JP2013027972A - Square end mill - Google Patents
Square end mill Download PDFInfo
- Publication number
- JP2013027972A JP2013027972A JP2012054828A JP2012054828A JP2013027972A JP 2013027972 A JP2013027972 A JP 2013027972A JP 2012054828 A JP2012054828 A JP 2012054828A JP 2012054828 A JP2012054828 A JP 2012054828A JP 2013027972 A JP2013027972 A JP 2013027972A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- outer peripheral
- curvature
- radius
- cutting edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Milling Processes (AREA)
Abstract
Description
本発明は、工作機械等で有用な、刃形を改良した新規で高性能なスクエアエンドミルに関するものであり、特に溶着しやすくかつ材料硬度の高い被削性の悪い金型などの切削加工に有用なスクエアエンドミルに関するものである。 The present invention relates to a new and high-performance square end mill with an improved blade shape that is useful for machine tools and the like, and is particularly useful for cutting a mold that is easy to weld and has high material hardness and poor machinability. It relates to a square end mill.
エンドミルをはじめとした硬質皮膜被覆工具は、金型加工や部品加工などにおいて広く一般的に使用されている。一方、削られる方の被削材に関しては、金型として、また部品としての性能改良が進んでいる。例えば、プラスチック金型材料においては、射出成型の際に、ショット数が多くなってくると、金型に割れが発生し、金型に修正が必要になる。その金型割れの発生までの時間を延ばすための改良が成されており、今までの金型としての強度は保ちつつ、材料自体に靭性を持たせる傾向にある。つまり、HPM−MAGIC(登録商標)などのような高硬度と高靭性とを兼ね備えた金属材料が一般的になってきている。また部品加工で言えば、軽量且つ強度が高いものが求められており、強い衝撃に対しても充分耐えうるような材料が開発されている。 Hard film coated tools such as end mills are widely used in mold processing and parts processing. On the other hand, with respect to the work material to be cut, performance improvement as a mold and as a part is progressing. For example, in the case of plastic mold materials, if the number of shots increases during injection molding, cracks occur in the mold, and the mold needs to be corrected. Improvements have been made to extend the time until the occurrence of cracking of the mold, and the material itself tends to have toughness while maintaining its strength as a conventional mold. That is, a metal material having both high hardness and high toughness such as HPM-MAGIC (registered trademark) has become common. In terms of parts processing, lightweight and high-strength materials are required, and materials that can sufficiently withstand strong impacts have been developed.
また、一般的な工作機械を用いた切削加工においては、工具本体が回転し、工具の刃先稜線が被削材を塑性変形させて、切屑をせん断させ排出していく。その際、せん断された切屑は工具のすくい面を介して排出され、逃げ面は被削材を擦りながら進むため逃げ面の擦れによって仕上面を形成していく。しかしながら、前述したような近年開発されたプラスチック金型材料のような高硬度と高靭性とを兼ね備えた金属材料での金型加工の切削や部品加工の切削においては、すくい面と逃げ面から形成される稜線部から硬質皮膜が剥離を起こしたり、切削の衝撃による稜線部のチッピングが起こるといった問題が発生する。特にスクエアエンドミルにおいては、底刃と外周刃とのつなぎ部に角部が形成されるために、稜線部のチッピングが生じやすい傾向にある。 In cutting using a general machine tool, the tool body rotates, and the cutting edge ridge line of the tool plastically deforms the work material to shear and discharge chips. At that time, the sheared chips are discharged through the rake face of the tool, and the flank proceeds while rubbing the work material, so that the finished surface is formed by rubbing the flank. However, it is formed from the rake face and the flank surface in the cutting of molds and parts by metal materials that have both high hardness and high toughness, such as the recently developed plastic mold materials as mentioned above. There arises a problem that the hard film peels off from the ridge line portion to be formed, or chipping of the ridge line portion due to the impact of cutting occurs. In particular, in a square end mill, a corner portion is formed at the connecting portion between the bottom blade and the outer peripheral blade, so that the ridge line portion tends to be chipped.
これらの問題に対して、特に耐チッピング性を向上する目的や、刃先の強度を向上するために、いくつかの提案がなされている。
特許文献1には、エンドミル本体の先端側から後端側に向かうに従って、切刃のすくい面と逃げ面との境界部に位置する円弧の曲率半径が連続的に小さくなるようなホーニングが施されたスクエアエンドミルが記載されている。
特許文献2には、工具基端側に刃先の曲率半径を大きくとった強化部を設けたスローアウェイチップが記載されている。
さらに、特許文献3には、被覆後に切刃部分のすくなくとも皮膜の一部を除去したスクエアエンドミルが記載されている。
また特許文献4には、切れ刃部のごく先端部に刃先処理を施し、刃先稜線近傍のすくい面と逃げ面に面取りを施したピンカド型のスクエアエンドミルが記載されている。
In order to improve the chipping resistance and the strength of the cutting edge, several proposals have been made for these problems.
In
Furthermore,
しかしながら、従来提案され実用化されているものでは、長い突き出し量の状態での底刃を主に切削を行う等高線切削や、軸方向の切り込みを大きくした場合の側面切削、また高能率加工を行ったときの工具の耐チッピング性が確保されなかったりしたために、長時間の切削において、安定した摩耗状態と加工面状態を維持することに充分に対応できずに問題が残っていた。 However, the ones that have been proposed and put to practical use perform contour cutting that mainly cuts the bottom blade with a long protruding amount, side cutting when the axial cut is large, and high-efficiency machining. Since the chipping resistance of the tool at that time was not ensured, there was a problem that it was not possible to sufficiently cope with maintaining a stable wear state and a machined surface state in long-time cutting.
特許文献1に記載のスクエアエンドミルは、エンドミルの先端側から後端側にかけて、外周刃における稜線の曲率半径が連続的に小さくなる構成であるため、エンドミルの先端側におけるチッピングの抑制が可能な程度に先端側の曲率半径を大きくした場合、エンドミルの先端側の切れ味が確保できなくなるため、軸方向の切り込みを大きくした場合の側面切削をした際にびびり振動が発生し、外周刃におけるエンドミルの後端側にチッピングが発生してしまう。
The square end mill described in
特許文献2に記載のスローアウェイチップは、工具基端側に刃先の曲率半径を大きくとった強化部を設けているため、工具基端側に設けられた強化部での切削において切削抵抗が急激に上昇し、びびり振動が発生してしまう問題が生じる。
The throw-away tip described in
特許文献3に記載のスクエアエンドミルは、外周刃全体にわたって切れ味が悪くなり、チッピングやびびり振動が発生しやすくなるという問題がある。
The square end mill described in
また、特許文献4においては、切れ刃のごく先端部に刃先処理を施したピンカド型のスクエアエンドミルであるため、後端部の切れ刃は刃先処理を施されていないシャープエッジのままである。そのため、切れ刃において刃先処理を施した先端部と、刃先処理を施されていない後端部との境界で急激な段差が生じ、その境界部において、チッピングが発生しやすくなるという問題がある。
Moreover, in
スクエアエンドミルの切削では、コーナ部にもっとも大きな負荷がかかり、かつ、振動の影響が最も起こるのでチッピングが発生しやすくなる。また側面削りの場合だけではなく、等高線加工の場合もこの問題は同様である。使用する側としては、同じ工具でもチッピングを起こすタイミングは振動の具合によっても様々であり、工具の寿命管理を行うことは難しい。特に溶着しやすいような材料の切削を行う場合、安定してチッピングを起さない状態で削ることはさらに難易度が上がる。 In the cutting of the square end mill, the largest load is applied to the corner portion and the influence of vibration occurs most, so that chipping is likely to occur. This problem is similar not only in the case of side milling but also in the case of contour line machining. As for the use side, the timing at which chipping occurs even in the same tool varies depending on the state of vibration, and it is difficult to manage the tool life. In particular, when cutting a material that is easily welded, it is more difficult to cut the material stably without causing chipping.
上述したように、特に溶着しやすく、かつ材料硬度の高い被削性の悪い材料をチッピングを起こさずに安定して加工するための切削工具として、超硬合金を基材としたスクエアエンドミルが種々提案され実用化されている。しかし、等高線加工や浅い溝切削の安定性が向上するような刃先稜線形状のスクエアエンドミルは実現されていないため、長時間の切削、または、複数本の評価において、寿命がばらつき、安定した摩耗状態と加工面状態を維持することに充分に対応できずに問題が残っていた。 As mentioned above, there are various square end mills based on cemented carbide as cutting tools for stable processing of materials that are particularly easy to weld and have high material hardness and poor machinability without causing chipping. Proposed and put to practical use. However, since a square end mill with a cutting edge ridge shape that improves the stability of contour processing and shallow groove cutting has not been realized, the life varies with long-term cutting or multiple evaluations, and stable wear conditions However, it was not possible to sufficiently cope with maintaining the machined surface condition, and the problem remained.
本発明は、長時間切削や複数本の切削でも、チッピングなく安定して切削加工ができ、かつ、初期から良好な仕上げ加工面を得ることができるスクエアエンドミルを提供することを目的とするものである。 An object of the present invention is to provide a square end mill that can stably perform cutting without chipping even during long-time cutting or multiple cutting, and that can obtain a good finished surface from the beginning. is there.
スクエアエンドミルで等高線仕上げ加工する場合は、切削初期から長時間加工してもコーナ部がチッピングを起こさず、加工面の面粗さの変化が小さい高品位な加工面を維持できることが望まれる。したがって、最も切削負荷が掛かるコーナ部を主に底刃および外周刃に最適な刃先稜線の曲率半径を検討する必要がある。具体的にはスクエアエンドミルの各箇所に合った最適な刃先稜線の曲率を適用する必要がある。 When contour finishing is performed with a square end mill, it is desirable that the corner portion does not cause chipping even after long-time machining from the beginning of cutting, and that it is possible to maintain a high-quality machined surface with a small change in surface roughness of the machined surface. Therefore, it is necessary to consider the radius of curvature of the edge of the cutting edge that is most suitable for the bottom edge and the outer peripheral edge mainly at the corner where the cutting load is most applied. Specifically, it is necessary to apply the optimum curvature of the edge of the cutting edge suitable for each part of the square end mill.
これらを解決させるため、本発明は、工具寿命の安定化や高品位な加工面を長時間維持できるようなスクエア刃の逃げ面とすくい面との交差部の刃先稜線の曲率をスクエアエンドミルの各箇所で検討したのである。 In order to solve these problems, the present invention provides the curvature of the edge edge line of the intersection of the flank and rake face of the square blade that can stabilize the tool life and maintain a high-quality machining surface for a long time. It was examined in places.
すなわち第1の本発明は、複数の底刃及び外周刃を有するスクエアエンドミルであって、外周刃の先端側には、前記外周刃の逃げ面と前記外周刃のすくい面より形成される稜線の曲率半径が大きい先端切れ刃部が設けられ、外周刃の後端側には、前記曲率半径が小さい後端切れ刃部が設けられており、それぞれの外周刃における外周刃の逃げ面と外周刃のすくい面は、それぞれ1つの曲面により形成されていることを特徴としたスクエアエンドミルである。 That is, the first aspect of the present invention is a square end mill having a plurality of bottom blades and outer peripheral blades, and a ridge line formed by a flank surface of the outer peripheral blades and a rake face of the outer peripheral blades on the distal end side of the outer peripheral blades. A cutting edge portion having a large curvature radius is provided, and a rear edge cutting edge portion having a small curvature radius is provided on the rear end side of the outer peripheral blade. The rake face is a square end mill characterized in that each rake face is formed by one curved surface.
第2の本発明は、第1の本発明において、先端切れ刃部の長さが底刃と外周刃のつなぎ目から刃径の30%までの領域であることを特徴としたスクエアエンドミルである。 According to a second aspect of the present invention, in the first aspect of the present invention, the length of the tip cutting edge portion is a region from the joint of the bottom blade and the outer peripheral blade to 30% of the blade diameter.
第3の本発明は、第1または第2の本発明において、先端切れ刃部の曲率半径R1が2μm以上4μm以下、後端切れ刃部の曲率半径R2が1μm以上3μm以下であることを特徴としたエンドミルである。 The third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the curvature radius R1 of the tip cutting edge portion is 2 μm or more and 4 μm or less, and the curvature radius R2 of the trailing edge cutting edge portion is 1 μm or more and 3 μm or less. End mill.
第4の本発明は、第1乃至第3のいずれかの本発明において、前記底刃のうち、工具軸から刃径の25%の位置までを形成している内周切れ刃部の曲率半径Raが1μm以上2μm以下、かつ前記底刃のうち、外周から刃径の25%の位置までを形成している外周切れ刃部の曲率半径Rbが4μm以上6μm以下で形成されることを特徴としたエンドミルである。 The fourth aspect of the present invention is the curvature radius of the inner peripheral cutting edge portion that forms from the tool axis to a position of 25% of the blade diameter in the bottom blade in any one of the first to third aspects of the present invention. Ra is 1 μm or more and 2 μm or less, and the curvature radius Rb of the outer peripheral cutting edge portion forming from the outer periphery to the position of 25% of the blade diameter of the bottom blade is 4 μm or more and 6 μm or less. End mill.
第5の本発明は、第1乃至第4のいずれかの本発明において、複数の底刃及び外周刃を有する刃部と、前記刃部よりも直径が大きいシャンク部と、前記刃部と前記シャンク部を接続する首部から構成されることを特徴とするスクエアエンドミルである。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, a blade portion having a plurality of bottom blades and an outer peripheral blade, a shank portion having a diameter larger than the blade portion, the blade portion, It is a square end mill characterized by being comprised from the neck part which connects a shank part.
本発明を適用することにより、長い突き出し量の状態での軸方向の切り込みを大きくした場合の側面切削においても、外周刃全域でのチッピングの発生が抑制ができ、びびり振動が無く安定した切削加工が可能となる。 By applying the present invention, it is possible to suppress the occurrence of chipping in the entire outer peripheral edge even in side cutting when the axial cut in the state of a long protruding amount is increased, and stable cutting without chatter vibration Is possible.
本発明のような外周刃の構成とすることにより、性能の安定性が向上し、複数本で同様の加工を行ったときの性能のばらつきが抑えられ寿命管理がしやすく、また加工面品位が向上できるスクエアエンドミルを提供することが可能となる。 With the configuration of the outer peripheral blade as in the present invention, the stability of the performance is improved, the variation in performance when the same machining is performed with a plurality of pieces is suppressed, the life management is easy, and the quality of the machined surface is improved. It is possible to provide a square end mill that can be improved.
本発明のような底刃の構成とすることにより、長い突き出し量の状態での底刃を主に切削を行う等高線切削においても、びびり振動を抑制することが可能となるため、外周刃のチッピングの発生をさらに抑制することが可能となる。 By adopting the configuration of the bottom blade as in the present invention, chatter vibration can be suppressed even in contour cutting in which the bottom blade is mainly cut with a long protruding amount. Can be further suppressed.
本発明のような外周刃の構成とすることにより、複数の底刃及び外周刃を有する刃部と、前記刃部よりも直径が大きいシャンク部と、前記刃部と前記シャンク部を接続する首部から構成されるようなスクエアエンドミルにおいても、直径が大きいシャンク部に対し相対的に剛性が小さくなる刃部のチッピングを抑制することができ、刃径が0.05mm以上3.0mm以下の範囲の小径に相当する場合でも、上記の有利な効果が得られる。 By configuring the outer peripheral blade as in the present invention, a blade portion having a plurality of bottom blades and outer peripheral blades, a shank portion having a diameter larger than the blade portion, and a neck portion connecting the blade portion and the shank portion Even in a square end mill configured from the above, it is possible to suppress chipping of the blade portion whose rigidity is relatively small with respect to the shank portion having a large diameter, and the blade diameter is in the range of 0.05 mm to 3.0 mm. Even in the case of a small diameter, the above advantageous effects can be obtained.
本発明は、外周刃全域でのチッピングの抑制や、使用時の性能の安定性を向上することを目的としたスクエアエンドミルである。以下、本発明を実施するための形態を図1〜図12に基づいて説明する。 The present invention is a square end mill for the purpose of suppressing chipping over the entire outer peripheral blade and improving the stability of performance during use. Hereinafter, embodiments for carrying out the present invention will be described with reference to FIGS.
図1は、本発明の一例であるスクエアエンドミルの概略構成を示す正面図である。本発明によるスクエアエンドミル1は複数の底刃2及び外周刃3、並びにシャンク部4から構成される。図1に示すスクエアエンドミル1は、複数の底刃2及び外周刃3を有する刃部6の直径である刃径Dの値と、刃部に接続されるシャンク部4の直径であるシャンク径dの値を等しくした形状で設計されている。
FIG. 1 is a front view showing a schematic configuration of a square end mill which is an example of the present invention. A
図2は、本発明の一例であるロングネックスクエアエンドミルの概略構成を示す正面図である。本発明によるロングネックスクエアエンドミル5は複数の底刃2及び外周刃3を有する刃部6と、前記刃部6よりも直径が大きいシャンク部4と、前記刃部6と前記シャンク部4を接続する首部8から構成される。前記したように、図2に示すロングネックスクエアエンドミル5は、複数の底刃2及び外周刃3を有する刃部6の直径である刃径dの値よりも、シャンク部4の直径であるシャンク径Dの値を大きくした形状で設計されている。
FIG. 2 is a front view showing a schematic configuration of a long neck square end mill which is an example of the present invention. A long neck
図3は本発明における底刃と外周刃のつなぎ部付近の拡大図である。外周刃3は、外周刃の逃げ面10、外周刃のすくい面11、外周刃の刃先稜線12から構成される。さらに、外周刃3の先端側には、外周刃の逃げ面10と外周刃のすくい面11より形成される外周刃の刃先稜線12の曲率半径が大きい先端切れ刃部19が設けられ、外周刃3の後端側には、前記曲率半径が小さい後端切れ刃部20が設けられている。図示していないが、後端切れ刃部20は先端切れ刃部19と後端切れ刃部20の境界より、刃部のシャンク部側の端部まで形成されている。
なお、図中のA−A断面線は底刃2と外周刃3のつなぎ部から刃径dの20%だけ工具軸Oの方向に離れた位置において、外周刃3に垂直な方向で切断するときの断面線を示している。同様にB−B断面線は底刃2と外周刃3のつなぎ部から刃径dの60%だけ工具軸Oの方向に離れた位置において、外周刃3に垂直な方向で切断するときの断面線を示している。
FIG. 3 is an enlarged view of the vicinity of the connecting portion between the bottom blade and the outer peripheral blade in the present invention. The outer
In addition, the AA sectional line in the drawing is cut in a direction perpendicular to the outer
図4は従来のエンドミルにおける底刃と外周刃のつなぎ部付近の拡大図である。従来のエンドミル21における外周刃3は、従来のエンドミルにおける外周刃の逃げ面13、従来のエンドミルにおける外周刃のすくい面14、従来のエンドミルにおける外周刃の刃先稜線15から構成される。従来のエンドミル21は本発明とは異なり、従来のエンドミルにおける外周刃の刃先稜線15の曲率半径が外周刃3の全域にわたって一定であり、さらに従来のエンドミルにおける外周刃の刃先稜線15の曲率半径は、図3に示す本発明における外周刃3の後端側にある後端切れ刃部20の曲率半径よりも小さい。
なお、図中のC−C断面線は底刃2と外周刃3のつなぎ部から刃径dの20%だけ工具軸Oの方向に離れた位置において、外周刃3に垂直な方向で切断するときの断面線を示している。同様にD−D断面線は底刃2と外周刃3のつなぎ部から刃径dの60%だけ工具軸Oの方向に離れた位置において、外周刃3に垂直な方向で切断するときの断面線を示している。
FIG. 4 is an enlarged view of the vicinity of a connecting portion between a bottom blade and an outer peripheral blade in a conventional end mill. The outer
In addition, the CC sectional line in the drawing is cut in a direction perpendicular to the outer
すなわち本発明に設けられた外周刃3は、外周刃の刃先稜線12の曲率半径の違いにより明確に区別された2つの領域である、先端切れ刃部19と後端切れ刃部20が設けられたことが大きな特徴である。このことにより、長い突き出し量の状態での軸方向の切り込みを大きくした場合の側面切削においても、外周刃全域でのチッピングの発生が抑制でき、びびり振動が無く安定した切削加工が可能となる。これに対し、従来のエンドミルにおける外周刃3には、前記のように外周刃の刃先稜線12の曲率半径の違いにより明確に区別された複数の領域が存在しない。
これらのことから、本発明における外周刃の刃先稜線12の構造は、従来のエンドミルにおける外周刃の刃先稜線15の構造とは明らかに異なるものであるといえる。
That is, the outer
From these facts, it can be said that the structure of the
図5乃至8を用いて本発明の重要な要素である外周刃の刃先稜線の曲率半径について説明する。本発明における外周刃の刃先稜線の曲率半径とは、図3及び図4におけるスクエアエンドミルの外周刃に垂直な方向で切断したときの逃げ面とすくい面が交差する部分に形成される半径のことである。 The curvature radius of the edge ridgeline of the outer peripheral edge, which is an important element of the present invention, will be described with reference to FIGS. The curvature radius of the edge edge line of the outer peripheral edge in the present invention is a radius formed at a portion where the flank and the rake face intersect when cut in a direction perpendicular to the outer peripheral edge of the square end mill in FIGS. 3 and 4. It is.
図5は、図3におけるA−A断面図の拡大図である。A−A断面図は、外周刃3における先端切れ刃部19にて、外周刃3に垂直な方向で切断したときの断面観察図である。先端切れ刃部19における外周刃は、外周刃の逃げ面10、外周刃のすくい面11および外周刃の刃先稜線12から構成される。先端切れ刃部19における外周刃の刃先稜線12は先端切れ刃部の曲率半径R1を半径とした円弧状に形成される。
FIG. 5 is an enlarged view of the AA cross-sectional view in FIG. 3. The AA cross-sectional view is a cross-sectional observation view when the tip cutting
図6は、図3におけるB−B断面図の拡大図である。B−B断面図は、外周刃3における後端切れ刃部20にて、外周刃3に垂直な方向で切断したときの断面観察図である。後端切れ刃部20における外周刃は、外周刃の逃げ面10、外周刃のすくい面11および外周刃の刃先稜線12から構成される。後端切れ刃部20における外周刃の刃先稜線12は後端切れ刃部の曲率半径R2を半径とした円弧状に形成される。本発明において、後端切れ刃部の曲率半径R2は先端切れ刃部の曲率半径R1よりも小さく設定する。
6 is an enlarged view of the BB cross-sectional view in FIG. The BB cross-sectional view is a cross-sectional observation view when the rear end cutting
図7は、図4におけるC−C断面図の拡大図である。C−C断面図は、図4に示す従来のエンドミル21における底刃2と外周刃3のつなぎ部から刃径dの20%だけ工具軸Oの方向に離れた位置について、外周刃3に垂直な方向で切断したときの断面観察図である。従来のエンドミル21における外周刃3は、従来のエンドミルにおける外周刃の逃げ面13、従来のエンドミルにおける外周刃のすくい面14および従来のエンドミルにおける外周刃の刃先稜線15から構成される。従来のエンドミルにおける外周刃の刃先稜線15は従来のエンドミルにおける外周刃の曲率半径R3を半径とした円弧状に形成される。
7 is an enlarged view of the CC cross-sectional view in FIG. The CC cross-sectional view is perpendicular to the outer
図8は、図4におけるD−D断面図の拡大図である。D−D断面図は、図4に示す従来のエンドミル21における底刃2と外周刃3のつなぎ部から刃径dの60%だけ工具軸Oの方向に離れた位置について、外周刃3に垂直な方向で切断したときの断面観察図である。図4に示すとおり、従来のエンドミルにおける外周刃の曲率半径R3が外周刃3の全域にわたって一定である。そのため、本発明では後端切れ刃部20に相当する場所においても、外周刃の曲率半径は変化せず、従来のエンドミルにおける外周刃の刃先稜線15は従来のエンドミルにおける外周刃の曲率半径R3を半径とした円弧状に形成される。さらに従来のエンドミルにおける外周刃の曲率半径R3は、本発明における外周刃3の後端側にある後端切れ刃部の曲率半径R2よりも小さい。
FIG. 8 is an enlarged view of a DD cross-sectional view in FIG. 4. The DD cross-sectional view is perpendicular to the outer
前記のとおり、本発明において、外周刃の先端側には、前記外周刃の逃げ面10と前記外周刃のすくい面11より形成される稜線の曲率半径が大きい先端切れ刃部19が設けられ、外周刃の後端側には、前記曲率半径が小さい後端切れ刃部20が設けられており、それぞれの外周刃における外周刃の逃げ面10と外周刃のすくい面11は、それぞれ1つの曲面により形成されていることとする。このことにより、等高線加工で切削する際に関与する外周刃3の先端側のチッピングが抑制でき、外周刃3の後端側は適正な前記曲率半径を有する後端切れ刃部20が設けられているため、加工面を傷つけず、また刃先自体もチッピング等の異常摩耗を抑制できる。
As described above, in the present invention, the distal end cutting
先端切れ刃部の曲率半径R1と後端切れ刃部の曲率半径R2が同じ値の場合、切削に関与する外周刃の先端側の刃先強度が確保されずチッピングが発生する。外周刃の先端側がチッピングを起こすと、外周刃の後端側にも影響を及ぼすので外周刃全体の損傷とそれによる加工面の悪化が引き起こされる。 When the radius of curvature R1 of the leading edge and the radius of curvature R2 of the trailing edge are the same, the tip strength of the outer peripheral edge involved in cutting is not ensured and chipping occurs. When chipping occurs at the tip side of the outer peripheral blade, it also affects the rear end side of the outer peripheral blade, causing damage to the entire outer peripheral blade and deterioration of the machined surface.
また、後端切れ刃部の曲率半径R2が先端切れ刃部の曲率半径R1よりも大きかった場合も切削に関与する先端側の刃先強度が確保されずチッピングが発生する。曲率半径の大きな外周刃の後端側においてはわずかな振動が起こった際に加工面と接触した時の抵抗が大きくなり、刃先稜線全体の損傷とそれによる加工面の悪化が引き起こされる。
したがって、チッピング抑制と加工面の安定化のためには、外周刃の先端側と外周刃の後端側とで、後端切れ刃部の曲率半径R2を先端切れ刃部の曲率半径R1よりも小さくする必要がある。
Further, even when the curvature radius R2 of the rear edge cutting edge is larger than the curvature radius R1 of the front edge cutting edge, the edge strength on the front edge side involved in cutting is not ensured and chipping occurs. On the rear end side of the outer peripheral blade having a large radius of curvature, when slight vibration occurs, the resistance when coming into contact with the processing surface increases, causing damage to the entire edge of the cutting edge and deterioration of the processing surface.
Therefore, in order to suppress chipping and stabilize the machining surface, the curvature radius R2 of the rear end cutting edge portion is smaller than the curvature radius R1 of the front end cutting edge portion at the front end side of the outer peripheral blade and the rear end side of the outer peripheral blade. There is a need to.
本発明において、先端切れ刃部19の長さが、工具軸Oの方向で測定したときに底刃2と外周刃3のつなぎ部から刃径dの30%までであることが望ましい。こうすることで、等高線加工において切削に関与する部分の刃先強度が確保され、チッピングを抑制する効果をもたらすことができる。
また逆に先端切れ刃部19の長さが、工具軸Oの方向で測定したときに底刃2と外周刃3のつなぎ部から刃径dの30%よりも大きいと曲率半径の大きな領域が外周刃の後端側まで広がるため、わずかな振動が起こった際に加工面と接触した時の抵抗が大きくなり、刃先稜線全体の損傷とそれによる加工面の悪化が引き起こされる傾向が確認される。
In the present invention, it is desirable that the length of the tip cutting
Conversely, if the length of the tip cutting
したがって、先端切れ刃部19の長さは工具軸Oの方向で測定したときに底刃2と外周刃3のつなぎ部から刃径の30%までであることが望ましい。さらに望ましい先端切れ刃部19の長さとしては、先端切れ刃部19と後端切れ刃部20の境界を、底刃と外周刃のつなぎ部から刃径の10%以上30%以下となる位置に設け、その境界から先端側を外周刃の刃先稜線12を先端切れ刃部の曲率半径R1を半径とした円弧状に形成した先端切れ刃部19とすることである。
Therefore, it is desirable that the length of the tip cutting
本発明において、先端切れ刃部の曲率半径R1は2μm以上4μm以下であることが望ましい。このことによりチッピング抑制できる刃先強度の確保と良好な加工面が得られる切削性を両立させることができる。
先端切れ刃部の曲率半径R1が2μm未満の場合、刃先強度が確保されず、高硬度材を切削する場合や高速切削など高能率な条件で加工した場合、早期にチッピングが起こる傾向が確認される。また、先端切れ刃部の曲率半径R1が4μmより大きい場合、切削性が若干劣るために、切削抵抗が大きく、切削中の振動も大きくなる。それによって刃先のチッピングが生じて加工面が悪化する傾向が確認される。
したがって、先端切れ刃部の曲率半径R1が2μm以上4μm以下であることが望ましい。さらに望ましいのは、先端切れ刃部の曲率半径R1が2.5μm以上3.5μm以下であることである。
In the present invention, it is desirable that the radius of curvature R1 of the tip cutting edge portion is 2 μm or more and 4 μm or less. As a result, it is possible to achieve both the securing of the cutting edge strength capable of suppressing chipping and the machinability capable of obtaining a good machined surface.
When the radius of curvature R1 of the cutting edge of the tip is less than 2 μm, the strength of the blade edge is not ensured, and when cutting a hard material or machining under high efficiency conditions such as high speed cutting, a tendency for early chipping is confirmed. The Further, when the radius of curvature R1 of the tip cutting edge is larger than 4 μm, the cutting performance is slightly inferior, so that the cutting resistance is large and the vibration during cutting is also large. This confirms the tendency of chipping of the cutting edge to deteriorate the machined surface.
Therefore, it is desirable that the radius of curvature R1 of the tip cutting edge is 2 μm or more and 4 μm or less. It is further desirable that the radius of curvature R1 of the tip cutting edge is 2.5 μm or more and 3.5 μm or less.
本発明において、後端切れ刃部の曲率半径R2が1μm以上3μm以下であることが望ましい。こうすることで、切削中に起こる微小なビビリ振動やたわみが生じたときでも刃先強度が充分確保され、切削抵抗も抑えられるために加工面も良好に形成できる。
後端切れ刃部の曲率半径R2が1μm未満の場合、刃先強度が充分でないために、切削中に起こる微小なビビリ振動やたわみが生じたときにチッピングを生じやすくなる傾向が確認される。そうなると当然加工面の悪化につながる。逆に後端切れ刃部の曲率半径R2が3μmを超える場合、切削中に起こる微小なビビリ振動やたわみが生じたとき、加工面と接触した時の抵抗が大きくなり、刃先稜線全体の損傷とそれによる加工面の悪化が引き起こされる傾向が確認される。
したがって、後端切れ刃部の曲率半径R2が1μm以上3μm以下であることが望ましい。さらに望ましいのは、後端切れ刃部の曲率半径R2が1.5μm以上2.5μm以下であることである。
In the present invention, it is desirable that the radius of curvature R2 of the rear end cutting edge is 1 μm or more and 3 μm or less. By doing so, even when minute chatter vibration or deflection that occurs during cutting occurs, the strength of the cutting edge is sufficiently ensured and the cutting resistance is also suppressed, so that the processed surface can be formed well.
When the radius of curvature R2 of the trailing edge cutting edge is less than 1 μm, the edge strength is not sufficient, and therefore, a tendency that chipping is likely to occur when minute chatter vibration or deflection occurs during cutting is confirmed. If this happens, it will naturally lead to deterioration of the machined surface. Conversely, if the radius of curvature R2 of the trailing edge is greater than 3μm, when the small chatter vibration or deflection that occurs during cutting occurs, the resistance when contacting the machined surface increases, resulting in damage to the entire edge of the cutting edge. The tendency to cause deterioration of the machined surface due to is confirmed.
Therefore, it is desirable that the radius of curvature R2 of the rear end cutting edge is 1 μm or more and 3 μm or less. It is further desirable that the radius of curvature R2 of the rear end cutting edge is 1.5 μm or more and 2.5 μm or less.
図9は、図2における左側面図を工具回転方向に90°回転させた拡大図である。図2及び図9に示すように、底刃2は底刃の逃げ面16、底刃のすくい面18及び底刃の刃先稜線17から構成される。
FIG. 9 is an enlarged view of the left side view in FIG. 2 rotated 90 degrees in the tool rotation direction. As shown in FIGS. 2 and 9, the
図10は、図9の拡大図である。本発明における底刃2の刃先稜線の曲率半径とは、図9におけるロングネックスクエアエンドミルの底刃2を、底刃2に垂直な方向で切断したときの底刃の逃げ面16と底刃のすくい面18が交差する部分に形成される曲率半径のことである。図10に示す、E−E断面線は、底刃と外周刃のつなぎ部から刃径dの10%だけ工具軸Oに対し垂直な方向に離れた位置において、底刃2に垂直な方向で切断したときの断面線を示している。F−F断面線は、工具軸Oから刃径dの15%だけ工具軸Oに対し垂直な方向に離れた位置において、底刃2に垂直な方向で切断したときの断面線を示している。
FIG. 10 is an enlarged view of FIG. The curvature radius of the cutting edge ridge line of the
図10に示すとおり、本発明における底刃2の外周側すなわち外周から刃径の25%の位置までの領域には、底刃の逃げ面16と底刃のすくい面18が交差する部分に形成される底刃の刃先稜線17の曲率半径が大きい外周切れ刃部23が設けられ、底刃2の内周側すなわち工具軸から刃径の25%の位置までの領域には、前記曲率半径が小さい内周切れ刃部22が設けられている。
As shown in FIG. 10, in the outer peripheral side of the
図11は、図10におけるE−E断面図の拡大図である。E−E断面図は、図10に示す底刃2における外周切れ刃部23にて、底刃2に垂直な方向で切断したときの断面観察図である。外周切れ刃部23における底刃は、底刃の逃げ面16、底刃のすくい面18および底刃の刃先稜線17から構成される。外周切れ刃部23における底刃の刃先稜線は外周切れ刃部の曲率半径Rbを半径とした円弧状に形成される。
FIG. 11 is an enlarged view of the EE cross-sectional view in FIG. 10. The EE cross-sectional view is a cross-sectional observation view when the outer peripheral
図12は、図10におけるF−F断面図の拡大図である。F−F断面図は、図10に示す底刃2における内周切れ刃部22にて、底刃2に垂直な方向で切断したときの断面観察図である。内周切れ刃部22における底刃は、底刃の逃げ面16、底刃のすくい面18および底刃の刃先稜線17から構成される。内周切れ刃部22における底刃の刃先稜線は内周切れ刃部の曲率半径Raを半径とした円弧状に形成される。
12 is an enlarged view of the FF cross-sectional view in FIG. FF sectional drawing is a cross-sectional observation figure when it cut | disconnects in the direction perpendicular | vertical to the
本発明において、底刃2のうち、工具軸Oから刃径dの25%だけ離れた位置までを形成している内周切れ刃部の曲率半径Raが1μm以上2μm以下であることが望ましい。そうすることで底面切削を行う際に切削抵抗が上がらず、加工面を傷つけることもない。また、これにより品位の高い加工面を得ることができる。内周切れ刃部の曲率半径Raが1μm未満の場合、刃先強度が確保されず、底面切削の際に発生する切屑が少しでも噛み込めばチッピングが起こる傾向が確認される。逆に内周切れ刃部の曲率半径Raが2μmを超える場合、切削抵抗が大きくなったり、切屑排出性が悪くなり、チッピングや加工面の悪化が起こる傾向が確認される。
したがって、底刃2のうち、内周切れ刃部の曲率半径Raが1μm以上2μm以下であることが望ましい。さらに望ましいのは、内周切れ刃部の曲率半径Raが1.2μm以上1.8μm以下であることである。
In the present invention, it is desirable that the radius of curvature Ra of the inner peripheral cutting edge portion of the
Therefore, it is desirable that the curvature radius Ra of the inner peripheral cutting edge portion of the
本発明において、底刃2のうち、底刃と外周刃のつなぎ部から刃径の25%だけ離れた位置までを形成している外周切れ刃部の曲率半径Rbが4μm以上6μm以下で形成されることが望ましい。こうすることで、底面切削の際、刃先強度が確保されるために、チッピングなく安定加工ができ、良好な加工面を得ることができる。底刃2のうち、外周切れ刃部の曲率半径Rbが4μm未満となる場合、底面切削の際に刃先強度が確保されず、チッピングを生じやすくなる傾向が確認される。特に高硬度加工や高能率切削の時はその傾向が顕著である。逆に底刃のうち、外周切れ刃部の曲率半径Rbが6μmを超える場合、切削抵抗が増大し、切屑離れも悪くなる可能性がある。そうなると加工面の悪化や刃先へのチッピングが起こるため、安定加工が実現できない。
したがって、底刃2のうち、外周切れ刃部の曲率半径Rbが4μm以上6μm以下で形成されることが望ましい。さらに望ましいのは、外周切れ刃部の曲率半径Rbが4.5μm以上5.5μm以下で形成されることである。
In the present invention, the curvature radius Rb of the outer peripheral cutting edge portion that forms the
Therefore, it is desirable that the curvature radius Rb of the outer peripheral cutting edge portion of the
本発明者はスクエアエンドミルの外周刃における逃げ面及びすくい面と切れ刃稜線に注目し、外周刃の先端側と後端側とで、刃先稜線部の強度と切削性に対して最適な刃先稜線状態について検討した。その結果、外周刃の先端側には、前記外周刃の逃げ面と前記外周刃のすくい面より形成される稜線の曲率半径が大きい先端切れ刃部が設けられ、外周刃の後端側には、前記曲率半径が小さい後端切れ刃部が設けられており、それぞれの外周刃における外周刃の逃げ面と外周刃のすくい面は、それぞれ1つの曲面により形成されている場合に優れた切削性と耐チッピング性が得られることを知見し、本発明を成したものである。 The present inventor pays attention to the flank and rake face and cutting edge ridgeline in the outer peripheral edge of the square end mill, and the cutting edge ridgeline that is optimum for the strength and machinability of the cutting edge ridgeline at the front end side and the rear end side of the outer peripheral edge The state was examined. As a result, a tip cutting edge portion having a large radius of curvature of a ridge formed by the flank of the outer peripheral blade and the rake face of the outer peripheral blade is provided on the front end side of the outer peripheral blade, and on the rear end side of the outer peripheral blade. A cutting edge portion having a small radius of curvature is provided, and the flank face of the outer peripheral edge and the rake face of the outer peripheral edge of each outer peripheral edge have excellent machinability when formed by one curved surface. It has been found that chipping resistance can be obtained, and the present invention has been achieved.
さらに本発明において、外周刃の先端側の領域が底刃と外周刃のつなぎ部から刃径dの30%までの領域であり、外周刃の先端側における先端切れ刃部の曲率半径R1が2μm以上4μm以下、外周刃の後端側における後端切れ刃部の曲率半径R2が1μm以上3μm以下であることが一層望ましい。これにより、スクエアエンドミルで高硬度材の加工や切削速度が高くなるような条件での加工であるほど、チッピングを抑制し、より安定した加工を行うことが可能となる。 Furthermore, in this invention, the area | region of the front end side of an outer periphery blade is an area | region from the connection part of a bottom blade and an outer periphery blade to 30% of the blade diameter d, and the curvature radius R1 of the front-end | tip cutting edge part in the front end side of an outer periphery blade is 2 micrometers. More preferably, the radius of curvature R2 of the rear end cutting edge portion on the rear end side of the outer peripheral blade is 4 μm or less and is 1 μm or more and 3 μm or less. Thereby, chipping can be suppressed and more stable processing can be performed as the processing is performed under conditions such that the processing of the high hardness material and the cutting speed are increased by the square end mill.
さらに本発明において、底刃のうち、工具軸から刃径の25%の位置までを形成している内周切れ刃部の曲率半径Raが1μm以上2μm以下、かつ前記底刃のうち、外周から刃径の25%の位置までを形成している外周切れ刃部の曲率半径Rbが4μm以上6μm以下で形成されることが一層望ましい。これにより、スクエアエンドミルで底面切削を行った際、耐チッピング性の向上と切屑排出性の向上が可能となり良好な加工面品位を得ることができる。 Further, in the present invention, the curvature radius Ra of the inner peripheral cutting edge portion forming from the tool axis to the position of 25% of the blade diameter among the bottom blades is 1 μm or more and 2 μm or less, and among the bottom blades, from the outer periphery. It is more desirable that the radius of curvature Rb of the outer peripheral cutting edge forming up to 25% of the blade diameter is 4 μm or more and 6 μm or less. As a result, when bottom cutting is performed with a square end mill, it is possible to improve chipping resistance and chip evacuation and to obtain a good surface finish.
さらに本発明において、複数の底刃及び外周刃を有する刃部と、前記刃部よりも直径が大きいシャンク部と、前記刃部と前記シャンク部を接続する首部から構成されるものが一層効果が得られる。これは、シャンク部よりも刃部の方が直径が小さいので工具のたわみが発生しやすくなる。そのため、外周刃への損傷が起こりやすくなる。したがって、先端側と後端側でそれぞれ適正な刃先稜線を適用しないと安定した加工は困難である。前記の外周刃と底刃の知見を適用することにより、耐チッピング性の向上と切屑排出性の向上が可能となり良好な加工面品位を得ることができる。 Furthermore, in the present invention, the one constituted by a blade portion having a plurality of bottom blades and outer peripheral blades, a shank portion having a diameter larger than that of the blade portion, and a neck portion connecting the blade portion and the shank portion is more effective. can get. This is because the blade portion is smaller in diameter than the shank portion, so that the deflection of the tool is likely to occur. Therefore, damage to the outer peripheral blade is likely to occur. Therefore, stable machining is difficult unless appropriate cutting edge ridge lines are applied to the front end side and the rear end side, respectively. By applying the knowledge of the outer peripheral edge and the bottom edge, it is possible to improve the chipping resistance and the chip discharge property, and to obtain a good machined surface quality.
本発明のエンドミルの特徴である外周刃や底刃における刃先稜線の曲率半径は、ショットブラスト、磁気研磨及びバレル研磨などの方法により形成させることが可能である。例えば図14は回転軸が3軸構成である本発明で実施したバレル研磨装置の概略図である。バレル研磨装置28はスクエアエンドミル1を工具中心軸の回りに回転させる第1の回転手段29、複数の前記第1の回転手段29を保持する保持ステーション30を回転させる第2の回転手段31、研磨材32を装入したバレル研磨装置の主軸O’を回転させる第3の回転手段33により構成される。それらが全ての軸において工具の切削回転方向に回転する。バレル研磨装置の主軸O’を回転させる第3の回転手段33は、回転とは直交する回転軸に平行な方向にも可動とする。すなわち、研磨材の動きの大きさに合わせて、スクエアエンドミル1を直接保持する第1の回転手段29の位置を適正にすることができる。回転軸が3軸構成を選んだ理由は、本発明は外周刃及び底刃の刃先稜線の位置によって異なる曲率半径を付与するために、研磨強度をできるだけ全方位で変化可能にする必要があるからである。研磨媒体の流動によるバレル内における研磨媒体の挙動は複雑であり、本発明では、前記主軸O’を回転させる第3の回転手段33は、回転とは直交する回転軸に平行な方向にも可動として、外周刃及び底刃の研磨媒体に当たる位置を上下にも制御できる構造とした。
The curvature radius of the edge ridgeline in the outer peripheral edge and the bottom edge, which is a feature of the end mill of the present invention, can be formed by methods such as shot blasting, magnetic polishing, and barrel polishing. For example, FIG. 14 is a schematic view of a barrel polishing apparatus implemented in the present invention having a three-axis rotational axis. The
図15は図14に示すバレル研磨装置を図14における下側から見たときの図である。図15ではスクエアエンドミルの図示を省略してある。第1の回転手段29、第2の回転手段31、及び第3の回転手段33はそれぞれ、第1の回転手段の回転方向34、第2の回転手段の回転方向35、及び第3の回転手段の回転方向36に回転させることが出来る。
15 is a view of the barrel polishing apparatus shown in FIG. 14 when viewed from the lower side in FIG. In FIG. 15, the illustration of the square end mill is omitted. The first rotation means 29, the second rotation means 31, and the third rotation means 33 are respectively the
バレル研磨装置28をこのように構成することにより生じる、研磨材32とスクエアエンドミル1の相互作用について説明する。バレル研磨装置による刃先処理方法を実施したとき、研磨材32とスクエアエンドミル1との間に相対運動が生じ、研磨材32がバレル研磨装置の主軸O’に垂直な方向でスクエアエンドミル1のすくい面に衝突する。外周刃のすくい面11に衝突した研磨材32は、外周刃のすくい面11を移動しながらスクエアエンドミルの溝を通る研磨材32と、外周刃の逃げ面10を経てスクエアエンドミルの外側に移動する研磨材32とに分かれる。研磨材32が移動する際には、移動する方向に沿った面が研磨されるため、外周刃のすくい面11、外周刃の逃げ面10、及び外周刃の刃先稜線12が研磨される。よって、外周刃における先端切れ刃部19及び後端切れ刃部20には曲率半径を有する曲面が形成される。同様に、底刃のすくい面18に衝突した研磨材32は、底刃のすくい面18を移動しながらスクエアエンドミルの溝を通る研磨材32と、底刃の逃げ面16を経てスクエアエンドミルの下側に移動する研磨材32とに分かれる。研磨材が回転中のバレル研磨装置内にてこのような挙動を示すため、底刃のすくい面18、底刃の逃げ面16、及び底刃の刃先稜線17が研磨される。よって、底刃における内周切れ刃部22及び外周切れ刃部23には曲率半径を有する曲面が形成される。研磨材32が持つ圧力は深さが深いほど大きくなることから、研磨材32により形成される外周刃及び底刃の曲率半径は深さ方向における位置により変化する。傾向としては、スクエアエンドミルにおける下側すなわち底刃に近づくほど、外周刃の曲率半径は大きく形成される。また、バレル研磨装置28による刃先処理方法は各回転手段の回転により、スクエアエンドミルへの研磨作用が働くことから、スクエアエンドミルにおける外周側すなわち外周刃に近づくほど、底刃の曲率半径は大きく形成される。
The interaction between the abrasive 32 and the
ドラム状研磨装置28をこのように構成することにより、研磨材32がスクエアエンドミル1の外周刃において、底刃に近づくほど、もっとも深い位置で研磨がなされるため、研磨力が大きい。よって先端切れ刃部19における先端切れ刃部の曲率半径R1は、後端切れ刃部20における後端切れ刃部の曲率半径R2よりも大きく形成される。一方、外周刃において、シャンクに近づくほど、浅い位置で研磨される。研磨材32が持つ圧力は深さが深いほど大きくなるので、底刃に近い部分ほど、刃先稜線を形成するRは大きな曲率が設けられる。よってシャンク側の外周刃すなわち後端切れ刃部20においては刃先稜線を形成する曲率半径R2は小さく形成させる。
By constructing the drum-shaped
また、各回転手段における回転軸の設定によって外周刃及び底刃の各部位の刃先稜線の曲率半径は調整が可能である。具体的には、研磨材32を装入したバレル研磨装置の主軸O’の回転数が大きいほど、外周刃における先端切れ刃部の曲率半径R1及び後端切れ刃部の曲率半径R2が大きくなる。これは、スクエアエンドミルの外周に近い部分の研磨力が強くなるためである。各回転手段によるドラム状研磨装置28を用いた場合には、スクエアエンドミルの外周に近い部分の研磨力が強くなることから、底刃においては、内周切れ刃部22における内周切れ刃部の曲率半径Raよりも、外周切れ刃部23における外周切れ刃部の曲率半径Rbの方が大きく形成される。
Moreover, the curvature radius of the edge ridgeline of each site | part of an outer peripheral blade and a bottom blade can be adjusted with the setting of the rotating shaft in each rotating means. Specifically, the larger the number of revolutions of the main shaft O ′ of the barrel polishing apparatus in which the abrasive 32 is charged, the larger the radius of curvature R1 of the front end cutting edge and the radius of curvature R2 of the rear end cutting edge of the outer peripheral blade. This is because the polishing force near the outer periphery of the square end mill becomes stronger. In the case where the drum-
処理時間に関しては、その時間が長ければ長いほど処理量が大きくなる、つまり処理時間が長いほど、底刃から外周刃にかけて全体的に刃先稜線の曲率半径は大きくなる。研磨材がこのように流動していくため、このバレル研磨装置28を用いた刃先処理方法が施されたスクエアエンドミル1は、切れ刃の場所によって本発明で定義される刃先稜線の曲率半径を異なるものとすることができる。今回のバレル処理による研磨方法においては、回転軸が3軸構成であり、バレルの深さ方向にも可変としてある。したがって、各軸の回転数、回転方向、処理深さなどを変えることができるのである。
Regarding the processing time, the longer the time, the larger the processing amount, that is, the longer the processing time, the larger the curvature radius of the cutting edge ridge line from the bottom edge to the outer peripheral edge. Since the abrasive flows in this manner, the
本発明の回転軸が3軸構成であるドラム状研磨機器を用いた刃先処理方法には、樹脂系弾性材を含めた研磨材を使用する。本発明の刃先処理方法に適した樹脂系弾性材としては、粒径が0.1mm以上3mm未満のクルミやココナッツ、コーンが挙げられる。それらの樹脂系弾性材を粒径0.1μm以上0.5μm以下のダイヤモンドパウダーを油脂により塗布するなどして研磨材に含め、刃先処理を行うことにより、スクエアエンドミルを切れ刃の場所によって刃先稜線の曲率半径が異なる形状に出来る。樹脂系弾性材や研磨材はスクエアエンドミルの形状や、目的とする切れ刃部の曲率半径の大きさなどにより、選択することが出来る。 In the blade edge processing method using a drum-shaped polishing machine having a three-axis rotating shaft according to the present invention, an abrasive including a resin-based elastic material is used. Examples of the resin-based elastic material suitable for the blade edge processing method of the present invention include walnuts, coconuts, and cones having a particle size of 0.1 mm or more and less than 3 mm. By applying diamond powder with a particle size of 0.1 μm or more and 0.5 μm or less to the abrasive by applying these resin-based elastic materials to the abrasive, and performing the blade edge treatment, the square end mill can be cut according to the location of the cutting edge. The shape can have different curvature radii. The resin-based elastic material and the abrasive can be selected depending on the shape of the square end mill, the desired radius of curvature of the cutting edge portion, and the like.
バレル研磨装置28にある第1の回転手段29、第2の回転手段31、及び第3の回転手段33はそれぞれ独立して回転数及び回転方向を設定することが可能である。これらの条件を適宜選択することにより、切れ刃の場所による刃先稜線の曲率半径の変化の仕方を変化させることが出来る。
The first rotation means 29, the second rotation means 31, and the third rotation means 33 in the
本発明は、様々な形状のスクエアエンドミル及びロングネックスクエアエンドミルに対し実施が可能であるが、特に、刃径dの値とシャンク径Dの値を等しくしたスクエアエンドミルや、刃径dがシャンク径Dより小さくなるロングネックスクエアエンドミルに実施することにより、本発明の有利な効果が発揮できる。また、刃数が2〜6枚刃、刃径dが0.1mm以上25mm以下の範囲のスクエアエンドミル及びロングネックスクエアエンドミルに実施することがさらに有効である。特に望ましい刃径dは4mm以上20mm以下の範囲である。 The present invention can be applied to square end mills and long neck square end mills of various shapes. In particular, a square end mill in which the value of the blade diameter d is equal to the value of the shank diameter D, or the blade diameter d is the shank diameter. By carrying out a long neck square end mill smaller than D, the advantageous effects of the present invention can be exhibited. Further, it is more effective to implement for a square end mill and a long neck square end mill having 2 to 6 blades and a blade diameter d of 0.1 mm to 25 mm. A particularly desirable blade diameter d is in the range of 4 mm to 20 mm.
また、本発明において重要な要素である、先端切れ刃部の曲率半径R1、後端切れ刃部の曲率半径R2、内周切れ刃部の曲率半径Ra、及び外周切れ刃部の曲率半径Rbは公知の測定方法により求めることが可能である。先端切れ刃部の曲率半径R1、後端切れ刃部の曲率半径R2の測定方法に関して具体的な例を挙げれば、本発明のスクエアエンドミル及びロングネックスクエアエンドミルを工具軸Oに対し垂直な方向で切断し、1mm程度の厚さの測定試料を作成し、光学式顕微鏡を用いて測定試料を測定する方法や、接触式の形状測定器を用いて先端切れ刃部19及び後端切れ刃部20の形状をトレースし、トレースした先端切れ刃部19及び後端切れ刃部20の形状から測定を行う方法が存在する。同様に、内周切れ刃部の曲率半径Ra、及び外周切れ刃部の曲率半径Rbの測定方法に関して具体的な例を挙げれば、本発明のスクエアエンドミル及びロングネックスクエアエンドミルを、底刃を通りなおかつ工具軸Oに対し平行な方向で切断し、0.3mm程度の厚さの測定試料を作成し、光学式顕微鏡を用いて測定試料を測定する方法や、接触式の形状測定器を用いて内周切れ刃部22及び外周切れ刃部23の形状をトレースし、トレースした内周切れ刃部22及び外周切れ刃部23の形状から測定を行う方法が存在する。
Further, the curvature radius R1 of the leading edge cutting edge, the curvature radius R2 of the trailing edge cutting edge, the curvature radius Ra of the inner circumferential cutting edge, and the curvature radius Rb of the outer circumferential cutting edge, which are important elements in the present invention, are known. It is possible to obtain by this measurement method. If a specific example is given regarding the measuring method of the curvature radius R1 of the leading edge and the curvature radius R2 of the trailing edge, the square end mill and the long neck square end mill of the present invention are cut in a direction perpendicular to the tool axis O. Then, a measurement sample having a thickness of about 1 mm is prepared, and the shape of the
以下、本発明を下記の実施例により詳細に説明するが、それらにより本発明が限定されるものではない。 Hereinafter, the present invention will be described in detail by the following examples, but the present invention is not limited thereto.
(実施例1)
本発明例と従来例ともロングネックスクエアエンドミルは、いずれも、刃径dが1mm、首部の直径が0.96mm、刃長が1.5mm、刃部と首部を合わせた長さである首下長が6mm、シャンク径Dが4mmに形成したWC基超硬合金製基材上に、いずれもAlCrSiNの硬質皮膜を4μm被覆したものである。
Example 1
Both the present invention example and the conventional example, the long neck square end mill has a blade diameter d of 1 mm, a neck diameter of 0.96 mm, a blade length of 1.5 mm, and a neck length that combines the blade part and the neck part. A WC-based cemented carbide base material having a length of 6 mm and a shank diameter D of 4 mm is coated with 4 μm of a hard coating of AlCrSiN.
本発明例1として、先端切れ刃部の曲率半径R1が3μm、後端切れ刃部の曲率半径R2が2μmであり、外周刃の先端側の領域すなわち先端切れ刃部の長さが底刃と外周刃のつなぎ部から0.3mm(刃径dの30%)である。さらに底刃における、内周切れ刃部の曲率半径Raが1.5μm、外周切れ刃部の曲率半径Rbが5.0μmとした。 As Example 1 of the present invention, the radius of curvature R1 of the tip cutting edge is 3 μm, the radius of curvature R2 of the trailing edge is 2 μm, and the length of the tip side of the outer peripheral blade, that is, the length of the tip cutting edge is It is 0.3 mm (30% of the blade diameter d) from the joint part of the blade. Furthermore, the curvature radius Ra of the inner peripheral cutting edge portion in the bottom blade was 1.5 μm, and the curvature radius Rb of the outer peripheral cutting edge portion was 5.0 μm.
従来例1は、特許文献2に記載の発明をロングネックスクエアエンドミルに適用させたものであり、先端切れ刃部の曲率半径R1が4μm、後端切れ刃部の曲率半径R2が7μmであり、外周刃の先端側の領域すなわち先端切れ刃部の長さが底刃と外周刃のつなぎ部から0.5mm(刃径の約50%)である。さらに底刃における、内周切れ刃部の曲率半径Raが2.0μm、外周切れ刃部の曲率半径Rbが2.5μmである。つまり、外周刃の後端側における後端切れ刃部の曲率半径R2を特に大きくしたものである。
Conventional Example 1 is an application of the invention described in
図13は従来例2における底刃と外周刃のつなぎ部付近の拡大図である。従来例2は、特許文献1に記載の発明をロングネックスクエアエンドミルに適用させたものであり、従来例2のエンドミル24は、図13に示すように、外周刃3の先端側から後端側にかけて外周刃の稜線の曲率半径を徐々に小さくしたものである。そのため、本発明における外周刃の先端側と外周刃の後端側の境界は存在せず、先端切れ刃部の長さは未計測である。
なお、底刃2と外周刃3のつなぎ部から刃径dの20%だけ工具軸Oの方向に離れた位置における刃先稜線の曲率半径が7μmである(後に記載する表1においては、先端切れ刃部の曲率半径R1の欄に記載している)。また、底刃2と外周刃3のつなぎ部から刃径dの60%だけ工具軸Oの方向に離れた位置における刃先稜線の曲率半径が5μmである(後に記載する表1においては、後端切れ刃部の曲率半径R2の欄に記載している)。さらに底刃における、内周切れ刃部の曲率半径Raが2μm、外周切れ刃部の曲率半径Rbが2.5μmである。
FIG. 13 is an enlarged view of the vicinity of the connecting portion between the bottom blade and the outer peripheral blade in Conventional Example 2. Conventional Example 2 applies the invention described in
Note that the radius of curvature of the edge of the cutting edge at a position away from the connecting portion between the
従来例3は、特許文献3に記載の発明をロングネックスクエアエンドミルに適用させたものであり、従来例3のエンドミルは、外周刃の先端側から後端側にかけて外周刃の稜線の曲率半径を同一としたものである。そのため、本発明における外周刃の先端側と外周刃の後端側の境界は存在せず、先端切れ刃部の長さは未計測である。
なお、底刃2と外周刃3のつなぎ部から刃径dの20%だけ工具軸Oの方向に離れた位置における刃先稜線の曲率半径が5μmである(後に記載する表1においては、先端切れ刃部の曲率半径R1の欄に記載している)。また、底刃2と外周刃3のつなぎ部から刃径dの60%だけ工具軸Oの方向に離れた位置における刃先稜線の曲率半径が5μmである(後に記載する表1においては、後端切れ刃部の曲率半径R2の欄に記載している)。さらに底刃における、内周切れ刃部の曲率半径Raが2μm、外周切れ刃部の曲率半径Rbが2.5μmである。
Conventional Example 3 applies the invention described in
Note that the radius of curvature of the edge of the cutting edge at a position away from the joint between the
前記の本発明例1及び従来例1〜3として作製した工具はすべて同じ超硬合金を基材とした二枚刃のロングネックスクエアエンドミルであり、切れ刃の曲率半径以外の工具諸元においては統一した状態で比較テストを行った。切削テストは水溶性切削液を用いた湿式切削とし、被削材として52HRCのプラスチック用金型材(商品名:HPM38、日立金属株式会社製)を用い、軸方向切り込み量0.05mm、ピック方向切り込み量0.1mm、回転数15,000回転/min、送り速度450mm/minで幅1.5mm、深さ6mm、溝長さ20mmのリブ溝形状を切削した。 All of the tools produced as Invention Example 1 and Conventional Examples 1 to 3 are two-blade long neck square end mills based on the same cemented carbide, and in the tool specifications other than the curvature radius of the cutting edge. A comparative test was conducted in a unified state. The cutting test was wet cutting using a water-soluble cutting fluid, and a 52HRC plastic mold material (trade name: HPM38, manufactured by Hitachi Metals, Ltd.) was used as the work material. A rib groove shape having an amount of 0.1 mm, a rotation speed of 15,000 rotations / min, a feed rate of 450 mm / min, a width of 1.5 mm, a depth of 6 mm, and a groove length of 20 mm was cut.
評価方法として、切削後の加工面の仕上げ面粗さと工具の逃げ面摩耗幅で行った。仕上げ面粗さRzは、加工面の軸方向に測定を行い、最大高さ粗さRzにて評価を行った。工具の逃げ面摩耗幅はリブ溝形状を一つ加工した後の工具について、外周刃の先端側及び外周刃の後端側の2箇所における外周刃の逃げ面の摩耗幅を光学顕微鏡にて測定した。評価基準として、仕上げ面粗さRzが1.0μm以下であり、かつ逃げ面摩耗幅が2箇所とも0.02mm以下のものを良好とした。評価結果を表1に示す。 As evaluation methods, the finished surface roughness of the machined surface after cutting and the flank wear width of the tool were used. The finished surface roughness Rz was measured in the axial direction of the processed surface, and evaluated with the maximum height roughness Rz. The flank wear width of the tool is measured with an optical microscope for the flank wear width of the outer peripheral blade at two locations on the tip side of the outer peripheral blade and the rear end side of the outer peripheral blade. did. As evaluation criteria, a finished surface roughness Rz of 1.0 μm or less and a flank wear width of 0.02 mm or less at both locations were considered good. The evaluation results are shown in Table 1.
切削評価結果より、本発明例1は仕上げ面粗さRzが0.7μmであり、かつ逃げ面摩耗幅が2箇所とも0.02mm以下であったため、良好な結果を示した。これは、逃げ面とすくい面の交差部の曲率半径を先端切れ刃部の曲率半径R1よりも後端切れ刃部の曲率半径R2を小さくしたことにより、外周刃全体でびびり振動によるチッピングを抑制できたためである。また、外周後端部においても先端側よりも切削性があるために加工面にむしれが出ず、良好な加工面が得られた。 From the cutting evaluation results, Example 1 of the present invention showed a satisfactory result because the finished surface roughness Rz was 0.7 μm and the flank wear width was 0.02 mm or less at both locations. This is because the curvature radius of the intersection of the flank and the rake face is made smaller than the curvature radius R1 of the leading edge cutting edge than the curvature radius R1 of the leading edge cutting edge, so that chipping due to chatter vibration can be suppressed on the entire outer peripheral edge. This is because. In addition, since the outer peripheral rear end portion was more machinable than the front end side, there was no peeling on the processed surface, and a good processed surface was obtained.
一方、従来例1〜3ではいずれも外周刃でチッピングを起こしたため、仕上げ面粗さが1.0μmを超え、逃げ面摩耗幅が2箇所とも0.03mmを超えたため、不良であった。従来例1は、後端切れ刃部の曲率半径R2を7μmと特に大きくしたために若干の振動によるびびり振動が発生し、チッピングが起こりやすくなった。従来例2では、先端切れ刃部の曲率半径R1が7μmと大きく、さらに外周刃の先端側から後端側にかけて外周刃の稜線の曲率半径を徐々に小さくしたものであったために、被削材への食付きが悪く、最終的にはチッピングが発生した。従来例3は、外周刃の先端から後端側まで断続的にチッピングを起こした。これは、外周刃の刃先稜線の曲率半径が一定であるため、特に切削中に発生するたわみの影響を受けたことが原因として挙げられる。 On the other hand, in all of the conventional examples 1 to 3, since chipping was caused by the outer peripheral blade, the finished surface roughness exceeded 1.0 μm, and the flank wear width exceeded 0.03 mm at both locations, which was defective. In Conventional Example 1, since the radius of curvature R2 of the rear end cutting edge portion was particularly large as 7 μm, chatter vibration due to slight vibration occurred and chipping was likely to occur. In Conventional Example 2, the radius of curvature R1 of the tip cutting edge is as large as 7 μm, and the curvature radius of the ridgeline of the outer peripheral blade is gradually reduced from the front end side to the rear end side of the outer peripheral blade. The biting into the lips was poor and eventually chipping occurred. In Conventional Example 3, chipping occurred intermittently from the front end to the rear end side of the outer peripheral blade. This is because the radius of curvature of the edge ridgeline of the outer peripheral blade is constant, and the reason is that it is particularly affected by the deflection generated during cutting.
(実施例2)
本発明例、従来例としては、実施例1で用いた工具と同様のものを使用して、評価を実施した。切削テストは水溶性切削液を用いた湿式切削とし、被削材として52HRCのプラスチック用金型材(商品名:HPM38、日立金属株式会社製)を用い、軸方向切り込み量0.03mm、ピック方向切り込み量0.03mm、回転数15,000回転/min、送り速度450mm/minで実施例1と同様のリブ溝形状を切削した。
(Example 2)
As examples of the present invention and conventional examples, the same tools as those used in Example 1 were used for evaluation. The cutting test is wet cutting using a water-soluble cutting fluid, and a 52HRC plastic mold material (trade name: HPM38, manufactured by Hitachi Metals, Ltd.) is used as the work material. A rib groove shape similar to that in Example 1 was cut at an amount of 0.03 mm, a rotation speed of 15,000 rotations / min, and a feed rate of 450 mm / min.
評価方法として、同じ工具を5本ずつ用いてリブ溝形状の加工を1つずつ行った後に、加工面の仕上げ面粗さを測定し、最も良い仕上げ面粗さRzと最も悪い仕上げ面粗さRzの差である、仕上げ面粗さRzの差を測定することにより評価を行った。評価基準として、仕上げ面粗さRzの差が0.2μm以下の場合を良好とした。評価結果を表2に示す。 As an evaluation method, after finishing the rib groove shape one by one using five of the same tools, the finished surface roughness of the machined surface is measured, and the best finished surface roughness Rz and the worst finished surface roughness are measured. Evaluation was performed by measuring the difference in the finished surface roughness Rz, which is the difference in Rz. As an evaluation standard, a case where the difference in the finished surface roughness Rz was 0.2 μm or less was regarded as good. The evaluation results are shown in Table 2.
切削評価結果より、本発明例1は5本評価した結果、いずれも仕上げ面粗さRzが0.6μm〜0.8μmの加工面が得られた。したがって、仕上げ面粗さRzの差が0.2μmであり、良好な結果を示した。これは、先端切れ刃部の曲率半径R1が、後端切れ刃部の曲率半径R2よりも大きく、刃先稜線が外周刃の領域によって最適化されていることから切削に関与する先端付近のチッピング抑制とびびり振動がない安定切削が可能となったためである。 From the cutting evaluation results, the present invention example 1 was evaluated as five, and as a result, a processed surface having a finished surface roughness Rz of 0.6 μm to 0.8 μm was obtained. Therefore, the difference in the finished surface roughness Rz was 0.2 μm, indicating a good result. This is because the radius of curvature R1 of the leading edge is larger than the radius of curvature R2 of the trailing edge, and the cutting edge ridge line is optimized by the area of the outer edge, so that chipping suppression near the leading edge involved in cutting is suppressed. This is because stable cutting without chatter vibration has become possible.
一方、従来例1〜3ではいずれも、加工面の仕上げ面粗さRzのばらつきが大きく、仕上げ面粗さRzの差を見ても0.4μm〜0.5μmのばらつきが確認され、不良であった。従来例1は、後端切れ刃部の曲率半径R2が7μmと大きいために、びびり振動によって発生した外周刃後端側のチッピングが加工面を荒らす原因となる。従来例2では、先端切れ刃部の曲率半径は7μmと大きく、さらに外周刃の先端側から後端側にかけて外周刃の稜線の曲率半径を徐々に小さくしたものであったために、被削材への食付きが悪く、びびり振動が発生した。またそれにより外周刃の後端側にチッピングが発生し、加工面を荒らしてしまった。従来例3は、先端から後端側まで断続的にチッピングを起こした。これは、外周刃の刃先稜線の曲率半径が一定であることが原因として挙げられる。また、特に切削中に発生するたわみの影響を受けるので後端側の方がチッピングの程度がひどく、それが加工面粗さに影響をおよぼした。またこれは、いずれもチッピングが原因で面粗さが悪くなっているが、チッピングが起こるタイミングにはばらつきが発生し、そのチッピングの大きさも実際には、同じ仕様の工具でもテスト毎に異なったものになる。したがって、加工面の品位にばらつきが生じるのである。 On the other hand, all of the conventional examples 1 to 3 have large variations in the finished surface roughness Rz of the processed surface, and even when looking at the difference in the finished surface roughness Rz, a variation of 0.4 μm to 0.5 μm was confirmed, there were. In Conventional Example 1, since the radius of curvature R2 of the rear edge cutting edge is as large as 7 μm, chipping on the rear edge side of the outer peripheral edge caused by chatter vibration causes the machining surface to be roughened. In Conventional Example 2, the radius of curvature of the tip cutting edge portion is as large as 7 μm, and the curvature radius of the ridgeline of the outer peripheral blade is gradually reduced from the front end side to the rear end side of the outer peripheral blade. The bitterness was bad and chatter vibration occurred. In addition, chipping occurred on the rear end side of the outer peripheral blade, thereby roughening the processed surface. In Conventional Example 3, chipping occurred intermittently from the front end to the rear end side. This is because the radius of curvature of the edge edge of the outer peripheral blade is constant. In addition, the degree of chipping was severer on the rear end side because it was particularly affected by the deflection generated during cutting, which affected the machined surface roughness. In addition, although the surface roughness has deteriorated due to chipping, the timing at which chipping occurs varies, and the size of the chipping actually differs from test to test even with the same specification tool. Become a thing. Therefore, the quality of the processed surface varies.
(実施例3)
本発明例のロングネックスクエアエンドミルは、いずれも、刃径dが3mm、首部の直径が2.88mm、刃長が4.5mm、刃部と首部を合わせた長さである首下長が16mm、シャンク径Dが6mmとしたWC基超硬合金製基材の上に、いずれもAlCrSiNの硬質皮膜を4μm被覆したものである。
(Example 3)
Each of the long neck square end mills of the present invention has a blade diameter d of 3 mm, a neck diameter of 2.88 mm, a blade length of 4.5 mm, and a neck length of 16 mm which is the combined length of the blade and the neck. A WC-based cemented carbide base material having a shank diameter D of 6 mm is coated with 4 μm of a hard coating of AlCrSiN.
本発明例1〜3について、先端切れ刃部の曲率半径R1を3μm、後端切れ刃部の曲率半径R2を2μm、内周切れ刃部の曲率半径Raを1.5μm、外周切れ刃部の曲率半径Rbを5.0μmとし、仕様を統一した。 For inventive examples 1 to 3, the radius of curvature R1 of the leading edge is 3 μm, the radius of curvature R2 of the trailing edge is 2 μm, the radius of curvature Ra of the inner peripheral edge is 1.5 μm, and the curvature of the outer peripheral edge is The radius Rb was set to 5.0 μm and the specifications were unified.
さらに、本発明例1として外周刃の先端側の領域すなわち先端切れ刃部の長さを底刃と外周刃のつなぎ部から0.90mm(刃径dの30%)とした。また本発明例2として、先端切れ刃部の長さを底刃と外周刃のつなぎ部から0.60mm(刃径dの20%)とした。さらに本発明例3として先端切れ刃部の長さを底刃と外周刃のつなぎ部から1.05mm(刃径dの35%)とした。 Furthermore, as Example 1 of the present invention, the length of the distal end side region of the outer peripheral blade, that is, the length of the distal cutting edge portion was set to 0.90 mm (30% of the blade diameter d) from the connecting portion of the bottom blade and the outer peripheral blade. Further, as Example 2 of the present invention, the length of the tip cutting edge portion was 0.60 mm (20% of the blade diameter d) from the connecting portion of the bottom blade and the outer peripheral blade. Furthermore, as Example 3 of the present invention, the length of the tip cutting edge portion was 1.05 mm (35% of the blade diameter d) from the connecting portion of the bottom blade and the outer peripheral blade.
また比較として、従来例4(上記本発明例と同様の基材材質及び硬質皮膜の仕様)を加えた。従来例4は、先端切れ刃部の曲率半径R1が5μm、後端切れ刃部の曲率半径R2が8μmであり、外周刃の先端側の領域すなわち先端切れ刃部の長さが底刃と外周刃のつなぎ部から1.50mm(刃径dの50%)の領域である。さらに底刃における、内周切れ刃部の曲率半径Raが2.0μm、外周切れ刃部の曲率半径Rbが2.5μmである。 For comparison, Conventional Example 4 (the same base material material and hard coating specifications as the above-described example of the present invention) was added. In Conventional Example 4, the radius of curvature R1 of the leading edge is 5 μm, the radius of curvature R2 of the trailing edge is 8 μm, and the length of the distal edge of the outer peripheral blade, that is, the length of the distal cutting edge, is the bottom blade and the outer peripheral blade. This is a region of 1.50 mm (50% of the blade diameter d) from the connecting portion. Further, in the bottom blade, the curvature radius Ra of the inner peripheral cutting edge portion is 2.0 μm, and the curvature radius Rb of the outer peripheral cutting edge portion is 2.5 μm.
切削テストは水溶性切削液を用いた湿式切削とし、被削材として40HRCのプラスチック用金型材(商品名:HPM−MAGIC(登録商標)、日立金属株式会社製)を用い、軸方向切り込み量0.8mm、ピック方向切り込み量0.1mm、回転数8,000回転/min、送り速度500mm/minで側面切削を実施した。軸方向切り込み量0.8mmずつで20回加工して、最終的な加工深さは16mmまでを実施した。 The cutting test is wet cutting using a water-soluble cutting fluid, and a 40HRC plastic mold material (trade name: HPM-MAGIC (registered trademark), manufactured by Hitachi Metals, Ltd.) is used as the work material. Side cutting was carried out at a rate of .8 mm, a cutting amount in the pick direction of 0.1 mm, a rotation speed of 8,000 rotations / min, and a feed rate of 500 mm / min. Machining was performed 20 times with an axial depth of cut of 0.8 mm, and the final machining depth was up to 16 mm.
評価方法として、切削後の加工面の仕上げ面粗さRzの測定を行った。加工面の仕上げ面粗さは、加工面の軸方向に測定を行い、最大高さ粗さRzにて評価を行った。評価基準として、仕上げ面粗さRzが1.5μm以下の場合を良好とした。評価結果を表3に示す。 As an evaluation method, the finished surface roughness Rz of the machined surface after cutting was measured. The finished surface roughness of the machined surface was measured in the axial direction of the machined surface and evaluated with the maximum height roughness Rz. As an evaluation standard, the case where the finished surface roughness Rz was 1.5 μm or less was considered good. The evaluation results are shown in Table 3.
切削評価結果より、本発明例1〜3はいずれも仕上げ面粗さRzが1.5μm以下で加工面が仕上がっており、良好な結果であった。特に先端切れ刃部の長さが底刃と外周刃のつなぎ部から刃径の30%までである本発明例1、2はRz1.2μm以下を実現しており、非常に良好な結果(表3中の評価欄における◎)であった。これは、切削に関与してかつ、もっとも負荷がかかる外周刃先端側の稜線の最適化がなされた効果であり、チッピングもなく最後まで安定して加工できたためである。 From the cutting evaluation results, Examples 1 to 3 of the present invention were all good because the finished surface was finished with a finished surface roughness Rz of 1.5 μm or less. In particular, Examples 1 and 2 of the present invention in which the length of the cutting edge of the tip is from the connecting portion of the bottom blade and the outer peripheral blade to 30% of the blade diameter realizes Rz of 1.2 μm or less, and very good results (Table 3 in the evaluation column in 3. This is the effect of optimizing the ridge line on the front end side of the outer peripheral blade that is involved in cutting and is the most loaded, and is because it can be stably processed to the end without chipping.
一方、従来例4は、仕上げ面粗さRzが1.9μmと最も悪い値となり、不良であった(表3中の評価欄における×)。これは、刃先稜線の最適化がなされておらず外周刃の先端側でチッピングが生じて、その影響で加工面が悪化し、また、後端切れ刃部の曲率半径R2が先端切れ刃部の曲率半径R1よりも大きいので工具のたわみによって外周刃が加工面を擦る際に、抵抗が増大し、加工面を悪化させたと推測できる。 On the other hand, in the conventional example 4, the finished surface roughness Rz was 1.9 μm, which was the worst value and was poor (× in the evaluation column in Table 3). This is because the cutting edge ridge line is not optimized and chipping occurs on the tip side of the outer peripheral blade, and the machining surface is deteriorated due to the influence, and the curvature radius R2 of the trailing edge cutting edge is the curvature of the leading edge cutting edge. Since it is larger than the radius R1, it can be assumed that when the outer peripheral edge rubs the processed surface due to the deflection of the tool, the resistance increases and the processed surface is deteriorated.
(実施例4)
本発明例のロングネックスクエアエンドミルは、いずれも、刃径dが3mm、首部の直径が2.88mm、刃長が4.5mm、首下長が16mm、シャンク径Dが6mmとしたWC基超硬合金製基材の上に、いずれもAlCrSiNの硬質皮膜を4μm被覆したものである。
Example 4
All of the long neck square end mills of the present invention have a WC base with a blade diameter d of 3 mm, a neck diameter of 2.88 mm, a blade length of 4.5 mm, a neck length of 16 mm, and a shank diameter D of 6 mm. All of them are obtained by coating a hard film of AlCrSiN with a thickness of 4 μm on a hard alloy substrate.
本発明例4〜13については、いずれも先端切れ刃部の長さを底刃と外周刃のつなぎ部から0.90mm(刃径dの30%)とし、底刃における、内周切れ刃部の曲率半径Raを1.5μm、外周切れ刃部の曲率半径Rbを5.0μmとし、仕様を統一した。本実施例に関しては、外周刃の刃先稜線の曲率半径を変化させて、それによる切削性能の傾向を確認した。 For each of Examples 4 to 13, the length of the tip cutting edge is 0.90 mm (30% of the blade diameter d) from the joint between the bottom cutting edge and the outer cutting edge, and the inner cutting edge of the bottom cutting edge The curvature radius Ra was 1.5 μm, the curvature radius Rb of the outer peripheral cutting edge was 5.0 μm, and the specifications were unified. Regarding this example, the curvature radius of the edge edge line of the outer peripheral edge was changed, and the tendency of the cutting performance due to this was confirmed.
まず先端切れ刃部の曲率半径R1について、検討した。本発明例4は、先端切れ刃部の曲率半径R1が1.5μm、後端切れ刃部の曲率半径R2が1.0μmとした。
本発明例5として先端切れ刃部の曲率半径R1が2.0μm、後端切れ刃部の曲率半径R2を1.0μmとした。
本発明例6として先端切れ刃部の曲率半径R1が3.0μm、後端切れ刃部の曲率半径R2を1.0μmとした。
本発明例7として、先端切れ刃部の曲率半径R1が4.0μm、後端切れ刃部の曲率半径R2を1.0μmとした。
本発明例8として、先端切れ刃部の曲率半径R1が5.0μm、後端切れ刃部の曲率半径R2を1.0μmとした。
First, the radius of curvature R1 of the tip cutting edge was examined. In Invention Example 4, the radius of curvature R1 of the front end cutting edge was 1.5 μm and the radius of curvature R2 of the rear end cutting edge was 1.0 μm.
As Example 5 of the present invention, the radius of curvature R1 of the front end cutting edge was 2.0 μm, and the radius of curvature R2 of the rear end cutting edge was 1.0 μm.
As Example 6 of the present invention, the curvature radius R1 of the leading edge part was 3.0 μm, and the curvature radius R2 of the trailing edge part was 1.0 μm.
As Example 7 of the present invention, the curvature radius R1 of the leading edge part was 4.0 μm, and the curvature radius R2 of the trailing edge part was 1.0 μm.
As Example 8 of the present invention, the radius of curvature R1 of the leading edge portion was 5.0 μm, and the radius of curvature R2 of the trailing edge portion was 1.0 μm.
次に後端切れ刃部の曲率半径R2について検討した。本発明例9として、先端切れ刃部の曲率半径R1が4.0μm、外周刃の後端側における稜線の曲率半径R2を0.5μmとした。
本発明例10として、先端切れ刃部の曲率半径R1が4.0μm、後端切れ刃部の曲率半径R2を1.0μmとした。
本発明例11として、先端切れ刃部の曲率半径R1が4.0μm、後端切れ刃部の曲率半径R2を2.0μmとした。
本発明例12として、先端切れ刃部の曲率半径R1が4.0μm、後端切れ刃部の曲率半径R2を3.0μmとした。
本発明例13として、先端切れ刃部の曲率半径R1が4.0μm、後端切れ刃部の曲率半径R2を3.5μmとした。比較として、実施例3でも使用したものと同じ従来例4を加えた。
Next, the radius of curvature R2 of the rear edge cutting edge was examined. As Example 9 of the present invention, the radius of curvature R1 of the tip cutting edge was 4.0 μm, and the radius of curvature R2 of the ridge line on the rear end side of the outer peripheral blade was 0.5 μm.
As Example 10 of the present invention, the curvature radius R1 of the leading edge part was 4.0 μm, and the curvature radius R2 of the trailing edge part was 1.0 μm.
As Example 11 of the present invention, the radius of curvature R1 of the leading edge portion was 4.0 μm, and the radius of curvature R2 of the trailing edge portion was 2.0 μm.
As Invention Example 12, the radius of curvature R1 of the front end cutting edge was 4.0 μm, and the radius of curvature R2 of the rear end cutting edge was 3.0 μm.
As Example 13 of the present invention, the curvature radius R1 of the leading edge part was 4.0 μm, and the curvature radius R2 of the trailing edge part was 3.5 μm. As a comparison, the same Conventional Example 4 as that used in Example 3 was added.
切削テストは水溶性切削液を用いた湿式切削とし、被削材として40HRCのプラスチック用金型材(商品名:HPM−MAGIC(登録商標、日立金属株式会社製)を用い、軸方向切り込み量0.8mm、ピック方向切り込み量0.1mm、回転数8,000回転/min、送り速度500mm/minで側面切削を実施した。軸方向切り込み量0.8mmずつで20回加工して、最終的な加工深さは16mmまでを実施した。 The cutting test was performed by wet cutting using a water-soluble cutting fluid, and a 40HRC plastic mold material (trade name: HPM-MAGIC (registered trademark, manufactured by Hitachi Metals, Ltd.) was used as the work material. Side cutting was performed at 8mm, pick direction cut amount 0.1mm, rotation speed 8,000 rotations / min, feed rate 500mm / min. The depth was up to 16 mm.
評価方法として、切削後の工具における逃げ面摩耗幅を比較した。側面切削にて一定距離(30m)まで削り、その際の摩耗幅を測定して評価を行った。評価基準として、逃げ面摩耗幅が0.08mm以下の場合を良好とした。評価結果を表4に示す。 As an evaluation method, flank wear widths of tools after cutting were compared. The surface was cut to a certain distance (30 m) by side cutting, and the wear width at that time was measured and evaluated. As an evaluation standard, the case where the flank wear width was 0.08 mm or less was considered good. The evaluation results are shown in Table 4.
切削評価結果より、本発明例は4〜13までいずれも0.08mm以下の摩耗幅であり、良好な結果であった。その中でも特に先端切れ刃部の曲率半径R1が2μm以上4μm以下である本発明例5〜7は逃げ面摩耗幅が0.05mm以下であり、特に良好な結果(表4中の評価欄における◎)であった。これは、外周刃の先端側の刃先稜線が食いつき性を確保しつつ、耐チッピング性を実現できる切れ刃強度を兼ね備えられた効果である。
後端切れ刃部の曲率半径R2が1μm以上3μm以下である本発明例10〜12においても逃げ面摩耗幅が0.05mm以下であり、特に良好な結果(表4中の評価欄における◎)であった。これは、外周刃の後端側の刃先稜線が最適化された効果である。外周刃の後端側は切削に直接関与しないため、工具のたわみが若干発生した際の加工面との接触に対して、振動がなく、かつチッピングしない刃先強度が兼ね備えられていればよい。本発明例10〜12に関しては、それらを満たしていたため、摩耗幅が小さく、安定している。
From the cutting evaluation results, all of the inventive examples 4 to 13 had a wear width of 0.08 mm or less, and were good results. Among them, Examples 5 to 7 of the present invention in which the radius of curvature R1 of the cutting edge of the tip is 2 μm or more and 4 μm or less have a flank wear width of 0.05 mm or less, and particularly good results (に お け る in the evaluation column in Table 4). )Met. This is an effect that combines the cutting edge strength capable of realizing chipping resistance while ensuring the biting property of the cutting edge ridge line on the tip side of the outer peripheral blade.
In the inventive examples 10 to 12 where the radius of curvature R2 of the rear edge cutting edge portion is 1 μm or more and 3 μm or less, the flank wear width is 0.05 mm or less, and particularly good results ((in the evaluation column in Table 4). there were. This is an effect of optimizing the edge edge line on the rear end side of the outer peripheral blade. Since the rear end side of the outer peripheral blade is not directly involved in the cutting, it is only necessary to have a blade edge strength that does not vibrate and does not chip with respect to contact with the machining surface when a slight deflection of the tool occurs. With respect to Invention Examples 10 to 12, since they were satisfied, the wear width was small and stable.
一方、従来例4は、逃げ面摩耗幅が0.09mmともっとも悪い値となっている。これは、刃先稜線の最適化がなされておらず、外周刃の先端側で食いつきが悪く、チッピングが生じ、さらに振動が生じた。その影響が外周刃の後端側にも現れ、大きな摩耗幅につながったためだと考えられる。 On the other hand, in Conventional Example 4, the flank wear width is 0.09 mm, which is the worst value. This is because the edge of the edge of the blade is not optimized, the biting on the tip side of the outer peripheral blade is poor, chipping occurs, and vibration occurs. It is thought that the effect also appeared on the rear end side of the outer peripheral blade and led to a large wear width.
(実施例5)
本発明例はロングネックスクエアエンドミルは、いずれも刃径dが1mm、首部の直径が0.96mm、刃長が1.5mm、首下長が4mm、シャンク径が4mmとしたWC基超硬合金製基材の上に、いずれもAlCrSiNの硬質皮膜を4μm被覆した。
(Example 5)
Examples of the present invention are all long neck square end mills, WC-based cemented carbide with a blade diameter d of 1 mm, a neck diameter of 0.96 mm, a blade length of 1.5 mm, a neck length of 4 mm, and a shank diameter of 4 mm. All of the hard substrates of AlCrSiN were coated with 4 μm on the base material.
本発明例14〜23については、いずれも先端切れ刃部の長さを底刃と外周刃のつなぎ部から0.3mm(刃径dの30%)、先端切れ刃部の曲率半径R1を3μm、後端切れ刃部の刃先稜線R2を2μmとし、仕様を統一した。本実施例に関しては、底刃の曲率半径を変化させて、それによる切削性能の傾向を確認した。 In each of Examples 14 to 23, the length of the tip cutting edge portion is 0.3 mm (30% of the blade diameter d) from the connecting portion between the bottom blade and the outer peripheral blade, and the curvature radius R1 of the tip cutting edge portion is 3 μm. The blade edge ridgeline R2 of the rear edge cutting edge portion was 2 μm, and the specifications were unified. Regarding this example, the curvature radius of the bottom blade was changed, and the tendency of the cutting performance was confirmed.
まず内周切れ刃の曲率半径Raについて検討した。本発明例14として、内周切れ刃の曲率半径Raを0.5μm、外周切れ刃の曲率半径Rbを5.0μmとした。
本発明例15として、内周切れ刃の曲率半径Raを1.0μm、外周切れ刃の曲率半径Rbを5.0μmとした。
本発明例16として、内周切れ刃の曲率半径Raを1.5μm、外周切れ刃の曲率半径Rbを5.0μmとした。
本発明例17として、内周切れ刃の曲率半径Raを2.0μm、外周切れ刃の曲率半径Rbを5.0μmとした。
本発明例18として、内周切れ刃の曲率半径Raを2.5μm、外周切れ刃の曲率半径Rbを5.0μmとした。
First, the radius of curvature Ra of the inner peripheral cutting edge was examined. In Invention Example 14, the radius of curvature Ra of the inner peripheral cutting edge was 0.5 μm, and the radius of curvature Rb of the outer peripheral cutting edge was 5.0 μm.
In Invention Example 15, the radius of curvature Ra of the inner peripheral cutting edge was 1.0 μm, and the radius of curvature Rb of the outer peripheral cutting edge was 5.0 μm.
In Invention Example 16, the radius of curvature Ra of the inner peripheral cutting edge was 1.5 μm, and the radius of curvature Rb of the outer peripheral cutting edge was 5.0 μm.
As Example 17 of the present invention, the curvature radius Ra of the inner peripheral cutting edge was 2.0 μm, and the curvature radius Rb of the outer peripheral cutting edge was 5.0 μm.
As Example 18 of the present invention, the curvature radius Ra of the inner peripheral cutting edge was 2.5 μm, and the curvature radius Rb of the outer peripheral cutting edge was 5.0 μm.
次に外周切れ刃の曲率半径Rbを検討した。本発明例19として、内周切れ刃の曲率半径Raを1.5μm、外周切れ刃の曲率半径Rbを3.0μmとした。
本発明例20として、内周切れ刃の曲率半径Raを1.5μm、外周切れ刃の曲率半径Rbを4.0μmとした。
本発明例21として、内周切れ刃の曲率半径Raを1.5μm、外周切れ刃の曲率半径Rbを5.0μmとした。
本発明例22として、内周切れ刃の曲率半径Raを1.5μm、外周切れ刃の曲率半径Rbを6.0μmとした。
本発明例23として、内周切れ刃の曲率半径Raを1.5μm、外周切れ刃の曲率半径Rbを7.0μmとした。
Next, the radius of curvature Rb of the outer peripheral cutting edge was examined. In Invention Example 19, the radius of curvature Ra of the inner peripheral cutting edge was 1.5 μm, and the radius of curvature Rb of the outer peripheral cutting edge was 3.0 μm.
In Invention Example 20, the radius of curvature Ra of the inner peripheral cutting edge was 1.5 μm, and the radius of curvature Rb of the outer peripheral cutting edge was 4.0 μm.
As Invention Example 21, the radius of curvature Ra of the inner peripheral cutting edge was 1.5 μm, and the radius of curvature Rb of the outer peripheral cutting edge was 5.0 μm.
As Example 22 of the present invention, the radius of curvature Ra of the inner peripheral cutting edge was 1.5 μm, and the radius of curvature Rb of the outer peripheral cutting edge was 6.0 μm.
As Inventive Example 23, the curvature radius Ra of the inner peripheral cutting edge was 1.5 μm, and the curvature radius Rb of the outer peripheral cutting edge was 7.0 μm.
比較として、従来例5(上記本発明例と同様の基材材質及び硬質皮膜の仕様)を加えた。従来例5は、先端切れ刃部の曲率半径R1が4μm、後端切れ刃部の曲率半径R2が7μmであり、先端切れ刃部の長さが底刃と外周刃のつなぎ部から0.5mm(刃径dの50%)である。さらに底刃における、内周切れ刃の曲率半径Raが2μm、外周切れ刃の曲率半径Rbが2.5μmである。 As a comparison, Conventional Example 5 (the same base material material and hard coating specifications as in the above-described example of the present invention) was added. In Conventional Example 5, the radius of curvature R1 of the leading edge is 4 μm, the radius of curvature R2 of the trailing edge is 7 μm, and the length of the leading edge is 0.5 mm from the joint between the bottom edge and the outer edge ( 50% of the blade diameter d). Furthermore, the curvature radius Ra of the inner peripheral cutting edge in the bottom blade is 2 μm, and the curvature radius Rb of the outer peripheral cutting edge is 2.5 μm.
切削テストは水溶性切削液を用いた湿式切削とし、被削材として52HRCのプラスチック用金型材(商品名:HPM38、日立金属株式会社製)を用い、軸方向切り込み量0.03mm、ピック方向切り込み量0.03mm、回転数15,000回転/min、送り速度450mm/minで底面切削を実施した。加工距離は、1本につき8m切削した。さらに各工具5本ずつ同じ切削を行なった。 The cutting test is wet cutting using a water-soluble cutting fluid, and a 52HRC plastic mold material (trade name: HPM38, manufactured by Hitachi Metals, Ltd.) is used as the work material. Bottom cutting was performed at an amount of 0.03 mm, a rotation speed of 15,000 rotations / min, and a feed rate of 450 mm / min. The machining distance was 8 m per piece. Further, the same cutting was performed for five tools.
評価方法として、同じ工具を5本ずつ用いて加工を行った後に、加工面の仕上げ面粗さを測定し、最も良い仕上げ面粗さRzと最も悪い仕上げ面粗さRzの差である、仕上げ面粗さRzの差を測定することにより評価を行った。評価基準として、仕上げ面粗さRzの差が0.4μm以下の場合を良好とした。評価結果を表5に示す。 As an evaluation method, after machining using five of the same tools, the finished surface roughness of the machined surface is measured, and the finish is the difference between the best finished surface roughness Rz and the worst finished surface roughness Rz. Evaluation was performed by measuring the difference in surface roughness Rz. As an evaluation criterion, a case where the difference in the finished surface roughness Rz was 0.4 μm or less was regarded as good. The evaluation results are shown in Table 5.
切削評価結果より、本発明例14〜23はいずれも仕上げ面粗さRzの差が0.4μm以下であり、良好な結果であった。特に内周切れ刃部の曲率半径Raが1μm以上2μm以下である本発明例15〜17は仕上げ面粗さRzの差が0.2μm以下であり非常に良好であった。これは、内周切れ刃部の曲率半径Raを最適化できた効果である。内周切れ刃部の曲率半径Raを1μm以上2μm以下とすることにより、底刃で削っていく際に微小な振動によって発生するチッピングにも耐え得る刃先強度を有し、かつ、切削抵抗も上がらない。このことが良好な加工面形成が実現できた理由であると推測できる。 From the results of the cutting evaluation, Examples 14 to 23 of the present invention were all good because the difference in the finished surface roughness Rz was 0.4 μm or less. In particular, Examples 15 to 17 of the invention examples 15 to 17 in which the radius of curvature Ra of the inner peripheral cutting edge portion was 1 μm or more and 2 μm or less were very good because the difference in the finished surface roughness Rz was 0.2 μm or less. This is an effect that the curvature radius Ra of the inner peripheral cutting edge can be optimized. By setting the radius of curvature Ra of the inner peripheral cutting edge to 1 μm or more and 2 μm or less, the cutting edge has a strength sufficient to withstand chipping caused by minute vibrations when cutting with the bottom blade, and the cutting resistance is also increased. Absent. It can be presumed that this is the reason why a good processed surface can be formed.
また、外周切れ刃部の曲率半径Rbが4μm以上6μm以下である本発明例20〜22についても、仕上げ面粗さRzの差が0.2μm以下であり非常に良好であった。これは、外周切れ刃部の曲率半径Rbを最適化できた効果である。外周切れ刃部の曲率半径Rbを4μm以上6μm以下とすることにより、外周刃に近い部分で切削に関与する部分の刃先強度と切削性の両方を確保できたといえる。切削性が良好でかつチッピングもなく加工できるため、仕上面粗さも安定した良好なものを得ることができる。特に首下長さが存在するような本発明例のような工具の切削加工の場合、わずかな振動の影響を受けやすいため、外周切れ刃部の曲率半径Rbの数値の最適化が切削性向上に与える影響は大きい。 Also, in the inventive examples 20 to 22 in which the radius of curvature Rb of the outer peripheral cutting edge portion is 4 μm or more and 6 μm or less, the difference in the finished surface roughness Rz was 0.2 μm or less, which was very good. This is an effect that the radius of curvature Rb of the outer peripheral cutting edge portion can be optimized. By setting the radius of curvature Rb of the outer peripheral cutting edge to 4 μm or more and 6 μm or less, it can be said that both the edge strength and the machinability of the portion related to cutting at the portion close to the outer peripheral blade can be secured. Since it has good machinability and can be processed without chipping, it is possible to obtain a good finished surface with a stable roughness. In particular, in the case of cutting of a tool such as the present invention example in which the length under the neck exists, it is easy to be affected by slight vibration, so the optimization of the value of the radius of curvature Rb of the outer peripheral cutting edge improves the cutting performance. The impact on is great.
また従来例5においては、5本加工して仕上げ面粗さRzの差が0.5μmという結果になった。これは、外周切れ刃部の曲率半径Rbが2.5μmと小さいために、わずかな振動でもコーナ部に近い部分が刃先強度が不足するためにチッピングを起こしてしまう。わずかでもチッピングが起きれば、加工面にも影響をおよぼすためにこのような結果になる。 Further, in Conventional Example 5, the difference in the finished surface roughness Rz was 0.5 μm after processing five. This is because the radius of curvature Rb of the outer peripheral cutting edge portion is as small as 2.5 μm, and even a slight vibration causes chipping because the portion near the corner portion has insufficient blade edge strength. Even if a slight chipping occurs, this affects the machined surface.
(実施例6)
本実施例におけるスクエアエンドミルの形状は、図1に示す形状であり、刃径dが6mm、刃長が13mm、全長が60mm、シャンク径Dが6mmとしたWC基超硬合金製基材の上に、AlCrSiNの硬質皮膜を4μm被覆した。先端切れ刃部の長さは底刃と外周刃のつなぎ部から1.8mm(刃径dの30%)とした。外周刃に関しては、先端切れ刃部の曲率半径R1が3μm、後端切れ刃部の曲率半径R2が2μmとした。底刃に関しては、内周切れ刃部の曲率半径Raが1.5μm、外周切れ刃部の曲率半径Rbが5.0μmとした。
(Example 6)
The shape of the square end mill in the present example is the shape shown in FIG. 1, on a WC-based cemented carbide substrate having a blade diameter d of 6 mm, a blade length of 13 mm, a total length of 60 mm, and a shank diameter D of 6 mm. Further, a hard coating of AlCrSiN was coated with 4 μm. The length of the tip cutting edge portion was 1.8 mm (30% of the blade diameter d) from the connecting portion between the bottom blade and the outer peripheral blade. Regarding the outer peripheral edge, the radius of curvature R1 of the front end cutting edge was 3 μm, and the radius of curvature R2 of the rear end cutting edge was 2 μm. Regarding the bottom blade, the curvature radius Ra of the inner peripheral cutting edge portion was 1.5 μm, and the curvature radius Rb of the outer peripheral cutting edge portion was 5.0 μm.
比較する従来例のスクエアエンドミルは、刃径dが6mm、刃長が13mm、全長が60mm、シャンク径Dが6mmとしたWC基超硬合金製基材の上に、AlCrSiNの硬質皮膜を4μm被覆したものである。先端切れ刃部の長さは底刃と外周刃のつなぎ部から3.0mm(刃径dの50%)とした。外周刃に関しては、先端切れ刃部の曲率半径R1が5μm、後端切れ刃部の曲率半径R2が5μmとした。底刃に関しては、内周切れ刃部の曲率半径Raが2.0μm、外周切れ刃部の曲率半径Rbが2.5μmとした。 The square end mill of the conventional example to be compared is coated with a 4 μm hard coating of AlCrSiN on a WC-based cemented carbide base material having a blade diameter d of 6 mm, a blade length of 13 mm, a total length of 60 mm, and a shank diameter D of 6 mm. It is a thing. The length of the tip cutting edge portion was 3.0 mm (50% of the blade diameter d) from the connecting portion between the bottom blade and the outer peripheral blade. Regarding the outer peripheral edge, the radius of curvature R1 of the leading edge edge was 5 μm, and the radius of curvature R2 of the rear edge edge was 5 μm. Regarding the bottom blade, the curvature radius Ra of the inner peripheral cutting edge portion was 2.0 μm, and the curvature radius Rb of the outer peripheral cutting edge portion was 2.5 μm.
切削テストは水溶性切削液を用いた湿式切削とし、被削材として220HBの炭素鋼S50Cを用い、軸方向切り込み量9.0mm、ピック方向切り込み量0.6mm、回転数6,400回転/min、送り速度1,870mm/minで側面切削を実施した。加工距離は、1本につき30m切削した。 The cutting test was wet cutting using a water-soluble cutting fluid, 220HB carbon steel S50C was used as the work material, the axial cut amount was 9.0 mm, the pick direction cut amount was 0.6 mm, and the rotational speed was 6,400 rpm. Side cutting was performed at a feed rate of 1,870 mm / min. The machining distance was 30 m per piece.
評価方法として、加工面の仕上げ面粗さRzで評価を実施した。評価基準として、仕上げ面粗さRzが1.0μm以下であるものを良好とした。評価結果を表6に示す。 As an evaluation method, the finished surface roughness Rz of the processed surface was evaluated. As an evaluation standard, a finished surface roughness Rz of 1.0 μm or less was considered good. The evaluation results are shown in Table 6.
切削評価結果より、本発明例24は外周刃の全領域でチッピングが観察されなかったため、仕上げ面粗さRzが1.0μm以下であり、良好な結果を示した。これは逃げ面とすくい面の交差部の曲率半径を外周先端側の曲率半径R1で大きくしたことにより、外周刃全体でびびり振動によるチッピングを抑制できる。また、外周後端部においても先端側よりも切削性があるために加工面にむしれが出ず、良好な加工面が得られる。 From the results of the cutting evaluation, since no chipping was observed in the entire region of the outer peripheral edge, Example 24 of the present invention had a finished surface roughness Rz of 1.0 μm or less and showed a good result. This is because the radius of curvature of the intersection of the flank and the rake face is increased by the radius of curvature R1 on the outer peripheral tip side, so that chipping due to chatter vibration can be suppressed over the entire outer peripheral blade. In addition, since the outer peripheral rear end portion is more machinable than the front end side, the processed surface is not peeled off and a good processed surface can be obtained.
一方、従来例6では外周刃でチッピングを起こしたため、仕上げ面粗さRzが1.5μm以下であり、不良であった。従来例6は、外周刃の刃先稜線の曲率半径が一定であるために若干の振動でもびびり振動を増幅してしまい、外周刃の後端側ではチッピングが起こりやすくなる。それが結果的に加工面に影響をおよぼし、面粗さの悪化につながる。 On the other hand, in the conventional example 6, since chipping was caused by the outer peripheral blade, the finished surface roughness Rz was 1.5 μm or less, which was defective. In Conventional Example 6, since the radius of curvature of the edge edge of the outer peripheral blade is constant, chatter vibration is amplified even by slight vibration, and chipping tends to occur on the rear end side of the outer peripheral blade. As a result, the machined surface is affected and the surface roughness is deteriorated.
(実施例7)
本実施例におけるスクエアエンドミルの形状は、図1に示す形状であり、刃径dが10mm、刃長が22mm、全長が80mm、シャンク径Dが10mmとしたWC基超硬合金製基材の上に、AlCrSiNの硬質皮膜を4μm被覆した。
(Example 7)
The shape of the square end mill in the present embodiment is the shape shown in FIG. 1 and is a top of a WC-based cemented carbide substrate having a blade diameter d of 10 mm, a blade length of 22 mm, a total length of 80 mm, and a shank diameter D of 10 mm. Further, a hard coating of AlCrSiN was coated with 4 μm.
本発明例25〜34については、いずれも先端切れ刃部の長さを底刃と外周刃のつなぎ部から3.0mm(刃径dの30%)とし、底刃における、内周切れ刃部の曲率半径Raを1.5μm、外周切れ刃部の曲率半径Rbを5.0μmとし、仕様を統一した。本実施例に関しては、外周刃の刃先稜線の曲率半径を変化させて、それによる切削性能の傾向を確認した。 In each of the inventive examples 25 to 34, the length of the tip cutting edge portion is 3.0 mm (30% of the blade diameter d) from the connecting portion of the bottom cutting edge and the outer cutting edge, and the inner cutting edge portion in the bottom cutting edge. The curvature radius Ra was 1.5 μm, the curvature radius Rb of the outer peripheral cutting edge was 5.0 μm, and the specifications were unified. Regarding this example, the curvature radius of the edge edge line of the outer peripheral edge was changed, and the tendency of the cutting performance due to this was confirmed.
まず先端切れ刃部の曲率半径R1について、検討した。本発明例25は、先端切れ刃部の曲率半径R1が1.5μm、後端切れ刃部の曲率半径R2が1.0μmとした。
本発明例26として先端切れ刃部の曲率半径R1が2.0μm、後端切れ刃部の曲率半径R2を1.0μmとした。
本発明例27として先端切れ刃部の曲率半径R1が3.0μm、後端切れ刃部の曲率半径R2を1.0μmとした。
本発明例28として、先端切れ刃部の曲率半径R1が4.0μm、後端切れ刃部の曲率半径R2を1.0μmとした。
本発明例29として、先端切れ刃部の曲率半径R1が5.0μm、後端切れ刃部の曲率半径R2を1.0μmとした。
First, the radius of curvature R1 of the tip cutting edge was examined. In Invention Example 25, the radius of curvature R1 of the tip end cutting edge was 1.5 μm, and the radius of curvature R2 of the rear end cutting edge was 1.0 μm.
As Example 26 of the present invention, the radius of curvature R1 of the leading edge portion was 2.0 μm, and the radius of curvature R2 of the trailing edge portion was 1.0 μm.
As Example 27 of the present invention, the curvature radius R1 of the leading edge part was 3.0 μm, and the curvature radius R2 of the trailing edge part was 1.0 μm.
As Example 28 of the present invention, the radius of curvature R1 of the leading edge portion was 4.0 μm, and the radius of curvature R2 of the trailing edge portion was 1.0 μm.
As Example 29 of the present invention, the radius of curvature R1 of the leading edge portion was 5.0 μm, and the radius of curvature R2 of the trailing edge portion was 1.0 μm.
次に後端切れ刃部の曲率半径R2について検討した。本発明例30として、先端切れ刃部の曲率半径R1が4.0μm、外周刃の後端側における稜線の曲率半径R2を0.5μmとした。
本発明例31として、先端切れ刃部の曲率半径R1が4.0μm、後端切れ刃部の曲率半径R2を1.0μmとした。
本発明例32として、先端切れ刃部の曲率半径R1が4.0μm、後端切れ刃部の曲率半径R2を2.0μmとした。
本発明例33として、先端切れ刃部の曲率半径R1が4.0μm、後端切れ刃部の曲率半径R2を3.0μmとした。
本発明例34として、先端切れ刃部の曲率半径R1が4.0μm、後端切れ刃部の曲率半径R2を3.5μmとした。
Next, the radius of curvature R2 of the rear edge cutting edge was examined. As Example 30 of the present invention, the radius of curvature R1 of the tip cutting edge was 4.0 μm, and the radius of curvature R2 of the ridge line on the rear end side of the outer peripheral blade was 0.5 μm.
As Example 31 of the present invention, the radius of curvature R1 of the front end cutting edge was 4.0 μm, and the radius of curvature R2 of the rear end cutting edge was 1.0 μm.
As Example 32 of the present invention, the radius of curvature R1 of the leading edge portion was 4.0 μm, and the radius of curvature R2 of the trailing edge portion was 2.0 μm.
As Example 33 of the present invention, the radius of curvature R1 of the leading edge portion was 4.0 μm, and the radius of curvature R2 of the trailing edge portion was 3.0 μm.
As Example 34 of the present invention, the radius of curvature R1 of the leading edge portion was 4.0 μm, and the radius of curvature R2 of the trailing edge portion was 3.5 μm.
比較する従来例のスクエアエンドミルは、刃径dが10mm、刃長が22mm、全長が80mm、シャンク径Dが10mmとしたWC基超硬合金製基材の上に、AlCrSiNの硬質皮膜を4μm被覆したものである。先端切れ刃部の長さは底刃と外周刃のつなぎ部から5.0mm(刃径dの50%)とした。外周刃に関しては、先端切れ刃部の曲率半径R1が5μm、後端切れ刃部の曲率半径R2が5μmとした。底刃に関しては、内周切れ刃部の曲率半径Raが2.0μm、外周切れ刃部の曲率半径Rbが2.5μmとした。 The square end mill of the conventional example to be compared is coated with a 4 μm hard coating of AlCrSiN on a WC-based cemented carbide base material having a blade diameter d of 10 mm, a blade length of 22 mm, a total length of 80 mm, and a shank diameter D of 10 mm. It is a thing. The length of the tip cutting edge portion was 5.0 mm (50% of the blade diameter d) from the connecting portion between the bottom blade and the outer peripheral blade. Regarding the outer peripheral edge, the radius of curvature R1 of the leading edge edge was 5 μm, and the radius of curvature R2 of the rear edge edge was 5 μm. Regarding the bottom blade, the curvature radius Ra of the inner peripheral cutting edge portion was 2.0 μm, and the curvature radius Rb of the outer peripheral cutting edge portion was 2.5 μm.
切削テストは水溶性切削液を用いた湿式切削とし、被削材として220HBの炭素鋼S50Cを用い、軸方向切り込み量15.0mm、ピック方向切り込み量1.0mm、回転数3,820回転/min、送り速度1,160mm/minで側面切削を実施した。加工距離は、1本につき20m切削した。軸方向切り込み量が15.0mmであることから、切削テストにおいては先端切れ刃部及び後端切れ刃部が同時に切削加工に寄与することになる。 The cutting test was wet cutting using a water-soluble cutting fluid, 220HB carbon steel S50C was used as the work material, the axial cut amount was 15.0 mm, the pick direction cut amount was 1.0 mm, and the rotational speed was 3,820 rpm. Side cutting was performed at a feed rate of 1,160 mm / min. The machining distance was 20 m per piece. Since the cutting depth in the axial direction is 15.0 mm, in the cutting test, the leading edge portion and the trailing edge portion simultaneously contribute to the cutting process.
評価方法として、加工面の仕上げ面粗さRzで評価を実施した。評価基準として、仕上げ面粗さRzが1.5μm以下であるものを良好とした。評価結果を表7に示す。 As an evaluation method, the finished surface roughness Rz of the processed surface was evaluated. As an evaluation standard, a finished surface roughness Rz of 1.5 μm or less was considered good. Table 7 shows the evaluation results.
切削評価結果より、本発明例25〜34はいずれも仕上げ面粗さRzが1.5μm以下であり、良好な結果であった。特に先端切れ刃部の曲率半径R1が2μm以上4μm以下である本発明例26〜28は仕上げ面粗さRzが1.2μm以下であり非常に良好であった。これは、先端切れ刃部の曲率半径R1を最適化できた効果である。先端切れ刃部の曲率半径R1を2μm以上4μm以下とすることにより、外周刃の先端側で削っていく際にビビリ振動の影響を受けず、チッピングが発生しにくい刃先強度を有することが可能になったと推測できる。 From the cutting evaluation results, the inventive examples 25 to 34 all had a finished surface roughness Rz of 1.5 μm or less, and were good results. In particular, the inventive examples 26 to 28 in which the radius of curvature R1 of the tip cutting edge part is 2 μm or more and 4 μm or less were very good with the finished surface roughness Rz of 1.2 μm or less. This is an effect that the curvature radius R1 of the tip cutting edge portion can be optimized. By setting the radius of curvature R1 of the cutting edge of the tip to 2 μm or more and 4 μm or less, it is possible to have a cutting edge strength that is not affected by chatter vibration when chipping on the tip side of the outer peripheral blade and is less likely to cause chipping. I can guess that.
また、先端切れ刃部の曲率半径R2が1μm以上3μm以下である本発明例31〜33についても、仕上げ面粗さRzが1.2μm以下であり非常に良好であった。これは、先端切れ刃部の曲率半径R2を最適化できた効果である。外周切れ刃部の曲率半径R2を1μm以上3μm以下とすることにより、外周刃の後端側に近い部分で切削に関与する部分の刃先強度と切削性の両方を確保できたといえる。切削性が良好でかつチッピングもなく加工できるため、仕上面粗さも安定した良好なものを得ることができる。 Also, in the inventive examples 31 to 33 in which the radius of curvature R2 of the tip cutting edge portion is 1 μm or more and 3 μm or less, the finished surface roughness Rz is 1.2 μm or less, which is very good. This is an effect that the curvature radius R2 of the tip cutting edge portion can be optimized. By setting the radius of curvature R2 of the outer peripheral cutting edge to 1 μm or more and 3 μm or less, it can be said that both the edge strength and the machinability of the portion related to cutting at the portion near the rear end side of the outer peripheral blade can be secured. Since it has good machinability and can be processed without chipping, it is possible to obtain a good finished surface with a stable roughness.
また従来例7においては、仕上げ面粗さRzが1.8μmという結果になった。これは、先端切れ刃部の曲率半径R1、R2がいずれも5μmで同じ値であるために、ビビリ振動が起こりやすい外周刃の先端側では刃先強度が不足し、また外周刃の後端側では、切削性が不足したためにビビリ振動の影響を受けてしまう。その結果、先端切れ刃がチッピングを起こし、後端側で振動を生じるために、加工面にも影響をおよぼすことになる。 In Conventional Example 7, the finished surface roughness Rz was 1.8 μm. This is because the radius of curvature R1 and R2 of the cutting edge of the tip is 5 μm, which is the same value, so that the edge strength is insufficient on the tip side of the outer edge where chatter vibration is likely to occur, and on the rear end side of the outer edge. Because of lack of machinability, it is affected by chatter vibration. As a result, the cutting edge of the tip causes chipping and vibration is generated on the rear end side, so that the processed surface is also affected.
上記実施例では、WC基超硬合金製基材を使用した場合を記載したが、特に限定されない。例えば、基材として、高速度鋼、立方晶窒化ホウ素(cBN)、工具鋼、サーメットまたはセラミックス等を使用した場合にも本発明の有利な効果を奏することができる。
また上記実施例では、硬質皮膜としてAlCrSiNを被覆した場合を記載したが、特に限定されない。例えば、硬質皮膜としてAlCrN、AlCrNC、AlCrNCB、AlCrSiNC、AlCrSiNCB、TiAlN、TiAlNC、TiAlNCB、CrSiN、CrSiNC、CrSiNCB、TiCN、TiCまたはTiCNB等を使用した場合にも本発明の効果を奏することができる。
In the said Example, although the case where the base material made from a WC group cemented carbide was used was described, it is not specifically limited. For example, the advantageous effects of the present invention can also be achieved when high-speed steel, cubic boron nitride (cBN), tool steel, cermet, ceramics, or the like is used as the base material.
Moreover, in the said Example, although the case where AlCrSiN was coat | covered as a hard film was described, it does not specifically limit. For example, even when AlCrN, AlCrNC, AlCrNCB, AlCrSiNC, AlCrSiNCB, TiAlN, TiAlNC, TiAlNCB, CrSiN, CrSiNC, CrSiNCB, TiCN, TiC, or TiCNB are used as the hard coating, the effects of the present invention can be achieved.
本発明により、長い突き出し量の状態での軸方向の切り込みを大きくした場合の側面切削においても、外周刃全域でのチッピングの発生が抑制ができ、びびり振動が無く安定した切削加工が可能となる。特に、刃径dがシャンク径Dより小さくなるロングネックスクエアエンドミルにおいて、刃部のチッピングを抑制することができるため深彫り加工に対し、特に有効である。 According to the present invention, even in side cutting when the axial cut is large with a long protrusion amount, occurrence of chipping in the entire outer peripheral blade can be suppressed, and stable cutting can be performed without chatter vibration. . In particular, in a long neck square end mill in which the blade diameter d is smaller than the shank diameter D, chipping of the blade portion can be suppressed, which is particularly effective for deep engraving.
1 スクエアエンドミル
2 底刃
3 外周刃
4 シャンク部
5 ロングネックスクエアエンドミル
6 刃部
8 首部
10 外周刃の逃げ面
11 外周刃のすくい面
12 外周刃の刃先稜線
13 従来のエンドミルにおける外周刃の逃げ面
14 従来のエンドミルにおける外周刃のすくい面
15 従来のエンドミルにおける外周刃の刃先稜線
16 底刃の逃げ面
17 底刃の刃先稜線
18 底刃のすくい面
19 先端切れ刃部
20 後端切れ刃部
21 従来のエンドミル
22 内周切れ刃部
23 外周切れ刃部
24 従来例2のエンドミル
25 従来例2のエンドミルにおける外周刃の逃げ面
26 従来例2のエンドミルにおける外周刃のすくい面
27 従来例2のエンドミルにおける外周刃の刃先稜線
28 バレル研磨装置
29 第1の回転手段
30 保持ステーション
31 第2の回転手段
32 研磨材
33 第3の回転手段
34 第1の回転手段の回転方向
35 第2の回転手段の回転方向
36 第3の回転手段の回転方向
A−A 外周刃の先端側から刃径の20%の位置の刃直方向の断面線
B−B 外周刃の先端側から刃径の60%の位置の刃直方向の断面線
C−C 外周刃の先端側から刃径の20%の位置の刃直方向の断面線
D−D 外周刃の先端側から刃径の60%の位置の刃直方向の断面線
E−E 底刃のうち外周から刃径の10%の位置の刃直方向の断面線
F−F 底刃のうち工具軸から刃径の15%の位置の刃直方向の断面線
R1 先端切れ刃部の曲率半径
R2 後端切れ刃部の曲率半径
R3 従来のエンドミルにおける外周刃の曲率半径
Ra 内周切れ刃部の曲率半径
Rb 外周切れ刃部の曲率半径
d 刃径
D シャンク径
O 工具軸
O’ バレル研磨装置の主軸
DESCRIPTION OF SYMBOLS 1 Square end mill 2 Bottom blade 3 Outer peripheral blade 4 Shank part 5 Long neck square end mill 6 Blade part 8 Neck part 10 Flank face of outer peripheral edge 11 Rake face of outer peripheral edge 12 Edge edge line of outer peripheral edge 13 Flank face of outer peripheral edge in the conventional end mill 14 Rake face of outer peripheral edge in conventional end mill 15 Edge edge line of outer peripheral edge in conventional end mill 16 Flank face of bottom edge 17 Edge edge line of bottom edge 18 Rake face of bottom edge 19 Tip cutting edge 20 Rear edge cutting edge 21 Conventional End mill 22 Inner peripheral cutting edge portion 23 Outer peripheral cutting edge portion 24 End mill of conventional example 25 End face of outer peripheral blade in end mill of conventional example 26 26 Rake face of outer peripheral blade of end mill of conventional example 27 27 End mill of conventional example 2 Edge edge line of outer peripheral blade 28 Barrel polishing device 29 First rotating means 30 Holding stay 31 A second rotating means 32 Abrasive material 33 A third rotating means 34 A rotating direction of the first rotating means 35 A rotating direction of the second rotating means 36 A rotating direction of the third rotating means AA AA Cross-sectional line in the blade straight direction at a position 20% of the blade diameter from the side BB Cross-sectional line in the blade straight direction at a position 60% of the blade diameter from the distal end side of the outer peripheral blade CC The blade diameter from the distal end side of the outer peripheral blade The cross-sectional line in the straight direction of the blade at the position of 20% of DD DD The cross-sectional line in the straight direction of the blade at the position of 60% of the blade diameter from the distal end side of the outer peripheral blade EE Cross sectional line in the direction of the cutting edge of the position FF Cross sectional line in the direction of the cutting edge of the bottom blade at a position 15% of the blade diameter from the tool axis R1 Curvature radius of the cutting edge R2 Curvature radius of the cutting edge of the rear edge R3 Conventional Radius of curvature of the outer peripheral edge of the end mill Ra of radius of curvature of the inner peripheral cutting edge Rb half of the curvature of the outer peripheral cutting edge Diameter d Blade diameter D Shank diameter O Tool axis O 'Main axis of barrel polishing equipment
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012054828A JP5906838B2 (en) | 2011-06-20 | 2012-03-12 | Square end mill |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011136444 | 2011-06-20 | ||
JP2011136444 | 2011-06-20 | ||
JP2012054828A JP5906838B2 (en) | 2011-06-20 | 2012-03-12 | Square end mill |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013027972A true JP2013027972A (en) | 2013-02-07 |
JP2013027972A5 JP2013027972A5 (en) | 2015-04-30 |
JP5906838B2 JP5906838B2 (en) | 2016-04-20 |
Family
ID=47785539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012054828A Active JP5906838B2 (en) | 2011-06-20 | 2012-03-12 | Square end mill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5906838B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155121A (en) * | 2014-02-20 | 2015-08-27 | 株式会社アマダホールディングス | Cutting method of high hardness workpiece, band saw machine, and workpiece fixture |
JP2018030229A (en) * | 2017-11-29 | 2018-03-01 | 株式会社アマダホールディングス | Band saw machine |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6048211A (en) * | 1983-08-29 | 1985-03-15 | Hitachi Choko Kk | End mill with edge portion reinforced with coating |
JPH0457311U (en) * | 1990-09-21 | 1992-05-18 | ||
JPH0631520A (en) * | 1992-07-16 | 1994-02-08 | Hitachi Tool Eng Ltd | End mill |
JPH0720211U (en) * | 1993-09-27 | 1995-04-11 | 住友電気工業株式会社 | Ball end mill |
JP2002187012A (en) * | 2000-12-21 | 2002-07-02 | Osg Corp | Cbn ball end mill |
JP2004268230A (en) * | 2003-03-11 | 2004-09-30 | Mitsubishi Materials Corp | Drill |
JP2009045704A (en) * | 2007-08-21 | 2009-03-05 | Mitsubishi Materials Corp | End mill |
JP2010125594A (en) * | 2008-12-01 | 2010-06-10 | Hitachi Tool Engineering Ltd | Minor diameter cbn end mill |
-
2012
- 2012-03-12 JP JP2012054828A patent/JP5906838B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6048211A (en) * | 1983-08-29 | 1985-03-15 | Hitachi Choko Kk | End mill with edge portion reinforced with coating |
JPH0457311U (en) * | 1990-09-21 | 1992-05-18 | ||
JPH0631520A (en) * | 1992-07-16 | 1994-02-08 | Hitachi Tool Eng Ltd | End mill |
JPH0720211U (en) * | 1993-09-27 | 1995-04-11 | 住友電気工業株式会社 | Ball end mill |
JP2002187012A (en) * | 2000-12-21 | 2002-07-02 | Osg Corp | Cbn ball end mill |
JP2004268230A (en) * | 2003-03-11 | 2004-09-30 | Mitsubishi Materials Corp | Drill |
JP2009045704A (en) * | 2007-08-21 | 2009-03-05 | Mitsubishi Materials Corp | End mill |
JP2010125594A (en) * | 2008-12-01 | 2010-06-10 | Hitachi Tool Engineering Ltd | Minor diameter cbn end mill |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155121A (en) * | 2014-02-20 | 2015-08-27 | 株式会社アマダホールディングス | Cutting method of high hardness workpiece, band saw machine, and workpiece fixture |
JP2018030229A (en) * | 2017-11-29 | 2018-03-01 | 株式会社アマダホールディングス | Band saw machine |
Also Published As
Publication number | Publication date |
---|---|
JP5906838B2 (en) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5926877B2 (en) | drill | |
JP5614511B2 (en) | Ball end mill and insert | |
JP5184902B2 (en) | Drilling tools and drilling methods for fiber reinforced composites | |
JP6347258B2 (en) | Radius end mill and cutting method | |
JP5451831B2 (en) | Drilling tools and drilling methods for fiber reinforced composites | |
JP2015085462A (en) | Hard film coated cutting tool | |
JP2005001088A (en) | Member coated with hard coating film and its manufacturing method | |
JP5088678B2 (en) | Long neck radius end mill | |
KR20120023659A (en) | Cutting edge replaceable drill and drill main body | |
JP2012091306A (en) | End mill made of cemented carbide | |
JP5974695B2 (en) | Drill and method for manufacturing drill tip | |
JP2010162677A (en) | Small-diameter cbn ball end mill | |
JP6179165B2 (en) | Radius end mill | |
JP5906838B2 (en) | Square end mill | |
JP2011212836A (en) | Ball end mill and manufacturing method of the same | |
JP2010125594A (en) | Minor diameter cbn end mill | |
JP6212863B2 (en) | Radius end mill | |
JP5448241B2 (en) | Ball end mill and cutting method using the same | |
CN217492835U (en) | High-speed finish machining milling cutter | |
JP2013013962A (en) | Cbn end mill | |
JP7140786B2 (en) | Rotary cutting tool for cutting hard brittle materials | |
JP5786770B2 (en) | Cutting insert | |
JP4448386B2 (en) | Small-diameter ball end mill | |
JP2003334715A (en) | Taper end mill for machining rib groove | |
JP5929144B2 (en) | Hard sintered ball end mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150311 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150311 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150311 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160223 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5906838 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |