JP2013017351A - Motor drive device - Google Patents
Motor drive device Download PDFInfo
- Publication number
- JP2013017351A JP2013017351A JP2011149944A JP2011149944A JP2013017351A JP 2013017351 A JP2013017351 A JP 2013017351A JP 2011149944 A JP2011149944 A JP 2011149944A JP 2011149944 A JP2011149944 A JP 2011149944A JP 2013017351 A JP2013017351 A JP 2013017351A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- angle
- wheel
- detector
- drive device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 55
- 239000003638 chemical reducing agent Substances 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 description 19
- 230000004907 flux Effects 0.000 description 11
- 238000005096 rolling process Methods 0.000 description 11
- 230000033001 locomotion Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
この発明は、電気自動車における車輪駆動用のモータを制御するモータ駆動装置に関する。 The present invention relates to a motor drive device that controls a motor for driving wheels in an electric vehicle.
電気自動車において、モータの効率の良い駆動のために、モータロータの角度を検出する角度検出器を用い、モータロータの磁極位置に応じて制御することが行われている。この制御として、例えばベクトル制御が用いられる。 In an electric vehicle, in order to drive the motor efficiently, an angle detector that detects the angle of the motor rotor is used, and control is performed according to the magnetic pole position of the motor rotor. As this control, for example, vector control is used.
上記のようなモータロータの磁極位置に応じた制御をするモータ駆動装置において、モータロータの角度検出器が破損したり、そのケーブルの断線等があった場合、角度検出値が正しく認識できず、モータの駆動が行えなくなる。または、所望のトルクを発生することができなくなる。
各車輪を個別に駆動するモータを備えたインホイールモータ形式等の電気自動車では、走行中にモータ角度検出器の故障が生じると、トルクバランスが崩れ、スリップやスキッドの発生の原因となる。
In the motor drive device that performs control according to the magnetic pole position of the motor rotor as described above, if the angle detector of the motor rotor is damaged or the cable is disconnected, the angle detection value cannot be recognized correctly, and the motor It becomes impossible to drive. Or, a desired torque cannot be generated.
In an electric vehicle such as an in-wheel motor type equipped with a motor that individually drives each wheel, if a motor angle detector fails during traveling, the torque balance is lost, causing slip and skid.
道路上で車両が停止し、そのままモータ駆動が行えなくなると、交通の障害等となるため、ロータの角度検出器やその配線系に故障が生じても、道路脇の安全な場所まで自力で走行したり、あるいは修理工場まで自力で走行できると、故障への対応が行い易い。 If the vehicle stops on the road and the motor cannot be driven as it is, it will be a traffic obstacle, etc., so even if the rotor angle detector and its wiring system fail, it will run on its own to a safe place beside the road Or if you can drive to the repair shop on your own, it will be easier to deal with the failure.
この発明の目的は、モータ角度検出器に故障が生じても、モータロータの磁極位置に応じた制御が行えて、モータ駆動が行えるモータ駆動装置を提供することである。 An object of the present invention is to provide a motor drive device that can perform control according to the magnetic pole position of the motor rotor and drive the motor even if a failure occurs in the motor angle detector.
この発明のモータ駆動装置20は、電気自動車の車輪駆動用のモータ6に対し、このモータ6に設けられたモータ角度検出器36の角度検出値に従い、磁極位置に応じた制御をする基本駆動制御部38を備えたモータ駆動装置20において、
前記モータ6で駆動される車輪の回転速度を検出する車輪回転数検出器24の検出信号から前記モータロータの角度を推測する車輪速度対応モータ角度推測手段46と、前記モータ角度検出器36の故障を判別するセンサ故障判別手段48と、このセンサ故障判別手段48が故障と判別した場合に、前記基本駆動制御部38による制御を、前記モータ角度検出器36による角度検出値に代えて、前記車輪速度対応モータ角度推測手段46の出力するモータロータ角度を用いて行わせるセンサ切替え手段49とを設けたことを特徴とする。前記前記車輪回転数検出器24は、アンチロックブレーキシステムの制御に用いられる検出器であっても良い。
The
A failure of the motor speed estimation means 46 for wheel speed corresponding to the angle of the motor rotor from the detection signal of the wheel
この構成によると、通常では、モータ角度検出器36の角度検出値に従い、磁極位置に応じた制御が前記基本駆動制御部38により行われ、効率の良いモータ駆動が行われる。モータ角度検出器36の故障は、センサ故障判別手段48により監視され、判別される。センサ故障判別手段48による故障の判別は、モータ角度検出器36の配線系を含めて行うようにしても、モータ角度検出器36のみにつき行うようにしても良い。センサ故障判別手段48により故障と判別されると、センサ切替え手段49は、基本駆動制御部38による制御を、モータ角度検出器36による角度検出値に代えて、前記車輪速度対応モータ角度推測手段46の出力するモータロータ角度を用いて行わせる。そのため、モータ角度検出器36に故障が生じても、基本駆動制御部38を用いた磁極位置に応じた制御を行うことができる。
そのため、各車輪2を個別に駆動するモータ6を備えたインホイールモータ形式等の電気自動車において、走行中にモータ角度検出器36の故障が生じても、トルクバランスの崩れを回避し、スリップやスキッドの発生を防止することができる。車輪速度対応モータ角度推測手段46の出力するモータロータ角度は、モータ角度検出器36による角度検出値に比べて、精度や信頼性が十分でない場合があるが、修理工場等の車両の修理場所や、道路脇の安全な退避場所等への自力走行が可能となる。
According to this configuration, normally, according to the detected angle value of the
Therefore, in an electric vehicle such as an in-wheel motor type equipped with a
車輪速度対応モータ角度推測手段46は、車輪回転数検出器24の検出信号を用いるが、車輪回転数検出器24は、アンチロックブレーキシステムや姿勢制御システムの制御等に用いるために、一般的に車両に備えられているため、その車輪回転数検出器24を利用すれば良く、新たにセンサ類を追加する必要がない。そのため、センサ類を追加することなく、モータ角度検出器36に故障が生じた場合のモータ駆動が行える。
The wheel speed corresponding motor angle estimation means 46 uses the detection signal of the
この発明において、前記センサ故障判別手段48は、一定時間における前記モータ角度検出器36の角度検出値の変化量、またはモータ電流指令Iqref,Idref,(Vα,Vβ)とモータ電流Iq,Id,(Iα,Iβ)の差、またはこれら角度検出値の変化量と、モータ電流指令とモータ電流の差との両方から判断するものであるのが良い。
一定時間におけるモータ角度検出器36の角度検出値の変化量は、ある程度定まった範囲にあるため、変化量が極端に大きくなった場合は、モータ角度検出器36の故障と考えられる。したがって、適宜の閾値等を設定し、上記変化量が閾値を超えた場合に故障と判定しても良い。前記「一定時間」は、適宜設計すれば良い。また、モータ電流指令Iqref,Idref,(Vα,Vβ)とモータ電流Iq,Id,(Iα,Iβ)との差は、ある程度定まった範囲にあるため、これも、適宜の閾値等を設定し、前記の差が閾値を超えた場合に故障と判定しても良い。この場合、アクセル動作を監視し、アクセル動作によってモータ電流指令Iqref,Idrefが大きく変化する場合を判別してもよい。モータ角度検出器36の検出値の変化量による故障判別と、モータ電流指令とモータ電流の差による故障判別とは、いずれを用いても行えるが、両方を用いて判別するようにすると、前記各閾値を小さく設定しても、確実な判別が行えて、早期の故障判別が行える。
In the present invention, the sensor failure determination means 48 determines the amount of change in the detected angle value of the
Since the amount of change in the detected angle value of the
この発明において、前記車輪回転数検出器24が、車輪の回転に応じて発生したパルスの間隔を演算して車輪の回転速度を検出する、相対的な角度変化のみ検出可能なものであって、前記車輪速度対応モータ角度推測手段46は、モータ回転時にモータロータ角度検出器36の角度検出値と車輪回転数検出器24の検出信号とを比較して車輪回転数検出器24の検出信号に対するモータロータの磁極位置を割り出し、前記センサ切替え手段49により車輪速度対応モータ角度推測手段46の出力するモータロータ角度を用いるように切替えられたときに、前記車輪回転数検出器24の検出信号から前記モータロータの角度を推測するようにしても良い。
車輪回転数検出器24の出力信号が相対角度出力の場合、正常時のモータロータ角度検出器36の信号を基に、ロータ磁極位置を割り出しておけば、走行中のモータロータ角度検出器36の故障時に切り替えて車輪回転数検出器24の出力信号をモータロータ角度の推定に用いることができる。
In the present invention, the wheel
When the output signal of the wheel
この場合に、前記車輪速度対応モータ角度推測手段46は、前記センサ故障判別手段49が正常と判別している間に、モータロータ角度検出器36の角度検出値を基に、車輪回転数検出器24の検出信号に対する磁極位置を割り出してこれら車輪回転数と磁極位置の相関を記憶する記憶部46bを有するものとしても良い。
前記モータ6が同期モータ等である場合、モータロータの角度が検出できないと回転を開始させることができないが、記憶部46aで車輪回転数検出器24の検出信号に対する磁極位置の相関、つまり位置関係を記憶しておくことで、電源再投入後でも始動することができる。また、記憶部46aを有した構成では、電源がオフの状態で外的要因によって車輪が回転させられた場合においても磁極位置を把握できるようにモータロータ角度検出器24と車輪速度対応モータ角度推測手段46は、電源オフ時でも車輪の回転を感知すると動作を開始する構成が望ましい。
In this case, the wheel speed corresponding motor angle estimation means 46 is based on the detected angle value of the motor
When the
この発明において、前記車輪回転数検出器24が、車輪の回転に応じて発生したパルスの間隔を演算して車輪の回転速度を検出するものであって、前記車輪速度対応モータ角度推測手段46は、前記車輪回転数検出器24の出力するパルスを逓倍してモータロータの角度の推測を行うものとしても良い。
車輪回転数検出器24は、アンチロックズレーキシステム等に使用されるものであるため、一般的に高い分解能は必要でなく、モータロータ角度検出器36に比べて分解能が低いものが使用される。しかし、車輪回転数検出器24が、パルスの間隔を演算して車輪の回転速度を検出するものである場合、パルスを逓倍することで、検出角度の分解能を向上させることができ、例えばレゾルバ等からなるモータロータ角度検出器36と同等の分解能とすることができる。
In the present invention, the wheel
Since the wheel
この発明において、前記車輪回転数検出器24が、車輪の回転に応じて発生したパルスの間隔を演算して車輪の回転速度を検出するものであって、前記車輪速度対応モータ角度推測手段46は、前記車輪回転数検出器24の出力するパルス間の時間を計測してモータロータの角度の推測を行うものであっても良い。
パルスの逓倍の他、パルス間を時間計測しておき、ベクトル制御演算等の、磁極位置に応じた制御をする演算に必要なタイミングにおいて、基準からのパルス数とパルス間時間から、精度良く角度を演算することができる。
In the present invention, the wheel
In addition to multiplying the pulse, time is measured between pulses, and at the timing required for computation that performs control according to the magnetic pole position, such as vector control computation, the angle is accurately determined from the number of pulses from the reference and the time between pulses. Can be calculated.
この発明において、前記センサ故障判別手段48で故障と判別された状態で、モータ停止後にモータ6を始動するときに、モータ6の逆起電圧からモータロータの角度を割り出し、その割り出した角度で前記基本駆動制御部による制御を行わせる始動時ロータ角度割出手段102を設けても良い。
前記基本駆動制御部38は、角度検出値に従って磁極位置に応じた制御をするため、角度が不明であるとモータ6を回転させることができない。車輪回転数検出器24の出力信号が相対角度出力で、前記記憶部46bが無い場合においても、停止後の起動時には用いることができない。そのため、停止した場合、直ぐにはモータ6を起動できないが、2つ以上のモータ6を有する電気自動車では、健在なモータ6を用いて一応の走行が行える。走行させると、センサ故障の生じたモータ6が車輪2の回転につられて回転する。この時のモータ6の逆起電力を検出することで、磁極位置を検出することができる。電気角の1回転で磁極位置を検出できるため、例えば、タイヤ2aが数分の1回転した時点で、逆起電力による角度検出が可能となり、モータ6を駆動させることができる。このため、片輪駆動による直進性の障害が生じるまでにモータ6を駆動させることができる。
In the present invention, when the
Since the basic drive control unit 38 performs control according to the magnetic pole position according to the detected angle value, the
この発明において、前記モータ6は、各モータ6がそれぞれ一つの車輪2を駆動する電気自動車におけるモータ6であっても良い。この場合に、前記モータ6は、車輪2に近接して取付けられるインホイールモータ装置8を構成するモータ6であっても良い。
個別にモータ駆動される車輪2が複数ある場合、走行中にモータ角度検出器36の故障が生じると、トルクバランスが崩れ、スリップやスキッドの発生の原因となる。そのため、この発明における車輪速度対応モータ角度推測手段46の角度推定値による制御に切り替える効果が、より一層効果的となる。また、複数のモータ6を有する電気自動車の場合、上記のモータ逆起電力を用いる始動時ロータ角度割出手段102の利用が容易となる。
In the present invention, the
In the case where there are a plurality of
前記インホイールモータ装置8は、車輪用軸受4と、前記モータ6と、このモータ6と車輪用軸受4の間に介在した減速機7とを有するものであっても良い。減速機7を介在させるインホイールモータ装置8では、モータ6が高速回転となるため、車輪速度対応モータ角度推測手段46によるモータロータ角度の推測値を用いて制御することが、より効果的となる。
The in-
前記減速機7はサイクロイド減速機であっても良い。サイクロイド減速機は円滑な動作で高減速比が得られるが、高減速比のため、モータ6がより高速回転となる。そのため、車輪速度対応モータ角度推測手段46によるモータロータ角度の推測値を用いて制御することが、より効果的となる。
The
この発明の電気自動車は、この発明の上記いずれかの構成のモータ駆動装置20を搭載した電気自動車である。この電気自動車によると、この発明のモータ駆動装置20による車輪速度対応モータ角度推測手段46のモータロータ角度推測値を用いる制御により、モータ角度検出器36に故障が生じても走行を行うことができる。
The electric vehicle of the present invention is an electric vehicle on which the
この発明のモータ駆動装置は、電気自動車の車輪駆動用のモータに対し、このモータに設けられたモータ角度検出器の角度検出値に従い、磁極位置に応じた制御をする基本駆動制御部を備えたモータ駆動装置において、前記モータで駆動される車輪の回転速度を検出する車輪回転数検出器の検出信号から前記モータロータの角度を推測する車輪速度対応モータ角度推測手段と、前記モータ角度検出器の故障を判別するセンサ故障判別手段と、このセンサ故障判別手段が故障と判別した場合に、前記基本駆動制御部による制御を、前記モータ角度検出器による角度検出値に代えて、前記車輪速度対応モータ角度推測手段の出力するモータロータ角度を用いて行わせるセンサ切替え手段とを設けたため、モータ角度検出器に故障が生じても、モータロータの磁極位置に応じた制御が行えて、モータ駆動を行うことができる。 The motor drive device according to the present invention includes a basic drive control unit that controls a wheel driving motor of an electric vehicle according to a magnetic pole position in accordance with an angle detection value of a motor angle detector provided in the motor. In the motor drive device, a wheel speed corresponding motor angle estimation means for estimating an angle of the motor rotor from a detection signal of a wheel rotation number detector for detecting a rotation speed of a wheel driven by the motor, and a failure of the motor angle detector Sensor fault discrimination means for discriminating, and when the sensor fault discrimination means discriminates a fault, the control by the basic drive control unit is replaced with the angle detection value by the motor angle detector, the wheel speed corresponding motor angle. Sensor switching means that uses the motor rotor angle output from the estimation means to provide a motor angle detector even if a failure occurs. Control corresponding to the magnetic pole position of the rotor is performed, it is possible to perform motor drive.
この発明の電気自動車は、この発明のモータ駆動装置を用いたため、モータ角度検出器に故障が生じても走行を行うことができる。 Since the electric vehicle of the present invention uses the motor drive device of the present invention, the electric vehicle can travel even if a failure occurs in the motor angle detector.
この発明の第1の実施形態を図1ないし図8と共に説明する。図1は、この実施形態のモータ駆動装置を装備した電気自動車の概念構成を示す平面図である。この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪とされた4輪の自動車である。前輪となる車輪3は操舵輪とされている。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ装置8を構成している。インホイールモータ装置8は、モータ6が車輪2に近接して設置されており、一部または全体が車輪2内に配置される。各車輪2,3には、電動式等の機械式のブレーキ(図示せず)がそれぞれ設けられている。なお、ここで言う「機械式」とは、回生ブレーキと区別のための用語であり、油圧ブレーキも含まれる。
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view showing a conceptual configuration of an electric vehicle equipped with the motor drive device of this embodiment. This electric vehicle is a four-wheeled vehicle in which the
制御系を説明する。自動車全般の統括制御を行う電気制御ユニットであるメインのECU21と、このECU21の指令に従って各走行用のモータ6の制御をそれぞれ行う複数(図示の例では2つ)のインバータ装置22とが、車体1に搭載されている。ECU21とインバータ装置22とで、モータ駆動装置20が構成される。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。なお、ECU21と各インバータ装置22の弱電系とは、互いに共通のコンピュータや共通の基板上の電子回路で構成されていても良い。
The control system will be described. A
ECU21は、トルク配分手段48を有していて、トルク配分手段48は、アクセル操作部16の出力するアクセル開度の信号と、ブレーキ操作部17の出力する減速指令と、操舵手段15の出力する旋回指令とから、左右輪の走行用モータ6,6に与える加速・減速指令をトルク指令値として生成し、各インバータ装置22へ出力する。また、トルク配分手段48は、ブレーキ操作部17の出力する減速指令があったときに、モータ6を回生ブレーキとして機能させる制動トルク指令値と、機械式のブレーキ(図示せず)を動作させる制動トルク指令値とに配分する機能を持つ。回生ブレーキとして機能させる制動トルク指令値は、各走行用のモータ6,6に与える加速・減速指令のトルク指令値に反映させる。アクセル操作部16およびブレーキ操作部17は、それぞれアクセルぺダルおよびブレーキペダル等のペダルと、そのペダルを動作量を検出するセンサとでなる。操舵手段15は、ステアリングホイールとその回転角度を検出するセンサとでなる。バッテリ19は、モータ6の駆動、および車両全体の電気系統の電源として用いられる。
The
図2に示すように、インバータ装置22は、各モータ6に対して設けられた電力変換回路部であるパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とで構成される。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ装置8に関する各検出値や制御値等の情報をECU21に出力する機能を有する。
パワー回路部28は、バッテリ19(図1)の直流電力をモータ6の駆動に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御する手段であるPWMドライバ32とで構成される。
As shown in FIG. 2, the
The
図3において、モータ6は、3相の同期モータ、例えばIPM型(埋込磁石型)同期モータ等からなる。インバータ31は、半導体スイッチング素子である複数の駆動素子31aで構成され、モータ6の3相(U,V,W相)の各相の駆動電流をパルス波形で出力する。PWMドライバ32は、入力された電流指令をパルス幅変調し、前記各駆動素子31aにオンオフ指令を与える。上記パルス幅変調は、例えば図4に示すように正弦波駆動する電流出力が得られるように行う。図3において、パワー回路部28の弱電回路部であるPWMドライバ32と前記モータコントロール部29とで、インバータ装置22における弱電回路部分である演算部33が構成される。演算部33は、コンピュータとこれに実行されるプログラム、および電子回路により構成される。インバータ装置22には、この他に、バッテリ19とインバータ31間に並列に介在させた平滑コンデンサによる平滑部33が設けられている。
In FIG. 3, the
モータ6には、モータロータの角度を検出するモータ角度検出器36が設けられている。モータロータ角度検出器36は、レゾルバ等の高精度の検出器が用いられる。また、図2に示すように、車輪用軸受4またはこの車輪用軸受4を支持するナックル(図示せず)等の支持部材に、車輪2の回転を検出する車輪回転数検出器24が設けられている。車輪回転数検出器24は、アンチロックブレーキシステム(図示せず)に用いられるため、ABSセンサと呼ぶ場合がある。車輪回転数検出器24は、モータロータ角度検出器36に比べて分解能の低い検出器である。
The
図2,図3におけるインバータ装置22のモータコントロール部29は、図5に示す構成とされている。モータコントロール部29は、モータ6に設けられたモータ角度検出器36の角度検出値に従い、磁極位置に応じた制御を行う基本駆動制御部38を有しており、モータコントロール部29はベクトル制御を行う。ベクトル制御は、トルク電流と磁束電流とに分け、各々を独立に制御することで、高速応答および高精度制御を実現する制御方式である。図6は、図5から基本駆動制御部38を抽出して他を省略した図である。
The
図6において、基本駆動制御部38は、電流指令演算部39、トルク電流制御部40、磁束電流制御部41、αβ座標変換部42、2相/3相座標変換部43、検出側の3相/2相座標変換部44、および回転座標変換部45を有する。
In FIG. 6, the basic drive control unit 38 includes a current
電流指令演算部39は、同図中に内部構成をブロックで示すように、トルク電流指令部39aおよび磁束電流設定部39bを有する。トルク電流指令部39aは、上位制御手段から与えられたトルク指令値に従い、トルク電流の指令値Iqrefを出力する手段である。上位制御手段は、ECU21であり、図1のようにECU21がトルク配分手段48を有する場合は、トルク配分手段48である。この上位制御手段から与えられるトルク指令は、アクセル開度およびブレーキの制動指令等により演算されるトルク指令値である。磁束電流設定部39bは、磁束電流の定められた指令値Idrefを出力する手段である。磁束電流の指令値Idrefは、モータ6の特性等に応じて適宜設定されるが、通常は「0」とされる。トルク電流は、以下「q軸電流」と称す。また、磁束電流は、以下「d軸電流」と称す。電圧についても、トルク電圧は「q軸電圧」と、磁束電圧は「d軸電圧」と称す。なお、q軸とはモータ回転方向の軸であり、d軸はq軸に直交する方向の軸である。磁束電流は励磁電流とも呼ばれる。
The current
トルク電流制御部40は、電流指令演算部39から与えられるq軸電流指令値Iqrefに対して、モータ6の駆動電流を検出する電流検出手段35の検出値から、3相/2相座標変換部44および回転座標変換部45を介して得られるq軸電流検出値Iqが追随するように制御する手段であり、出力としてq軸電圧指令値Vqを出力する。
トルク電流制御部40は、q軸電流検出値Iqを減算する減算部40bと、減算部40bの出力に対して定められた演算処理を行う演算処理部40aとでなる。演算処理部40aは、この例では比例積分処理を行う。
The torque
The torque
磁束電流制御部41は、電流指令演算部39から与えられるd軸電流指令値Idrefに対して、モータ6の駆動電流を検出する電流検出手段35の検出値から、3相/2相座標変換部44および回転座標変換部45を介して得られるd軸電流検出値Idが追随するように制御する手段であり、出力としてd軸電圧指令値Vdを出力する。
磁束電流制御部41aは、d軸電流検出値Idを減算する減算部41bと、減算部41bの出力に対して定められた演算処理を行う演算処理部41aとなる。演算処理部41aは、この例では比例積分処理を行う。
The magnetic flux
The magnetic flux
前記3相/2相座標変換部44は、モータ6のU相,V相,W相を流れる電流のうち、2つ、または3つの相の電流、例えばU相の電流Iuと、V相の電流Ivの検出値を、静止直交2相座標成分の実電流(α軸上の実電流、およびβ軸上の実電流)の検出値Iα,Iβに変換する手段である。
回転座標変換部45は、モータ角度検出器36で検出されたモータロータ角度θaに基づき、前記静止直交2相座標成分の実電流の検出値Iα,Iβを、q ,d軸上の検出値Iq ,Id に変換する手段である。
The three-phase / two-phase coordinate
Based on the motor rotor angle θa detected by the
αβ座標変換部42は、q軸電圧指令値Vq およびd軸電圧指令値Vd を、モータ角度検出器36で検出されたモータロータ角度θ、つまりモータロータ位相に基づき、固定2相座標成分の実電圧の指令値Vα,Vβに変換する手段である。
2相/3相変換部43は、αβ座標変換部42の出力する実電圧の指令値Vα,Vβを、モータ6のU相,V相,W相を制御する3相交流の電圧指令値Vu,Vv,Vwに変換する手段である。
The αβ coordinate
The two-phase / three-
パワー回路部28は、上記のようにして基本駆動制御部38の2相/3相変換部43から出力される電圧指令値Vu,Vv,Vwを電力変換してモータ駆動電流Iu,Iv,Iwを出力する。
The
この実施形態は、上記構成の基本駆動制御部38を備えたモータ駆動装置20において、図5のように、車輪速度対応モータ角度推測手段46と、センサ故障判別センサ切替部47とを設けたものである。
車輪速度対応モータ角度推測手段46は、モータ6で駆動される車輪の回転速度を検出する車輪回転数検出器24の検出信号から、モータロータの角度を推測する手段である。
センサ故障判別センサ切替部47は、モータ角度検出器36の故障を判別するセンサ故障判別手段48と、このセンサ故障判別手段48が故障と判別した場合に、前記基本駆動制御部38による制御を、モータ角度検出器36による角度検出値に代えて、車輪速度対応モータ角度推測手段46の出力するモータロータ角度を用いて行わせるセンサ切替え手段49とでなる。
In this embodiment, the
The wheel speed corresponding motor angle estimating means 46 is a means for estimating the angle of the motor rotor from the detection signal of the wheel
The sensor failure determination
センサ故障判別手段48は、例えば、一定時間におけるモータ角度検出器36の角度検出値の変化量から、故障か否かを判断するものとされる。一定時間におけるモータ角度検出器36の角度検出値の変化量は、ある程度定まった範囲にあるため、変化量が極端に大きくなった場合は、モータ角度検出器36の故障と考えられる。したがって、適宜の閾値や範囲を設定し、上記変化量が閾値や範囲を超えた場合に故障と判定しても良い。前記「一定時間」は、適宜設計すれば良い。
センサ故障判別手段48は、この他に、モータ電流指令Vα,Vβ(Iqref,Idref)とモータ電流Iα,Iβ(Iq,Id)の差から、異常か否かを判断するものであっても良い。比較するモータ電流指令は、例えばαβ座標変換部42による実電圧の電圧値に変換した指令Vα,Vβであっても、また電流指令演算部39から出力されるモータ電流指令Iqref,Idrefであっても良い。また、比較するモータ電流は、検出された電流値を実電流に座標変換したモータ電流Iα,Iβとされ、あるいはモータ電流指令と同じq軸電流およびd軸電流に座標変換した値である。モータ電流指令と実際に流れた電流であるモータ電流検出値との差は、ある程度定まった範囲にあるため、これも、適宜の閾値等を設定し、前記の差が閾値を超えた場合に故障と判定しても良い。この場合、アクセル動作を監視し、アクセル動作によってモータ電流指令Iqref,Idrefが大きく変化する場合を判別してもよい。
センサ故障判別手段48は、さらに、上記角度検出値の変化量と、モータ電流指令Vα,Vβ(Iqref,Idref)とモータ電流Iα,Iβ(Iq,Id)の差との両方から判断するものであっても良い。両方を用いて判別するようにすると、前記各閾値を小さく設定しても、確実な故障判別が行えて、早期の故障判別が行える。
For example, the sensor failure determination means 48 determines whether or not there is a failure from the amount of change in the detected angle value of the
In addition to this, the sensor failure determination means 48 may determine whether there is an abnormality from the difference between the motor current commands Vα, Vβ (Iqref, Idref) and the motor currents Iα, Iβ (Iq, Id). . The motor current commands to be compared are, for example, the commands Vα and Vβ converted into the actual voltage values by the αβ coordinate
The sensor failure determination means 48 further determines from both the amount of change in the detected angle value and the difference between the motor current commands Vα, Vβ (Iqref, Idref) and the motor currents Iα, Iβ (Iq, Id). There may be. If both are used for discrimination, even if each of the threshold values is set small, reliable failure discrimination can be performed and early failure discrimination can be performed.
センサ切替え手段49は、センサ故障判別手段48が故障と判別した場合に、モータ角度検出器36の検出値に代えて、車輪速度対応モータ角度推測手段46から出力されるモータロータ角度の推定値を、電流指令演算部39、αβ座標変換部42および回転座標変換部45に入力する。
The sensor switching means 49 replaces the detected value of the
車輪速度対応モータ角度推測手段46は、具体的には、例えば次の構成とされる。車輪回転数検出器24が、車輪の回転に応じて発生したパルスの間隔を演算して車輪の回転速度を検出するものである場合、つまり相対的な角度変化のみ検出可能なものである場合を説明する。この場合、車輪速度対応モータ角度推測手段46は、モータ回転時にモータロータ角度検出器36の角度検出値θと車輪回転数検出器24の検出信号とを比較して車輪回転数検出器24の検出信号に対するモータロータの磁極位置を割り出し、センサ切替え手段により車輪速度対応モータ角度推測手段48の出力するモータロータ角度を用いるように切替えられたときに、車輪回転数検出器24の検出信号からモータロータの角度を推測する。
Specifically, the wheel speed corresponding motor angle estimating means 46 has the following configuration, for example. The case where the wheel
より具体的には、車輪速度対応モータ角度推測手段46は、センサ故障判別手段48が正常と判別している間に、モータロータ角度検出器24の角度検出値を基に、車輪回転数検出器24の検出信号に対する磁極位置を割り出してこれら車輪回転数と磁極位置の相関、つまり位置関係を記憶する記憶部46aを有する。この記憶部46aは、電源がオフ状態でも記憶を維持できるものとする。また、記憶部46aを有した構成では、電源がオフの状態で外的要因によって車輪が回転させられた場合においても磁極位置を把握できるようにモータロータ角度検出器24と車輪速度対応モータ角度推測手段46は、電源オフ時でも車輪の回転を感知すると動作を開始する構成が望ましい。
More specifically, the wheel speed corresponding motor angle estimation means 46 is based on the detected angle value of the motor
車輪速度対応モータ角度推測手段46は、比較部46cを有していて(図では車輪速度対応モータ角度推測手段46とは別にブロックで示してある)、センサ故障判別手段48が正常と判別している間に、車輪速度対応モータ角度推測手段46の推定したモータロータ角度推測値は、モータロータ角度検出器36のモータロータの検出値と比較部46cによって比較される。車輪速度対応モータ角度推測手段46は、上記の比較結果によって、車輪回転数検出器24の検出する車輪回転数と磁極位置の相関を補正し、その補正した相関を、記憶部46aに記憶する。
The wheel speed corresponding motor angle estimating means 46 has a
車輪速度対応モータ角度推測手段46は、より具体的には逓倍処理部46bを有し、これにより、車輪回転数検出器24の出力するパルス(図7(A))を逓倍して、逓倍パルス(図7(B))を生成し、モータロータの角度の推測を行うものとされる。なお、車輪回転数検出器24は、前述のように車輪の回転に応じて発生したパルスの間隔を演算して車輪の回転速度を検出するものである。
More specifically, the wheel speed corresponding motor angle estimation means 46 has a
車輪回転数検出器24が、車輪の回転に応じて発生したパルスの間隔を演算して車輪の回転速度を検出するものである場合は、車輪速度対応モータ角度推測手段24は、逓倍処理部46bを設ける代わりに、車輪回転数検出器24の出力するパルス間の時間を計測してモータロータの角度の推測を行うものとし、精度良くモータロータ角度を検出するものとしても良い。
When the wheel
上記構成のモータ駆動装置20によると、通常では図6に示すように、モータ角度検出器36の角度検出値に従い、磁極位置に応じた制御が基本駆動制御部38により行われ、効率の良いモータ駆動が行われる。モータ角度検出器36の故障は、センサ故障判別手段48により監視され、判別される。センサ故障判別手段48による故障の判別は、モータ角度検出器36の配線系を含めて行うようにしても、モータ角度検出器36のみにつき行うようにしても良い。
According to the
センサ故障判別手段48により故障と判別されると、センサ切替え手段49は、基本駆動制御部38による制御を、モータ角度検出器36による角度検出値に代えて、車輪速度対応モータ角度推測手段46の出力するモータロータ角度を用いて行わせる(図8)。すなわち、図5において、車輪速度対応モータ角度推測手段46の推定したモータロータ角度を、電流指令演算部39、αβ座標変換部42および回転座標変換部45に入力する。そのため、モータ角度検出器36に故障が生じても、基本駆動制御部38を用いた磁極位置に応じた制御を行うことができる。
If the sensor failure determination means 48 determines that a failure has occurred, the sensor switching means 49 replaces the control by the basic drive control unit 38 with the detected angle value by the
そのため、各車輪2を個別に駆動するモータ6を備えたインホイールモータ形式等の電気自動車において、走行中にモータ角度検出器36の故障が生じても、トルクバランスの崩れを回避し、スリップやスキッドの発生を防止することができる。車輪速度対応モータ角度推測手段46の出力するモータロータ角度は、モータ角度検出器36による角度検出値に比べて、精度や信頼性が十分でない場合があるが、修理工場等の車両の修理場所や、道路脇の安全な退避場所等への自力走行が可能となる。
Therefore, in an electric vehicle such as an in-wheel motor type equipped with a
車輪速度対応モータ角度推測手段46は、車輪回転数検出器24の検出信号を用いるが、車輪回転数検出器24は、アンチロックブレーキシステムや姿勢制御システムの制御等に用いるために、一般的に車両に備えられているため、その車輪回転数検出器24を利用すれば良く、新たにセンサ類を追加する必要がない。そのため、センサ類を追加することなく、モータ角度検出器36に故障が生じた場合のモータ駆動が行える。
The wheel speed corresponding motor angle estimation means 46 uses the detection signal of the
前記モータ6は、この実施形態では、減速機7を有するインホイールモータ装置8を構成しているが、減速機7を介在させる場合、モータ6が高速回転となるため、車輪速度対応モータ角度推測手段46によるモータロータ角度の推測値を用いて制御することが、より効果的となる。また、前記減速機7がサイクロイド減速機である場合、円滑な動作で高減速比が得られるが、高減速比のため、モータ6がより高速回転となる。そのため、車輪速度対応モータ角度推測手段46によるモータロータ角度の推測値を用いて制御することが、より効果的となる。
In this embodiment, the
また、車輪速度対応モータ角度推測手段46は、車輪回転数検出器24の出力信号が相対角度出力の場合、正常時のモータロータ角度検出器36の信号を基に、ロータ磁極位置(すなわち磁極基準位置)を割り出しておくようにしたため(図8(B))、走行中において、モータロータ角度検出器36の故障時に切り替えて車輪回転数検出器24の出力信号をモータロータ角度の推定に用いることができる。
Further, when the output signal of the
また、車輪速度対応モータ角度推測手段46は、センサ故障判別手段49が正常と判別している間に、モータロータ角度検出器24の角度検出値を基に、車輪回転数検出器24の検出信号に対する磁極位置を割り出してこれら車輪回転数と磁極位置の相関を記憶する記憶部46bを有するため、電源再投入後でも始動することができる。すなわち、モータ6が同期モータ等である場合、モータロータの角度が検出できないと回転を開始させることができないが、記憶部46bで車輪回転数検出器24の検出信号に対する磁極位置の相関、つまり位置関係を記憶しておくことで、電源再投入後でも始動することができる。また、記憶部46aを有した構成では、電源がオフの状態で外的要因によって車輪が回転させられた場合においても磁極位置を把握できるようにモータロータ角度検出器24と車輪速度対応モータ角度推測手段46は、電源オフ時でも車輪の回転を感知すると動作を開始する構成が望ましい。
Further, the wheel speed corresponding motor angle estimating means 46 responds to the detection signal of the wheel
この実施形態では、逓倍処理部46bを有していて、車輪速度対応モータ角度推測手段46は、車輪回転数検出器24の出力するパルスを逓倍してモータロータの角度の推測を行うものとしているため、車輪速度対応モータ角度推測手段46によっても高い分解能が得られる。車輪回転数検出器24は、アンチロックズレーキシステム等に使用されるものであるため、一般的に高い分解能は必要でなく、モータロータ角度検出器36に比べて分解能が低いものが使用される。しかし、車輪回転数検出器24が、パルスの間隔を演算して車輪の回転速度を検出するものである場合、パルスを逓倍することで、検出角度の分解能を向上させることができ、例えばレゾルバ等からなるモータロータ角度検出器36と同等の分解能とすることができる。
In this embodiment, since it has the
車輪回転数検出器24が、車輪の回転に応じて発生したパルスの間隔を演算して車輪の回転速度を検出するものである場合は、車輪速度対応モータ角度推測手段46は、逓倍処理部46bを設ける代わりに、車輪回転数検出器24の出力するパルス間の時間を計測してモータロータの角度の推測を行うものとし、これにより精度良く角度を演算するようにしても良い。図7(C)はその様子の一例を示しており、ベクトル演算のタイミング毎にパルス立ち下がりからの時間ΔTを計測することで、角度を精度よく演算することができる。なお、ベクトル演算のタイミングはパルス間に数十から数百回ある。例えば、1回前のパルス間隔から角速度を推定しておけば、パルスのエッジからの時間を測定することで、パルス間のロータ絶対角度を推定できる。ベクトル演算タイミングは、点線のタイミングである。
When the wheel
なお、上記実施形態において、センサ故障判別手段48により故障と判別され、車輪速度対応モータ角度推測手段46を用いるようにした場合、その旨をECU21に報告する手段(図示せず)を設けることが好ましい。また、ECU21は、モータ角度検出器36が故障して車輪速度対応モータ角度推測手段46を用いている旨を運転車に知らせる情報を、コンソールの液晶表示装置やランプ(図示せず)等で知らせるようにすることが好ましい。
In the above embodiment, when it is determined that the failure is detected by the sensor failure determining means 48 and the wheel speed corresponding motor angle estimating means 46 is used, a means (not shown) for reporting the fact to the
図9は、この発明の他の実施形態におけるモータコントール部29の構成を示す。この実施形態は、図1〜図8に示した第1の実施形態において、始動時ロータ角度割出手段102を設けたものである。始動時ロータ角度割出手段102は、センサ故障判別手段48で故障と判別された状態で、モータ停止後にモータ6を始動するときに、モータ6の逆起電圧からモータロータの角度を割り出し、その割り出した角度で基本駆動制御部38による制御を行わせる手段である。モータ6の逆起電圧は、インバータ31とモータ6間の配線に設けた電圧検出手段103により検出する。始動時ロータ角度割出手段102の割り出したモータロータの角度は、車輪速度対応モータ角度推測手段46の推定した出力およびモータ角度検出器36の検出値に代えて、電流指令演算部39、αβ座標変換部42および回転座標変換部45に入力する。同時に、始動時ロータ角度割出手段102の割り出したモータロータの角度を車輪速度対応モータ角度推測手段46に入力し、車輪回転数検出器24と磁極位置の相関を決定する。
FIG. 9 shows a configuration of a
なお、始動時ロータ角度割出手段102の割り出した角度で基本駆動制御部38を制御するのは、始動時の定められた時間またモータ回転角度までとし、それ以降は車輪速度対応モータ角度推測手段46の推定した出力を用いる。また、ECU21には、センサ故障判別手段48で故障と判別された状態で、走行停止した後であっても、トルク配分手段48(図1)等から、各モータ6のインバータ装置2へトルク指令を与えるようにする。
また、車輪速度対応モータ角度推測手段46に前記記憶部46aを設けた場合は、始動が可能であるため、この実施形態は、第1の実施形態において記憶部46aを有しない構成とした場合に適用される。
The basic drive control unit 38 is controlled by the angle determined by the starting rotor angle indexing means 102 until a predetermined time or motor rotation angle at the time of starting, and thereafter, the motor angle estimating means corresponding to the wheel speed. 46 estimated outputs are used. Further, the
In addition, when the
この実施形態の場合、次の利点が得られる。基本駆動制御部38は、角度検出値に従って磁極位置に応じた制御をするため、角度が不明であるとモータ6を始動させることができない。車輪速度対応モータ角度推測手段46も、停止後の起動時には用いることができない。そのため、停止した場合、直ぐにはモータ6を起動できないが、2つ以上のモータ6を有する電気自動車では、健在なモータ6を用いて一応の走行が行える。走行させると、センサ故障の生じたモータ6が車輪2の回転につられて回転する。この時のモータ6の逆起電力を検出することで、磁極位置を検出することができる。電気角の1回転で磁極位置を検出できるため、例えば、タイヤ2aが数分の1回転した時点で、逆起電力による角度検出が可能となり、モータ6を駆動させることができる。この実施形態におけるその他の構成効果、第1の実施形態と同様である。
In the case of this embodiment, the following advantages are obtained. Since the basic drive control unit 38 performs control according to the magnetic pole position according to the detected angle value, the
次に、図10〜図13と共に、前記各実施形態におけるインホイールモータ装置8の具体例を示す。このインホイールモータ装置8は、車輪用軸受4とモータ6との間に減速機7を介在させ、車輪用軸受4で支持される駆動輪2のハブとモータ6の回転出力軸74とを同軸心上で連結してある。減速機7は、サイクロイド減速機であって、モータ6の回転出力軸74に同軸に連結される回転入力軸82に偏心部82a,82bを形成し、偏心部82a,82bにそれぞれ軸受85を介して曲線板84a,84bを装着し、曲線板84a,84bの偏心運動を車輪用軸受4へ回転運動として伝達する構成である。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
Next, a specific example of the in-
車輪用軸受4は、内周に複列の転走面53を形成した外方部材51と、これら各転走面53に対向する転走面54を外周に形成した内方部材52と、これら外方部材51および内方部材52の転走面53,54間に介在した複列の転動体55とで構成される。内方部材52は、駆動輪を取り付けるハブを兼用する。この車輪用軸受4は、複列のアンギュラ玉軸受とされていて、転動体55はボールからなり、各列毎に保持器56で保持されている。上記転走面53,54は断面円弧状であり、各転走面53,54は接触角が背面合わせとなるように形成されている。外方部材51と内方部材52との間の軸受空間のアウトボード側端は、シール部材57でシールされている。
The
外方部材51は静止側軌道輪となるものであって、減速機7のアウトボード側のハウジング83bに取り付けるフランジ51aを有し、全体が一体の部品とされている。フランジ51aには、周方向の複数箇所にボルト挿通孔64が設けられている。また、ハウジング83bには,ボルト挿通孔64に対応する位置に、内周にねじが切られたボルト螺着孔94が設けられている。ボルト挿通孔94に挿通した取付ボルト65をボルト螺着孔94に螺着させることにより、外方部材51がハウジング83bに取り付けられる。
The
内方部材52は回転側軌道輪となるものであって、車輪取付用のハブフランジ59aを有するアウトボード側材59と、このアウトボード側材59の内周にアウトボード側が嵌合して加締めによってアウトボード側材59に一体化されたインボード側材60とでなる。これらアウトボード側材59およびインボード側材60に、前記各列の転走面54が形成されている。インボード側材60の中心には貫通孔61が設けられている。ハブフランジ59aには、周方向複数箇所にハブボルト66の圧入孔67が設けられている。アウトボード側材59のハブフランジ59aの根元部付近には、駆動輪および制動部品(図示せず)を案内する円筒状のパイロット部63がアウトボード側に突出している。このパイロット部63の内周には、前記貫通孔61のアウトボード側端を塞ぐキャップ68が取り付けられている。
The
減速機7は、上記したようにサイクロイド減速機であり、図11のように外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板84a,84bが、それぞれ軸受85を介して回転入力軸82の各偏心部82a,82bに装着してある。これら各曲線板84a,84bの偏心運動を外周側で案内する複数の外ピン86を、それぞれハウジング83bに差し渡して設け、内方部材2のインボード側材60に取り付けた複数の内ピン88を、各曲線板84a,84bの内部に設けられた複数の円形の貫通孔89に挿入状態に係合させてある。回転入力軸82は、モータ6の回転出力軸74とスプライン結合されて一体に回転する。なお、回転入力軸82はインボード側のハウジング83aと内方部材52のインボード側材60の内径面とに2つの軸受90で両持ち支持されている。
As described above, the
モータ6の回転出力軸74が回転すると、これと一体回転する回転入力軸82に取り付けられた各曲線板84a,84bが偏心運動を行う。この各曲線板84a,84bの偏心運動が、内ピン88と貫通孔89との係合によって、内方部材52に回転運動として伝達される。回転出力軸74の回転に対して内方部材52の回転は減速されたものとなる。例えば、1段のサイクロイド減速機で1/10以上の減速比を得ることができる。
When the
前記2枚の曲線板84a,84bは、互いに偏心運動が打ち消されるように180°位相をずらして回転入力軸82の各偏心部82a,82bに装着され、各偏心部82a,82bの両側には、各曲線板84a,84bの偏心運動による振動を打ち消すように、各偏心部82a,82bの偏心方向と逆方向へ偏心させたカウンターウエイト91が装着されている。
The two
図12に拡大して示すように、前記各外ピン86と内ピン88には軸受92,93が装着され、これらの軸受92,93の外輪92a,93aが、それぞれ各曲線板84a,84bの外周と各貫通孔89の内周とに転接するようになっている。したがって、外ピン86と各曲線板84a,84bの外周との接触抵抗、および内ピン88と各貫通孔89の内周との接触抵抗を低減し、各曲線板84a,84bの偏心運動をスムーズに内方部材52に回転運動として伝達することができる。
As shown in an enlarged view in FIG. 12,
図10において、モータ6は、円筒状のモータハウジング72に固定したモータステータ73と、回転出力軸74に取り付けたモータロータ75との間にラジアルギャップを設けたラジアルギャップ型のIPMモータである。回転出力軸74は、減速機7のインボード側のハウジング83aの筒部に2つの軸受76で片持ち支持されている。
In FIG. 10, the
モータステータ73は、軟質磁性体からなるステータコア部77とコイル78とでなる。ステータコア部77は、その外周面がモータハウジング72の内周面に嵌合して、モータハウジング72に保持されている。モータロータ75は、モータステータ73と同心に回転出力軸74に外嵌するロータコア部79と、このロータコア部79に内蔵される複数の永久磁石80とでなる。
The
モータ6には、モータステータ73とモータロータ75の間の相対回転角度を検出する角度センサ36が設けられる。角度センサ36は、モータステータ73とモータロータ75の間の相対回転角度を表す信号を検出して出力する角度センサ本体70と、この角度センサ本体70の出力する信号から角度を演算する角度演算回路71とを有する。角度センサ本体70は、回転出力軸74の外周面に設けられる被検出部70aと、モータハウジング72に設けられ前記被検出部70aに例えば径方向に対向して近接配置される検出部70bとでなる。被検出部70aと検出部70bは軸方向に対向して近接配置されるものであっても良い。ここでは、各角度センサ36として、磁気エンコーダまたはレゾルバが用いられる。モータ6の回転制御は上記モータコントロール部29(図2,5,7)により行われる。なお、インホイールモータ装置8のモータ電流の配線や各種センサ系,指令系の配線は、モータハウジング72等に設けられたコネクタ99により纏めて行われる。
The
図13は、図1,図2の車輪回転数検出器24の一例を示す。この車輪回転数検出器24は、車輪用軸受4における内方部材52の外周に設けられた磁気エンコーダ24aと、この磁気エンコーダ24aに対向して外方部材51に設けられた磁気センサ24bとでなる。磁気エンコーダ24aは、円周方向に磁極N,Sを交互に着磁したリング状の部材である。この例では、回転センサ24は両列の転動体55,55間に配置しているが、車輪用軸受4の端部に設置しても良い。
FIG. 13 shows an example of the wheel
なお、上記実施形態では、後輪の2輪を個別にモータ駆動する駆動輪とした4輪の電気自動車にも適用した場合につき説明したが、この発明の適用する電気自動車は、前輪の2輪をそれぞれ個別にモータ駆動するものや、4輪とも個別にモータ駆動するもの、あるいは1台のモータで駆動するものにも適用することができる。 In the above-described embodiment, the case where the present invention is applied to a four-wheel electric vehicle in which two rear wheels are individually driven by a motor is described. However, the electric vehicle to which the present invention is applied is a front wheel. It is also possible to apply the motor individually driven by the motor, the motor driven by all four wheels individually, or the motor driven by one motor.
1…車体
2,3…車輪
4…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ装置
20…モータ駆動装置
21…ECU
22…インバータ装置
24…車輪回転数検出器
28…パワータ回路部
29…モータコントロール部
31…インバータ
32…PWMドライバ
36…モータ角度検出器
35…電流検出手段
39…指令電流演算部
38…基本駆動制御部
46…車輪速度対応モータ角度推測手段
46a…記憶部
46b…逓倍処理部
46c…比較部
47…センサ故障判別センサ切替部
48…センサ故障判別手段
49…センサ切替え手段
102…始動時ロータ角度割出手段
103…電圧検出手段
DESCRIPTION OF SYMBOLS 1 ...
DESCRIPTION OF
Claims (13)
前記モータで駆動される車輪の回転速度を検出する車輪回転数検出器の検出信号から前記モータロータの角度を推測する車輪速度対応モータ角度推測手段と、前記モータ角度検出器の故障を判別するセンサ故障判別手段と、このセンサ故障判別手段が故障と判別した場合に、前記基本駆動制御部による制御を、前記モータ角度検出器による角度検出値に代えて、前記車輪速度対応モータ角度推測手段の出力するモータロータ角度を用いて行わせるセンサ切替え手段とを設けたことを特徴とするモータ駆動装置。 For a motor for driving a wheel of an electric vehicle, in accordance with an angle detection value of a motor angle detector provided in the motor, a motor drive device including a basic drive control unit that performs control according to a magnetic pole position,
Wheel speed corresponding motor angle estimating means for estimating the angle of the motor rotor from a detection signal of a wheel rotation number detector for detecting the rotation speed of the wheel driven by the motor, and a sensor failure for determining a failure of the motor angle detector When the determination unit and the sensor failure determination unit determine that there is a failure, the control by the basic drive control unit is output by the wheel speed correspondence motor angle estimation unit instead of the angle detection value by the motor angle detector. A motor drive device comprising: a sensor switching unit that performs using a motor rotor angle.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011149944A JP5702237B2 (en) | 2011-07-06 | 2011-07-06 | Motor drive device |
PCT/JP2012/066365 WO2013002251A1 (en) | 2011-06-30 | 2012-06-27 | Motor drive device |
EP12804455.9A EP2728736B1 (en) | 2011-06-30 | 2012-06-27 | Motor drive device |
US14/125,866 US9203332B2 (en) | 2011-06-30 | 2012-06-27 | Motor drive device |
CN201280032129.XA CN103650327B (en) | 2011-06-30 | 2012-06-27 | Motor drive |
US14/923,192 US9660561B2 (en) | 2011-06-30 | 2015-10-26 | Motor drive device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011149944A JP5702237B2 (en) | 2011-07-06 | 2011-07-06 | Motor drive device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013017351A true JP2013017351A (en) | 2013-01-24 |
JP5702237B2 JP5702237B2 (en) | 2015-04-15 |
Family
ID=47689460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011149944A Expired - Fee Related JP5702237B2 (en) | 2011-06-30 | 2011-07-06 | Motor drive device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5702237B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017017962A (en) * | 2015-07-06 | 2017-01-19 | 株式会社デンソー | Control device of inverter |
US9685899B2 (en) | 2015-03-10 | 2017-06-20 | Lsis Co., Ltd. | Inverter for supplying load-adaptive boost voltage |
JP2017123758A (en) * | 2016-01-08 | 2017-07-13 | シャープ株式会社 | Running device |
CN108705955A (en) * | 2018-04-20 | 2018-10-26 | 江苏理工学院 | A kind of hybrid power synthetic system based on magnetic gear brshless DC motor |
JP2020025425A (en) * | 2018-08-08 | 2020-02-13 | 株式会社デンソー | Control device and vehicle driving system |
JP2021005989A (en) * | 2019-06-27 | 2021-01-14 | 株式会社デンソー | Driving system of vehicle |
CN115163318A (en) * | 2022-09-02 | 2022-10-11 | 南京工业大学 | Multi-functional unmanned aerial vehicle air throttle drive circuit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019047702A (en) | 2017-09-07 | 2019-03-22 | ルネサスエレクトロニクス株式会社 | Motor driving system and motor driving method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5889003A (en) * | 1981-11-20 | 1983-05-27 | Japanese National Railways<Jnr> | Halting method at predetermined position of linear synchronous motor |
JP2007209105A (en) * | 2006-02-01 | 2007-08-16 | Sawafuji Electric Co Ltd | Electric vehicle drive unit |
JP2010022196A (en) * | 2008-01-21 | 2010-01-28 | Daikin Ind Ltd | Motor drive control device |
JP2010193609A (en) * | 2009-02-18 | 2010-09-02 | Mitsubishi Electric Corp | Rotor of permanent magnet-type rotary electric machine and manufacturing method thereof |
-
2011
- 2011-07-06 JP JP2011149944A patent/JP5702237B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5889003A (en) * | 1981-11-20 | 1983-05-27 | Japanese National Railways<Jnr> | Halting method at predetermined position of linear synchronous motor |
JP2007209105A (en) * | 2006-02-01 | 2007-08-16 | Sawafuji Electric Co Ltd | Electric vehicle drive unit |
JP2010022196A (en) * | 2008-01-21 | 2010-01-28 | Daikin Ind Ltd | Motor drive control device |
JP2010193609A (en) * | 2009-02-18 | 2010-09-02 | Mitsubishi Electric Corp | Rotor of permanent magnet-type rotary electric machine and manufacturing method thereof |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9685899B2 (en) | 2015-03-10 | 2017-06-20 | Lsis Co., Ltd. | Inverter for supplying load-adaptive boost voltage |
KR101750609B1 (en) * | 2015-03-10 | 2017-06-23 | 엘에스산전 주식회사 | An inverter for supplying load-adaptive boost voltage |
JP2017017962A (en) * | 2015-07-06 | 2017-01-19 | 株式会社デンソー | Control device of inverter |
JP2017123758A (en) * | 2016-01-08 | 2017-07-13 | シャープ株式会社 | Running device |
CN108705955A (en) * | 2018-04-20 | 2018-10-26 | 江苏理工学院 | A kind of hybrid power synthetic system based on magnetic gear brshless DC motor |
JP2020025425A (en) * | 2018-08-08 | 2020-02-13 | 株式会社デンソー | Control device and vehicle driving system |
CN110816289A (en) * | 2018-08-08 | 2020-02-21 | 株式会社电装 | Control device and vehicle drive system |
JP7205104B2 (en) | 2018-08-08 | 2023-01-17 | 株式会社デンソー | Control device and vehicle drive system |
JP2021005989A (en) * | 2019-06-27 | 2021-01-14 | 株式会社デンソー | Driving system of vehicle |
JP7451890B2 (en) | 2019-06-27 | 2024-03-19 | 株式会社デンソー | vehicle drive system |
CN115163318A (en) * | 2022-09-02 | 2022-10-11 | 南京工业大学 | Multi-functional unmanned aerial vehicle air throttle drive circuit |
Also Published As
Publication number | Publication date |
---|---|
JP5702237B2 (en) | 2015-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2728736B1 (en) | Motor drive device | |
JP5702237B2 (en) | Motor drive device | |
JP5808923B2 (en) | Motor drive device and electric vehicle | |
JP5562276B2 (en) | Electric car | |
JP5657426B2 (en) | Electric car | |
JP5562277B2 (en) | Electric car | |
JP5832868B2 (en) | Electric car | |
US9172319B2 (en) | Motor control device for electric automobile | |
JP5705585B2 (en) | Electric car | |
US20150202963A1 (en) | Motor fault detection device for electric automobile | |
JP2013017352A (en) | Motor drive device | |
JP5785004B2 (en) | Motor drive device | |
US20050078431A1 (en) | Electric discharge controller, electric discharge control method and its program | |
JP6087399B2 (en) | Motor drive device | |
JP5985724B2 (en) | Electric car | |
JP2014223008A (en) | Electric vehicle | |
JP2012176650A (en) | In-wheel motor drive device and motor control method | |
JP2014209843A (en) | Electric vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5702237 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |