. Since natural graphite has higher crystallinity than artificial graphite, a high capacity close to the theoretical capacity can be obtained. In addition, it has been put into practical use with features such as low initial charge irreversible capacity and low price. On the other hand, it has problems such as insufficient cycle characteristics.

そこで、本発明の一実施形態のような積層構造にすることで、高容量化とサイクル特性兼ね備えた負極13が得られる。また、上記に述べた負極13を用いることで、高容量でかつサイクル特性に優れたリチウムイオン二次電池を提供できる。また、種々の表面改質を施した天然黒鉛を用いてもよい。更に、黒鉛系材料として天然黒鉛に近い結晶性の人造黒鉛や高結晶性黒鉛を用いてもよい。   Thus, the negative electrode 13 having both high capacity and cycle characteristics can be obtained by using a laminated structure as in one embodiment of the present invention. Further, by using the negative electrode 13 described above, it is possible to provide a lithium ion secondary battery having a high capacity and excellent cycle characteristics. Natural graphite having various surface modifications may be used. Furthermore, crystalline artificial graphite or highly crystalline graphite close to natural graphite may be used as the graphite material.

大粒径活物質12Aおよび小粒径活物質12Bは異なる種類の負極活物質、同一種類の負極活物質を用いてもよい。大粒径活物質12Aおよび小粒径活物質12Bとして、同一種類の負極活物質を用いることで、加工性が向上する。特に、1回のプレス加工で負極を作製する場合、同一種類の方が望ましい。また、同一種類とすることにより、粒径の違いによりサイクル特性や高温保持特性に寄与する構造を作製できる。   Different types of negative electrode active materials and the same type of negative electrode active materials may be used for the large particle size active material 12A and the small particle size active material 12B. By using the same kind of negative electrode active material as the large particle size active material 12A and the small particle size active material 12B, workability is improved. In particular, when producing a negative electrode by one press working, the same kind is desirable. Moreover, by making it the same kind, the structure which contributes to cycling characteristics and high temperature holding characteristics by the difference in a particle size can be produced.

負極13の製造方法として、負極集電体11上に大粒径活物質12Aを含む負極合剤スラリーを塗布、乾燥およびプレス加工し、負極第一層112Aを形成した後、小粒径活物質12Bを含む負極合剤スラリーを塗布、乾燥およびプレス加工し負極第二層112Bを形成する方法が挙げられる。これにより、負極第一層112Aを塗布・乾燥後、プレス加工を実施するため、負極第一層112Aの表面の凹凸が少なくなり、負極第二層112Bの塗布性が向上する。更に、負極第二層112Bの膜厚制御が容易になる。また、(1)負極集電体11上に大粒径活物質12Aを含む負極合剤スラリーを塗布、乾燥した後に、小粒径活物質12Bを含む負極合剤スラリーを塗布、乾燥し、その後、大粒径活物質12Aを含む負極合剤層および小粒径活物質12Bを含む負極合剤層をプレス加工する方法が挙げられる。これにより、プレス工程を削減できる。また、大粒径負極活物質と小粒径負極活物質との界面付近に大粒径負極活物質と小粒径負極活物質が混在する部分ができると考えられるため、負極第一層112Aと負極第二層112Bの結着性が良くなる。   As a manufacturing method of the negative electrode 13, a negative electrode mixture slurry containing a large particle size active material 12 </ b> A is applied on the negative electrode current collector 11, dried and pressed to form the negative electrode first layer 112 </ b> A, and then a small particle size active material Examples thereof include a method of forming a negative electrode second layer 112B by applying, drying and pressing a negative electrode mixture slurry containing 12B. Thereby, since press working is performed after applying and drying the negative electrode first layer 112A, the unevenness of the surface of the negative electrode first layer 112A is reduced, and the applicability of the negative electrode second layer 112B is improved. Furthermore, it becomes easy to control the film thickness of the negative electrode second layer 112B. (1) After applying and drying the negative electrode mixture slurry containing the large particle size active material 12A on the negative electrode current collector 11, the negative electrode mixture slurry containing the small particle size active material 12B is applied and dried, and then And a method of pressing a negative electrode mixture layer containing a large particle size active material 12A and a negative electrode mixture layer containing a small particle size active material 12B. Thereby, a press process can be reduced. Further, since it is considered that there is a portion where the large particle size negative electrode active material and the small particle size negative electrode active material are mixed in the vicinity of the interface between the large particle size negative electrode active material and the small particle size negative electrode active material, The binding property of the negative electrode second layer 112B is improved.

本発明に用いる正極活物質としては、LiCoO2、LiNiO2、LiMn24を一般に使用することができ、その他、LiMnO3、LiMn23、LiMnO2、Li4Mn512、LiMn2-xx2(ただし、M=Co、Ni、Fe、Cr、Zn、Taであって、x=0.01〜0.2)、Li2Mn3MO8(ただし、M=Fe、Co、Ni、Cu、Zn)、Li1-xxMn24(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Caであって、x=0.01〜0.1)、LiNi1-xx2(ただし、M=Co、Fe、Gaであって、x=0.01〜0.2)、LiFeO2、Fe2(SO4)3、LiCo1-xx2(ただし、M=Ni、Fe、Mnであって、x=0.01〜0.2)、LiNi1-xx2(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgであって、x=0.01〜0.2)、Fe(MoO4)3、FeF3、LiFePO4、LiMnPO4などを使用することができる。 As the positive electrode active material used in the present invention, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 can be generally used. In addition, LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2 -x M x O 2 (where M = Co, Ni, Fe, Cr, Zn, Ta, where x = 0.01 to 0.2), Li 2 Mn 3 MO 8 (where M = Fe, Co, Ni, Cu, Zn), Li 1-x A x Mn 2 O 4 (where A = Mg, B, Al, Fe, Co, Ni, Cr, Zn, Ca, and x = 0.01) ~0.1), LiNi 1-x M x O 2 ( however, M = Co, Fe, a Ga, x = 0.01~0.2), LiFeO 2, Fe 2 (SO 4) 3, LiCo 1-x M x O 2 ( however, M = Ni, Fe, a Mn, x = 0.01~0.2), LiNi 1-x M x O 2 However, M = Mn, Fe, Co , Al, Ga, Ca, a Mg, x = 0.01~0.2), Fe (MoO 4) 3, FeF 3, using, for example, LiFePO 4, LiMnPO 4 can do.

各電極合剤層に用いるバインダの種類としては、特に限定はなく、一般的にリチウムイオン電池の電極作製に用いられるポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピリジン等の高分子材料のいずれか一種以上を使用することができる。また、スチレン−ブタジエンゴム(SBR)、ポリアクリレートなどのいずれか一種以上に代表される水を希釈剤に用いることが可能な水系バインダを用いても良い。   The type of binder used in each electrode mixture layer is not particularly limited, and is generally high, such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl pyridine, etc., which are generally used for preparing electrodes of lithium ion batteries. Any one or more of the molecular materials can be used. Moreover, you may use the water-system binder which can use the water represented by any one or more, such as a styrene-butadiene rubber (SBR) and a polyacrylate, as a diluent.

各電極合剤層に含まれるバインダは、バインダの種類によって最適な組成が異なるものの、スチレン−ブタジエンゴム(SBR)に代表される水系バインダの場合、仮にバインダ濃度が0.8重量%より小さいと、活物質同士の結着力が低下して電極の作製に悪影響が生じる可能性があり、バインダ濃度が2.0重量%より大きいと電極間の抵抗が増大してしまうため、バインダ濃度は0.8〜2.0重量%であることが望ましい。   The binder contained in each electrode mixture layer differs in the optimum composition depending on the type of binder, but in the case of an aqueous binder represented by styrene-butadiene rubber (SBR), the binder concentration is assumed to be less than 0.8% by weight. In addition, the binding force between the active materials may be reduced, which may adversely affect the production of the electrode. If the binder concentration is more than 2.0% by weight, the resistance between the electrodes is increased, so that the binder concentration is less than 0.2%. It is desirable to be 8 to 2.0% by weight.

また、負極第一層112Aに含まれるバインダ濃度と、負極第二層112Bに含まれるバインダ濃度は同じでも良い。また負極第一層112Aのバインダ濃度を負極第二層112B側よりも多くしても良い。例えば、負極第一層112Aの大粒径活物質12Aの平均粒径は、負極第二層112Bの小粒径活物質12Bの平均粒径よりも大きいことから、負極第一層112Aに含まれるバインダ濃度を多くすることで充放電に伴う体積の膨張・収縮による変位量をより低減することが可能となる。   Moreover, the binder concentration contained in the negative electrode first layer 112A and the binder concentration contained in the negative electrode second layer 112B may be the same. Further, the binder concentration of the negative electrode first layer 112A may be higher than that of the negative electrode second layer 112B side. For example, since the average particle size of the large particle size active material 12A of the negative electrode first layer 112A is larger than the average particle size of the small particle size active material 12B of the negative electrode second layer 112B, it is included in the negative electrode first layer 112A. By increasing the binder concentration, it is possible to further reduce the amount of displacement due to volume expansion / contraction associated with charge / discharge.

逆に、負極第二層112Bのバインダ濃度を負極第一層112Aのバインダ濃度より多くすると、負極第一層112Aと負極第二層112Bとの界面にバインダ濃度の高い部分が形成されることが考えられる。その結果、導電パスが取りにくくなる等の問題が生じる可能性が考えられる。従って、負極第一層112Aと負極第二層112Bのバインダ濃度は、同濃度または負極第一層112A側を多くすることが望ましい。   Conversely, when the binder concentration of the negative electrode second layer 112B is higher than the binder concentration of the negative electrode first layer 112A, a portion with a high binder concentration may be formed at the interface between the negative electrode first layer 112A and the negative electrode second layer 112B. Conceivable. As a result, there is a possibility that problems such as difficulty in taking a conductive path may occur. Accordingly, it is desirable that the binder concentration of the negative electrode first layer 112A and the negative electrode second layer 112B is the same or increased on the negative electrode first layer 112A side.

本発明に用いるセパレータは、公知のリチウムイオン電池に使用されているセパレータを用いることができる。例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔性フィルムや不織布などが挙げられる。尚、電池の高容量化の観点からは、セパレータの厚みは、30μm以下とすることが好ましく、18μm以下とすることがより好ましい。   The separator used for this invention can use the separator currently used for the well-known lithium ion battery. Examples thereof include microporous films made of polyolefin such as polyethylene and polypropylene, and nonwoven fabrics. From the viewpoint of increasing the capacity of the battery, the thickness of the separator is preferably 30 μm or less, and more preferably 18 μm or less.

<負極の作製>
以下、図1及び図2を用いて説明する。
負極集電体11の銅箔上に負極第一層112Aを形成した。具体的には、負極活物質として粒度分布測定法で計測した平均粒径20μmの天然黒鉛、バインダとしてスチレン−ブタジエンゴム(SBR)、粘度調整剤としてカルボキシメチルセルロース(CMC)をSBRと等量分使用した。黒鉛とバインダとを98.0:2.0の混合比で混合し、粘度調整用に水を加えて負極合剤スラリーを調整した。次いで、この負極合剤スラリーを、厚み10μmの銅箔の負極集電体11上に塗布し、110℃で温風乾燥後、裏面にもこの負極合剤スラリーを用いて負極合剤層12を形成した。ロール圧延によるプレスを行い、負極第一層112Aの片面膜厚が45μmとなるように調整した。
<Production of negative electrode>
Hereinafter, description will be made with reference to FIGS. 1 and 2.
A negative electrode first layer 112 </ b> A was formed on the copper foil of the negative electrode current collector 11. Specifically, natural graphite having an average particle diameter of 20 μm measured by a particle size distribution measurement method as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a viscosity modifier are used in an equal amount to SBR. did. Graphite and binder were mixed at a mixing ratio of 98.0: 2.0, and water was added for viscosity adjustment to prepare a negative electrode mixture slurry. Next, the negative electrode mixture slurry was applied onto a negative electrode current collector 11 of a copper foil having a thickness of 10 μm, dried with hot air at 110 ° C., and the negative electrode mixture layer 12 was then formed on the back using the negative electrode mixture slurry. Formed. Pressing by roll rolling was performed so that the single-sided film thickness of the negative electrode first layer 112A was adjusted to 45 μm.

次に、負極第一層112A上に負極第二層112Bを形成した。負極第二層112Bの負極活物質は、負極第一層112Aと同じ材質ありで、平均粒径8μmの天然黒鉛を用いた。天然黒鉛とバインダであるスチレン−ブタジエンゴム(SBR)、粘度調整剤としてカルボキシメチルセルロース(CMC)をSBRと等量分用いた。そして、黒鉛とバインダとを98.0:2.0の混合比で混錬し、粘度調整用に水を加えて負極合剤スラリーを調製した。スラリーを、負極第一層112A上に塗布し、110℃で乾燥した後、裏面にも同様に塗布・乾燥した。ロール圧延によるプレスを行い、負極第二層112Bの片面膜厚が10μmになるように加工して積層構造の負極13を製造した。   Next, the negative electrode second layer 112B was formed on the negative electrode first layer 112A. The negative electrode active material of the negative electrode second layer 112B is the same material as the negative electrode first layer 112A, and natural graphite having an average particle diameter of 8 μm was used. Natural graphite and styrene-butadiene rubber (SBR) as a binder and carboxymethyl cellulose (CMC) as a viscosity modifier were used in an amount equivalent to SBR. Then, graphite and binder were kneaded at a mixing ratio of 98.0: 2.0, and water was added for viscosity adjustment to prepare a negative electrode mixture slurry. The slurry was applied onto the negative electrode first layer 112A, dried at 110 ° C., and then similarly applied to the back surface and dried. The negative electrode 13 having a laminated structure was manufactured by performing press by roll rolling and processing the negative electrode second layer 112B so that the single-sided film thickness was 10 μm.

<正極の作製>
正極活物質としてLiMn1/3Ni1/3Co1/32を用いた。この正極活物質と電子導電性材料としてカーボンブラック(CB1)と黒鉛(GF2)とを乾式混合した。混合物とバインダとしてポリフッ化ビニリデン(PVDF)を、溶剤としてN−メチルピロリドン(NMP)とを加えて混合して正極合剤スラリーを調合した。尚、これらの乾燥時の固形分重量比がLiMn1/3Ni1/3Co1/32:CB1:GF2:PVDF=86:9:2:3となるように配合した。次いで、正極合剤スラリーをアルミニウム箔からなる正極集電体14の両面に塗布し、120℃で乾燥した後、ロール圧延によるプレス加工を行い正極16を作製した。
<Preparation of positive electrode>
LiMn 1/3 Ni 1/3 Co 1/3 O 2 was used as the positive electrode active material. Carbon black (CB1) and graphite (GF2) were dry mixed as the positive electrode active material and the electronic conductive material. Polyvinylidene fluoride (PVDF) as a mixture and a binder and N-methylpyrrolidone (NMP) as a solvent were added and mixed to prepare a positive electrode mixture slurry. Incidentally, these solid weight ratio after drying of LiMn 1/3 Ni 1/3 Co 1/3 O 2 : CB1: GF2: PVDF = 86: 9: 2: was blended so that 3. Next, the positive electrode mixture slurry was applied to both surfaces of the positive electrode current collector 14 made of an aluminum foil, dried at 120 ° C., and then subjected to press working by roll rolling to produce the positive electrode 16.

<捲回・組立て>
本実施例のセパレータは、ポリエチレン製の微孔性フィルムを用いた。
また、エチレンカーボネート(EC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を用意し、溶媒としてその容積組成比がEC:VC:DMC:EMC=19.8:0.2:40:40となるように混合したものを使用し、溶質となるリチウム塩としてLiPF6を用いて1M溶解して電解液115(有機電解液)を作製した。
<Winding / Assembly>
For the separator of this example, a microporous film made of polyethylene was used.
Also, ethylene carbonate (EC), vinylene carbonate (VC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are prepared, and the volume composition ratio thereof is EC: VC: DMC: EMC = 19.8: 0 as a solvent. .2: 40: 40 was used, and 1M was dissolved using LiPF6 as a solute lithium salt to prepare an electrolytic solution 115 (organic electrolytic solution).

上記製造方法により製造した正極16と負極13との間にセパレータ17を挟み込み、捲回群を形成して負極電池缶113に挿入した。そして、負極13の集電をとるためにニッケル(Ni)製の負極リード19の一端を負極集電体11に溶接すると共に、他端を電池缶113に溶接した。また、正極16の集電をとるためにアルミニウム(Al)製の正極リード18の一端を正極集電体14に溶接すると共に、他端を電流遮断溶接し、さらに電流遮断弁(不図示)を介して正極電池蓋112と電気的に接続した。そして、電池缶113の内部に上記電解液115を注液し、正極16と負極13とセパレータ17とを電解液115に浸漬させ、かしめ機等によって電池缶113の開放口をかしめることで捲回型の二次電池1100を製造した。なお、図1において、110は正極絶縁材、111は負極絶縁材、114はガスケットである。   The separator 17 was sandwiched between the positive electrode 16 and the negative electrode 13 manufactured by the above manufacturing method, and a wound group was formed and inserted into the negative battery can 113. In order to collect current from the negative electrode 13, one end of a nickel (Ni) negative electrode lead 19 was welded to the negative electrode current collector 11 and the other end was welded to the battery can 113. In addition, one end of an aluminum (Al) positive electrode lead 18 is welded to the positive electrode current collector 14 in order to collect current from the positive electrode 16, and the other end is subjected to current interruption welding. Further, a current cutoff valve (not shown) is provided. And was electrically connected to the positive electrode battery cover 112. Then, the electrolytic solution 115 is poured into the battery can 113, the positive electrode 16, the negative electrode 13, and the separator 17 are immersed in the electrolytic solution 115, and the opening of the battery can 113 is caulked by a caulking machine or the like. A rechargeable secondary battery 1100 was manufactured. In FIG. 1, 110 is a positive electrode insulating material, 111 is a negative electrode insulating material, and 114 is a gasket.

以下に示す方法で、本実施例の捲回型電池を作製した。   The wound type battery of this example was manufactured by the method described below.

<負極の作製>
負極集電体11の銅箔上に負極第一層112Aを形成した。具体的には、負極活物質として平均粒径15μmの天然黒鉛、バインダとしてポリフッ化ビニリデン(PVDF)を、それぞれ乾燥時の固形分重量比が天然黒鉛:PVDF=95:5になる様に配合し、溶媒としてN−メチルピロリドン(NMP)を加えて負極合剤スラリーを作製した。次いで、この負極合剤スラリーを、厚み10μmの銅箔負極集電体11上に塗布し、120℃で温風乾燥後、裏面にも先の負極合剤スラリーを用いて負極第一層112Aを形成した。ロール圧延によるプレスを行い、片面の負極第一層112Aの膜厚が45μmとなるように調整した。
<Production of negative electrode>
A negative electrode first layer 112 </ b> A was formed on the copper foil of the negative electrode current collector 11. Specifically, natural graphite having an average particle size of 15 μm as the negative electrode active material and polyvinylidene fluoride (PVDF) as the binder are blended so that the solid weight ratio upon drying is natural graphite: PVDF = 95: 5. Then, N-methylpyrrolidone (NMP) was added as a solvent to prepare a negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied on a copper foil negative electrode current collector 11 having a thickness of 10 μm, dried with warm air at 120 ° C., and the negative electrode first layer 112A was then formed on the back using the negative electrode mixture slurry. Formed. Pressing by roll rolling was performed to adjust the thickness of the single-side negative electrode first layer 112A to 45 μm.

次に、負極第一層112A上に負極第二層112Bを形成した。負極第二層112Bの負極活物質は、平均粒径8μmの天然黒鉛を用いた。バインダとしては、負極第一層112Aと同様にPVDFを使用し、それぞれ乾燥時の固形分重量比が天然黒鉛:PVDF=95:5になる様に配合し、溶媒としてN−メチルピロリドン(NMP)を加えて負極合剤スラリーを作製した。負極合剤スラリーを負極第一層112A上に塗布し、120℃で乾燥した後、裏面にも同様に塗布・乾燥した。ロール圧延によるプレスを行い、負極第二層112Bの膜厚(片面)が10μmになるように加工して積層構造の負極13を製造した。   Next, the negative electrode second layer 112B was formed on the negative electrode first layer 112A. As the negative electrode active material of the negative electrode second layer 112B, natural graphite having an average particle diameter of 8 μm was used. As the binder, PVDF is used in the same manner as the negative electrode first layer 112A, and is blended so that the solid content weight ratio upon drying is natural graphite: PVDF = 95: 5, and N-methylpyrrolidone (NMP) is used as a solvent. Was added to prepare a negative electrode mixture slurry. The negative electrode mixture slurry was applied onto the negative electrode first layer 112A, dried at 120 ° C., and then similarly applied to the back surface and dried. A negative electrode 13 having a laminated structure was manufactured by performing press by roll rolling and processing the negative electrode second layer 112B so that the film thickness (one side) was 10 μm.

なお、正極16及び捲回型の二次電池1100の作製は、実施例1と同様にした。   The positive electrode 16 and the wound secondary battery 1100 were manufactured in the same manner as in Example 1.

以下に示す方法で、本実施例の捲回型電池を作製した。
負極集電体11の銅箔上に負極第一層112Aを形成した。具体的には、負極活物質として平均粒径30μmの天然黒鉛、バインダとしてスチレン−ブタジエンゴム(SBR)、粘度調整剤としてカルボキシメチルセルロース(CMC)をSBRと等量分使用した。
黒鉛とバインダとを97.6:2.4の混合比で混合し、粘度調整用に水を加えて負極合剤スラリーを調整した。次いで、この負極合剤スラリーを、厚み10μmの負極集電体11上に塗布し、100℃で温風乾燥後、裏面にもこの負極合剤スラリーを用いて負極第一層112Aを形成した。ロール圧延によるプレスを行い、片面の負極第一層112Aの膜厚が45μmとなるように調整した。
The wound type battery of this example was manufactured by the method described below.
A negative electrode first layer 112 </ b> A was formed on the copper foil of the negative electrode current collector 11. Specifically, natural graphite having an average particle size of 30 μm was used as the negative electrode active material, styrene-butadiene rubber (SBR) was used as the binder, and carboxymethylcellulose (CMC) was used as the viscosity modifier in an amount equivalent to SBR.
Graphite and binder were mixed at a mixing ratio of 97.6: 2.4, and water was added for viscosity adjustment to prepare a negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied on the negative electrode current collector 11 having a thickness of 10 μm, dried with hot air at 100 ° C., and the negative electrode first layer 112A was formed on the back surface using the negative electrode mixture slurry. Pressing by roll rolling was performed to adjust the thickness of the single-side negative electrode first layer 112A to 45 μm.

次に、負極第一層112A上に負極第二層112Bを形成した。負極第二層112Bの負極活物質は、平均粒径8μmの天然黒鉛を用いた。該天然黒鉛とバインダであるスチレン−ブタジエンゴム(SBR)、粘度調整剤としてカルボキシメチルセルロース(CMC)をSBRと等量分用いた。そして、黒鉛とバインダとを98.0:2.0の混合比で混錬し、粘度調整用に水を加えて負極合剤スラリーを調製した。このスラリーを、負極第一層112A上に塗布し、100℃で乾燥した後、裏面にも同様に塗布・乾燥した。ロール圧延によるプレスを行い、負極第二層112Bの膜厚(片面)が10μmになるように加工して積層構造の負極を製造した。   Next, the negative electrode second layer 112B was formed on the negative electrode first layer 112A. As the negative electrode active material of the negative electrode second layer 112B, natural graphite having an average particle diameter of 8 μm was used. Styrene-butadiene rubber (SBR) which is the natural graphite and binder, and carboxymethylcellulose (CMC) as a viscosity modifier were used in the same amount as SBR. Then, graphite and binder were kneaded at a mixing ratio of 98.0: 2.0, and water was added for viscosity adjustment to prepare a negative electrode mixture slurry. This slurry was applied onto the negative electrode first layer 112A, dried at 100 ° C., and then similarly applied to the back surface and dried. A negative electrode having a laminated structure was manufactured by performing press by roll rolling and processing the negative electrode second layer 112B so that the film thickness (one side) was 10 μm.

なお、正極16及び捲回型の二次電池1100の作製方法は、実施例1と同様にした。   Note that the manufacturing method of the positive electrode 16 and the wound secondary battery 1100 was the same as that in Example 1.

以下に示す方法で、本実施例の捲回型電池を作製した。
負極集電体11の銅箔上に負極第一層112Aを形成した。具体的には、負極活物質として平均粒径20μmの天然黒鉛、バインダとしてスチレンーブタジエンゴム(SBR)、粘度調整剤としてカルボキシメチルセルロース(CMC)をSBRと等量分使用した。
黒鉛とバインダとを97.0:3.0の混合比で混錬し、粘度調整用に水を加えて負極合剤スラリーを調整した。次いで、この負極合剤スラリーを、厚み10μmの銅箔の負極集電体11上に塗布し、110℃で温風乾燥後、裏面にもこの負極合剤スラリーを用いて負極第一層112Aを形成した。
The wound type battery of this example was manufactured by the method described below.
A negative electrode first layer 112 </ b> A was formed on the copper foil of the negative electrode current collector 11. Specifically, natural graphite having an average particle diameter of 20 μm was used as the negative electrode active material, styrene-butadiene rubber (SBR) was used as the binder, and carboxymethyl cellulose (CMC) was used as the viscosity modifier in an amount equivalent to SBR.
Graphite and binder were kneaded at a mixing ratio of 97.0: 3.0, and water was added for viscosity adjustment to prepare a negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied on the negative electrode current collector 11 of a copper foil having a thickness of 10 μm, dried with hot air at 110 ° C., and the negative electrode first layer 112A was then formed on the back using the negative electrode mixture slurry. Formed.

ここで、粒径の小さな天然黒鉛を有する負極合剤スラリーを作製し、負極第一層112Aに塗布し、負極第二層112Bを形成した。粒径の小さな天然黒鉛として、平均粒径10μmの天然黒鉛を用いた。天然黒鉛とバインダとしてスチレン−ブタジエンゴム(SBR)、粘度調整剤としてカルボキシメチルセルロース(CMC)をSBRと等量分使用した。黒鉛とバインダとを97.0:3.0の混合比で混錬し、粘度調整用に水を加えて負極合剤スラリーを調整した。この負極合剤スラリーを、負極第一層112A上に塗布し、110℃で乾燥した後、裏面にも同様に塗布・乾燥した。尚、負極第二層112Bの塗布量は、負極第一層112Aの塗布量の1/2とした。次いで、負極第一層112A及び負極第二層112Bを一活してロール圧延によるプレス加工して積層構造の負極13を作製した。得られた負極13の膜厚は、負極第一層112Aが約42μm、負極第二層112Bが約18μmであった。   Here, a negative electrode mixture slurry having natural graphite with a small particle size was prepared and applied to the negative electrode first layer 112A to form the negative electrode second layer 112B. As natural graphite having a small particle size, natural graphite having an average particle size of 10 μm was used. Styrene-butadiene rubber (SBR) was used as natural graphite and a binder, and carboxymethylcellulose (CMC) was used as a viscosity modifier in an amount equivalent to SBR. Graphite and binder were kneaded at a mixing ratio of 97.0: 3.0, and water was added for viscosity adjustment to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was applied on the negative electrode first layer 112A, dried at 110 ° C., and then similarly applied to the back surface and dried. The coating amount of the negative electrode second layer 112B was set to ½ of the coating amount of the negative electrode first layer 112A. Next, the negative electrode first layer 112 </ b> A and the negative electrode second layer 112 </ b> B were activated and pressed by roll rolling to produce a negative electrode 13 having a laminated structure. The thickness of the negative electrode 13 obtained was about 42 μm for the negative electrode first layer 112A and about 18 μm for the negative electrode second layer 112B.

実施例1と同様に、正極16を作製及び捲回型の二次電池1100を作製した。   In the same manner as in Example 1, the positive electrode 16 was manufactured and the wound type secondary battery 1100 was manufactured.

実施例5は、実施例2と比べて負極第一層112Aと負極第二層112Bとの膜厚の割合を変更したもので、負極第一層112Aの厚さを37μm、負極第二層112Bの厚さを33μmに変更し、負極合剤層12(片側)のトータル厚みに対して47%にしたものである。なお、負極13、実施例2の負極第一層112Aの製造方法と同様にした。また正極16の作製及び捲回型の二次電池1100の作製も実施例2と同様の方法で行った。   In Example 5, the ratio of the film thickness of the negative electrode first layer 112A and the negative electrode second layer 112B was changed as compared with Example 2, and the thickness of the negative electrode first layer 112A was 37 μm, and the negative electrode second layer 112B. The thickness is changed to 33 μm to 47% with respect to the total thickness of the negative electrode mixture layer 12 (one side). The negative electrode 13 and the negative electrode first layer 112A of Example 2 were manufactured in the same manner. The positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 2.

実施例6は、実施例2と比べて負極第一層112Aと負極第二層112Bとの膜厚の割合を変更したもので、負極第一層112Aの厚さを22μm、負極第二層112Bの厚さを33μmに変更し、負極合剤層12(片側)のトータル厚みに対して60%にしたものである。なお、負極13、実施例2の負極第一層112Aの製造方法と同様にした。また正極16の作製及び捲回型の二次電池1100の作製も実施例2と同様の方法で行った。   In Example 6, the ratio of the film thickness of the negative electrode first layer 112A and the negative electrode second layer 112B was changed as compared with Example 2, the thickness of the negative electrode first layer 112A was 22 μm, and the negative electrode second layer 112B. The thickness is changed to 33 μm to 60% of the total thickness of the negative electrode mixture layer 12 (one side). The negative electrode 13 and the negative electrode first layer 112A of Example 2 were manufactured in the same manner. The positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 2.

〔比較例1〕
比較例1は、実施例1と比べて天然黒鉛の平均粒径を40μmに変更し、かつ負極合剤層12を単層構造にしたものである。なお、負極13は、実施例1の負極第一層112Aの製造方法と同様にした。また正極16の作製及び捲回型の二次電池1100の作製も実施例1と同様の方法で行った。
[Comparative Example 1]
In Comparative Example 1, the average particle diameter of natural graphite was changed to 40 μm as compared with Example 1, and the negative electrode mixture layer 12 was made into a single layer structure. The negative electrode 13 was the same as the manufacturing method of the negative electrode first layer 112A of Example 1. The positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 1.

〔比較例2〕
比較例2は、天然黒鉛の平均粒径を10μmに変更し、かつ負極合剤層12を単層構造にしたものである。なお、負極13は、実施例1の負極第一層112Aの製造方法と同様にした。また正極16の作製及び捲回型の二次電池1100の作製も実施例1と同様の方法で行った。
[Comparative Example 2]
In Comparative Example 2, the average particle size of natural graphite is changed to 10 μm, and the negative electrode mixture layer 12 has a single layer structure. The negative electrode 13 was the same as the manufacturing method of the negative electrode first layer 112A of Example 1. The positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 1.

上記製造方法によって製造した実施例1から6及び比較例1から2の捲回型リチウムイオン二次電池について、サイクル試験を用いてサイクル特性(寿命特性)を評価した。サイクル試験の条件としては、二次電池を充電電流1Cで4.1Vまで充電し、定電圧で4.2Vまで充電して15分間運転を休止した後、放電電流3Cで3.0Vまで放電し、15分間運転を休止した。この充放電を500サイクル行い、サイクル試験の前後における二次電池の容量変化を検証した。   The cycle characteristics (life characteristics) of the wound type lithium ion secondary batteries of Examples 1 to 6 and Comparative Examples 1 and 2 manufactured by the above manufacturing method were evaluated using a cycle test. The cycle test conditions were as follows: the secondary battery was charged to 4.1 V with a charging current of 1 C, charged to a constant voltage of 4.2 V, stopped for 15 minutes, and then discharged to 3.0 V with a discharging current of 3 C. The operation was stopped for 15 minutes. This charging / discharging was performed 500 cycles, and the capacity change of the secondary battery before and after the cycle test was verified.

表1は、実施例1から6及び比較例1から2の捲回型リチウムイオン二次電池のサイクル試験及び50℃での高温保存特性の結果を示したものである。   Table 1 shows the results of cycle tests and high-temperature storage characteristics at 50 ° C. for the wound lithium ion secondary batteries of Examples 1 to 6 and Comparative Examples 1 and 2.

表中の容量維持率は、それぞれの捲回型電池のサイクル試験前の放電容量を100及び50℃保存前の容量を100とした場合の値である。   The capacity retention rate in the table is a value when the discharge capacity before the cycle test of each wound battery is 100 and the capacity before storage at 50 ° C. is 100.

表1に示すように、上記サイクル試験の結果、実施例1から6のリチウムイオン二次電池における500サイクル経過後の容量維持率は68から93%であった。また比較例1から2の二次電池における500サイクル経過後の容量維持率は57から63%であった。また、実施例1から6のリチウムイオン二次電池における50℃保存特性の容量維持率%は68から95%であった。また比較例1から2の二次電池における50℃保存特性の容量維持率%は55から62%であった。   As shown in Table 1, the capacity retention rate after the elapse of 500 cycles in the lithium ion secondary batteries of Examples 1 to 6 was 68 to 93% as a result of the cycle test. Moreover, the capacity retention rate after the elapse of 500 cycles in the secondary batteries of Comparative Examples 1 and 2 was 57 to 63%. Further, the capacity retention ratio% of the storage characteristics at 50 ° C. in the lithium ion secondary batteries of Examples 1 to 6 was 68 to 95%. Moreover, the capacity retention ratio% of the storage characteristics at 50 ° C. in the secondary batteries of Comparative Examples 1 and 2 was 55 to 62%.

以上の結果から、実施例1から6のリチウムイオン二次電池においては、粒径の異なる天然黒鉛を積層する構造であり、下層の負極第一層112Aよりも上層の負極第二層112Bに粒径を小さな天然黒鉛を配置することにより、最表面側での活物質同士の結着性が向上し、その結果二次電池のサイクル後の容量維持率が大幅に改善されたことが実証された。また、50℃での高温保存特性に関しても、粒径のやや大きな活物質を配置することにより、比表面積を下げて反応面積を小さくする効果が達成でき、その結果、高温保存特性の容量維持率が大幅に改善されたことが実証された。   From the above results, the lithium ion secondary batteries of Examples 1 to 6 have a structure in which natural graphites having different particle diameters are stacked, and particles are formed in the negative electrode second layer 112B that is higher than the lower negative electrode first layer 112A. It was proved that by arranging natural graphite with a small diameter, the binding property between the active materials on the outermost surface side was improved, and as a result, the capacity retention rate after the cycle of the secondary battery was greatly improved. . In addition, regarding the high-temperature storage characteristics at 50 ° C., the effect of reducing the specific surface area and reducing the reaction area can be achieved by disposing an active material having a slightly larger particle size. Proved to be significantly improved.

なお、本発明は上記した実施例1〜6に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例1〜6は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに各実施例1〜6の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
In addition, this invention is not limited to above-described Examples 1-6, Various modifications are included. For example, the first to sixth embodiments described above are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Furthermore, it is possible to add, delete, and replace other configurations for some of the configurations of the first to sixth embodiments.

11 負極集電体
12 負極合剤層
12A 大粒径活物質
12B 小粒径活物質
13 負極
14 正極集電体
15 正極合剤層
16 正極
17 セパレータ
18 正極リード
19 負極リード
110 正極絶縁材
111 負極絶縁材
112 正極電池蓋
112A 負極第一層
112B 負極第二層
113 電池缶
114 ガスケット
115 電解液
1100 二次電池
DESCRIPTION OF SYMBOLS 11 Negative electrode collector 12 Negative electrode mixture layer 12A Large particle size active material 12B Small particle size active material 13 Negative electrode 14 Positive electrode collector 15 Positive electrode mixture layer 16 Positive electrode 17 Separator 18 Positive electrode lead 19 Negative electrode lead 110 Positive electrode insulating material 111 Negative electrode Insulating material 112 Positive electrode battery lid 112A Negative electrode first layer 112B Negative electrode second layer 113 Battery can 114 Gasket 115 Electrolytic solution 1100 Secondary battery

Claims (13)

負極集電体と、
前記負極集電体上に形成された負極合剤層と、を含むリチウムイオン二次電池用電極であって、
前記負極合剤層は、負極第一層および前記負極第一層上に形成された負極第二層を含み、
前記負極第一層は、大粒径負極活物質を含み、
前記負極第二層は、小粒径負極活物質を含み、
前記大粒径負極活物質および前記小粒径負極活物質は黒鉛系材料であり、
前記小粒径負極活物質の平均粒径が前記大粒径負極活物質の平均粒径よりも小さいことを特徴とするリチウムイオン二次電池用負極。
A negative electrode current collector;
A negative electrode mixture layer formed on the negative electrode current collector, and a lithium ion secondary battery electrode comprising:
The negative electrode mixture layer includes a negative electrode first layer and a negative electrode second layer formed on the negative electrode first layer,
The negative electrode first layer includes a large particle size negative electrode active material,
The negative electrode second layer includes a small particle size negative electrode active material,
The large particle size negative electrode active material and the small particle size negative electrode active material are graphite materials,
A negative electrode for a lithium ion secondary battery, wherein an average particle size of the small particle size negative electrode active material is smaller than an average particle size of the large particle size negative electrode active material.
請求項1において、
前記大粒径負極活物質および前記小粒径負極活物質は、同一種類の活物質を用いることを特徴とするリチウムイオン二次電池用負極。
In claim 1,
The negative electrode for a lithium ion secondary battery, wherein the large particle size negative electrode active material and the small particle size negative electrode active material use the same type of active material.
請求項1または2において、
前記大粒径負極活物質の平均粒径が15μm以上35μm以下であるリチウムイオン二次電池用負極。
In claim 1 or 2,
A negative electrode for a lithium ion secondary battery, wherein the large particle diameter negative electrode active material has an average particle diameter of 15 μm or more and 35 μm or less.
請求項1乃至3のいずれかにおいて、
前記小粒径負極活物質の平均粒径が5μm以上15μm以下であるリチウムイオン二次電池用負極。
In any one of Claims 1 thru | or 3,
A negative electrode for a lithium ion secondary battery, wherein the average particle size of the small particle size negative electrode active material is 5 µm or more and 15 µm or less.
請求項1乃至4のいずれかにおいて、
前記大粒径負極活物質の平均粒径が、前記小粒径負極活物質の平均粒径の1.5倍以上であるリチウムイオン二次電池用負極。
In any one of Claims 1 thru | or 4,
The negative electrode for a lithium ion secondary battery, wherein an average particle size of the large particle size negative electrode active material is 1.5 times or more of an average particle size of the small particle size negative electrode active material.
請求項1乃至5のいずれかにおいて、
前記負極第二層の膜厚は、前記負極合剤層の膜厚の50%より薄いリチウムイオン二次電池用負極。
In any one of Claims 1 thru | or 5,
The thickness of the negative electrode second layer is a negative electrode for a lithium ion secondary battery that is thinner than 50% of the thickness of the negative electrode mixture layer.
請求項1乃至6のいずれかにおいて、
前記負極第一層または前記負極第二層にバインダが含まれ、
前記負極第一層中のバインダまたは前記負極第二層中のバインダは、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリビニルピリジンのいずれか一種以上であるリチウムイオン二次電池用負極。
In any one of Claims 1 thru | or 6.
The negative electrode first layer or the negative electrode second layer contains a binder,
The binder in the first negative electrode layer or the binder in the second negative electrode layer is a negative electrode for a lithium ion secondary battery that is one or more of polyvinylidene fluoride (PVDF), polytetrafluoroethylene, and polyvinylpyridine.
請求項1乃至6のいずれかにおいて、
前記負極第一層または前記負極第二層にバインダが含まれ、
前記負極第一層中のバインダまたは前記負極第二層中のバインダは、水を希釈剤に用いることが可能なバインダであるリチウムイオン二次電池用負極。
In any one of Claims 1 thru | or 6.
The negative electrode first layer or the negative electrode second layer contains a binder,
The binder in the first negative electrode layer or the binder in the second negative electrode layer is a negative electrode for a lithium ion secondary battery that is a binder that can use water as a diluent.
請求項7または8において、
前記負極第一層および前記負極第二層にバインダが含まれ、
前記負極第一層中のバインダの濃度と、前記負極第二層中のバインダの濃度と、が同量であるリチウムイオン二次電池用負極。
In claim 7 or 8,
The negative electrode first layer and the negative electrode second layer include a binder,
The negative electrode for a lithium ion secondary battery, wherein the binder concentration in the negative electrode first layer and the binder concentration in the negative electrode second layer are the same amount.
請求項7または8において、
前記負極第一層および前記負極第二層にバインダが含まれ、
前記負極第一層中のバインダの濃度が、前記負極第二層中のバインダの濃度よりも多くするリチウムイオン二次電池用負極。
In claim 7 or 8,
The negative electrode first layer and the negative electrode second layer include a binder,
The negative electrode for a lithium ion secondary battery, wherein the concentration of the binder in the first negative electrode layer is greater than the concentration of the binder in the second negative electrode layer.
請求項1乃至10のいずれかのリチウムイオン二次電池用負極の製造方法であって、
以下の工程を含むリチウムイオン二次電池用負極の製造方法。
(1)前記負極集電体上に前記大粒径負極活物質を含む負極合剤スラリーを塗布、乾燥し、更にプレス加工されて前記負極第一層が形成される工程、
(2)前記(1)の工程後に、前記小粒径負極活物質を含む負極合剤スラリーを塗布、乾燥し、更にプレス加工されて前記負極第二層を形成される工程。
A method for producing a negative electrode for a lithium ion secondary battery according to any one of claims 1 to 10,
The manufacturing method of the negative electrode for lithium ion secondary batteries including the following processes.
(1) A step in which a negative electrode mixture slurry containing the large particle size negative electrode active material is applied onto the negative electrode current collector, dried, and further pressed to form the negative electrode first layer;
(2) A step in which, after the step (1), a negative electrode mixture slurry containing the small particle size negative electrode active material is applied and dried, and further pressed to form the negative electrode second layer.
請求項1乃至10のいずれかのリチウムイオン二次電池用負極の製造方法であって、
以下の工程を含むリチウムイオン二次電池用負極の製造方法。
(1)前記負極集電体上に前記大粒径負極活物質を含む負極合剤スラリーが塗布および乾燥される工程、
(2)前記(1)の工程後に、前記小粒径負極活物質を含む負極合剤スラリーが塗布および乾燥される工程、
(3)前記(2)の工程後に、前記大粒径負極活物質を含む負極合剤層および前記小粒径負極活物質を含む負極合剤層がプレス加工されて前記負極第一層および前記負極第二層が形成される工程。
A method for producing a negative electrode for a lithium ion secondary battery according to any one of claims 1 to 10,
The manufacturing method of the negative electrode for lithium ion secondary batteries including the following processes.
(1) A step of applying and drying a negative electrode mixture slurry containing the large particle size negative electrode active material on the negative electrode current collector,
(2) A step of applying and drying a negative electrode mixture slurry containing the small particle size negative electrode active material after the step (1),
(3) After the step (2), the negative electrode mixture layer including the large particle size negative electrode active material and the negative electrode mixture layer including the small particle size negative electrode active material are pressed to form the negative electrode first layer and the A step of forming a negative electrode second layer.
請求項1乃至10のいずれかに記載のリチウムイオン二次電池用負極と、
リチウムイオン二次電池用正極と、
前記リチウムイオン二次電池用正極と前記リチウムイオン二次電池用負極との間に介装配置されるセパレータと、
前記リチウムイオン二次電池用正極、前記リチウムイオン二次電池用負極および前記セパレータを浸漬させる有機電解液と、を備えるリチウムイオン二次電池。
A negative electrode for a lithium ion secondary battery according to any one of claims 1 to 10,
A positive electrode for a lithium ion secondary battery;
A separator disposed between the positive electrode for the lithium ion secondary battery and the negative electrode for the lithium ion secondary battery;
A lithium ion secondary battery comprising: the positive electrode for a lithium ion secondary battery, the negative electrode for a lithium ion secondary battery, and an organic electrolyte that immerses the separator.
JP2012007616A 2012-01-18 2012-01-18 Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof Pending JP2013149403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007616A JP2013149403A (en) 2012-01-18 2012-01-18 Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007616A JP2013149403A (en) 2012-01-18 2012-01-18 Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2013149403A true JP2013149403A (en) 2013-08-01

Family

ID=49046741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007616A Pending JP2013149403A (en) 2012-01-18 2012-01-18 Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2013149403A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125988A (en) * 2013-12-27 2015-07-06 トヨタ自動車株式会社 Method for manufacturing negative electrode for lithium ion battery
JP2017130451A (en) * 2016-01-19 2017-07-27 株式会社ダイセル Binding agent, electrode slurry, electrode and method of manufacturing the same, and secondary battery
JP2018005973A (en) * 2016-06-27 2018-01-11 株式会社日立製作所 Lithium ion battery
WO2019167613A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
WO2019176932A1 (en) * 2018-03-12 2019-09-19 積水化学工業株式会社 Electrode and secondary battery
CN110495035A (en) * 2017-03-31 2019-11-22 株式会社村田制作所 Lithium ion secondary battery
CN110867560A (en) * 2018-08-28 2020-03-06 宁德时代新能源科技股份有限公司 Negative pole piece and secondary battery
CN111295781A (en) * 2017-11-07 2020-06-16 三星Sdi株式会社 Negative electrode for lithium secondary battery and lithium secondary battery including the same
WO2020204625A1 (en) * 2019-04-04 2020-10-08 주식회사 엘지화학 Electrode for lithium secondary battery
CN112086621A (en) * 2020-09-29 2020-12-15 珠海冠宇电池股份有限公司 Negative plate and laminated lithium ion battery comprising same
WO2021075773A1 (en) * 2019-10-15 2021-04-22 주식회사 엘지화학 Secondary battery electrode plate including electrode mixture regions having different binder content, and method for manufacturing secondary battery electrode using same
CN112825351A (en) * 2019-11-20 2021-05-21 丰田自动车株式会社 All-solid-state battery
CN113078306A (en) * 2017-07-28 2021-07-06 美商映能量公司 Electrode with interface structure
CN113130841A (en) * 2019-12-31 2021-07-16 荣盛盟固利新能源科技有限公司 Lithium ion battery pole piece, preparation method thereof and lithium ion battery
CN113383443A (en) * 2019-08-21 2021-09-10 株式会社Lg新能源 Electrode and apparatus and method for manufacturing the same
CN113410432A (en) * 2020-05-08 2021-09-17 珠海冠宇电池股份有限公司 Negative plate, preparation method and lithium ion battery comprising negative plate
WO2022080979A1 (en) * 2020-10-16 2022-04-21 주식회사 엘지에너지솔루션 Negative electrode and method for manufacturing same
CN114665059A (en) * 2020-12-23 2022-06-24 比亚迪股份有限公司 Lithium ion battery pole piece, lithium ion battery and vehicle
CN114824187A (en) * 2021-01-21 2022-07-29 泰星能源解决方案有限公司 Nonaqueous electrolyte secondary battery
KR20220110862A (en) * 2020-12-28 2022-08-09 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Anode plate and manufacturing method thereof, secondary battery, battery module, battery pack and device
JP2023511881A (en) * 2020-10-15 2023-03-23 寧徳時代新能源科技股▲分▼有限公司 SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, BATTERY MODULE, BATTERY PACK, AND DEVICE RELATED TO THE SAME
JP2023064880A (en) * 2021-10-27 2023-05-12 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode and battery
WO2023082039A1 (en) * 2021-11-09 2023-05-19 宁德时代新能源科技股份有限公司 Negative electrode sheet, secondary battery, battery module, battery pack, and electric device
JP7495954B2 (en) 2022-03-28 2024-06-05 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode and secondary battery including the same

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125988A (en) * 2013-12-27 2015-07-06 トヨタ自動車株式会社 Method for manufacturing negative electrode for lithium ion battery
JP2017130451A (en) * 2016-01-19 2017-07-27 株式会社ダイセル Binding agent, electrode slurry, electrode and method of manufacturing the same, and secondary battery
JP2018005973A (en) * 2016-06-27 2018-01-11 株式会社日立製作所 Lithium ion battery
CN110495035A (en) * 2017-03-31 2019-11-22 株式会社村田制作所 Lithium ion secondary battery
CN110495035B (en) * 2017-03-31 2022-07-08 株式会社村田制作所 Lithium ion secondary battery
CN113078306A (en) * 2017-07-28 2021-07-06 美商映能量公司 Electrode with interface structure
CN111295781A (en) * 2017-11-07 2020-06-16 三星Sdi株式会社 Negative electrode for lithium secondary battery and lithium secondary battery including the same
WO2019167613A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
WO2019176932A1 (en) * 2018-03-12 2019-09-19 積水化学工業株式会社 Electrode and secondary battery
JPWO2019176932A1 (en) * 2018-03-12 2021-02-25 積水化学工業株式会社 Electrodes and rechargeable batteries
CN110867560A (en) * 2018-08-28 2020-03-06 宁德时代新能源科技股份有限公司 Negative pole piece and secondary battery
US11721811B2 (en) 2018-08-28 2023-08-08 Contemporary Amperex Technology Co., Limited Negative electrode plate and secondary battery
JP2022500838A (en) * 2019-04-04 2022-01-04 エルジー・ケム・リミテッド Electrode for lithium secondary battery
US12074316B2 (en) 2019-04-04 2024-08-27 Lg Energy Solution, Ltd. Electrode for lithium secondary battery
JP7177277B2 (en) 2019-04-04 2022-11-22 エルジー エナジー ソリューション リミテッド Electrodes for lithium secondary batteries
WO2020204625A1 (en) * 2019-04-04 2020-10-08 주식회사 엘지화학 Electrode for lithium secondary battery
CN113383443A (en) * 2019-08-21 2021-09-10 株式会社Lg新能源 Electrode and apparatus and method for manufacturing the same
US12057567B2 (en) 2019-10-15 2024-08-06 Lg Energy Solution, Ltd. Secondary battery electrode plate including electrode mixture regions having different binder content, and method for manufacturing secondary battery electrode using same
JP2022524671A (en) * 2019-10-15 2022-05-10 エルジー エナジー ソリューション リミテッド A electrode plate for a secondary battery including an electrode mixture region having different binder contents and a method for manufacturing an electrode for a secondary battery using the same.
WO2021075773A1 (en) * 2019-10-15 2021-04-22 주식회사 엘지화학 Secondary battery electrode plate including electrode mixture regions having different binder content, and method for manufacturing secondary battery electrode using same
JP7297060B2 (en) 2019-10-15 2023-06-23 エルジー エナジー ソリューション リミテッド SECONDARY BATTERY ELECTRODE PLATE INCLUDING ELECTRODE MIX REGIONS HAVING DIFFERENT BINDER CONTENT AND METHOD FOR MANUFACTURING SECONDARY BATTERY ELECTRODE USING THE SAME
CN112825351A (en) * 2019-11-20 2021-05-21 丰田自动车株式会社 All-solid-state battery
CN113130841A (en) * 2019-12-31 2021-07-16 荣盛盟固利新能源科技有限公司 Lithium ion battery pole piece, preparation method thereof and lithium ion battery
CN113410432A (en) * 2020-05-08 2021-09-17 珠海冠宇电池股份有限公司 Negative plate, preparation method and lithium ion battery comprising negative plate
CN113410432B (en) * 2020-05-08 2022-05-27 珠海冠宇电池股份有限公司 Negative plate, preparation method and lithium ion battery comprising negative plate
CN112086621A (en) * 2020-09-29 2020-12-15 珠海冠宇电池股份有限公司 Negative plate and laminated lithium ion battery comprising same
CN112086621B (en) * 2020-09-29 2021-07-06 珠海冠宇电池股份有限公司 Negative plate and laminated lithium ion battery comprising same
JP2023511881A (en) * 2020-10-15 2023-03-23 寧徳時代新能源科技股▲分▼有限公司 SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, BATTERY MODULE, BATTERY PACK, AND DEVICE RELATED TO THE SAME
JP7412574B2 (en) 2020-10-15 2024-01-12 寧徳時代新能源科技股▲分▼有限公司 Secondary batteries, their manufacturing methods, related battery modules, battery packs, and devices
WO2022080979A1 (en) * 2020-10-16 2022-04-21 주식회사 엘지에너지솔루션 Negative electrode and method for manufacturing same
CN114665059A (en) * 2020-12-23 2022-06-24 比亚迪股份有限公司 Lithium ion battery pole piece, lithium ion battery and vehicle
KR20220110862A (en) * 2020-12-28 2022-08-09 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Anode plate and manufacturing method thereof, secondary battery, battery module, battery pack and device
KR102543843B1 (en) 2020-12-28 2023-06-14 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Anode electrode plate and its manufacturing method, secondary battery, battery module, battery pack and device
CN114824187A (en) * 2021-01-21 2022-07-29 泰星能源解决方案有限公司 Nonaqueous electrolyte secondary battery
JP2023064880A (en) * 2021-10-27 2023-05-12 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode and battery
JP7430692B2 (en) 2021-10-27 2024-02-13 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode and battery
WO2023082039A1 (en) * 2021-11-09 2023-05-19 宁德时代新能源科技股份有限公司 Negative electrode sheet, secondary battery, battery module, battery pack, and electric device
JP7495954B2 (en) 2022-03-28 2024-06-05 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode and secondary battery including the same

Similar Documents

Publication Publication Date Title
JP2013149403A (en) Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof
JP5257700B2 (en) Lithium secondary battery
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
WO2013076847A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery
US9166247B2 (en) Lithium-ion secondary cell and method for manufacturing same
EP2892104B1 (en) Electrode assembly for sulfur-lithium ion battery and sulfur-lithium ion battery comprising same
JP2018078114A (en) Negative electrode material for nonaqueous electrolyte secondary batteries
JP5382445B2 (en) Lithium ion secondary battery
JP6152825B2 (en) Non-aqueous electrolyte secondary battery
KR101481993B1 (en) Electrode Comprising Compound Having Cyano group and Lithium Secondary Battery Comprising The Same
JP2016066508A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2007257862A (en) Electrode for secondary battery, and secondary battery
JP2013069432A (en) Lithium ion secondary battery and manufacturing method therefor
WO2014128946A1 (en) Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JPWO2011052122A1 (en) Non-aqueous electrolyte secondary battery current collector, electrode, non-aqueous electrolyte secondary battery, and manufacturing method thereof
JP2016219190A (en) Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP2017091886A (en) Nonaqueous electrolyte secondary battery
JP2019175657A (en) Lithium ion secondary battery
JP2012238461A (en) Secondary battery, and method for manufacturing the same
JP2013069579A (en) Lithium ion secondary battery and manufacturing method therefor
JP2005197073A (en) Positive electrode for lithium secondary battery
JP2012256544A (en) Manufacturing method of electrode for secondary battery
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
WO2015046394A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery