JP2013140714A - Nonaqueous secondary battery - Google Patents
Nonaqueous secondary battery Download PDFInfo
- Publication number
- JP2013140714A JP2013140714A JP2012000321A JP2012000321A JP2013140714A JP 2013140714 A JP2013140714 A JP 2013140714A JP 2012000321 A JP2012000321 A JP 2012000321A JP 2012000321 A JP2012000321 A JP 2012000321A JP 2013140714 A JP2013140714 A JP 2013140714A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- layer
- electrode mixture
- mixture layer
- current collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、正極合剤層を厚くしても、高出力放電時における容量の大きな非水二次電池に関するものである。 The present invention relates to a non-aqueous secondary battery having a large capacity at the time of high output discharge even if the positive electrode mixture layer is thickened.
近年、非水二次電池には、産業機械用または太陽光発電システムなどの蓄電池用二次電池としての用途に適用させるべく、低コストでの高容量化が望まれている。 In recent years, non-aqueous secondary batteries have been desired to have a high capacity at a low cost so that they can be used as secondary batteries for storage batteries such as industrial machinery or solar power generation systems.
こうした非水二次電池への要求に応える手段の一つとして、電池容量には関与しない部材を減らすことにより、電池あたりの活物質量を増加させて、高容量化を図ることが行われている。例えば、特許文献1には、集電用の導電体を使用せずに負極を構成することで、負極全体に占める活物質の割合を高め、二次電池の単位体積あたりおよび単位質量あたりのエネルギー密度の向上を図る技術が提案されている。 One of the means to meet the demand for such non-aqueous secondary batteries is to increase the amount of active material per battery and increase the capacity by reducing the number of members not involved in battery capacity. Yes. For example, Patent Document 1 discloses that the negative electrode is configured without using a current collecting conductor, thereby increasing the proportion of the active material in the entire negative electrode, and the energy per unit volume and unit mass of the secondary battery. Technologies for improving the density have been proposed.
また、電極(正極および負極)の電極合剤層(正極合剤層および負極合剤層)の厚みを大きくすることで、非水二次電池の高容量化を図る方法もある。しかしながら、電極合剤層の厚みを単純に大きくした場合には、高出力放電時に、初期放電容量が大幅に低下するといった問題がある。 There is also a method of increasing the capacity of the nonaqueous secondary battery by increasing the thickness of the electrode mixture layer (positive electrode mixture layer and negative electrode mixture layer) of the electrodes (positive electrode and negative electrode). However, when the thickness of the electrode mixture layer is simply increased, there is a problem that the initial discharge capacity is greatly reduced during high output discharge.
例えば、特許文献2には、正負極の活物質層(電極合剤層)の見かけ密度や、正負極の活物質と集電体の質量バランスを調整した非水二次電池が開示されている。特許文献2では、前記の構成を採用することで、実用的な観点からの高容量電池を提供できるとしている。 For example, Patent Document 2 discloses a non-aqueous secondary battery in which the apparent density of the positive and negative active material layers (electrode mixture layer) and the mass balance between the positive and negative active materials and the current collector are adjusted. . In patent document 2, it is supposed that the high capacity | capacitance battery from a practical viewpoint can be provided by employ | adopting the said structure.
ところが、特許文献2に開示の非水二次電池でも、例えば正極合剤層の厚みを大きくすると、高出力放電時においては十分な容量を引き出すことが困難である。 However, even in the non-aqueous secondary battery disclosed in Patent Document 2, for example, when the thickness of the positive electrode mixture layer is increased, it is difficult to extract a sufficient capacity during high output discharge.
この他、電極の構造を変えることで電池特性の向上を図る技術としては、例えば、正極合剤層や負極合剤層を多層化し、それぞれの層で空隙率を変えた電極の提案がある(特許文献3、4)。 In addition, as a technique for improving battery characteristics by changing the electrode structure, for example, there is a proposal of an electrode in which a positive electrode mixture layer and a negative electrode mixture layer are multilayered and the porosity is changed in each layer ( Patent Documents 3 and 4).
前記の通り、電極の構造の調整によって非水二次電池の高容量化などを図る技術は種々知られているが、これらの技術によっても、正極合剤層を厚くした場合の高出力放電時における容量低下を抑制することは困難である。 As described above, various techniques for increasing the capacity of the non-aqueous secondary battery by adjusting the structure of the electrode are known, but these techniques also provide high power discharge when the positive electrode mixture layer is thickened. It is difficult to suppress a decrease in capacity.
本発明は、前記事情に鑑みてなされたものであり、その目的は、正極合剤層を厚くしても、高出力放電時における容量の大きな非水二次電池を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous secondary battery having a large capacity at the time of high output discharge even if the positive electrode mixture layer is thickened.
前記目的を達成し得た本発明の非水二次電池は、正極、負極、セパレータおよび非水電解質を備えたものであって、前記正極は、集電体の少なくとも片面に、活物質を含有する正極合剤層を有しており、前記正極合剤層は、片面の厚み(A)が70μm以上120μm未満で、空孔率が異なる複数の層を厚み方向に有しており、前記複数の層のうち、集電体と接する層は、片面の厚み(B)が60μm以下で、空孔率が15〜34%であり、かつ(B)>(A)/2の関係を満たしており、前記複数の層のうち、集電体と接する層以外の層は、空孔率が39〜45%であることを特徴とするものである。 The non-aqueous secondary battery of the present invention that has achieved the above object comprises a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the positive electrode contains an active material on at least one surface of a current collector. The positive electrode mixture layer has a thickness (A) on one side of 70 μm or more and less than 120 μm, and has a plurality of layers with different porosity in the thickness direction. Of these layers, the layer in contact with the current collector has a single-sided thickness (B) of 60 μm or less, a porosity of 15 to 34%, and satisfies the relationship of (B)> (A) / 2. Among the plurality of layers, layers other than the layer in contact with the current collector have a porosity of 39 to 45%.
本発明によれば、正極合剤層を厚くしても、高出力放電時における容量の大きな非水二次電池を提供することができる。 According to the present invention, it is possible to provide a non-aqueous secondary battery having a large capacity at the time of high output discharge even if the positive electrode mixture layer is thickened.
図1に、本発明の非水二次電池に係る正極の一例を模式的に表す一部縦断面図を示す。図1に示す正極10は、集電体30の両面に、活物質(正極活物質)などを含有する正極合剤層20、21を有している。そして、正極合剤層20は、空孔率の異なる2層20a、20bを有しており、また、正極合剤層21も、空孔率の異なる2層21a、21bを有している。
FIG. 1 is a partial longitudinal sectional view schematically showing an example of a positive electrode according to the nonaqueous secondary battery of the present invention. A
このように、本発明の非水二次電池に係る正極は、集電体の少なくとも片面に、活物質を含有する正極合剤層を有しており、前記正極合剤層は、片面の厚み(A)が70μm以上120μm未満で、空孔率の異なる複数の層を厚み方向に有しており、前記複数の層のうち、集電体と接する層(図1に示す正極では、20a、21a)は、厚みが60μm以下で、空孔率が15%以上34%以下であり、かつ(B)>(A)/2の関係を満たしており、集電体と接する層以外の層(図1に示す正極では、20b、21b)は、空孔率が39%以上45%以下である。 Thus, the positive electrode according to the nonaqueous secondary battery of the present invention has a positive electrode mixture layer containing an active material on at least one side of a current collector, and the positive electrode mixture layer has a single-sided thickness. (A) is 70 μm or more and less than 120 μm and has a plurality of layers with different porosity in the thickness direction, and among the plurality of layers, a layer in contact with the current collector (in the positive electrode shown in FIG. 1, 20a, 21a) has a thickness of 60 μm or less, a porosity of 15% or more and 34% or less, and satisfies the relationship of (B)> (A) / 2, and is a layer other than the layer in contact with the current collector ( In the positive electrode shown in FIG. 1, 20b and 21b) have a porosity of 39% or more and 45% or less.
正極合剤層を厚くし、その内部の活物質量を増やすことで高容量化を図った非水二次電池では、高出力放電を行った場合に、その電池本来の容量を十分に引き出すことができず、放電容量が低下する。これは、以下のような理由によるものと考えられる。 For non-aqueous secondary batteries that have a higher capacity by increasing the amount of active material inside the cathode mixture layer, when the power is discharged, the battery's original capacity can be fully exploited. The discharge capacity is reduced. This is considered to be due to the following reasons.
正極活物質は、通常、一次粒子が凝集した二次粒子となっている。このような二次粒子の凝集した状態の正極活物質が正極の正極合剤層中で分散していると、正極活物質における電池反応に関与し得る面積が小さくなる。また、正極合剤層の密度を高め、正極活物質量を増やして高容量化を図ると、正極合剤層中の空隙が減り、非水電解質の浸透性が低下し、非水電解質と接触し得る正極活物質の表面積(すなわち、正極活物質の反応面積)が小さくなる。 The positive electrode active material is usually secondary particles in which primary particles are aggregated. When the positive electrode active material in which the secondary particles are aggregated is dispersed in the positive electrode mixture layer of the positive electrode, the area that can be involved in the battery reaction in the positive electrode active material is reduced. In addition, increasing the density of the positive electrode mixture layer and increasing the amount of the positive electrode active material to increase the capacity reduces voids in the positive electrode mixture layer, lowers the permeability of the nonaqueous electrolyte, and makes contact with the nonaqueous electrolyte. The surface area (that is, the reaction area of the positive electrode active material) of the positive electrode active material that can be reduced.
こうした現象は、正極合剤層が薄い場合には、あまり問題を引き起こさないが、正極合剤層が例えば70μm以上と厚くなり、その内部での抵抗が大きくなると、顕在化する。そして、低出力放電時に比べて正極合剤層内での抵抗が増大する高出力放電時においては、前記の現象による問題がより顕著となり、その結果として、正極合剤層の有する容量を十分に引き出すことができなくなって、放電容量が低下する(すなわち、負荷特性が低下する)。 Such a phenomenon does not cause much problem when the positive electrode mixture layer is thin, but becomes obvious when the positive electrode mixture layer becomes thicker, for example, 70 μm or more, and the resistance inside the layer increases. The problem due to the above phenomenon becomes more remarkable at the time of high output discharge in which the resistance in the positive electrode mixture layer is increased as compared with that at the time of low output discharge, and as a result, the capacity of the positive electrode mixture layer is sufficiently increased. It cannot be pulled out, and the discharge capacity is reduced (that is, the load characteristics are reduced).
そこで、本発明の非水二次電池では、正極合剤層を多層構造とし、このうち、集電体と接することで比較的内部の抵抗が小さい層では、空孔率を小さくして正極活物質の充填量を多くできるようにする一方で、集電体と接しておらず内部の抵抗が比較的高くなる層では、空孔率を大きくして、正極合剤層における非水電解質界面との反応面積を大きくし、かつ非水電解質の浸透性を良好にすることで、正極合剤層を厚くしても、高出力放電時における放電容量の低下を良好に抑制し、優れた負荷特性が確保できるようにした。 Therefore, in the non-aqueous secondary battery of the present invention, the positive electrode mixture layer has a multilayer structure, and among these layers, in the layer having a relatively low internal resistance by contacting the current collector, the porosity is reduced and the positive electrode active layer is reduced. In the layer where the filling amount of the substance can be increased while the internal resistance is relatively high without being in contact with the current collector, the porosity is increased, and the nonaqueous electrolyte interface in the positive electrode mixture layer is increased. By increasing the reaction area of the non-aqueous electrolyte and improving the permeability of the non-aqueous electrolyte, even if the positive electrode mixture layer is thick, the decrease in discharge capacity during high output discharge is suppressed well, and excellent load characteristics Can be secured.
なお、非水二次電池に係る正極合剤層を厚くすることによる問題を、例えば、正極合剤層を単一の層とし、その空孔率を大きくすることで、正極合剤層における非水電解質界面との反応面積を大きくし、かつ正極合剤層内への非水電解質の浸透性を良好にして、高出力放電時における放電容量の低下を抑制することも考えられる。しかしながら、正極の製造時に正極合剤層の厚みや密度(空孔率)制御のためにプレス処理を施すと(詳しくは後述する)、正極合剤層が単一の層で、かつその厚みが大きい場合には、局所的に強いプレスがかかり、空孔の分布が不均一になりやすい。そして、局所的に空孔率が小さくなった領域では、非水電解質界面との反応面積が小さくなったり、非水電解質が浸透し難くなったりする虞がある。 It should be noted that the problem caused by increasing the thickness of the positive electrode mixture layer related to the nonaqueous secondary battery is, for example, that the positive electrode mixture layer is a single layer and the porosity thereof is increased so that It is also conceivable to increase the reaction area with the water electrolyte interface and to improve the permeability of the non-aqueous electrolyte into the positive electrode mixture layer to suppress a decrease in discharge capacity during high-power discharge. However, when the positive electrode mixture layer is subjected to press treatment for controlling the thickness and density (porosity) of the positive electrode mixture layer (details will be described later), the positive electrode mixture layer is a single layer and the thickness is If it is large, a strong press is applied locally, and the distribution of pores tends to be uneven. And in the area | region where the porosity became small locally, there exists a possibility that the reaction area with a nonaqueous electrolyte interface may become small, or a nonaqueous electrolyte may become difficult to osmose | permeate.
これに対し、本発明の非水二次電池に係る正極では、正極合剤層を多層構造とすることから、まず集電体と接する層を形成し、その後に、この層と接する層を形成するというように、段階的に正極合剤層を形成する製法を採用できる。正極合剤層を構成する各層の厚みは、正極合剤層全体の厚みよりも小さいことから、これらの各層における空孔分布は比較的均一になる。そのため、本発明の非水二次電池では、正極合剤層を構成する各層の空孔分布の均一さによって、高出力放電時における放電容量の低下を、より良好に抑制する効果が期待できる。 On the other hand, in the positive electrode according to the nonaqueous secondary battery of the present invention, the positive electrode mixture layer has a multilayer structure, so a layer in contact with the current collector is first formed, and then a layer in contact with this layer is formed. Thus, it is possible to adopt a manufacturing method in which the positive electrode mixture layer is formed step by step. Since the thickness of each layer constituting the positive electrode mixture layer is smaller than the total thickness of the positive electrode mixture layer, the pore distribution in each of these layers becomes relatively uniform. Therefore, in the nonaqueous secondary battery of the present invention, the effect of better suppressing the reduction in discharge capacity during high output discharge can be expected due to the uniformity of the pore distribution of each layer constituting the positive electrode mixture layer.
また、例えば、本発明の非水二次電池に係る正極と、正極合剤層を単一の層とし、その全体の空孔率を大きくした正極とで、正極活物質の充填量を同量とした場合(すなわち、正極の容量を同じにした場合)では、正極合剤層を多層構造とし、かつ集電体と接する層と、それ以外の層とで空孔率を変える本発明に係る正極の方が、正極合剤層をより薄くすることができる。よって、本発明の非水二次電池では、容量を大きくしつつ、正極の厚みの増大を可及的に抑制できるといったメリットもある。 For example, the positive electrode according to the non-aqueous secondary battery of the present invention and the positive electrode mixture layer having a single positive electrode mixture layer with a large overall porosity, the same amount of positive electrode active material is charged. (That is, when the positive electrode capacity is the same), the positive electrode mixture layer has a multilayer structure, and the porosity is changed between the layer in contact with the current collector and the other layers. The positive electrode can make the positive electrode mixture layer thinner. Therefore, the nonaqueous secondary battery of the present invention has an advantage that the increase in the thickness of the positive electrode can be suppressed as much as possible while increasing the capacity.
本発明の非水二次電池の有する正極に係る正極合剤層のうち、集電体と接する層は、正極活物質の充填量を多くして、単位体積当たりの電池容量をより高める観点から、空孔率が34%以下であり、25%以下であることが好ましい。ただし、正極合剤層の集電体と接する層の空孔率が小さすぎると、却って容量を十分に引き出し得ない虞があることから、その空孔率は、15%以上であり、20%以上であることが好ましい。 Among the positive electrode mixture layers related to the positive electrode of the nonaqueous secondary battery of the present invention, the layer in contact with the current collector is used from the viewpoint of increasing the battery capacity per unit volume by increasing the filling amount of the positive electrode active material. The porosity is 34% or less, preferably 25% or less. However, if the porosity of the layer in contact with the current collector of the positive electrode mixture layer is too small, there is a possibility that the capacity cannot be sufficiently extracted. Therefore, the porosity is 15% or more and 20% The above is preferable.
本発明の非水二次電池の有する正極に係る正極合剤層のうち、集電体と接する層以外の層は、1層であってもよく、複数(2層、3層、4層など)であってもよいが、正極の生産性を高める観点からは、層数が少ないことが好ましく、1層であることがより好ましい。すなわち、正極合剤層は、集電体と接する層を含む2層で構成されていることがより好ましい。 Of the positive electrode mixture layer relating to the positive electrode of the nonaqueous secondary battery of the present invention, the layer other than the layer in contact with the current collector may be a single layer or a plurality (two layers, three layers, four layers, etc.) However, from the viewpoint of increasing the productivity of the positive electrode, the number of layers is preferably small, and more preferably one layer. That is, the positive electrode material mixture layer is more preferably composed of two layers including a layer in contact with the current collector.
前記集電体と接する層以外の層は、非水電解質の浸透性を良好にして、高出力放電時における放電容量の低下を抑制する観点から、その全体の空孔率が、35%以上であり、40%以上であることが好ましい。 The layers other than the layer in contact with the current collector have good porosity of the nonaqueous electrolyte, and the overall porosity is 35% or more from the viewpoint of suppressing a reduction in discharge capacity during high output discharge. Yes, preferably 40% or more.
ただし、前記集電体と接する層以外の層の空孔率が大き過ぎると、これらの層における非水電解質界面との反応面積が大きくなるが、その一方で、正極活物質粒子間の距離が広がって、これらの粒子間での抵抗接触が大きくなり、また、正極活物質粒子同士の導電パスを形成している導電助剤と正極活物質粒子との導電パスも切れてしまい、これらの粒子間での抵抗接触も大きくなる。そのため、電池の高出力放電時における容量低下の抑制効果が小さくなる虞がある。よって、前記集電体と接する層以外の層の空孔率は、45%以下であり、43%以下であることが好ましい。 However, if the porosity of the layers other than the layer in contact with the current collector is too large, the reaction area with the nonaqueous electrolyte interface in these layers increases, but on the other hand, the distance between the positive electrode active material particles is The conductive contact between the positive electrode active material particles and the conductive auxiliary agent forming the conductive path between the positive electrode active material particles is also cut off. The resistance contact between them also increases. Therefore, there is a possibility that the effect of suppressing the decrease in capacity at the time of high output discharge of the battery is reduced. Therefore, the porosity of layers other than the layer in contact with the current collector is 45% or less, and preferably 43% or less.
正極合剤層における集電体と接する層の空孔率、および集電体と接する層以外の層の空孔率は、正極合剤層の厚み方向の断面の画像を、走査型電子顕微鏡(SEM)を用いて倍率1000倍で撮影し、その画像を用いて下記の手順によって測定される値である。
(1)画像解析ソフト(旭化成エンジニアリング社製「A像くん」)を用いて、撮影した画像を読み込む。
(2)画像中における空孔率の測定対象の層(集電体と接する層、または集電体と接する層以外の層)を切り取る。
(3)コマンド「粒子抽出」を用いて空隙部分を抽出する。
(4)しきい値にてコマンド「二値化処理」を行う。
(5)コマンド「面積率計測」を用いて空孔面積率を算出し、その値を、測定対象の層の空孔率とする。
In the positive electrode mixture layer, the porosity of the layer in contact with the current collector and the porosity of the layers other than the layer in contact with the current collector are obtained by scanning a cross-sectional image in the thickness direction of the positive electrode mixture layer with a scanning electron microscope ( This is a value measured by the following procedure using a SEM image taken at a magnification of 1000 times.
(1) The captured image is read using image analysis software ("A Image-kun" manufactured by Asahi Kasei Engineering).
(2) Cut out the layer whose porosity is to be measured in the image (a layer in contact with the current collector or a layer other than a layer in contact with the current collector).
(3) The void portion is extracted using the command “particle extraction”.
(4) The command “binarization processing” is performed at the threshold value.
(5) The hole area ratio is calculated using the command “area ratio measurement”, and the value is set as the porosity of the measurement target layer.
本発明の非水二次電池の有する正極に係る正極合剤層に含有させる正極活物質は、従来から知られている非水二次電池で使用されている各種の正極活物質と同じものが使用できるが、Mnを含有するスピネル構造のリチウム含有複合酸化物を使用することが好ましい。Mnを含有するスピネル構造のリチウム含有複合酸化物は熱的安定性に優れているため、例えば、安全性の高い非水二次電池を構成することができる。 The positive electrode active material contained in the positive electrode mixture layer relating to the positive electrode of the nonaqueous secondary battery of the present invention is the same as various positive electrode active materials used in conventionally known nonaqueous secondary batteries. Although it can be used, it is preferable to use a lithium-containing composite oxide having a spinel structure containing Mn. Since the spinel-structured lithium-containing composite oxide containing Mn is excellent in thermal stability, for example, a highly safe non-aqueous secondary battery can be configured.
前記Mnを含有するスピネル構造のリチウム含有複合酸化物としては、一般式Li1+yM2O4(ここで、−0.1≦y≦0.1であり、Mは、少なくともMnを含む1種以上の元素を表し、Mを構成する全元素のうちMnの原子比は70mol%以上)で表される複合酸化物が好ましく用いられる。 The lithium-containing composite oxide having a spinel structure containing Mn includes a general formula Li 1 + y M 2 O 4 (where −0.1 ≦ y ≦ 0.1, and M is at least one type including Mn. A composite oxide represented by the above-described elements and represented by the atomic ratio of Mn among all elements constituting M is 70 mol% or more is preferably used.
Mnを含有するスピネル構造のリチウム含有複合酸化物の具体例としては、例えば、LiMn2O4、LiNi0.5Mn1.5O4などの組成で代表されるスピネルマンガン複合酸化物;前記スピネルマンガン複合酸化物に係る元素の一部を他の元素、例えば、Ca、Mg、Sr、Sc、Zr、V、Nb、W、Cr、Mo、Fe、Co、Ni、Zn、Al、Si、Ga、Ge、Snなどの元素で置換したスピネル構造を有するリチウム含有複合酸化物(前記一般式における元素Mとして、Mnと、前記例示の元素の1種以上とを含むリチウム含有複合酸化物など);などが挙げられる。 Specific examples of the lithium-containing composite oxide having a spinel structure containing Mn include, for example, spinel manganese composite oxides represented by compositions such as LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 ; Some of the elements related to the manganese composite oxide are replaced with other elements such as Ca, Mg, Sr, Sc, Zr, V, Nb, W, Cr, Mo, Fe, Co, Ni, Zn, Al, Si, and Ga. Lithium-containing composite oxides having a spinel structure substituted with elements such as Ge, Sn, etc. (such as lithium-containing composite oxides containing Mn and one or more of the above-exemplified elements as element M in the general formula); Etc.
また、正極活物質には、Mnを含有するスピネル構造のリチウム含有複合酸化物以外の正極活物質を用いることもできる。このような正極活物質としては、例えば、Li1+aMO2(−0.1<a<0.1、M:Co、Ni、Mn、Al、Mg、Zr、Tiなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMPO4(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などが挙げられる。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoO2やLiNi1−aCoa−bAlbO2(0.1≦a≦0.3、0.01≦b≦0.2)などの他、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3O2、LiMn5/12Ni5/12Co1/6O2、LiNi3/5Mn1/5Co1/5O2など)などを例示することができる。 Further, as the positive electrode active material, a positive electrode active material other than a spinel-structured lithium-containing composite oxide containing Mn can be used. As such a positive electrode active material, for example, a layered structure represented by Li 1 + a MO 2 (−0.1 <a <0.1, M: Co, Ni, Mn, Al, Mg, Zr, Ti, etc.) And olivine type compounds represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.). Specific examples of the lithium-containing transition metal oxide having a layered structure include LiCoO 2 and LiNi 1-a Co ab Al b O 2 (0.1 ≦ a ≦ 0.3, 0.01 ≦ b ≦ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3 / 5 Mn 1/5 Co 1/5 O 2 etc.).
本発明の非水二次電池に係る正極活物質には、前記例示の各種正極活物質のうちの1種のみを用いてもよく、2種以上を併用してもよい。なお、前記の通り、正極活物質には、Mnを含有するスピネル構造のリチウム含有複合酸化物を使用することが好ましく、これを単独で使用するか、または、これと、前記例示のMnを含有するスピネル構造のリチウム含有複合酸化物以外の正極活物質(以下、「他の正極活物質」という)とを併用することが望ましい。 As the positive electrode active material according to the nonaqueous secondary battery of the present invention, only one of the above-described various positive electrode active materials may be used, or two or more of them may be used in combination. In addition, as described above, it is preferable to use a spinel-structured lithium-containing composite oxide containing Mn as the positive electrode active material, which is used alone, or contains this and the exemplified Mn. It is desirable to use together with a positive electrode active material other than the spinel-structured lithium-containing composite oxide (hereinafter referred to as “other positive electrode active material”).
なお、Mnを含有するスピネル構造のリチウム含有複合酸化物と他の正極活物質とを併用する場合、Mnを含有するスピネル構造のリチウム含有複合酸化物の、全正極活物質中における含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。 In the case where the lithium-containing composite oxide having a spinel structure containing Mn and another positive electrode active material are used in combination, the content of the lithium-containing composite oxide having a spinel structure containing Mn in the total positive electrode active material is: It is preferable that it is 70 mass% or more, and it is more preferable that it is 80 mass% or more.
正極合剤層には、正極活物質の他に、導電助剤やバインダなどを含有させることが好ましい。導電助剤としては、例えば、アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;銅、ニッケルなどの金属粉末類;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用しても構わない。 In addition to the positive electrode active material, the positive electrode mixture layer preferably contains a conductive additive or a binder. Examples of the conductive assistant include acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black, and thermal black; carbon materials such as carbon fibers; and conductive fibers such as metal fibers. Carbon fluoride, metal powders such as copper and nickel, organic conductive materials such as polyphenylene derivatives, and the like. These may be used alone or in combination of two or more.
また、正極合剤層に係るバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリビニルピロリドン(PVP)などが挙げられる。 Examples of the binder related to the positive electrode mixture layer include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and polyvinylpyrrolidone (PVP). It is done.
正極合剤層の組成としては、例えば、正極活物質を80.0〜99.3質量%とし、導電助剤を0.1〜10質量%とし、バインダを0.1〜10質量%とすることが好ましい。 The composition of the positive electrode mixture layer is, for example, 80.0 to 99.3 mass% of the positive electrode active material, 0.1 to 10 mass% of the conductive auxiliary agent, and 0.1 to 10 mass% of the binder. It is preferable.
正極合剤層の片面の厚み(A)〔正極の片面にのみ正極合剤層が形成されている場合は、その厚みであり、正極の両面に正極合剤層が形成されている場合は、その片面あたりの正極合剤層の厚み。正極合剤層の片面の厚み(A)について、以下同じ。〕は、電池の高容量化を図る観点から、70μm以上であり、80μm以上であることが好ましい。ただし、正極合剤層が厚すぎると、リチウムイオン拡散分極が増加し、電池の内部抵抗が増大してしまう。よって、正極合剤層の片面の厚み(A)は、120μm未満であり、100μm以下であることが好ましい。 Thickness of one side of positive electrode mixture layer (A) [If the positive electrode mixture layer is formed only on one side of the positive electrode, it is the thickness. If the positive electrode mixture layer is formed on both sides of the positive electrode, The thickness of the positive electrode mixture layer per one side. The same applies to the thickness (A) of one surface of the positive electrode mixture layer. ] Is 70 μm or more and preferably 80 μm or more from the viewpoint of increasing the capacity of the battery. However, if the positive electrode mixture layer is too thick, lithium ion diffusion polarization increases and the internal resistance of the battery increases. Therefore, the thickness (A) of one surface of the positive electrode mixture layer is less than 120 μm, and preferably 100 μm or less.
正極合剤層のうち、集電体と接する層の厚み(B)〔正極の片面にのみ正極合剤層が形成されている場合は、その正極合剤層に係る集電体と接する層の厚みであり、正極の両面に正極合剤層が形成されている場合は、その片面あたりの正極合剤層に係る集電体と接する層の厚み。集電体と接する層の厚み(B)について、以下同じ。〕は、60μm以下であり、55μm以下であることが好ましい。集電体と接する層が厚すぎると、この層の集電体とは反対側の表面近傍での抵抗が大きくなって、高出力放電時における放電容量の低下を抑える効果が小さくなる。また、正極合剤層のうち、集電体と接する層が薄すぎると、電池の体積あたりの容量自体が小さくなる虞があることから、集電体と接する層の厚み(B)は、30μm以上であることが好ましく、35μm以上であることがより好ましい。 Of the positive electrode mixture layer, the thickness (B) of the layer in contact with the current collector [If the positive electrode mixture layer is formed only on one side of the positive electrode, the thickness of the layer in contact with the current collector of the positive electrode mixture layer] When the positive electrode mixture layer is formed on both surfaces of the positive electrode, the thickness of the layer in contact with the current collector related to the positive electrode mixture layer per one surface. The same applies to the thickness (B) of the layer in contact with the current collector. ] Is 60 μm or less, preferably 55 μm or less. If the layer in contact with the current collector is too thick, the resistance in the vicinity of the surface on the side opposite to the current collector of this layer increases, and the effect of suppressing the decrease in discharge capacity during high-power discharge is reduced. Also, if the layer in contact with the current collector of the positive electrode mixture layer is too thin, the capacity per unit volume of the battery may be reduced. Therefore, the thickness (B) of the layer in contact with the current collector is 30 μm. It is preferable that it is above, and it is more preferable that it is 35 micrometers or more.
また、正極合剤層においては、その片面の厚み(A)と、集電体と接する層の厚み(B)とが、(B)>(A)/2の関係を満たすようにする。これにより、高出力放電時における放電容量の低下を良好に抑制しつつ、正極合剤層を厚くすることによる電池体積あたりの容量を大きくすることが可能となり、負荷特性と電池体積あたりの容量とを高いレベルでバランスよく両立した非水二次電池とすることができる。 In the positive electrode mixture layer, the thickness (A) on one side thereof and the thickness (B) of the layer in contact with the current collector satisfy the relationship (B)> (A) / 2. This makes it possible to increase the capacity per battery volume by increasing the thickness of the positive electrode mixture layer while satisfactorily suppressing the decrease in discharge capacity at the time of high output discharge. Can be made a non-aqueous secondary battery that is balanced at a high level.
正極集電体には、アルミニウム製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、アルミニウム箔が用いられる。正極集電体の厚みは、10〜30μmであることが好ましい。 As the positive electrode current collector, an aluminum foil, a punching metal, a net, an expanded metal, or the like can be used, but an aluminum foil is usually used. The thickness of the positive electrode current collector is preferably 10 to 30 μm.
正極は、例えば、以下の方法により製造することができる。まず、正極活物質、導電助剤およびバインダなどを含有する正極合剤を、溶剤[N−メチル−2−ピロリドン(NMP)などの有機溶剤や水]に分散させて正極合剤含有組成物(ペースト、スラリーなど)を調製し、これを集電体の表面に塗布して乾燥し、プレス処理を施す工程を経て、集電体と接する層を形成する。そして、集電体と接する層の表面に前記の正極合剤含有組成物を塗布して乾燥し、プレス処理を施す工程を経て、集電体と接する層の表面に、集電体と接する層以外の層を形成する。集電体と接する層以外の層を複数設ける場合には、前記の正極合剤含有組成物の塗布、乾燥、プレス処理の各工程を、必要とされる層の数だけ順次繰り返せばよい。 The positive electrode can be manufactured, for example, by the following method. First, a positive electrode mixture containing a positive electrode active material, a conductive additive, a binder, and the like is dispersed in a solvent [an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water] to form a positive electrode mixture-containing composition ( Paste, slurry, etc.) are prepared, applied to the surface of the current collector, dried, and subjected to a press treatment to form a layer in contact with the current collector. Then, the positive electrode mixture-containing composition is applied to the surface of the layer in contact with the current collector, dried and subjected to a press treatment, and then the layer in contact with the current collector is subjected to the pressing process. Other layers are formed. When a plurality of layers other than the layer in contact with the current collector are provided, the steps of applying, drying, and pressing the positive electrode mixture-containing composition may be sequentially repeated as many times as necessary.
正極合剤層における各層の空孔率は、例えば、正極合剤含有組成物を集電体や、先に形成した層の表面に塗布し、乾燥した後に施すプレス処理の条件を選択することにより調整できる。通常は、正極合剤層の密度を高めるために比較的大きな線圧でプレス処理を施すが、本発明に係る正極においては、まず、集電体と接する層の形成時には、通常の正極に施すプレス処理と同程度の線圧、具体的は、例えば、100〜400kgf/cm程度の線圧でプレス処理を行えばよく、また、集電体と接する層以外の層の形成時には、例えば、10〜200kgf/cm程度の線圧であり、かつ集電体と接する層に施したプレス処理時の線圧よりも小さな線圧でプレス処理を施せばよい。 The porosity of each layer in the positive electrode mixture layer can be determined by, for example, selecting the conditions of the press treatment to be applied after the positive electrode mixture-containing composition is applied to the current collector or the surface of the previously formed layer and dried. Can be adjusted. Usually, in order to increase the density of the positive electrode mixture layer, press treatment is performed at a relatively large linear pressure. In the positive electrode according to the present invention, first, when forming a layer in contact with the current collector, the normal positive electrode is applied. The press treatment may be performed at the same linear pressure as that of the press treatment, specifically, for example, a linear pressure of about 100 to 400 kgf / cm, and when a layer other than the layer in contact with the current collector is formed, for example, 10 The press treatment may be performed with a linear pressure of about ~ 200 kgf / cm and smaller than the linear pressure during the press treatment applied to the layer in contact with the current collector.
本発明の非水二次電池は、正極、負極、セパレータおよび非水電解質を備えており、かつ正極が前記の正極であればよく、その他の構成および構造については特に制限はなく、従来から知られている非水二次電池で採用されている構成および構造を適用することができる。 The non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the positive electrode may be any of the positive electrodes described above. Other configurations and structures are not particularly limited, and are conventionally known. The configuration and structure employed in the non-aqueous secondary battery used can be applied.
負極としては、例えば、集電体の少なくとも片面に、負極活物質やバインダを含有する負極合剤層を有する構造のものが使用できる。 As the negative electrode, for example, one having a structure having a negative electrode mixture layer containing a negative electrode active material or a binder on at least one surface of a current collector can be used.
負極活物質としては、例えば、天然黒鉛(鱗片状黒鉛)、人造黒鉛、膨張黒鉛などの黒鉛材料(黒鉛);ピッチを焼成して得られるコークスなどの易黒鉛化性炭素質材料;フルフリルアルコール樹脂(PFA)やポリパラフェニレン(PPP)およびフェノール樹脂を低温焼成して得られる非晶質炭素などの難黒鉛化性炭素質材料;などの炭素材料が挙げられる。また、炭素材料の他に、リチウムやリチウム含有化合物も負極活物質として用いることができる。リチウム含有化合物としては、Li−Alなどのリチウム合金や、Si、Snなどのリチウムとの合金化が可能な元素を含む合金が挙げられる。更にSn酸化物やSi酸化物などの酸化物系材料も用いることができる。負極活物質には、前記例示のもののうち、1種のみを用いてもよく、2種以上を併用してもよい。 Examples of the negative electrode active material include graphite materials (graphite) such as natural graphite (flaky graphite), artificial graphite, and expanded graphite; graphitizable carbonaceous materials such as coke obtained by firing pitch; furfuryl alcohol Examples thereof include carbon materials such as non-graphitizable carbonaceous materials such as amorphous carbon obtained by low-temperature firing of resin (PFA), polyparaphenylene (PPP), and phenol resin. In addition to the carbon material, lithium or a lithium-containing compound can also be used as the negative electrode active material. Examples of the lithium-containing compound include lithium alloys such as Li—Al, and alloys containing elements that can be alloyed with lithium such as Si and Sn. Furthermore, oxide-based materials such as Sn oxide and Si oxide can also be used. As the negative electrode active material, only one type may be used or two or more types may be used in combination.
前記の負極活物質の中でも、電池の高容量化(特に高出力放電時における容量向上)を図るには、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である。以下、当該材料を「SiOx」という)を用いることが好ましい。 Among the negative electrode active materials, in order to increase the capacity of the battery (particularly, increase the capacity at the time of high output discharge), a material containing Si and O as constituent elements (however, the atomic ratio x of O to Si is: 0.5 ≦ x ≦ 1.5 (hereinafter referred to as “SiO x ”).
SiOxは、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。すなわち、SiOpには、非晶質のSiO2マトリックス中にSi(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiO2と、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiO2マトリックス中にSiが分散した構造で、SiO2とSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。 The SiO x may contain Si microcrystal or amorphous phase. In this case, the atomic ratio of Si and O is a ratio including Si microcrystal or amorphous phase Si. That is, the SiO p includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous SiO 2 matrix, and is dispersed in the amorphous SiO 2 . In combination with Si, the atomic ratio x may satisfy 0.5 ≦ x ≦ 1.5. For example, in the case of a material in which Si is dispersed in an amorphous SiO 2 matrix and the material has a molar ratio of SiO 2 to Si of 1: 1, since x = 1, the structural formula is represented by SiO. . In the case of a material having such a structure, for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.
なお、SiOxは導電性が低いことから、例えば、SiOxを炭素材料と複合化した複合体として用いることがより好ましい。SiOxと炭素材料との複合体としては、SiOxと炭素材料との造粒体や、SiOxの表面を炭素材料で被覆した複合体などが挙げられ、SiOxの表面を炭素材料で被覆した複合体を用いることが更に好ましい。SiOxと炭素材料との複合体を用いることにより、負極における導電ネットワークを、より良好に形成することができる。 Since SiO x has low conductivity, for example, it is more preferable to use it as a composite in which SiO x is combined with a carbon material. The complex of the SiO x and the carbon material, Zotsubutai and the SiO x and the carbon material, the surface of the SiO x is like composite coated with carbon material, coating the surface of the SiO x carbon material More preferably, the composite is used. By using a composite of SiO x and a carbon material, a conductive network in the negative electrode can be formed better.
SiOxの表面を被覆するための炭素材料には、例えば、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などを使用することができる。 As the carbon material for covering the surface of SiO x , for example, low crystalline carbon, carbon nanotube, vapor grown carbon fiber, or the like can be used.
なお、炭化水素系ガスを気相中で加熱し、炭化水素系ガスの熱分解により生じた炭素材料を、SiOx粒子の表面上に堆積する方法[気相成長(CVD)法]で、SiOxの表面を炭素で被覆すると、炭化水素系ガスがSiOx粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素材料を含む薄くて均一な皮膜(炭素被覆層)を形成できることから、少量の炭素によってSiOx粒子に均一性よく導電性を付与できる。 In addition, a method [vapor phase growth (CVD) method] in which a hydrocarbon-based gas is heated in a gas phase, and a carbon material generated by thermal decomposition of the hydrocarbon-based gas is deposited on the surface of the SiO x particles is SiO 2. When the surface of x is coated with carbon, the hydrocarbon-based gas spreads to every corner of the SiO x particle, and a thin and uniform film (carbon) containing a conductive carbon material is formed in the surface of the particle and in the pores of the surface. Since the coating layer can be formed, the SiO x particles can be imparted with good conductivity with a small amount of carbon.
CVD法で使用する炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレンなどを用いることができるが、取り扱いやすいトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする)ことにより炭化水素系ガスを得ることができる。また、メタンガスやエチレンガス、アセチレンガスなどを用いることもできる。 As the liquid source of the hydrocarbon gas used in the CVD method, toluene, benzene, xylene, mesitylene and the like can be used, but toluene that is easy to handle is particularly preferable. A hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas). Moreover, methane gas, ethylene gas, acetylene gas, etc. can also be used.
CVD法の処理温度としては、例えば、600〜1200℃であることが好ましい。また、CVD法に供するSiOxは、公知の手法で造粒した造粒体(複合粒子)であることが好ましい。 As processing temperature of CVD method, it is preferable that it is 600-1200 degreeC, for example. Further, SiO x subjected to CVD method is preferably granulated material was granulated by a known method (composite particles).
SiOxの表面を炭素材料で被覆する場合、炭素材料の量は、SiOx:100質量部に対して、5質量部以上であることが好ましく、10質量部以上であることがより好ましく、また、95質量部以下であることが好ましく、90質量部以下であることがより好ましい。 When the surface of SiO x is coated with a carbon material, the amount of the carbon material is preferably 5 parts by mass or more, more preferably 10 parts by mass or more with respect to SiO x : 100 parts by mass, 95 parts by mass or less, and more preferably 90 parts by mass or less.
なお、SiOxは、電池の充放電に伴う体積変化が大きいため、負極活物質には、SiOxと黒鉛とを併用することが好ましい。これにより、SiOxの使用による高容量化を図りつつ、電池の充放電に伴う負極の膨張収縮を抑えて、充放電サイクル特性をより高く維持することが可能となる。 Incidentally, SiO x, because the volume change due to charging and discharging of the battery is large, the negative electrode active material, it is preferable to use a SiO x and graphite. This makes it possible to maintain higher charge / discharge cycle characteristics while suppressing the expansion and contraction of the negative electrode accompanying charge / discharge of the battery while increasing the capacity by using SiO x .
負極活物質にSiOxと黒鉛とを併用する場合、負極活物質全量中におけるSiOxの割合は、SiOxの使用による前記の効果を良好に確保する観点から0.5質量%以上とすることが好ましく、また、SiOxによる負極の膨張収縮を抑制する観点から10質量%以下とすることが好ましい。 When SiO x and graphite are used in combination for the negative electrode active material, the proportion of SiO x in the total amount of the negative electrode active material should be 0.5% by mass or more from the viewpoint of ensuring the above-mentioned effects by using SiO x. preferably, also, it is preferable that the negative electrode of the expansion and shrinkage due to SiO x from the viewpoint of suppressing 10% by mass or less.
負極合剤層に係るバインダには、正極合剤層に使用し得るものとして先に例示した各種バインダと同じものが使用できる。 As the binder for the negative electrode mixture layer, the same binders as those exemplified above as those that can be used for the positive electrode mixture layer can be used.
また、負極合剤層には、必要に応じて導電助剤を含有させてもよい。負極合剤層に係る導電助剤には、正極合剤層に使用し得るものとして先に例示した各種導電助剤と同じものが使用できる。 Moreover, you may make a negative mix layer contain a conductive support agent as needed. As the conductive auxiliary agent related to the negative electrode mixture layer, the same conductive auxiliary agents as those exemplified above as those that can be used for the positive electrode mixture layer can be used.
負極合剤層の組成としては、例えば、負極活物質を80.0〜99.8質量%とし、バインダを0.1〜10質量%とすることが好ましい。また、負極合剤層に導電助剤を含有させる場合には、負極合剤層における導電助剤の量を0.1〜10質量%とすることが好ましい。また、負極合剤層の厚み(集電体の両面に負極合剤層を設ける場合には、集電体の片面あたりの厚み)は、70〜350μmであることが好ましい。 As a composition of a negative mix layer, it is preferable that a negative electrode active material shall be 80.0-99.8 mass%, for example, and a binder shall be 0.1-10 mass%. Moreover, when making a negative mix layer contain a conductive support agent, it is preferable that the quantity of the conductive support agent in a negative mix layer shall be 0.1-10 mass%. Further, the thickness of the negative electrode mixture layer (when the negative electrode mixture layer is provided on both sides of the current collector, the thickness per side of the current collector) is preferably 70 to 350 μm.
負極は、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤などを含有する負極合剤を、溶剤(NMPなどの有機溶剤や水)に分散させて調製した負極合剤含有組成物(ペースト、スラリーなど)を、集電体の片面または両面などに塗布して乾燥し、必要に応じてプレス処理を施す工程を経て製造することができる。 The negative electrode is, for example, a negative electrode mixture-containing composition prepared by dispersing a negative electrode active material, a binder, and, if necessary, a negative electrode mixture containing a conductive additive in a solvent (an organic solvent such as NMP or water). An object (paste, slurry, etc.) can be produced by applying it to one or both sides of a current collector and drying it, and subjecting it to a press treatment as necessary.
本発明の非水二次電池に係るセパレータは、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常の非水二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。セパレータの厚みは、例えば、10〜30μmであることが好ましい。 The separator according to the non-aqueous secondary battery of the present invention has a property that the pores are blocked (that is, a shutdown function) at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower). It is preferable that a separator used in a normal non-aqueous secondary battery, for example, a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. The microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be. The thickness of the separator is preferably 10 to 30 μm, for example.
前記の正極と前記の負極と前記のセパレータとは、正極と負極との間にセパレータを介在させて重ねた積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形態で本発明の非水二次電池に使用することができる。 The positive electrode, the negative electrode, and the separator are formed in the form of a laminated electrode body in which a separator is interposed between the positive electrode and the negative electrode, or a wound electrode body in which the separator is wound in a spiral shape. It can be used for the non-aqueous secondary battery of the invention.
本発明の非水二次電池に係る非水電解質には、例えば、下記の非水系溶媒中に、リチウム塩を溶解させることで調製した溶液(非水電解液)が使用できる。 For the non-aqueous electrolyte according to the non-aqueous secondary battery of the present invention, for example, a solution (non-aqueous electrolyte) prepared by dissolving a lithium salt in the following non-aqueous solvent can be used.
溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ−ブチロラクトン(γ−BL)、1,2−ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン、ジメチルスルフォキシド(DMSO)、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド(DMF)、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を1種単独で、または2種以上を混合した混合溶媒として用いることができる。 Examples of the solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), γ-butyrolactone (γ-BL ), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, dimethyl sulfoxide (DMSO), 1,3-dioxolane, formamide, dimethylformamide (DMF), dioxolane, acetonitrile, nitromethane, Methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative Aprotic organic solvents such as conductors, diethyl ether, and 1,3-propane sultone can be used alone or as a mixed solvent in which two or more are mixed.
非水電解質に係る無機イオン塩としては、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiCF3CO2、Li2C2F4(SO3)2、LiN(CF3SO2)2、LiC(CF3SO2)3、LiCnF2n+1SO3(n≧2)、LiN(RfOSO2)2[ここでRfはフルオロアルキル基]などのリチウム塩から選ばれる少なくとも1種が挙げられる。これらのリチウム塩の電解液中の濃度としては、0.6〜1.8mol/lとすることが好ましく、0.9〜1.6mol/lとすることがより好ましい。 The inorganic ion salt according to the non-aqueous electrolyte, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] At least one selected from the above. The concentration of these lithium salts in the electrolytic solution is preferably 0.6 to 1.8 mol / l, and more preferably 0.9 to 1.6 mol / l.
また、これらの非水電解質に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤を適宜加えることもできる。 In addition, for the purpose of improving the safety, charge / discharge cycleability, and high-temperature storage properties of these nonaqueous electrolytes, vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, Additives such as t-butylbenzene can be added as appropriate.
なお、本発明の非水二次電池に使用する非水電解質は非水電解液であって、25℃における動粘度が、10cSt以下であることが好ましく、5cSt以下であることがより好ましい。このような動粘度を有する非水電解液であれば、正極合剤層を厚くしても、その厚み方向に浸透しやすくなるため、非水二次電池における高出力放電時の容量低下を、より良好に抑制することができる。 The non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention is a non-aqueous electrolyte, and the kinematic viscosity at 25 ° C. is preferably 10 cSt or less, and more preferably 5 cSt or less. If it is a non-aqueous electrolyte solution having such a kinematic viscosity, even if the positive electrode mixture layer is thickened, it becomes easy to penetrate in the thickness direction, so the capacity reduction at the time of high output discharge in the non-aqueous secondary battery, It can suppress more favorably.
なお、非水電解液の動粘度は、例えば、非水電解液用の溶媒を2種以上併用し、これらの粘度と比率とのバランスを調節することで、調整することができる。ただし、非水電解液の動粘度が小さすぎると、良好な電池特性を確保し得るような溶媒組成の非水電解液を得難くなる虞があることから、非水電解液の25℃における動粘度は、1cSt以上であることが好ましく、3cSt以上であることがより好ましい。 The kinematic viscosity of the nonaqueous electrolytic solution can be adjusted, for example, by using two or more solvents for the nonaqueous electrolytic solution in combination and adjusting the balance between the viscosity and the ratio. However, if the non-aqueous electrolyte has a too low kinematic viscosity, it may be difficult to obtain a non-aqueous electrolyte having a solvent composition that can ensure good battery characteristics. The viscosity is preferably 1 cSt or more, and more preferably 3 cSt or more.
本明細書でいう非水電解液の25℃における動粘度は、以下の方法により測定される値である。キャノン-フェンスケ粘度計を用い、恒温層に静置した非水電解液の温度が25℃に達したら、測定を開始する。管を吸引して測時球の上標線より5〜10mm上まで液面を上げた後に、自然流下させて液面が測時球の上下標線間を通過するために要する時間(落下秒数)を測定する。同様の測定を3回以上繰り返し行い、2回の流出時間が0.2%以内で一致したときは、その平均値を用い、下記式を用いて動粘度を算出する。
動粘度(cSt) = 落下秒数×粘度計定数
The kinematic viscosity at 25 ° C. of the non-aqueous electrolyte referred to in the present specification is a value measured by the following method. Using a Canon-Fenske viscometer, the measurement is started when the temperature of the non-aqueous electrolyte placed in the thermostatic layer reaches 25 ° C. After sucking the tube and raising the liquid level to 5-10 mm above the upper gauge line of the time measuring sphere, the time required for the liquid level to naturally flow and pass between the upper and lower marked lines of the time measuring sphere (falling seconds) Number). The same measurement is repeated three times or more. When the two outflow times agree within 0.2%, the kinematic viscosity is calculated using the following formula using the average value.
Kinematic viscosity (cSt) = falling seconds x viscometer constant
前記の式における粘度計定数には、粘度計校正用標準液を用いて恒温水槽内で落下秒数を測り、この時間で標準液の動粘度を除した数値を用いる。 As the viscometer constant in the above equation, a numerical value obtained by measuring the falling seconds in a constant temperature water bath using a viscometer calibration standard solution and dividing the kinematic viscosity of the standard solution by this time is used.
また、非水電解質には、前記の非水電解液に公知のポリマーなどのゲル化剤を添加してゲル状としたもの(ゲル状電解質)を用いてもよい。 Further, as the non-aqueous electrolyte, a gel (gel electrolyte) obtained by adding a gelling agent such as a known polymer to the non-aqueous electrolyte may be used.
本発明の非水二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。 Examples of the form of the non-aqueous secondary battery of the present invention include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
本発明の非水二次電池は、正極合剤層を厚くしても、高出力放電時の容量低下を良好に抑制でき、負荷特性と電池体積あたり容量とが高いレベルでバランスよく確保されていることから、産業機械の電源用途や太陽光発電システム、風力発電システムの蓄電池用途のように、高容量であり、かつ高出力放電が要求される用途をはじめとして、従来から知られている非水二次電池が適用されている各種用途と同じ用途に用いることができる。 The non-aqueous secondary battery of the present invention can satisfactorily suppress the capacity reduction during high output discharge even when the positive electrode mixture layer is thick, and the load characteristics and the capacity per battery volume are ensured in a well-balanced manner. Therefore, it has been known for a long time, including applications that require high output and high capacity, such as power supply applications for industrial machinery, solar power generation systems, and storage battery applications for wind power generation systems. It can be used for the same purposes as various uses to which the water secondary battery is applied.
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。なお、後記の各実施例・比較例における正極合剤層に係るかさ密度(集電体と接する層のかさ密度、および集電体と接する層以外の層のかさ密度)は、以下の方法により求めた。まず、集電体と接する層のかさ密度は、集電体と接する側の層の質量(g)/〔正極合剤層の面積(cm2)×集電体と接する層の厚み(cm)〕の式を用いて算出した。また、集電体と接する層以外の層のかさ密度は、〔正極合剤層の質量(g)−集電体と接する層の質量(g)〕/〔正極合剤層の面積(cm2)×集電体と接する層以外の層の厚み(cm)〕の式を用いて算出した。なお、集電体と接する層の質量は、集電体と接する層の形成前の集電体の質量を測定しておき、集電体と接する層の形成後に全体の質量を測定し、集電体の質量を引くことにより求めた。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention. In addition, the bulk density (the bulk density of the layer in contact with the current collector and the bulk density of the layers other than the layer in contact with the current collector) related to the positive electrode mixture layer in each of Examples and Comparative Examples described later is as follows. Asked. First, the bulk density of the layer in contact with the current collector is the mass of the layer in contact with the current collector (g) / [area of the positive electrode mixture layer (cm 2 ) × the thickness of the layer in contact with the current collector (cm) ] Was calculated using the formula. The bulk density of the layers other than the layer in contact with the current collector is [mass of positive electrode mixture layer (g) −mass of layer in contact with current collector (g)] / [area of positive electrode mixture layer (cm 2 ) × thickness of layers other than the layer in contact with the current collector (cm)]. The mass of the layer in contact with the current collector is measured by measuring the mass of the current collector before forming the layer in contact with the current collector, and measuring the total mass after forming the layer in contact with the current collector. It was determined by subtracting the mass of the electric body.
実施例1
<正極の作製>
正極活物質であるマンガン酸リチウム(LiMn2O4):74質量%およびLiNi0.8Co0.15Al0.05O2:19質量%、導電助剤であるアセチレンブラック:3.5質量%、並びにバインダであるPVDF:3.2質量%およびPVP:0.3質量%からなる正極合剤に、適量のNMPを添加し、プラネタリ―ミキサーを用いて混合・分散を行い、正極合剤含有スラリーを調製した。このスラリーを、厚みが13μmのアルミニウム箔の片面に一定厚みで塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、ロールプレス機を用いて線圧90kgf/cmでプレス処理を施して、厚みが45μm、空孔率が27%、かさ密度が2.95g/cm3の層(集電体と接する層)を集電体の片面に形成した。
Example 1
<Preparation of positive electrode>
Lithium manganate (LiMn 2 O 4 ) as a positive electrode active material: 74% by mass and LiNi 0.8 Co 0.15 Al 0.05 O 2 : 19% by mass, acetylene black as a conductive auxiliary agent: 3.5% by mass % And a binder of PVDF: 3.2 mass% and PVP: 0.3 mass%, an appropriate amount of NMP is added, and mixed and dispersed using a planetary mixer. A containing slurry was prepared. This slurry was applied to one side of an aluminum foil having a thickness of 13 μm at a constant thickness, dried at 85 ° C., and then vacuum dried at 100 ° C. Thereafter, a press process is performed using a roll press machine at a linear pressure of 90 kgf / cm, and a layer having a thickness of 45 μm, a porosity of 27%, and a bulk density of 2.95 g / cm 3 (a layer in contact with the current collector) Was formed on one side of the current collector.
集電体の片面に形成した前記の層の表面に、前記の正極合剤含有スラリーを一定厚みで塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、ロールプレス機を用いて線圧30kgf/cmでプレス処理を施して、厚みが38μm、空孔率が41%、かさ密度が2.38g/cm3の層(集電体と接する層以外の層)を形成して、2層構造の正極合剤層を集電体の片面に有する正極を得た。更に、この正極を、正極合剤層の面積が30mm×30mmとなるように裁断した。 The positive electrode mixture-containing slurry was applied to the surface of the layer formed on one side of the current collector at a constant thickness, dried at 85 ° C, and then vacuum dried at 100 ° C. After that, a roll press machine was used to perform press processing at a linear pressure of 30 kgf / cm, and a layer having a thickness of 38 μm, a porosity of 41%, and a bulk density of 2.38 g / cm 3 (other than the layer in contact with the current collector) The positive electrode having a two-layered positive electrode mixture layer on one side of the current collector was obtained. Furthermore, this positive electrode was cut so that the area of the positive electrode mixture layer was 30 mm × 30 mm.
<負極の作製>
負極活物質である天然黒鉛:48質量%および人造黒鉛:48質量%、並びにバインダであるCMC:2.0質量%およびSBR:2.0質量%からなる負極合剤に、適量の水を添加し、十分に混合して負極合剤含有スラリーを調製した。このスラリーを、厚みが7μmの銅箔の片面に一定厚みで塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、プレス処理を施して厚みが70μmの負極合剤層を集電体の片面に有する負極を得た。更に、この負極を、負極合剤層の面積が35mm×35mmとなるように裁断した。
<Production of negative electrode>
Add appropriate amount of water to negative electrode mixture consisting of natural graphite as negative electrode active material: 48 mass% and artificial graphite: 48 mass%, and binder as CMC: 2.0 mass% and SBR: 2.0 mass% And thoroughly mixed to prepare a negative electrode mixture-containing slurry. This slurry was applied to one side of a copper foil having a thickness of 7 μm at a constant thickness, dried at 85 ° C., and then vacuum dried at 100 ° C. Thereafter, press treatment was performed to obtain a negative electrode having a negative electrode mixture layer having a thickness of 70 μm on one side of the current collector. Furthermore, this negative electrode was cut so that the area of the negative electrode mixture layer was 35 mm × 35 mm.
<電池の組み立て>
裁断後の前記正極と前記負極とを、PE製微多孔膜セパレータ(厚み18μm)を介して重ね合わせて積層電極体とし、この積層電極体を、90mm×160mmのアルミニウムラミネートシート外装体に収容した。続いて、非水電解質(体積比がEC:DEC=3:7の混合溶媒に、LiPF6を1.2mol/l濃度で溶解させた溶液、25℃における動粘度が4.2cSt)を外装体内に1ml注入した後、外装体を封止して、ラミネート形非水二次電池を得た。このラミネート形非水二次電池の設計容量は、21mAhである(後記の全ての実施例および比較例のラミネート形非水二次電池も同様である)。
<Battery assembly>
The positive electrode and the negative electrode after cutting are overlapped via a PE microporous membrane separator (thickness 18 μm) to form a laminated electrode body, and this laminated electrode body is accommodated in an aluminum laminate sheet exterior body of 90 mm × 160 mm. . Subsequently, a non-aqueous electrolyte (a solution obtained by dissolving LiPF6 at a concentration of 1.2 mol / l in a mixed solvent having a volume ratio of EC: DEC = 3: 7, a kinematic viscosity at 25 ° C. of 4.2 cSt) in the outer package. After injecting 1 ml, the outer package was sealed to obtain a laminated nonaqueous secondary battery. The design capacity of this laminated non-aqueous secondary battery is 21 mAh (the same applies to the laminated non-aqueous secondary batteries of all examples and comparative examples described later).
実施例2、3および比較例1、2
正極合剤層に係る集電体と接する層の形成時における正極合剤含有スラリーの塗布量やプレス処理時の線圧、および集電体と接する層以外の層の形成時における正極合剤含有スラリーの塗布量やプレス処理時の線圧を変更して、表1に示す構成の正極合剤層を形成した以外は実施例1と同様にして正極を作製し、これらの正極を用いた以外は実施例1と同様にしてラミネート形非水二次電池を作製した。
Examples 2 and 3 and Comparative Examples 1 and 2
The amount of the positive electrode mixture-containing slurry applied during the formation of the layer in contact with the current collector layer, the linear pressure during the press treatment, and the positive electrode mixture contained in the formation of layers other than the layer in contact with the current collector A positive electrode was produced in the same manner as in Example 1 except that the amount of slurry applied and the linear pressure during the press treatment were changed to form a positive electrode mixture layer having the structure shown in Table 1, and these positive electrodes were used. Produced a laminated nonaqueous secondary battery in the same manner as in Example 1.
実施例4
負極活物質を、SiO表面を炭素材料で被覆した複合体(SiOの平均粒子径が5μm、複合体における炭素材料の量が15質量%):4質量%、天然黒鉛:46質量%および人造黒鉛46質量%に変更した以外は、実施例1と同様に調製した負極合剤含有スラリーを使用し、実施例1と同様にして、負極合剤層の厚みが59μmの負極を作製した。そして、この負極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
Example 4
Composite having negative electrode active material coated with carbon material on SiO surface (average particle diameter of SiO is 5 μm, amount of carbon material in composite is 15% by mass): 4% by mass, natural graphite: 46% by mass, and artificial graphite A negative electrode mixture-containing slurry prepared in the same manner as in Example 1 was used except that the content was changed to 46% by mass, and a negative electrode having a negative electrode mixture layer thickness of 59 μm was prepared in the same manner as in Example 1. A laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
比較例3
実施例1で用いたものと同じ正極合剤含有スラリーを、厚みが13μmのアルミニウム箔の片面に、一定厚みとなるように、かつ乾燥後の正極合剤層の量が20mg/cm2となるように1回だけ塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、ロールプレス機を用いて線圧30kgf/cmでプレス処理を施して、厚みが95μm、空孔率が41%、かさ密度が2.38g/cm3で、単層構造の正極合剤層を片面に有する正極を得た。そして、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
Comparative Example 3
The same positive electrode mixture-containing slurry as used in Example 1 is formed to have a constant thickness on one surface of an aluminum foil having a thickness of 13 μm, and the amount of the positive electrode mixture layer after drying is 20 mg / cm 2. Thus, it was applied only once, dried at 85 ° C., and then vacuum dried at 100 ° C. Thereafter, a press treatment was performed using a roll press machine at a linear pressure of 30 kgf / cm, a thickness of 95 μm, a porosity of 41%, a bulk density of 2.38 g / cm 3 , and a positive electrode mixture layer having a single layer structure Was obtained on one side. A laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
比較例4〜6
正極合剤含有スラリーの塗布量やプレス処理時の線圧を変更した以外は比較例1と同様にして、表1に示す構成の単層構造の正極合剤層を片面に有する正極を作製し、これらの正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
Comparative Examples 4-6
A positive electrode having a single-layered positive electrode mixture layer having the structure shown in Table 1 on one side was prepared in the same manner as in Comparative Example 1 except that the coating amount of the positive electrode mixture-containing slurry and the linear pressure during the press treatment were changed. A laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that these positive electrodes were used.
比較例7
正極合剤層に係る集電体と接する層の形成時における正極合剤含有スラリーの塗布量やプレス処理時の線圧、および集電体と接する層以外の層の形成時における正極合剤含有スラリーの塗布量やプレス処理時の線圧を変更して、表1に示す構成の正極合剤層を形成した以外は実施例4と同様にして正極を作製し、これらの正極を用いた以外は実施例4と同様にしてラミネート形非水二次電池を作製した。
Comparative Example 7
The amount of the positive electrode mixture-containing slurry applied during the formation of the layer in contact with the current collector layer, the linear pressure during the press treatment, and the positive electrode mixture contained in the formation of layers other than the layer in contact with the current collector A positive electrode was produced in the same manner as in Example 4 except that the amount of slurry applied and the linear pressure during the press treatment were changed to form a positive electrode mixture layer having the structure shown in Table 1, and these positive electrodes were used. Produced a laminated nonaqueous secondary battery in the same manner as in Example 4.
実施例および比較例のラミネート形非水二次電池について、下記の各評価を行った。 Each of the following evaluations was performed on the laminated nonaqueous secondary batteries of Examples and Comparative Examples.
<正極の体積あたりの容量の計算>
0.2Cの電流値(4mA)で4.2Vまで定電流充電を行った後、電流値が0.4mAになるまで4.2Vで定電圧充電する充電を行った後、0.2Cの電流値(4mA)で2.5Vまで定電流放電を行った時の放電容量を電池容量とした。正極の体積は、正極合剤層の面積(cm2)×正極合剤層の厚み(cm)の式を用いて計算した(すなわち、ここでいう「正極の体積」とは、正極合剤層の体積を意味している)。そして、電池容量を正極の体積で除して、正極の体積あたりの容量を求めた。また、得られた正極の体積あたりの容量から、電池体積あたりの容量も算出した。
<Calculation of capacity per volume of positive electrode>
After charging with constant current up to 4.2V at a current value of 0.2C (4mA) and then charging with constant voltage charging at 4.2V until the current value reaches 0.4mA, The discharge capacity when the constant current discharge was performed up to 2.5 V at a value (4 mA) was defined as the battery capacity. The volume of the positive electrode was calculated using the formula of the area of the positive electrode mixture layer (cm 2 ) × the thickness of the positive electrode mixture layer (cm) (that is, “the volume of the positive electrode” here is the positive electrode mixture layer) Means the volume). Then, the capacity per unit volume of the positive electrode was determined by dividing the battery capacity by the volume of the positive electrode. Moreover, the capacity per battery volume was also calculated from the capacity per volume of the positive electrode obtained.
<負荷特性評価(高出力放電時の容量測定)>
実施例および比較例の各電池について、1Cの電流値(20mA)で4.2Vまで定電流充電を行った後、電流値が2mAになるまで4.2Vで定電圧充電する充電と、その後に所定条件でする放電とを行う一連の操作を1サイクルとして、4サイクルの充放電を行った。なお、放電は、1サイクル目の電流値を1C(20mA)、2サイクル目の電流値を2C(40mA)、3サイクル目の電流値を3C(60mA)、および4サイクル目の電流値を5C(100mA)とし、それぞれ2.5Vになるまで行い、それぞれの電流値での放電容量(正極活物質の質量あたりの容量)を求めた。
<Evaluation of load characteristics (capacity measurement during high power discharge)>
About each battery of an Example and a comparative example, after performing the constant current charge to 4.2V with the electric current value (20mA) of 1C, the charge which carries out constant voltage charge with 4.2V until an electric current value will be 2mA, and after that A series of operations for performing discharging under a predetermined condition is defined as one cycle, and charging / discharging for 4 cycles was performed. In addition, the current value of the first cycle is 1 C (20 mA), the current value of the second cycle is 2 C (40 mA), the current value of the third cycle is 3 C (60 mA), and the current value of the fourth cycle is 5 C. The discharge capacity (capacity per mass of the positive electrode active material) at each current value was determined.
実施例および比較例の電池に使用した正極に係る正極合剤層(それを構成する各層)の構成を表1に示し、実施例および比較例の電池の前記評価結果を表2に示す。 Table 1 shows the structure of the positive electrode mixture layer (each layer constituting the positive electrode mixture layer) relating to the positive electrode used in the batteries of Examples and Comparative Examples, and Table 2 shows the evaluation results of the batteries of Examples and Comparative Examples.
表1および表2に示す通り、集電体と接する層およびそれ以外の層を有し、各層の構成を適正にした正極合剤層を有する正極を用いた実施例1〜4の非水二次電池は、正極合剤層に係る集電体と接する層およびそれ以外の層の厚みが不適な正極合剤層を有する正極を用いた比較例1、2の電池に比べて、放電電流を大きくした高出力放電時においても容量の低下が抑制できている。 As shown in Table 1 and Table 2, the non-aqueous two of Examples 1 to 4 using a positive electrode having a positive electrode mixture layer having a layer in contact with the current collector and other layers and having an appropriate structure of each layer The secondary battery has a discharge current as compared with the batteries of Comparative Examples 1 and 2 using a positive electrode having a positive electrode mixture layer that is in contact with the current collector of the positive electrode mixture layer and the other layers having an inappropriate thickness. The decrease in capacity can be suppressed even at the time of the increased high output discharge.
なお、本発明では、比較例4の電池を、厚みの大きな単層構造の正極合剤層を有する正極を備えつつ、負荷特性(高出力放電時の容量が大きいこと)と電池体積あたりの容量とが良好なバランスで確保されているものと位置づけ、この電池よりも前記の両特性を高いレベルで両立させることを目標としているが、実施例1〜4の電池は、負荷特性、正極の体積あたりの容量いずれもが、比較例4の電池よりも優れており、負荷特性と電池体積あたりの容量とが非常に高いレベルでバランスよく確保できているといえる。 In the present invention, the battery of Comparative Example 4 is provided with a positive electrode having a positive electrode mixture layer having a large single layer structure, while having load characteristics (large capacity during high output discharge) and capacity per battery volume. Is intended to ensure both of the above characteristics at a higher level than this battery, but the batteries of Examples 1 to 4 have load characteristics, positive electrode volume. Each of the per capacities is superior to the battery of Comparative Example 4, and it can be said that the load characteristics and the capacity per battery volume are secured in a very high level with a good balance.
また、実施例1〜4の電池は、例えば、現状の産業機械用電池に要求される2C相当の電流値での放電の場合にも、1C相当の電流値での放電容量に対して97%を超える容量が維持されており、高出力放電が要求される用途に好適であるといえる。 The batteries of Examples 1 to 4 are 97% of the discharge capacity at a current value equivalent to 1 C, for example, even when discharging at a current value equivalent to 2 C required for the current industrial machine battery. Therefore, it can be said that it is suitable for applications requiring high output discharge.
一方、空孔率を大きくして非水電解質の浸透性を高めた単層構造の正極合剤層を有する比較例3の電池も、高出力放電時においても容量の低下は抑制できているが、正極の電池体積あたりの容量が低い。また、空孔率を小さくして正極活物質の充填量を高めた比較例5、6の電池は、高出力放電時における容量が低下している。 On the other hand, the battery of Comparative Example 3 having a positive electrode mixture layer having a single layer structure in which the porosity is increased and the permeability of the nonaqueous electrolyte is increased can suppress the decrease in capacity even during high-power discharge. The capacity per battery volume of the positive electrode is low. Moreover, the capacity | capacitance at the time of high output discharge has fallen in the battery of the comparative examples 5 and 6 which made the porosity low and increased the filling amount of the positive electrode active material.
また、負極活物質に、SiO(SiOと炭素材料との複合体)を用いた実施例4の電池は、黒鉛のみを負極活物質とする実施例1〜3の電池に比べて、高出力放電時における容量が特に高く、より優れた負荷特性を有している。 In addition, the battery of Example 4 using SiO (a composite of SiO and a carbon material) as the negative electrode active material had a higher output discharge than the batteries of Examples 1 to 3 using only graphite as the negative electrode active material. The capacity at the time is particularly high and has better load characteristics.
10 正極
20、21 正極合剤層
20a、21a 集電体と接する層
20b、21b 集電体と接する層以外の層
30 集電体
10
Claims (4)
前記正極は、集電体の少なくとも片面に、活物質を含有する正極合剤層を有しており、
前記正極合剤層は、片面の厚み(A)が70μm以上120μm未満で、空孔率が異なる複数の層を厚み方向に有しており、
前記複数の層のうち、集電体と接する層は、片面の厚み(B)が60μm以下で、空孔率が15〜34%であり、かつ(B)>(A)/2の関係を満たしており、
前記複数の層のうち、集電体と接する層以外の層は、空孔率が39〜45%であることを特徴とする非水二次電池。 A non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
The positive electrode has a positive electrode mixture layer containing an active material on at least one side of a current collector,
The positive electrode mixture layer has a thickness (A) on one side of 70 μm or more and less than 120 μm, and has a plurality of layers with different porosity in the thickness direction,
Of the plurality of layers, the layer in contact with the current collector has a single-sided thickness (B) of 60 μm or less, a porosity of 15 to 34%, and a relationship of (B)> (A) / 2. Meets
The non-aqueous secondary battery, wherein a layer other than the layer in contact with the current collector among the plurality of layers has a porosity of 39 to 45%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012000321A JP2013140714A (en) | 2012-01-05 | 2012-01-05 | Nonaqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012000321A JP2013140714A (en) | 2012-01-05 | 2012-01-05 | Nonaqueous secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013140714A true JP2013140714A (en) | 2013-07-18 |
Family
ID=49037986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012000321A Withdrawn JP2013140714A (en) | 2012-01-05 | 2012-01-05 | Nonaqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013140714A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015037008A (en) * | 2013-08-12 | 2015-02-23 | トヨタ自動車株式会社 | Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same |
JP2015156259A (en) * | 2014-02-19 | 2015-08-27 | 株式会社日本触媒 | lithium ion secondary battery |
JP2018085177A (en) * | 2016-11-21 | 2018-05-31 | トヨタ自動車株式会社 | Method for manufacturing mass of granulated material, method for manufacturing electrode plate, and method for manufacturing battery |
JP2018198132A (en) * | 2017-05-23 | 2018-12-13 | 本田技研工業株式会社 | Cathode for lithium ion secondary battery and lithium ion secondary battery employing the same |
WO2019207934A1 (en) * | 2018-04-25 | 2019-10-31 | パナソニックIpマネジメント株式会社 | Positive electrode and secondary battery |
CN110495035A (en) * | 2017-03-31 | 2019-11-22 | 株式会社村田制作所 | Lithium ion secondary battery |
-
2012
- 2012-01-05 JP JP2012000321A patent/JP2013140714A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015037008A (en) * | 2013-08-12 | 2015-02-23 | トヨタ自動車株式会社 | Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same |
JP2015156259A (en) * | 2014-02-19 | 2015-08-27 | 株式会社日本触媒 | lithium ion secondary battery |
JP2018085177A (en) * | 2016-11-21 | 2018-05-31 | トヨタ自動車株式会社 | Method for manufacturing mass of granulated material, method for manufacturing electrode plate, and method for manufacturing battery |
US10897036B2 (en) | 2016-11-21 | 2021-01-19 | Toyota Jidosha Kabushiki Kaisha | Method of producing granular aggregate, method of producing electrode plate, and method of producing battery |
CN110495035A (en) * | 2017-03-31 | 2019-11-22 | 株式会社村田制作所 | Lithium ion secondary battery |
CN110495035B (en) * | 2017-03-31 | 2022-07-08 | 株式会社村田制作所 | Lithium ion secondary battery |
JP2018198132A (en) * | 2017-05-23 | 2018-12-13 | 本田技研工業株式会社 | Cathode for lithium ion secondary battery and lithium ion secondary battery employing the same |
WO2019207934A1 (en) * | 2018-04-25 | 2019-10-31 | パナソニックIpマネジメント株式会社 | Positive electrode and secondary battery |
JPWO2019207934A1 (en) * | 2018-04-25 | 2021-04-30 | パナソニックIpマネジメント株式会社 | Positive electrode and secondary battery |
US11811053B2 (en) | 2018-04-25 | 2023-11-07 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode and secondary battery |
JP7432850B2 (en) | 2018-04-25 | 2024-02-19 | パナソニックIpマネジメント株式会社 | Positive electrode and secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5216936B1 (en) | ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM ION SECONDARY BATTERY | |
JP6253411B2 (en) | Lithium secondary battery | |
CN107210424B (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2015111710A1 (en) | Non-aqueous secondary battery | |
JP6279233B2 (en) | Lithium secondary battery | |
CN105280880B (en) | Positive electrode for nonaqueous electrolyte secondary battery, and system thereof | |
JP2012190625A (en) | Nonaqueous secondary battery | |
JP5872055B2 (en) | Lithium secondary battery pack, electronic device using the same, charging system and charging method | |
JPWO2012036127A1 (en) | Non-aqueous secondary battery | |
KR20140013885A (en) | Lithium ion secondary battery | |
JP2013062105A (en) | Lithium ion secondary battery | |
WO2015041167A1 (en) | Non-aqueous secondary battery | |
JP2013229307A (en) | Nonaqueous electrolyte solution and lithium ion secondary battery | |
JP2013145669A (en) | Nonaqueous electrolyte secondary battery | |
JP5836933B2 (en) | Method for producing positive electrode mixture-containing composition and method for producing non-aqueous secondary battery | |
JP2015088465A (en) | Nonaqueous electrolyte secondary battery | |
JP2013140714A (en) | Nonaqueous secondary battery | |
JP2012138322A (en) | Nonaqueous secondary battery | |
JP2014007010A (en) | Lithium secondary battery | |
JP2016167352A (en) | Lithium ion secondary battery | |
WO2017188021A1 (en) | Electrochemical element electrode and lithium ion secondary battery | |
US20140087260A1 (en) | Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery system | |
TWI622199B (en) | Lithium secondary battery | |
JP2015095320A (en) | Lithium ion secondary battery and using method thereof | |
WO2012124015A1 (en) | Non-aqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20130805 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130805 |