[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013027285A - Load sharing method of power generator - Google Patents

Load sharing method of power generator Download PDF

Info

Publication number
JP2013027285A
JP2013027285A JP2011163268A JP2011163268A JP2013027285A JP 2013027285 A JP2013027285 A JP 2013027285A JP 2011163268 A JP2011163268 A JP 2011163268A JP 2011163268 A JP2011163268 A JP 2011163268A JP 2013027285 A JP2013027285 A JP 2013027285A
Authority
JP
Japan
Prior art keywords
power
demand
generator
demand power
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011163268A
Other languages
Japanese (ja)
Inventor
Masakazu Kaminaga
正教 神永
Kazunobu Morita
和信 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011163268A priority Critical patent/JP2013027285A/en
Publication of JP2013027285A publication Critical patent/JP2013027285A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a plurality of power generators share appropriate loads even when system's power demand prediction is not accurate.SOLUTION: In a load sharing method of a power generator, a demand power pattern in a prescribed period is prepared in advance on the basis of predicted demand power and preset emergency power, operation start order and operation stop order are set to each of a plurality of power generators which are supply sources of the demand power in accordance with output capacity and energy efficiency of the power generators, each section into which the prepared demand power pattern is divided at the level of the demand power is allocated to the output capacity of respective power generators arranged in accordance with the operation start order and the plurality of power generators are started and stopped in the preset order in accordance with the demand power pattern.

Description

本発明は、発電機の負荷分担方式に係り、特に、系統に接続された複数の発電機に系統負荷を割り当てる発電機の負荷分担方式に関する。   The present invention relates to a generator load sharing system, and more particularly to a generator load sharing system that assigns a system load to a plurality of generators connected to a system.

電力系統の制御は、メインコンピュータと複数台のサブコンピュータを備えた集中管理型の制御が行われている。ここでは、メインコンピュータにおいて、予測した負荷需要をもとに各発電機出力の最適スケジューリングを計算し、それぞれに指令を与えることにより、各発電機の最適コストでの運転を実現し、あるいは経済性を加味した系統運用が行われる。   As for the control of the power system, centralized control including a main computer and a plurality of sub computers is performed. Here, the main computer calculates the optimal scheduling of each generator output based on the predicted load demand, and gives an instruction to each generator, thereby realizing operation at the optimal cost of each generator, or economic efficiency. System operation taking into account is performed.

例えば、メインコンピュータは、一日単位での長期電力需要、あるいは数時間または数十分単位での中期電力需要の予測に対して、発電機の運転計画を作成し、さらに数分または数十秒オーダーでの短期の電力需要予測を行い、発電機の運転パターンを決定し、サブコンピュータに指令することにより各発電機の負荷追従運転を可能としている。   For example, the main computer creates a generator operation plan for forecasting long-term power demand on a daily basis, or medium-term power demand on the order of hours or tens of minutes, and then several minutes or tens of seconds Short-term power demand prediction in order is performed, the operation pattern of the generator is determined, and the load follow-up operation of each generator is enabled by instructing the sub computer.

特開2010−35321号公報JP 2010-35321 A

しかしながら、系統に分散して設置されている複数の発電機を連携して運転する場合、負荷分担、すなわち、どの発電機をどのような出力で運転するかを決定するのは容易ではない。前述のように、負荷分担の決定に先立って、例えば1日の電力需要を予測して発電機の運転パターンを作成することになるが、前記電力需要は必ずしも正確に予測されるとは限らない。   However, when a plurality of generators distributed in the system are operated in cooperation, it is not easy to determine load sharing, that is, which generator is operated with what output. As described above, prior to the determination of load sharing, for example, a daily power demand is predicted and a generator operation pattern is created, but the power demand is not necessarily accurately predicted. .

本発明は、このような問題点に鑑みてなされたもので、電力需要予測が正確でなくても複数の発電機を適正な負荷分担で運転することができる方式を提供するものである。   The present invention has been made in view of such problems, and provides a method capable of operating a plurality of generators with an appropriate load sharing even if power demand prediction is not accurate.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

予測される需要電力および予め設定した予備電力をもとに所定期間内における需要電力パターンを予め作成し、前記需要電力の供給源となる複数の発電機のそれぞれにその出力容量あるいはエネルギ効率にしたがって、運転開始の順序、及び運転停止の順序を設定し、
前記作成した需要電力パターンを需要電力のレベルで分割した各区間を、前記運転開始順序にしたがって並べた各発電機の出力容量に割り当て、前記需要電力パターンにしたがって複数の発電機を予め設定した順序で起動または停止する。
A demand power pattern within a predetermined period is created in advance based on the predicted demand power and preset standby power, and each of the plurality of generators that are the supply sources of the demand power according to its output capacity or energy efficiency , Set the order of operation start and stop operation,
Each section obtained by dividing the created demand power pattern by the level of demand power is assigned to the output capacity of each generator arranged according to the operation start order, and a plurality of generators are preset according to the demand power pattern. Start or stop with.

本発明は、以上の構成を備えるため、系統の電力需要予測が正確でなくても複数の発電機に適正な負荷を分担させることができる。   Since this invention is provided with the above structure, even if the electric power demand forecast of a system | strain is not accurate, it can share an appropriate load with a some generator.

系統の電力需要のパターンを説明する図である。It is a figure explaining the pattern of the electric power demand of a system. 電力需要パターンと、設定された各発電機の運転区間レベルを説明する図である。It is a figure explaining the electric power demand pattern and the driving | operation area level of each set generator. ベース出力発電機が2台、変動出力発電機が1台の場合の出力分担を示す図である。It is a figure which shows output sharing in case two base output generators and one variable output generator are provided. 負荷分担(負荷の割り当て)処理を説明する図である。It is a figure explaining a load sharing (load allocation) process.

以下、最良の実施形態を添付図面を参照しながら説明する。図1は、系統の電力需要のパターン(一日分)を説明する図であり、1は電力需要の予測値、3は前記電力需要の予測値に予備電力2を考慮して得られる電力需要パターンであり、前記一日の電力需要予測値1に予備電力2を考慮して(加算して)決定される。前記電力需要パターン3は発電機が出力可能な、つまり、電力需要実績がここまで変動しても運転台数を変更することなく運転できる一日の電力需要パターンである。   Hereinafter, the best embodiment will be described with reference to the accompanying drawings. FIG. 1 is a diagram for explaining a power demand pattern (for one day) of a system, where 1 is a predicted value of power demand, and 3 is a power demand obtained by taking reserve power 2 into consideration for the predicted value of power demand. It is a pattern and is determined in consideration of (added to) the reserve power 2 to the daily power demand forecast value 1. The power demand pattern 3 is a one-day power demand pattern in which the generator can output, that is, it can be operated without changing the number of operating units even if the power demand record fluctuates so far.

ここで、複数台の発電機が運転可能な場合において、これら運転可能な発電機により消費される燃料量を少なくしたい場合は発電機の発電効率が大きい順に、また、運転台数を少なくしたい場合は発電機の定格容量の大きい順に運転開始の優先順位を付与する。なお、運転停止の順位は前記とは逆順にすればよい。   Here, when multiple generators can be operated, if you want to reduce the amount of fuel consumed by these generators that can be operated, increase the power generation efficiency of the generators in descending order. Prioritize operation start in descending order of the rated capacity of the generator. In addition, what is necessary is just to make the order of a stop of operation the reverse order to the above.

図2は、一日の電力需要パターン3と、需要電力パターン3を需要電力レベル4,5,6,7,・・で分割して各発電機の運転区間レベルを設定した例を示す図である。   FIG. 2 is a diagram showing an example in which the daily power demand pattern 3 and the demand power pattern 3 are divided into demand power levels 4, 5, 6, 7,. is there.

何れかの発電機により供給しなければならない一日の電力需要パターン3のうち、需要が増加する区間では、この区間を需要電力レベル4,5,6,7,で分割して運転区間レベル(1)、(2)、(3)、(4)、(5)設定する。   Of the daily power demand pattern 3 that must be supplied by any of the generators, in a section where the demand increases, this section is divided into demand power levels 4, 5, 6, 7, and the operation section level ( 1), (2), (3), (4) and (5) are set.

また、需要が減少する区間では、この区間を需要電力レベル8,9,10,11により分割して、運転区間レベル(1’)、(2’)、(3’)、(4’)、(5’)を設定する。   Further, in a section where demand decreases, this section is divided by demand power levels 8, 9, 10, and 11, and operation section levels (1 ′), (2 ′), (3 ′), (4 ′), (5 ') is set.

前記需要が増加する区間において、運転区間レベル(1)は優先順位1位の発電機の出力範囲で、運転区間レベル(2)は優先順位2位までの発電機の合計出力範囲で、運転区間レベル(3)は優先順位3位までの発電機の合計出力範囲で、運転区間レベル(5)は優先順位5位までの発電機の合計出力範囲である。   In the section where demand increases, the operating section level (1) is the output range of the generator with the highest priority, the operating section level (2) is the total output range of the generator with the second highest priority, and the operating section Level (3) is the total output range of the generator up to the third highest priority, and operation section level (5) is the total output range of the generator up to the fifth highest priority.

需要が減少する区間では、運転区間レベル(1')は優先順位1位の発電機の出力範囲で、運転区間レベル(2')は優先順位2位までの発電機の合計出力範囲で、運転区間レベル(3')は優先順位3位までの発電機の合計出力範囲で、運転区間レベル(4')は優先順位4位までの発電機の合計出力範囲である。需要の減少区間では増加区間よりも、図中に12で示すヒステリシス分だけ需要電力レベルを小さく設定する。   In the section where demand decreases, the operating section level (1 ') is the output range of the generator with the highest priority, and the operating section level (2') is the total output range of the generator with the second highest priority. The section level (3 ′) is the total output range of the generators up to the third priority, and the operation section level (4 ′) is the total output range of the generators up to the fourth priority. In the demand decreasing section, the demand power level is set smaller than the increasing section by the hysteresis indicated by 12 in the figure.

なお、各区間での運転台数およびその増減台数は1台である必要はなく、複数であっても良い。また、運転区間の数は任意に設定することができる。   It should be noted that the number of operating units in each section and the increase / decrease number thereof do not have to be one, and may be plural. Further, the number of operation sections can be set arbitrarily.

図3は、運転される各発電機の出力分担を示す図である。図の例では、系統に接続して運転される発電機は、一定の出力Paで運転されるベース出力発電機A、一定の出力Pbで運転されるベース出力発電機B、および変動出力Pvで運転される変動出力発電機Cである。なお、電力需要の細かな変動に対しては各発電機の持つ瞬動予備力により対応することができる。   FIG. 3 is a diagram showing output sharing of each generator to be operated. In the example of the figure, a generator connected to the grid is operated with a base output generator A that is operated at a constant output Pa, a base output generator B that is operated at a constant output Pb, and a variable output Pv. This is a variable output generator C to be operated. In addition, it is possible to cope with minute fluctuations in power demand by the instantaneous reserve capacity of each generator.

発電機をベース出力発電機A,Bあるいは変動出力発電機Cのいずれに割り当てるかについては、燃費が良い順、あるいは出力が大きい順に割り当てる等のさまざまな方式がある。   There are various methods for assigning the generator to the base output generators A and B or the variable output generator C, such as assigning in order of good fuel consumption or in descending order of output.

図3は、ベース出力発電機が2台、変動出力発電機が1台の場合の出力分担を示しており、全発電機の出力合計は、ベース出力発電機Aの出力Pa、ベース出力発電機Bの出力Pb、変動出力発電機の出力Pvの和となる。図3において、ベース出力発電機Bの出力が少なくなっている区間があるが、これは変動出力発電機Cの出力が出力可能下限を下回らないようにするためにベース出力発電機Bの出力を抑制したためである。   FIG. 3 shows the output sharing when there are two base output generators and one variable output generator. The total output of all the generators is the output Pa of the base output generator A, the base output generator. It is the sum of the output Pb of B and the output Pv of the variable output generator. In FIG. 3, there is a section in which the output of the base output generator B is low. This is because the output of the base output generator B is set so that the output of the variable output generator C does not fall below the lower limit of output. This is because it was suppressed.

このように、一方で、一日の電力需要予測値に対して、予備電力を考慮して発電機の出力パターンを決定し、他方で点検中や故障中の発電機を除外するなどして運転可能発電機を決定し、発電効率などから運転および停止の優先順位を決定する。その上で、さらに、出力パターンを満足するように運転可能な発電機出力を割り当てて運転区間レベル(負荷分担)を決定する。このとき、運転区間レベル間での連続性が保たれるように、また、潮流量や電圧変動が正常になるように各レベル毎に運転する発電機を決定し、各発電機の出力を決定する。このような手順により、運転する発電機及び該発電機の出力分担を決定することができる。   Thus, on the one hand, the power output forecast value for the day is determined by considering the reserve power, and the generator output pattern is determined, and on the other hand, the generator that is being inspected or malfunctioning is excluded. The possible generators are determined, and the priority of operation and stop is determined from the power generation efficiency. In addition, further, an operation section level (load sharing) is determined by assigning generator outputs that can be operated so as to satisfy the output pattern. At this time, the generator to be operated for each level is determined so that the continuity between the operation section levels is maintained, and the tidal flow and voltage fluctuation are normal, and the output of each generator is determined. To do. By such a procedure, it is possible to determine the generator to be operated and the output sharing of the generator.

図4は、負荷分担処理を説明する図である。例えば、一日の電力需要を予測し、あるいは予測値を取り込み、予備電力を考慮して発電機の出力パターン(需要パターン)を決定する(ステップS1)。点検中や故障中の発電機を除外するなどして運転可能発電機を決定し、発電効率などから運転および停止の優先順位を決定する(ステップS2)。   FIG. 4 is a diagram for explaining the load sharing process. For example, a daily power demand is predicted or a predicted value is taken in, and an output pattern (demand pattern) of the generator is determined in consideration of reserve power (step S1). An operable generator is determined by, for example, excluding generators that are being inspected or malfunctioning, and priority of operation and stop is determined based on power generation efficiency (step S2).

次に、前述した手順により決定された負荷分担にしたがって運転した場合における各発電機間の潮流量および電圧変動を計算し、それらが規定範囲内であるか否か判定する。これにより、発電機が各所に分散されて設置されている場合における逆潮流あるいは電圧変動を抑制することができる。ここで前記潮流量あるいは電圧変動が規定範囲内でない場合は、各発電機の負荷分担を変更して、前記潮流量あるいは電圧変動を再計算する。この再計算は、潮流量および電圧変動が規定範囲内になるまで、負荷分担を変更して繰り返し行う(ステップS2,3,4,5)。   Next, the tidal flow rate and voltage fluctuation between the generators when operating according to the load sharing determined by the above-described procedure are calculated, and it is determined whether or not they are within a specified range. As a result, reverse power flow or voltage fluctuation can be suppressed when the generators are distributed and installed in various places. If the tidal flow or voltage fluctuation is not within the specified range, the load sharing of each generator is changed and the tidal flow or voltage fluctuation is recalculated. This recalculation is repeated by changing the load sharing until the tidal flow and voltage fluctuations are within the specified ranges (steps S2, 3, 4, and 5).

潮流量および電圧変動が規定範囲内になると、このときの負荷分担あるいは運転区間レベルに基づき、発電機の例えば1日の運転パターンを作成する(ステップS6)。   When the tidal flow and the voltage fluctuation are within the specified range, for example, a daily operation pattern of the generator is created based on the load sharing at this time or the operation section level (step S6).

運転に際しては、実際の電力需要と電力需要予測値との間の誤差が無視できる場合には、各発電機を発電機を前記決定された負荷分担(前記作成された運転パターン)にしたがって運転すればよい。   In operation, if the error between the actual power demand and the predicted power demand is negligible, each generator is operated according to the determined load sharing (the created operation pattern). That's fine.

実際の電力需要と電力需要予測値との間に誤差がある場合は、10秒程度の周期で誤差の判定を行い、有意な誤差が存在する場合、実際の電力需要に合わせて負荷分担を変更した(運転区間レベルを変更した)運転パターを作成して、潮流量および電圧変動を計算する。また、計算の結果が規定範囲内であるか否かの判定を行い、規定範囲内でない場合は、再度運転区間レベルを変更する。この操作(運転区間レベル変更、潮流量および電圧変動の計算及び計算結果の判定)は、潮流量や電圧変動が規定範囲内になるまで繰り返す。   If there is an error between the actual power demand and the power demand forecast value, the error is judged at a cycle of about 10 seconds. If there is a significant error, the load sharing is changed according to the actual power demand. Create an operation pattern (changed operation section level) and calculate tidal flow and voltage fluctuation. In addition, it is determined whether or not the calculation result is within the specified range. If it is not within the specified range, the operation section level is changed again. This operation (change of operation section level, calculation of tidal flow and voltage fluctuation and determination of calculation result) is repeated until the tidal flow and voltage fluctuation are within the specified range.

以上説明したように、本実施形態によれば、需要電力パターンを予測するとともに、需要電力の供給源となる複数の発電機のそれぞれをその出力容量あるいはエネルギ効率にしたがって、運転開始の順序、及び運転停止の順序を予め設定し、さらに電力需要パターンを需要電力のレベルに応じて順次分割した区間を、それぞれ前記運転開始順序したがって並べた各発電機の出力容量に割り当て、需要電力が増加するときは需要電力の低レベル区間に割り当てられた発電機から順次起動し、需要電力が減少するときは需要電力の高レベル区間に割り当てられた発電機から順次停止する。この際、需要電力が減少する区間では増加する区間よりも、所定量(ヒステリシス分)だけ需要電力が低下した時点で該当する発電機の運転を停止する。   As described above, according to the present embodiment, the demand power pattern is predicted, and each of the plurality of generators that are the supply sources of the demand power is operated according to the output capacity or energy efficiency, When the order of operation stop is set in advance, and the section in which the power demand pattern is sequentially divided according to the level of demand power is allocated to the output capacity of each generator arranged according to the order of operation start, and the demand power increases Starts sequentially from the generator assigned to the low level section of the demand power, and when the demand power decreases, stops sequentially from the generator assigned to the high level section of the demand power. At this time, in the section where the demand power decreases, the operation of the corresponding generator is stopped when the demand power decreases by a predetermined amount (hysteresis) than in the section where the demand power increases.

このように、入力される一日の電力需要予測値に対して、予備電力を考慮して発電機の出力パターンを決定し、点検中や故障中の発電機を除外するなどして運転可能発電機を決定し、発電効率などから運転および停止の優先順位を決定し、出力パターンと運転可能な発電機により運転区間レベルを決定し、運転区間レベル間での連続性が保たれるように、また、潮流量や電圧変動が正常になるように各レベル毎に運転する発電機を決定し、各発電機の出力を決定し運転する。このため、系統に接続された発電機の運転台数及び出力を、電力需要予測誤差に影響を受けることなく決定することができる。   In this way, the generator output pattern is determined in consideration of the reserve power for the input daily power demand forecast value, and the generators that can be operated by excluding generators that are under inspection or malfunctioning. Determine the machine, determine the priority of operation and stop from the power generation efficiency, etc., determine the operation section level by the output pattern and the drivable generator, so that continuity between operation section levels is maintained, In addition, the generator to be operated is determined for each level so that the tidal flow and voltage fluctuations are normal, and the output of each generator is determined and operated. For this reason, the number of operating generators and the output of the generator connected to the grid can be determined without being affected by the power demand prediction error.

1 電力需要予測値
2 予備電力
3 電力需要パターン
4〜11 電力需要レベル
1 Power demand forecast value 2 Reserve power 3 Power demand pattern 4-11 Power demand level

Claims (2)

予測される需要電力および予め設定した予備電力をもとに所定期間内における需要電力パターンを予め作成し、
前記需要電力の供給源となる複数の発電機のそれぞれにその出力容量あるいはエネルギ効率にしたがって、運転開始の順序、及び運転停止の順序を設定し、
前記作成した需要電力パターンを需要電力のレベルで分割した各区間を、前記運転開始順序したがって並べた各発電機の出力容量に割り当て、
前記需要電力パターンにしたがって複数の発電機を予め設定した順序で起動または停止することを特徴とする発電機の負荷分担方式。
A demand power pattern within a predetermined period is created in advance based on the predicted demand power and preset standby power,
According to the output capacity or energy efficiency of each of the plurality of generators serving as a supply source of the demand power, set the operation start order and the operation stop order,
Each section obtained by dividing the created demand power pattern by the level of demand power is assigned to the output capacity of each generator arranged according to the operation start order,
A generator load sharing system, wherein a plurality of generators are started or stopped in a preset order according to the demand power pattern.
予測される需要電力および予め設定した予備電力をもとに所定期間内における需要電力パターンを予め作成し、
前記需要電力の供給源となる複数の発電機のそれぞれにその出力容量あるいはエネルギ効率にしたがって、運転開始の順序、及び運転停止の順序を設定し、
前記作成した電力需要パターンを需要電力のレベルに応じて順次分割し分割された区間をそれぞれ前記運転開始順序したがって並べた各発電機の出力容量に割り当て、
需要電力が増加するときは需要電力の低レベル区間に割り当てられた発電機から順次起動し、需要電力が減少するときは需要電力の高レベル区間に割り当てられた発電機から順次停止することを特徴とする発電機の運転方式。
A demand power pattern within a predetermined period is created in advance based on the predicted demand power and preset standby power,
According to the output capacity or energy efficiency of each of the plurality of generators serving as a supply source of the demand power, set the operation start order and the operation stop order,
The generated power demand pattern is sequentially divided according to the level of demand power, and the divided sections are assigned to the output capacities of the generators arranged according to the operation start order, respectively.
When demand power increases, it starts sequentially from the generator assigned to the low level section of demand power, and when demand power decreases, it stops sequentially from the generator assigned to the high level section of demand power The operation method of the generator.
JP2011163268A 2011-07-26 2011-07-26 Load sharing method of power generator Withdrawn JP2013027285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011163268A JP2013027285A (en) 2011-07-26 2011-07-26 Load sharing method of power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011163268A JP2013027285A (en) 2011-07-26 2011-07-26 Load sharing method of power generator

Publications (1)

Publication Number Publication Date
JP2013027285A true JP2013027285A (en) 2013-02-04

Family

ID=47785035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011163268A Withdrawn JP2013027285A (en) 2011-07-26 2011-07-26 Load sharing method of power generator

Country Status (1)

Country Link
JP (1) JP2013027285A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014143908A1 (en) * 2013-03-15 2014-09-18 Robert Bosch Gmbh System and method for energy distribution
WO2015031331A1 (en) * 2013-08-26 2015-03-05 Robert Bosch Gmbh Dispatch controller for an energy system
JP2016019429A (en) * 2014-07-10 2016-02-01 京セラ株式会社 Power generator, power generation system, and power generation method
US9312698B2 (en) 2012-12-19 2016-04-12 Robert Bosch Gmbh System and method for energy distribution
JP2016094105A (en) * 2014-11-14 2016-05-26 三菱重工業株式会社 Main engine load distribution calculator and main engine load distribution calculation method
US9438041B2 (en) 2012-12-19 2016-09-06 Bosch Energy Storage Solutions Llc System and method for energy distribution
JP2018078679A (en) * 2016-11-07 2018-05-17 東京瓦斯株式会社 Unit number control device, unit number control method, and program
US10523015B2 (en) 2014-07-10 2019-12-31 Kyocera Corporation Power generation apparatus, power generation system, and power generation method
US11837870B2 (en) 2020-08-24 2023-12-05 Ihi Corporation Power management system, power management method, and power management program
US11990759B2 (en) 2019-04-03 2024-05-21 Ihi Corporation Power management system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312698B2 (en) 2012-12-19 2016-04-12 Robert Bosch Gmbh System and method for energy distribution
US9438041B2 (en) 2012-12-19 2016-09-06 Bosch Energy Storage Solutions Llc System and method for energy distribution
WO2014143908A1 (en) * 2013-03-15 2014-09-18 Robert Bosch Gmbh System and method for energy distribution
WO2015031331A1 (en) * 2013-08-26 2015-03-05 Robert Bosch Gmbh Dispatch controller for an energy system
JP2016019429A (en) * 2014-07-10 2016-02-01 京セラ株式会社 Power generator, power generation system, and power generation method
US10523015B2 (en) 2014-07-10 2019-12-31 Kyocera Corporation Power generation apparatus, power generation system, and power generation method
JP2016094105A (en) * 2014-11-14 2016-05-26 三菱重工業株式会社 Main engine load distribution calculator and main engine load distribution calculation method
JP2018078679A (en) * 2016-11-07 2018-05-17 東京瓦斯株式会社 Unit number control device, unit number control method, and program
US11990759B2 (en) 2019-04-03 2024-05-21 Ihi Corporation Power management system
US11837870B2 (en) 2020-08-24 2023-12-05 Ihi Corporation Power management system, power management method, and power management program

Similar Documents

Publication Publication Date Title
JP2013027285A (en) Load sharing method of power generator
US11961151B2 (en) Modifying computing system operations based on cost and power conditions
Rezaei et al. Stochastic frequency-security constrained energy and reserve management of an inverter interfaced islanded microgrid considering demand response programs
Rezaei et al. Economic–environmental hierarchical frequency management of a droop-controlled islanded microgrid
US11868106B2 (en) Granular power ramping
CN111555281A (en) Method and device for simulating flexible resource allocation of power system
CN104821581B (en) A kind of determination method of optimal spare capacity a few days ago
JP2013126260A (en) Operation apparatus and method of natural variation power supply
WO2020116043A1 (en) Power supply/demand planning apparatus
US11053917B2 (en) Overboosting techniques for wind power plant
JP2016194849A (en) Tidal flow calculation device, tidal flow calculation method, and program
Shklyarskiy et al. Operation mode selection algorithm development of a wind-diesel power plant supply complex
CN103887813A (en) Control method of wind power system operation based on wind power prediction uncertainty
JP2018106431A (en) Facility equipment operation plan generation apparatus and method
US9740195B2 (en) Storage cell system and power plant control system
Zhou et al. Interval optimization combined with point estimate method for stochastic security-constrained unit commitment
Li et al. Managing server clusters on renewable energy mix
JP2019080485A (en) Operation control device and operation control method for power converter
CN110752598B (en) Method and device for evaluating flexibility of multipoint distributed energy storage system
CN115714376A (en) System and method for operating a hybrid power system by combining anticipation and real-time optimization
CN115333123A (en) Method, device, equipment and medium for new energy power generation to participate in power system frequency modulation
US20190288516A1 (en) System and method for operating a mains power grid
JP2022125850A (en) Hydrogen production system and hydrogen production method
Hazra et al. Congestion relief using grid scale batteries
CN117013597A (en) Distributed resource aggregation regulation and control method, device and equipment for virtual power plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007