[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013015611A - Optical scanner and image forming apparatus having the same - Google Patents

Optical scanner and image forming apparatus having the same Download PDF

Info

Publication number
JP2013015611A
JP2013015611A JP2011147075A JP2011147075A JP2013015611A JP 2013015611 A JP2013015611 A JP 2013015611A JP 2011147075 A JP2011147075 A JP 2011147075A JP 2011147075 A JP2011147075 A JP 2011147075A JP 2013015611 A JP2013015611 A JP 2013015611A
Authority
JP
Japan
Prior art keywords
optical
scanning direction
sub
order
main scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011147075A
Other languages
Japanese (ja)
Other versions
JP2013015611A5 (en
JP5843500B2 (en
Inventor
Shuichi Kurokawa
周一 黒川
Yoshihiro Ishibe
芳浩 石部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011147075A priority Critical patent/JP5843500B2/en
Publication of JP2013015611A publication Critical patent/JP2013015611A/en
Publication of JP2013015611A5 publication Critical patent/JP2013015611A5/ja
Application granted granted Critical
Publication of JP5843500B2 publication Critical patent/JP5843500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical scanning apparatus capable of reducing pitch unevenness caused by a face tangle of a deflection face and forming a high definition image, and to provide an image forming apparatus having the same.SOLUTION: An optical scanner includes: light source means; deflection means for deflecting a light flux from the light source means; an incident optical system for guiding the light flux from the light source means to the deflection means; and an imaging optical system for imaging the light flux reflected and deflected by the deflection means as a spot on a surface to be scanned. The incident optical system makes the light flux from the light source means obliquely incident to a plane perpendicular to the rotational axis of a deflection surface of the deflection means at a predetermined angle in a sub-scanning cross section. The imaging optical system has a non-arcuate shaped optical element in which the slave line shape of at least one optical surface includes an aspherical coefficient of a 4-th or higher even-numbered order. Among the aspherical coefficients of a 4-th or higher even-numbered order of the slave line shapes of the optical surfaces, the aspherical coefficients of any order change according to the position in a main scanning direction, and an original point of the non-arcuate shape of the slave line in the position in each main scanning direction of the optical surface is positioned within the light flux in an entire effective area.

Description

本発明は光走査装置及びそれを用いた画像形成装置に関し、電子写真プロセスを有するレーザビームプリンタやデジタル複写機やマルチファンクションプリンタ等の画像形成装置に好適なものである。   The present invention relates to an optical scanning apparatus and an image forming apparatus using the same, and is suitable for an image forming apparatus such as a laser beam printer, a digital copying machine, or a multifunction printer having an electrophotographic process.

従来、光走査装置はレーザビームプリンタやデジタル複写機等に広く利用されている。従来の光走査装置では、偏向手段である回転多面鏡の偏向反射面はその回転角度により面の出入り(所謂サグ)が生じるため、焦線と偏向反射面との位置関係が変化する。このため、倒れ補正光学系を構成していても面倒れが生じると被走査面上の副走査方向の光線到達位置がずれ、所謂面倒れによるピッチムラが発生する。   Conventionally, optical scanning devices have been widely used in laser beam printers, digital copying machines, and the like. In the conventional optical scanning device, the deflection reflection surface of the rotary polygon mirror, which is a deflection means, causes the surface to enter and exit (so-called sag) depending on the rotation angle, so that the positional relationship between the focal line and the deflection reflection surface changes. For this reason, even if the tilt correction optical system is configured, if surface tilt occurs, the light beam arrival position in the sub-scanning direction on the surface to be scanned is shifted, and pitch unevenness due to so-called surface tilt occurs.

偏向反射面のサグに応じて、有効走査範囲全域で偏向反射面と被走査面とを共役とすれば面倒れによるピッチムラを低減することは出来るが、副走査方向の像面湾曲が悪化してスポット径のばらつきが大きくなってしまう。また最近では印字速度の高速化或いは記録密度の高密度化の目的で、光源手段として複数の発光部を有するモノリシックマルチビームレーザや、面発光レーザ(VCSEL)が使用されている。発光部の数が増えるとピッチムラの周期が大きくなり、ムラが目立ちやすくなるため、高精細な画像形成を行うためにピッチムラの改善は重要な課題である。   Depending on the sag of the deflection reflection surface, if the deflection reflection surface and the surface to be scanned are conjugated in the entire effective scanning range, pitch unevenness due to surface tilt can be reduced, but the field curvature in the sub-scanning direction deteriorates. Variation in spot diameter will increase. Recently, for the purpose of increasing the printing speed or increasing the recording density, a monolithic multi-beam laser having a plurality of light emitting units or a surface emitting laser (VCSEL) has been used as a light source means. As the number of light emitting portions increases, the pitch unevenness period increases and the unevenness becomes more conspicuous. Therefore, improvement of pitch unevenness is an important issue for high-definition image formation.

このような光走査装置において、面倒れ性能を向上させピッチムラを低減し、かつ副走査方向の像面湾曲を低減するための技術が提案されている(特許文献1)。   In such an optical scanning device, a technique has been proposed for improving surface tilt performance, reducing pitch unevenness, and reducing field curvature in the sub-scanning direction (Patent Document 1).

特開2009−14953号公報JP 2009-14953 A

しかしながら、特許文献1に開示された従来技術では、面倒れによる幾何光学的な光スポットの結像位置ずれを抑制し幾何光学的なピッチムラを低減すると共に子線を非円弧形状とすることで副走査方向の像面湾曲を補正する技術は開示されているが、波動光学的には被走査面上で光スポットの強度分布重心が副走査方向にずれており、偏向反射面の面倒れによる波動光学的なピッチムラは低減されず画像品質が劣化するという課題が生じる。   However, in the prior art disclosed in Patent Document 1, the geometrical optical spot image position shift due to surface tilt is suppressed to reduce geometric optical pitch unevenness, and the sub-wires are made non-circular. Although a technique for correcting the curvature of field in the scanning direction has been disclosed, in terms of wave optics, the intensity distribution center of gravity of the light spot is shifted in the sub-scanning direction on the surface to be scanned, and the wave caused by the tilting of the deflecting reflection surface There arises a problem that optical pitch unevenness is not reduced and image quality deteriorates.

また、特許文献1において子線非円弧の原点は軸上と軸外において主光線通過位置と一致しているが、具体的な方法が開示されていない。偏向反射面に対して副走査方向について斜めから光束を入射させる副走査斜入射系の場合、結像光学系を構成するレンズ面上での主光線通過位置の軌跡は副走査方向に湾曲しており、軸上と軸外で子線非円弧の原点と主光線通過位置を一致させても、他の像高においては子線非円弧の原点と主光線通過位置の位置関係は定まらず、湾曲が大きいと主光線通過位置と子線非円弧の原点が大きくずれ、子線非円弧による効果を有効に得られない場合があり十分とは言えなかった。   Also, in Patent Document 1, the origin of the child non-arc coincides with the principal ray passing position on the axis and off the axis, but a specific method is not disclosed. In the case of the sub-scanning oblique incidence system in which the light beam is incident obliquely with respect to the deflecting / reflecting surface in the sub-scanning direction, the locus of the principal ray passing position on the lens surface constituting the imaging optical system is curved in the sub-scanning direction. Even if the origin of the non-arc arc and the principal ray passing position are matched on the axis and off-axis, the positional relationship between the origin of the non-arc arc and the principal ray passing position is not fixed at other image heights. If is large, the principal ray passing position and the origin of the child non-arc are greatly shifted, and the effect of the child non-arc may not be obtained effectively.

そこで本発明では、副走査斜入射系のようにレンズ面上で主光線通過位置の軌跡が湾曲している場合においても、全像高で波動光学的なピッチムラを低減し高精細な画像形成が可能な光走査装置及び画像形成装置を提供することを目的とする。   Therefore, in the present invention, even when the locus of the principal ray passing position is curved on the lens surface as in the sub-scanning oblique incidence system, high-definition image formation is achieved by reducing wave optical pitch unevenness at the entire image height. An object of the present invention is to provide an optical scanning device and an image forming apparatus that can be used.

本発明の光走査装置は、結像光学系の少なくとも1つの光学面の子線形状を非円弧形状とすると共に、子線の非円弧形状の原点と主光線通過位置との位置関係を適切に設定することにより、副走査斜入射系のようにレンズ面上で主光線通過位置の軌跡が湾曲している場合においても、全像高で波動光学的なピッチムラを低減することができる。   In the optical scanning device of the present invention, the sub-line shape of at least one optical surface of the imaging optical system is a non-arc shape, and the positional relationship between the origin of the non-arc shape of the sub-line and the principal ray passing position is appropriately set. By setting, even when the locus of the principal ray passing position is curved on the lens surface as in the sub-scanning oblique incidence system, it is possible to reduce wave optical pitch unevenness at the entire image height.

具体的には、本発明の光走査装置は、1つ以上の発光点を有する光源手段と、前記光源からの光束を偏向する偏向手段と、前記光源からの光束を前記偏向手段へ導く入射光学系と、前記偏向手段により反射偏向された光束を被走査面上にスポットとして結像させる結像光学系と、を有し、前記入射光学系は、前記光源からの光束を前記偏向手段の偏向面の回転軸に垂直な面に対して副走査方向に所定の角度で斜入射させて、前記結像光学系は、少なくとも1つの光学面の子線形状が4次以上の偶数次の非球面係数を含む非円弧形状である光学素子を有し、前記光学面の子線形状の4次以上の偶数次の非球面係数のうち、何れかの次数の非球面係数は、主走査方向の位置に従って変化し、前記光学面の各主走査方向の位置における子線の非円弧形状の原点は、有効領域内全域において光束内に位置することを特徴とする。   Specifically, the optical scanning device according to the present invention includes a light source unit having one or more light emitting points, a deflecting unit for deflecting a light beam from the light source, and an incident optical for guiding the light beam from the light source to the deflecting unit. And an imaging optical system that forms an image of the light beam reflected and deflected by the deflecting means as a spot on the surface to be scanned. The incident optical system deflects the light beam from the light source by the deflecting means. The imaging optical system is obliquely incident at a predetermined angle in a sub-scanning direction with respect to a surface perpendicular to the rotation axis of the surface, and the imaging optical system has an even-order aspherical surface in which at least one optical surface has a quadratic or higher order. An optical element having a non-arc shape including a coefficient, and the aspheric coefficient of any order among the fourth-order and higher-order aspheric coefficients of the sub-line shape of the optical surface is a position in the main scanning direction. A non-arc of a child line at each position in the main scanning direction of the optical surface Jo of origin, characterized in that located in the light beam in the effective region throughout.

本発明によれば、結像光学系の少なくとも1つの面の子線形状を非円弧形状とすると共に、非円弧形状の原点と主光線通過位置との位置関係を適切に設定することで、副走査斜入射系のようなレンズ面上で主光線通過位置の軌跡が湾曲している場合においても、面倒れによる被走査面上での光スポットの強度分布重心の変動を抑制し、面倒れによる波動光学的なピッチムラを低減させ、高精細な画像形成が可能な光走査装置及び画像形成装置を達成することができる。   According to the present invention, the sub-line shape of at least one surface of the imaging optical system is a non-arc shape, and the positional relationship between the origin of the non-arc shape and the principal ray passing position is appropriately set. Even when the locus of the principal ray passing position is curved on a lens surface like a scanning oblique incidence system, the fluctuation of the center of gravity of the intensity distribution of the light spot on the scanned surface due to the surface tilt is suppressed, and the surface tilt It is possible to achieve an optical scanning device and an image forming apparatus capable of reducing wave optical pitch unevenness and forming a high-definition image.

本発明の実施例1の光走査装置の主走査方向の要部断面図Sectional drawing of the principal part of the optical scanning apparatus of Example 1 of this invention of the main scanning direction 本発明の実施例1の子線形状を説明する図The figure explaining the subwire shape of Example 1 of this invention 本発明の実施例1の面倒れによる走査線湾曲を示す図The figure which shows the scanning line curve by the surface fall of Example 1 of this invention 本発明の実施例1の副走査方向の像面湾曲を示す図The figure which shows the field curvature of the subscanning direction of Example 1 of this invention. 本発明の実施例1の子線非円弧形状の原点位置と主光線通過位置を示す図The figure which shows the origin position and principal ray passage position of a child non-arc shape of Example 1 of the present invention 本発明の実施例1の子線の4次の非球面係数の変化を示す図The figure which shows the change of the 4th-order aspherical coefficient of the subwire of Example 1 of this invention 本発明の実施例1の副走査方向のパワー変化を示す図The figure which shows the power change of the subscanning direction of Example 1 of this invention. 本発明の実施例2の光走査装置の主走査方向の要部断面図Sectional drawing of the principal part of the optical scanning apparatus of Example 2 of this invention of the main scanning direction 本発明の実施例2の子線形状を説明する図The figure explaining the subwire shape of Example 2 of this invention 本発明の実施例2の面倒れによる走査線湾曲を示す図The figure which shows the scanning line curve by the surface fall of Example 2 of this invention 本発明の実施例2の副走査方向の像面湾曲を示す図The figure which shows the field curvature of the subscanning direction of Example 2 of this invention. 本発明の実施例2の子線非円弧形状の原点位置と主光線通過位置を示す図The figure which shows the origin position and principal ray passage position of child non-arc shape of Example 2 of this invention 本発明の実施例2の子線の4次の非球面係数の変化を示す図The figure which shows the change of the 4th-order aspherical coefficient of the child wire of Example 2 of this invention. 本発明の実施例3の光走査装置の主走査方向の要部断面図Sectional drawing of the principal part of the optical scanning apparatus of Example 3 of this invention of the main scanning direction 本発明の実施例3の面倒れによる走査線湾曲を示す図The figure which shows the scanning line curve by the surface fall of Example 3 of this invention 本発明の実施例3の副走査方向の像面湾曲を示す図The figure which shows the field curvature of the subscanning direction of Example 3 of this invention. 本発明の実施例3の子線非円弧形状の原点位置と主光線通過位置を示す図The figure which shows the origin position and principal ray passage position of child non-arc shape of Example 3 of this invention 本発明の実施例3の子線の4次の非球面係数の変化を示す図The figure which shows the change of the 4th-order aspherical coefficient of the child wire of Example 3 of this invention. 本発明の実施例5の画像形成装置の要部断面図Sectional drawing of the principal part of the image forming apparatus of Example 5 of this invention 本発明の実施例6のカラー画像形成装置の要部概略図Schematic view of essential parts of a color image forming apparatus according to Embodiment 6 of the present invention.

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の第1の実施例の光走査装置の主走査方向の要部断面図(主走査断面図)である。   FIG. 1 is a sectional view (main scanning sectional view) of a main part in the main scanning direction of the optical scanning apparatus according to the first embodiment of the present invention.

尚、以下の説明において、主走査方向とは偏向手段の回転軸及び結像光学系の光軸に垂直な方向(偏向手段で光束が偏向反射(偏向走査)される方向)であり、副走査方向とは偏向手段の回転軸と平行な方向のことである。また、主走査断面とは結像光学系の光軸と主走査方向とを含む平面のことであり、副走査断面とは結像光学系の光軸を含み主走査断面に垂直な断面のことである。   In the following description, the main scanning direction is a direction perpendicular to the rotation axis of the deflecting unit and the optical axis of the imaging optical system (the direction in which the light beam is deflected and reflected (deflected and scanned) by the deflecting unit). The direction is a direction parallel to the rotation axis of the deflecting means. The main scanning section is a plane including the optical axis of the imaging optical system and the main scanning direction, and the sub-scanning section is a section including the optical axis of the imaging optical system and perpendicular to the main scanning section. It is.

図1において光源手段10は、1つの発光点を有する半導体レーザから成っている。光源手段10から射出された光束は、コリメータレンズ20により略平行光束に変換された後、シリンドリカルレンズ30に入射し、副走査方向にのみ屈折される。その後、光束は開口絞り40により光束幅を制限された後、偏向手段である回転多面鏡50の偏向反射面51の近傍に副走査方向にのみ集光され、主走査方向に長い線像として結像される。   In FIG. 1, the light source means 10 comprises a semiconductor laser having one light emitting point. The light beam emitted from the light source means 10 is converted into a substantially parallel light beam by the collimator lens 20, and then enters the cylindrical lens 30 and is refracted only in the sub-scanning direction. After that, the beam width is limited by the aperture stop 40, and then condensed in the vicinity of the deflection reflection surface 51 of the rotary polygon mirror 50, which is a deflecting means, only in the sub-scanning direction, and is formed as a long line image in the main scanning direction. Imaged.

上記コリメータレンズ20とシリンドリカルレンズ30及び絞り40の各要素が入射光学系LAの一要素を構成する。   Each element of the collimator lens 20, the cylindrical lens 30, and the stop 40 constitutes one element of the incident optical system LA.

尚、本実施例においてはコリメータレンズ20により略平行光束に変換したが、コリメータレンズ20の代わりに光束の発散性を弱めた発散光束及び収束光束に変換する光学素子を用いてもよい。また、2枚のレンズに限らず主走査方向と副走査方向で異なるパワーを有するアナモフィックな1つの光学素子により構成してもよい。   In this embodiment, the collimator lens 20 converts the light beam into a substantially parallel light beam. However, instead of the collimator lens 20, an optical element that converts the light beam into a divergent light beam and a convergent light beam may be used. Moreover, it is not limited to two lenses, and may be constituted by one anamorphic optical element having different powers in the main scanning direction and the sub-scanning direction.

入射光学系LAは、その光軸が回転多面鏡50の回転軸に垂直な面に対して副走査方向に傾いており、光源手段10から射出された光束を回転多面鏡50の回転軸に垂直な面に対して副走査方向に所定の角度(3°)で斜入射させている(副走査斜入射系)。   The incident optical system LA has its optical axis tilted in the sub-scanning direction with respect to the plane perpendicular to the rotation axis of the rotary polygon mirror 50, and the light beam emitted from the light source means 10 is perpendicular to the rotation axis of the rotary polygon mirror 50. Is incident obliquely at a predetermined angle (3 °) in the sub-scanning direction (sub-scanning oblique incidence system).

なお、図中において回転多面鏡50は、その偏向反射面51のみを図示している。   In the drawing, the rotary polygon mirror 50 shows only the deflection reflection surface 51 thereof.

回転多面鏡50により反射偏向された光束は、第1fθレンズ61及び第2fθレンズ62から成る結像光学系60により被走査面70上に光スポットとして結像される。回転多面鏡50が図中矢印方向に回転することにより被走査面70上を光スポットが走査し、静電潜像を形成する。被走査面70としては、たとえば感光ドラム面等が挙げられる。   The light beam reflected and deflected by the rotary polygon mirror 50 is imaged as a light spot on the scanning surface 70 by the imaging optical system 60 including the first fθ lens 61 and the second fθ lens 62. As the rotary polygon mirror 50 rotates in the direction of the arrow in the figure, the light spot scans the surface to be scanned 70 to form an electrostatic latent image. Examples of the scanned surface 70 include a photosensitive drum surface.

第2fθレンズ62と被走査面70の間には防塵ガラス80を有し、光走査装置内部に塵やトナー等が進入するのを防止している。   A dustproof glass 80 is provided between the second fθ lens 62 and the scanned surface 70 to prevent dust, toner, and the like from entering the optical scanning device.

ここにおいて、結像光学系60は副走査断面内において、シリンドリカルレンズ30により偏向反射面51の近傍(偏向面近傍)に結像された結像位置(焦線位置)と被走査面70とを共役な関係とする、所謂倒れ補正光学系を構成する。   In this case, the imaging optical system 60 defines an imaging position (focal line position) imaged near the deflection reflection surface 51 (near the deflection surface) by the cylindrical lens 30 and the scanned surface 70 in the sub-scan section. A so-called tilt correction optical system having a conjugate relationship is formed.

表1に本実施例1における光学系の諸特性を示す。ここで、「E−x」は「10−x」を示している。また特に表記していない係数については全て0である。   Table 1 shows the characteristics of the optical system in Example 1. Here, “E-x” indicates “10-x”. In addition, all the coefficients not particularly described are 0.

Figure 2013015611
Figure 2013015611

結像光学系60を構成する第1fθレンズ61及び第2fθレンズ62の各レンズ面61a〜62bは母線形状が、各レンズ面と光軸との交点(レンズ面頂点)を原点とし、光軸方向をX軸、主走査断面内において光軸と直交する方向をY軸、副走査断面内において光軸と直交する方向をZ軸としたときに、

Figure 2013015611
で表わされる。Rは曲率半径、Kは離心率、B4〜B12は4次〜12次の母線の非球面係数である。 The lens surfaces 61a to 62b of the first fθ lens 61 and the second fθ lens 62 constituting the imaging optical system 60 have a generatrix shape, with the intersection (lens surface vertex) between each lens surface and the optical axis as the origin, and the optical axis direction. Is the X axis, the direction perpendicular to the optical axis in the main scanning section is the Y axis, and the direction orthogonal to the optical axis in the sub scanning section is the Z axis,
Figure 2013015611
It is represented by R is a radius of curvature, K is an eccentricity, and B 4 to B 12 are aspherical coefficients of the fourth to twelfth buses.

ここで、レーザ側(図の下側)と反レーザ側(図の上側)で係数が異なる場合は、レーザ側の係数には添字uを附し、反レーザ側の係数には添字lを附している。   Here, when the coefficients on the laser side (the lower side of the figure) and the anti-laser side (the upper side of the figure) are different, the subscript u is added to the coefficient on the laser side, and the subscript l is added to the coefficient on the anti-laser side. doing.

第1fθレンズ61の両レンズ面61a及び61bと第2fθレンズ62のポリゴンミラー50側のレンズ面62aの子線形状は、

Figure 2013015611
で表される。子線の曲率半径r´は、主走査方向中央部における子線曲率半径rに対して主走査方向周辺部に向かい変化しており、D2〜D10は子線曲率半径の変化係数である。ここで、レーザ側(図の下側)と反レーザ側(図の上側)で係数が異なる場合は、レーザ側の係数には添字uを附し、反レーザ側の係数には添字lを附している。 The sub-line shapes of the lens surfaces 61a and 61b of the first fθ lens 61 and the lens surface 62a of the second fθ lens 62 on the polygon mirror 50 side are:
Figure 2013015611
It is represented by The radius of curvature r ′ of the child line changes toward the peripheral part in the main scanning direction with respect to the radius of curvature r in the central part in the main scanning direction, and D 2 to D 10 are change coefficients of the radius of curvature of the child line. . Here, when the coefficients on the laser side (the lower side of the figure) and the anti-laser side (the upper side of the figure) are different, the subscript u is added to the coefficient on the laser side, and the subscript l is added to the coefficient on the anti-laser side. doing.

次に第2fθレンズ62の被走査面70側のレンズ面(光学面)62bの子線形状は4次の項を含む非円弧形状(非球面形状)をしており、

Figure 2013015611
で表される。子線の曲率半径r´は、主走査方向中央部における子線曲率半径rに対して主走査方向周辺部に向かい変化しており、D2〜D10は子線曲率半径の変化係数である。ΣGjkYj、は4次、6次、…の子線の非球面係数である。子線の非球面係数は主走査方向に沿って変化しており、G0k〜G16kは各2k次の子線の非球面係数の変化係数である。表1に示した子線の非球面係数G0〜G6は、それぞれ、G0k〜G6kであって、添え字のk=2の場合(Zに対する4次の場合)の子線の非球面係数ΣGjkYj中のGjkの数値を示している。表1より明らかなように本実施例においては、4次以外の次数の非球面係数は0としているが、これに限らず6次以上の非球面係数を有限の値としても良い。 Next, the sub-wire shape of the lens surface (optical surface) 62b on the scanned surface 70 side of the second fθ lens 62 is a non-arc shape (aspheric shape) including a fourth-order term,
Figure 2013015611
It is represented by The radius of curvature r ′ of the child line changes toward the peripheral part in the main scanning direction with respect to the radius of curvature r in the central part in the main scanning direction, and D 2 to D 10 are change coefficients of the radius of curvature of the child line. . ΣG jk Y j is the aspheric coefficient of the fourth, sixth,. The aspheric coefficients of the child lines change along the main scanning direction, and G 0k to G 16k are change coefficients of the aspheric coefficients of the 2k-th order child lines. The aspheric coefficients G 0 to G 6 of the child lines shown in Table 1 are G 0k to G 6k , respectively, and the non-element of the child line when the subscript k = 2 (fourth order with respect to Z) is shown. The numerical value of G jk in the spherical coefficient ΣG jk Y j is shown. As is apparent from Table 1, in this embodiment, the aspherical coefficients of orders other than the fourth order are set to 0. However, the present invention is not limited to this, and the aspherical coefficients of the sixth or higher order may be set to finite values.

図2(a)に本実施例の副走査方向と光軸を含む面での要部断面図(副走査断面図)を示す。図2(b)は主走査方向中央におけるレンズ面62bの副走査断面図と主走査方向端部(図1において下側)におけるレンズ面62bの副走査断面図である。図中、子線頂点は母線と子線との交点のことをさす。図2(b)から分かるように子線の非円弧形状の原点は副走査方向に母線に対して偏芯しており、その副走査方向の偏芯量は主走査方向の位置によって異なっている。また、その偏芯量は主走査方向中央部から端部に向かって連続的に変化している(図2(c))。A0〜A16はその変化係数である。従って、子線の非円弧形状の原点は副走査方向に湾曲しており必ずしも母線上には存在しない。ここで、レーザ側(図の下側)と反レーザ側(図の上側)で係数が異なる場合は、レーザ側の係数には添字uを附し、反レーザ側の係数には添字lを附している。また、子線の曲率半径は各主走査位置においてY軸に垂直な断面内における曲率半径である。 FIG. 2A shows a cross-sectional view (sub-scanning cross-sectional view) of the main part on the plane including the sub-scanning direction and the optical axis in the present embodiment. 2B is a sub-scan sectional view of the lens surface 62b at the center in the main scanning direction and a sub-scan sectional view of the lens surface 62b at the end portion in the main scanning direction (lower side in FIG. 1). In the figure, the vertex of the child line means the intersection of the bus and the child line. As can be seen from FIG. 2B, the origin of the non-arc shape of the child line is eccentric with respect to the bus in the sub-scanning direction, and the amount of eccentricity in the sub-scanning direction differs depending on the position in the main scanning direction. . Further, the amount of eccentricity continuously changes from the center in the main scanning direction toward the end (FIG. 2C). A 0 to A 16 are the change coefficients. Therefore, the origin of the non-arc shape of the child line is curved in the sub-scanning direction and does not necessarily exist on the bus line. Here, when the coefficients on the laser side (the lower side of the figure) and the anti-laser side (the upper side of the figure) are different, the subscript u is added to the coefficient on the laser side, and the subscript l is added to the coefficient on the anti-laser side. doing. The radius of curvature of the child line is the radius of curvature in the cross section perpendicular to the Y axis at each main scanning position.

また、本実施例において第2fθレンズ62は副走査方向に2.15mm偏芯して配置されている。   In the present embodiment, the second fθ lens 62 is arranged with an eccentricity of 2.15 mm in the sub-scanning direction.

図3に本実施例において、偏向反射面51が加工誤差により副走査方向上向きに3′の面倒れが生じた場合の、面倒れによる走査線湾曲(ピッチムラ)を示す。図3において、破線は被走査面70上の主光線到達位置のずれ量、実線は被走査面70上のスポット重心位置のずれ量を示している。   FIG. 3 shows scanning line curvature (pitch unevenness) due to surface tilt when the deflecting / reflecting surface 51 is tilted 3 'upward in the sub-scanning direction due to a processing error in this embodiment. In FIG. 3, the broken line indicates the shift amount of the principal ray arrival position on the scanned surface 70, and the solid line indicates the shift amount of the spot centroid position on the scanned surface 70.

図4に本実施例における副走査方向の像面湾曲を示す。図4において、「Slice-」は副走査方向のスポット径が90μmとなるマイナス側のデフォーカス位置、「Slice+」は副走査方向のスポット径が90μmとなるプラス側のデフォーカス位置、そして「Center」は「Slice-」と「Slice+」の中間のデフォーカス位置を示しており、「Center」が副走査方向の像面湾曲を表している。   FIG. 4 shows field curvature in the sub-scanning direction in this embodiment. In FIG. 4, “Slice-” is a negative defocus position where the spot diameter in the sub-scanning direction is 90 μm, “Slice +” is a positive defocus position where the spot diameter in the sub-scanning direction is 90 μm, and “Center "Indicates a defocus position between" Slice- "and" Slice + ", and" Center "indicates field curvature in the sub-scanning direction.

以下、本実施例における設計上の波動光学的なピッチムラ低減手法について詳しく説明する。
比較例として特許文献1に開示されている実施例1の光走査装置を引用する。
Hereinafter, the designed wave optical pitch unevenness reducing method in the present embodiment will be described in detail.
As a comparative example, the optical scanning device of Example 1 disclosed in Patent Document 1 is cited.

特許文献1では偏向反射面51と被走査面70とを全像高で共役とすることで幾何光学的なピッチムラを低減しているため、主光線到達位置は面倒れが起きても全域にわたって0.3μm以下と良好に補正されている。しかし、副走査の像面湾曲を補正するために子線形状を非円弧形状とすることで、被走査面上のスポット重心位置が主光線到達位置に対してずれてしまうことまでは考慮されていない。したがって波動光学的なピッチムラが十分補正されず、ピッチムラが生じてしまっている。   In Patent Document 1, since the geometrical optical pitch unevenness is reduced by conjugating the deflecting / reflecting surface 51 and the surface to be scanned 70 with the total image height, the principal ray arrival position is 0.3 over the entire region even when the surface is tilted. It is well corrected to μm or less. However, it is considered that the center of gravity of the spot on the surface to be scanned is deviated from the arrival position of the principal ray by making the sub-line shape non-circular in order to correct the field curvature of the sub-scanning. Absent. Therefore, the wave optical pitch unevenness is not sufficiently corrected, and the pitch unevenness occurs.

これに対し、本実施例においては、偏向反射面51と被走査面70とを全像高で共役とはせずに幾何光学的なピッチムラを残存させている。図3において主光線到達位置がずれ、幾何光学的なピッチムラがPeak to Peakで1.7μm発生しているのはその為である。   On the other hand, in this embodiment, the geometrical optical pitch unevenness is left without conjugating the deflecting / reflecting surface 51 and the surface to be scanned 70 with the total image height. In FIG. 3, the principal ray arrival position is shifted, and geometrical optical pitch unevenness occurs at Peak to Peak of 1.7 μm.

この時、副走査方向下向きの面倒れによりレンズ面62b上での主光線到達位置は設計位置よりも副走査方向下方にシフトしている。従って、レンズ面62b上での設計上の主光線到達位置近傍を原点として子線形状を非円弧形状とすることで、面倒れが発生した時にはレンズ面62b上の光束は主光線を挟んで副走査方向上側の部分と下側の部分で非対称な屈折力を受けるようにし、面倒れが発生した時のスポット重心位置を補正し波動光学的なピッチムラを低減させている。また副走査斜入射系においてはレンズ面62b上の主光線到達位置の軌跡は副走査方向に湾曲しているため、子線非円弧形状の原点の母線に対する偏芯量を主走査方向に沿って変化させることで全像高において、子線の非円弧形状の原点を主光線到達位置近傍となるようにしている。また、像高ごとにスポット重心位置の補正量が異なるため、子線の非球面係数も主走査方向に沿って変化させている。これにより本実施例においては、加工誤差により偏向反射面51が副走査方向下向きに3′倒れ誤差が生じたときの面倒れによるスポット重心位置のずれ量を全像高で補正し、Peak to Peakで0.4μm以下という良好な性能を達成している。また副走査の像面湾曲も幾何光学的な像面湾曲を残存させておくことで、波動光学的な像面湾曲をPeak to Peakで0.60mm以下と良好な性能を同時に達成することに成功している。   At this time, the principal ray arrival position on the lens surface 62b is shifted downward in the sub-scanning direction from the design position due to the downward surface tilt in the sub-scanning direction. Therefore, by making the vicinity of the designed principal ray arrival position on the lens surface 62b the origin and making the sub-wire shape a non-circular shape, the light flux on the lens surface 62b is a secondary light across the principal ray when surface tilt occurs. Asymmetrical refractive power is applied to the upper part and the lower part in the scanning direction, and the position of the center of gravity of the spot when a surface tilt occurs is corrected to reduce wave optical pitch unevenness. In the sub-scanning oblique incidence system, since the locus of the principal ray arrival position on the lens surface 62b is curved in the sub-scanning direction, the amount of eccentricity with respect to the generatrix of the origin of the non-arc-shaped child line is set along the main scanning direction. By changing it, the origin of the non-circular shape of the child line is made near the principal ray arrival position at the entire image height. Further, since the correction amount of the center of gravity of the spot differs for each image height, the aspheric coefficient of the child line is also changed along the main scanning direction. As a result, in this embodiment, when the deflecting / reflecting surface 51 is tilted 3 'downward in the sub-scanning direction due to a processing error, the shift amount of the spot centroid position due to the surface tilt is corrected by the total image height, and Peak to Peak A good performance of 0.4 μm or less is achieved. In addition, by substituting the geometric optical field curvature for the sub-scanning field curvature, we succeeded in simultaneously achieving good performance with wave optical field curvature of 0.60 mm or less in Peak to Peak. doing.

本実施例においては、第2fθレンズ62の被走査面70側のレンズ面62bの子線形状を前述したように4次の非球面項を含む非円弧形状としていること、及び子線の非円弧形状の原点を母線に対して副走査方向に偏芯させていること、そしてその非球面係数と非円弧形状の原点の偏芯量をY座標に従って変化させていることに特徴がある。   In the present embodiment, the sub-wire shape of the lens surface 62b on the scanned surface 70 side of the second fθ lens 62 is a non-arc shape including a quaternary aspheric term as described above, and the sub-arc non-arc shape is included. It is characterized in that the origin of the shape is decentered in the sub-scanning direction with respect to the generatrix, and that the aspheric coefficient and the eccentric amount of the origin of the non-arc shape are changed according to the Y coordinate.

図5に本実施例における子線の非円弧形状の原点位置と主光線通過位置を示す。   FIG. 5 shows the origin position and the principal ray passing position of the non-arc shape of the child wire in the present embodiment.

図5に示されているように子線の非円弧形状の原点を結んだ曲線は主光線通過位置の軌跡に沿った形状となっている。また同じY座標における子線の非円弧形状の原点と主光線通過位置との副走査方向のずれ量は最大で0.027mmであり、レンズ面62b上における副走査方向の光束幅2.2mmよりも小さくなっており、子線の非円弧形状の原点は有効領域内全域において光束内に収まっている。   As shown in FIG. 5, the curve connecting the origins of the non-arc shapes of the child lines has a shape along the locus of the principal ray passing position. In addition, the amount of deviation in the sub-scanning direction between the origin of the non-arc shape of the child line and the principal ray passing position at the same Y coordinate is 0.027 mm at the maximum, and the light flux width in the sub-scanning direction on the lens surface 62b is 2.2 mm. The origin of the non-arc shape of the child line is within the light beam in the entire effective area.

加工誤差や組立誤差による偏向反射面51の倒れ誤差は副走査方向上向きに生じる場合と副走査方向下向きに生じる場合とがある。副走査方向上向きに倒れ誤差が生じた場合、レンズ面62b上での光束の通過位置は倒れ誤差がない場合に対して副走査方向上側にずれる。反対に副走査方向下向きに倒れ誤差が生じた場合、レンズ面62b上での光束の通過位置は倒れ誤差がない場合に対して副走査方向下側にずれる。   The tilting error of the deflecting / reflecting surface 51 due to processing errors or assembly errors may occur upward in the sub-scanning direction or downward in the sub-scanning direction. When a tilt error occurs upward in the sub-scanning direction, the light beam passage position on the lens surface 62b is shifted upward in the sub-scanning direction with respect to the case where there is no tilt error. On the other hand, when a tilt error occurs downward in the sub-scanning direction, the light beam passage position on the lens surface 62b is shifted downward in the sub-scanning direction with respect to the case where there is no tilt error.

面倒れにより主光線到達位置がレンズ面上で上下にシフトした時に、主光線を挟んで副走査方向上側の部分と下側の部分で非対称な屈折力を受けるように、子線の非円弧形状の原点は有効領域内全域において光束内に収まっているのが良い。   Non-arc shape of the child line so that when the principal ray arrival position shifts up and down on the lens surface due to surface tilt, it receives asymmetrical refractive power at the upper and lower parts in the sub-scanning direction across the principal ray The origin of is preferably within the luminous flux throughout the effective area.

図6に子線の4次の非球面係数の変化の様子を示す。図6から分かるように子線の4次の非球面係数は極値を持つように変化させている。また、その極値を示す主走査方向における位置は、主走査方向中央部(Y=0)を基準とすると、光源が配置されている側とは反対側の有効端の位置に対して0〜5割の間にある。即ち、その極値を示す主走査方向における主走査方向中央部(Y=0)からの位置Hは、光源が配置されている側とは反対側の有効端の位置Wに対して、0<H<0.5W、を満たす。   FIG. 6 shows how the fourth-order aspheric coefficient of the child line changes. As can be seen from FIG. 6, the fourth-order aspheric coefficient of the child line is changed to have an extreme value. Further, the position in the main scanning direction indicating the extreme value is 0 to the position of the effective end on the side opposite to the side where the light source is disposed, with reference to the center in the main scanning direction (Y = 0). It is between 50%. That is, the position H from the central portion (Y = 0) in the main scanning direction indicating the extreme value is 0 <with respect to the position W of the effective end on the side opposite to the side where the light source is disposed. H <0.5W is satisfied.

回転多面鏡の回転に伴う偏向面のサグ量は極値を持つため、図3において主光線到達位置のズレ量(幾何光学的なピッチムラ)も極値を持つ。そのため、スポット重心位置のずれを低減するために、本実施例においては、主走査方向中央部においては子線非円弧形状の原点から副走査方向に遠ざかるに従って副走査方向の局所的なパワーが大きくなるように、主走査方向周辺部においては子線非円弧形状の原点から副走査方向に遠ざかるに従って副走査方向の局所的なパワーが小さくなるように、子線の4次の非球面係数をY座標に従って変化させている。   Since the sag amount of the deflecting surface accompanying the rotation of the rotary polygon mirror has an extreme value, the amount of deviation (geometrical optical pitch unevenness) of the principal ray arrival position also has an extreme value in FIG. For this reason, in this embodiment, in order to reduce the deviation of the spot center of gravity position, the local power in the sub-scanning direction increases as the distance from the origin of the non-circular arc shape in the sub-scanning direction increases in the central part in the main scanning direction. Thus, at the periphery in the main scanning direction, the fourth-order aspheric coefficient of the child line is set to Y so that the local power in the sub-scanning direction decreases as the distance from the origin of the child non-arc-shaped shape increases in the sub-scanning direction. It is changed according to the coordinates.

図7(a)に主走査方向中央部(Y=0)での副走査方向の局所的なパワーの変化の様子を示す。   FIG. 7A shows a state of local power change in the sub-scanning direction at the central portion (Y = 0) in the main scanning direction.

図7(a)において原点は、子線の非円弧形状の原点(母線から副走査方向に1.97mmの点)である。図7(a)に示したように主走査方向中央部においては子線の非円弧形状の原点から遠ざかるに従って副走査方向の局所的なパワーは大きくなっている。   In FIG. 7A, the origin is a non-arc-shaped origin of a child line (a point of 1.97 mm in the sub-scanning direction from the generatrix). As shown in FIG. 7A, the local power in the sub-scanning direction increases in the central part in the main scanning direction as the distance from the non-arc-shaped origin of the child line increases.

図7(b)に主走査方向周辺部(Y=46.7、図1上側光路)での副走査方向の局所的なパワーの変化の様子を示す。   FIG. 7B shows a state of local power change in the sub-scanning direction at the periphery in the main scanning direction (Y = 46.7, upper optical path in FIG. 1).

図7(b)において原点は、子線の非円弧形状の原点(母線から副走査方向に2.57mmの点)である。図7(b)に示したように主走査方向周辺部においては子線の非円弧形状の原点から遠ざかるに従って副走査方向の局所的なパワーは小さくなっている。   In FIG. 7B, the origin is a non-arc-shaped origin of the child wire (a point of 2.57 mm in the sub-scanning direction from the bus). As shown in FIG. 7B, the local power in the sub-scanning direction decreases as the distance from the origin of the non-arc shape of the child line increases in the periphery in the main scanning direction.

本実施例においては主走査方向中央部においては子線非円弧形状の原点から副走査方向に遠ざかるに従って副走査方向の局所的なパワーが大きくなるように、主走査方向周辺部においては子線非円弧形状の原点から副走査方向に遠ざかるに従って副走査方向の局所的なパワーが小さくなるように、子線の4次の非球面係数をY座標(主走査方向の位置)に従って変化させたが、変化の仕方はこれに限るものではない。   In the present embodiment, in the central portion in the main scanning direction, the local power in the sub-scanning direction is increased in the peripheral portion in the main scanning direction so that the local power in the sub-scanning direction increases as the distance from the origin of the non-arc shape in the sub-scanning direction increases. Although the fourth-order aspherical coefficient of the child line is changed according to the Y coordinate (position in the main scanning direction) so that the local power in the sub scanning direction decreases as it moves away from the arcuate origin in the sub scanning direction, The way of change is not limited to this.

例えば、入射光学系からの光束を偏向面の幅よりも広い光束幅で入射させるオーバーフィルド型の走査光学系においては、偏向面が下向きに倒れた時には幾何光学的なピッチムラは本実施例とは逆向きに凸に発生する。この場合、スポット重心位置を補正するためには、主走査方向中央部においては子線非円弧形状の原点から副走査方向に遠ざかるに従って副走査方向の局所的なパワーが小さくなるように、主走査方向周辺部においては子線非円弧形状の原点から副走査方向に遠ざかるに従って副走査方向の局所的なパワーが大きくなるように、子線の4次の非球面係数をY座標(主走査方向の位置)に従って変化させる必要がある。   For example, in an overfilled scanning optical system in which a light beam from an incident optical system is incident with a light beam width wider than the width of the deflection surface, geometrical optical pitch unevenness is different from that of this embodiment when the deflection surface is tilted downward. Protrusions occur in the opposite direction. In this case, in order to correct the position of the center of gravity of the spot, the main scanning is performed so that the local power in the sub-scanning direction becomes smaller as the distance from the origin of the non-arc shape of the child line increases in the sub-scanning direction. In the periphery of the direction, the fourth-order aspheric coefficient of the child line is set to the Y coordinate (in the main scanning direction) so that the local power in the sub-scanning direction increases as the distance from the origin of the non-arc shape of the child line increases in the sub-scanning direction. Need to be changed according to position).

一般に回転多面鏡の回転に伴う偏向面のサグ量は極値を持つため、面倒れによるピッチムラも極値を持つ。従って、全像高において波動光学的なピッチムラを補正するためには子線の非球面係数は極値を持つように変化させるのが良い。   In general, since the sag amount of the deflection surface accompanying the rotation of the rotary polygon mirror has an extreme value, pitch unevenness due to surface tilt also has an extreme value. Therefore, in order to correct wave optical pitch unevenness at the entire image height, it is preferable to change the aspheric coefficient of the child line so as to have an extreme value.

以上述べたように、レンズ面62bに子線の4次の非球面項を導入し、その非球面係数をY座標(主走査方向の位置)に従って変化させると共に、子線の非円弧形状の原点を副走査方向に偏芯させ、その偏芯量を子線の非円弧形状の原点が有効領域内全域において光束内に位置するようにY座標に従って変化させることで、副走査方向の像面湾曲を悪化させること無く、面倒れによるスポット重心位置のずれを低減させることに成功している。   As described above, the fourth-order aspheric term of the child line is introduced into the lens surface 62b, the aspheric coefficient is changed according to the Y coordinate (position in the main scanning direction), and the origin of the non-arc shape of the child line is changed. Is decentered in the sub-scanning direction, and the amount of decentering is changed according to the Y coordinate so that the origin of the non-arc shape of the child line is located in the light beam in the entire effective region, thereby allowing the field curvature in the sub-scanning direction. It has succeeded in reducing the shift of the center of gravity position of the spot due to the tilting of the surface without deteriorating.

これにより、スポット径のばらつきを悪化させること無く、スポット重心位置のずれによる波動光学的なピッチムラを0.4μm以下という微少量に抑えているため、一層高精細な画像形成が可能となる。   Thereby, the wave optical pitch unevenness due to the shift of the center of gravity of the spot is suppressed to a very small amount of 0.4 μm or less without deteriorating the variation of the spot diameter, so that a higher definition image can be formed.

なお、本実施例では子線の非円弧形状として4次の非球面を導入したが、4次以上の偶数次の項であれば6次以上の項を加えても良い。また、6次以上の偶数次の非球面係数のみを有し、前記非球面係数は光学面の有効領域内において極値を有し、主走査方向中央部に対する、前記極値の主走査方向の位置Hが、主走査方向において光軸に対し光源が配置されている側とは反対側の光学面の有効端の位置Wに対して、0<H<0.5W、を満足するとともに、前記非球面係数は、光学面の有効域の中央と、主走査方向において光軸に対し光源が配置されている側または反対側の少なくとも一方の側の光学面の有効端と、で符号が反転するように構成することでも同様な効果を得ることが出来る。   In the present embodiment, a fourth-order aspherical surface is introduced as the non-arc shape of the child wire, but a sixth-order or higher term may be added if it is an even-order term of the fourth or higher order. Further, it has only an even-order aspherical coefficient of 6th order or higher, and the aspherical coefficient has an extreme value in the effective area of the optical surface, and the extreme value in the main scanning direction of the extreme value with respect to the central part in the main scanning direction. The position H satisfies 0 <H <0.5 W with respect to the position W of the effective end of the optical surface on the side opposite to the side where the light source is disposed with respect to the optical axis in the main scanning direction. The sign of the aspheric coefficient is inverted between the center of the effective area of the optical surface and the effective end of the optical surface on at least one side opposite to the side where the light source is disposed with respect to the optical axis in the main scanning direction. The same effect can be obtained by configuring as described above.

本実施例においては、子線の非円弧形状の効果をより大きく得るために最もレンズ面上での副走査方向の光束幅が大きいレンズ面62bの子線形状を非円弧形状としたが、これに限るものではない。   In the present embodiment, in order to obtain a greater effect of the non-arc shape of the child line, the child line shape of the lens surface 62b having the largest beam width in the sub-scanning direction on the lens surface is a non-arc shape. It is not limited to.

また、本実施例では結像光学系60を2枚の結像光学素子より構成したが、これに限らず1枚以上の結像光学素子より構成しても良い。   In this embodiment, the imaging optical system 60 is composed of two imaging optical elements. However, the imaging optical system 60 is not limited to this, and may be composed of one or more imaging optical elements.

本実施例では、光源手段10を1つの発光点を有する半導体レーザで構成したが、本発明はこれに限定されることはなく、2つ以上の発光点を有するモノリシックマルチレーザで構成しても良い。   In this embodiment, the light source means 10 is composed of a semiconductor laser having one light emitting point. However, the present invention is not limited to this, and it may be composed of a monolithic multilaser having two or more light emitting points. good.

図8は、本発明の第2の実施例の光走査装置の主走査方向と光軸を含む断面内の要部断面図(主走査断面図)である。   FIG. 8 is a sectional view (main scanning sectional view) of the main part in the section including the main scanning direction and the optical axis of the optical scanning apparatus according to the second embodiment of the present invention.

実施例2と実施例1とでは、結像光学系60を構成する第1fθレンズ61と第2fθレンズ62の各レンズ面61a〜62bの形状を表す式が異なっている。その他の構成に関しては、実施例1と同じである。   The expressions representing the shapes of the lens surfaces 61 a to 62 b of the first fθ lens 61 and the second fθ lens 62 constituting the imaging optical system 60 are different between the second embodiment and the first embodiment. Other configurations are the same as those in the first embodiment.

表2に実施例2における光学系の諸特性を示す。   Table 2 shows the characteristics of the optical system in Example 2.

Figure 2013015611
Figure 2013015611

結像光学系60を構成する第1fθレンズ61の両レンズ面61a及び61bと第2fθレンズ62のポリゴンミラー50側のレンズ面62aの母線形状は、各レンズ面と光軸との交点(レンズ面頂点)を原点とし、光軸方向をX軸、主走査断面内において光軸と直交する方向をY軸、副走査断面内において光軸と直交する方向をZ軸としたときに、

Figure 2013015611
で表わされる。第2fθレンズ62の被走査面70側のレンズ面62bの母線形状は、
Figure 2013015611
で表される。Rは曲率半径、Kは離心率、B4〜B12は4次〜12次の母線の非球面係数である。実施例2が実施例1と異なる点は、ΣAiYiにより母線を副走査方向に湾曲させている点である(図9(c))。 The generatrix shape of the lens surfaces 61a and 61b of the first fθ lens 61 and the lens surface 62a of the second fθ lens 62 on the polygon mirror 50 side constituting the imaging optical system 60 is the intersection of each lens surface and the optical axis (lens surface). When the optical axis direction is the X axis, the direction orthogonal to the optical axis in the main scanning section is the Y axis, and the direction orthogonal to the optical axis in the sub scanning section is the Z axis,
Figure 2013015611
It is represented by The generatrix shape of the lens surface 62b on the scanned surface 70 side of the second fθ lens 62 is
Figure 2013015611
It is represented by R is a radius of curvature, K is an eccentricity, and B 4 to B 12 are aspherical coefficients of the fourth to twelfth buses. Example 2 differs from Example 1 in that the bus is curved in the sub-scanning direction by ΣA i Y i (FIG. 9C).

ここで、レーザ側(図の下側)と反レーザ側(図の上側)で係数が異なる場合は、レーザ側の係数には添字uを附し、反レーザ側の係数には添字lを附している。   Here, when the coefficients on the laser side (the lower side of the figure) and the anti-laser side (the upper side of the figure) are different, the subscript u is added to the coefficient on the laser side, and the subscript l is added to the coefficient on the anti-laser side. doing.

第1fθレンズ61の両レンズ面61a及び61bと第2fθレンズ62のポリゴンミラー50側のレンズ面62aの子線形状は、

Figure 2013015611
で表される。子線の曲率半径r´は、主走査方向中央部における子線曲率半径rに対して主走査方向周辺部に向かい変化しており、D2〜D10は子線曲率半径の変化係数である。ここで、レーザ側(図の下側)と反レーザ側(図の上側)で係数が異なる場合は、レーザ側の係数には添字uを附し、反レーザ側の係数には添字lを附している。 The sub-line shapes of the lens surfaces 61a and 61b of the first fθ lens 61 and the lens surface 62a of the second fθ lens 62 on the polygon mirror 50 side are:
Figure 2013015611
It is represented by The radius of curvature r ′ of the child line changes toward the peripheral part in the main scanning direction with respect to the radius of curvature r in the central part in the main scanning direction, and D 2 to D 10 are change coefficients of the radius of curvature of the child line. . Here, when the coefficients on the laser side (the lower side of the figure) and the anti-laser side (the upper side of the figure) are different, the subscript u is added to the coefficient on the laser side, and the subscript l is added to the coefficient on the anti-laser side. doing.

実施例1と異なる点は、子線の曲率半径は各主走査位置において母線に垂直な断面内における曲率半径である点である。   The difference from the first embodiment is that the radius of curvature of the child line is the radius of curvature in the cross section perpendicular to the bus line at each main scanning position.

次に第2fθレンズ62の被走査面70側のレンズ面62bの子線形状は4次の項を含む非円弧形状(非球面形状)をしており、

Figure 2013015611
で表される。ここでZ´は各主走査方向の位置における母線からみた副走査方向の座標である。子線の曲率半径r´は、主走査方向中央部における子線曲率半径rに対して主走査方向周辺部に向かい変化しており、D2〜D10は子線曲率半径の変化係数である。ΣGjkYjは4次、6次、…の子線の非球面係数である。子線の非球面係数は主走査方向に沿って変化しており、G0k〜G16kは各2k次の子線の非球面係数の変化係数である。表2に示した子線の非球面係数G0〜G6は、それぞれ、G0k〜G6kであって、添え字のk=2の場合(Zに対する4次の場合)の子線の非球面係数ΣGjkYj中のGjkの数値を示している。表2より明らかなように本実施例においては、4次以外の次数の非球面係数は0としているが、これに限らず6次以上の非球面係数を有限の値としても良い。ここで、レーザ側(図の下側)と反レーザ側(図の上側)で係数が異なる場合は、レーザ側の係数には添字uを附し、反レーザ側の係数には添字lを附している。 Next, the sub-wire shape of the lens surface 62b on the scanning surface 70 side of the second fθ lens 62 is a non-arc shape (aspheric shape) including a quartic term,
Figure 2013015611
It is represented by Here, Z ′ is a coordinate in the sub-scanning direction as viewed from the bus at each position in the main scanning direction. The radius of curvature r ′ of the child line changes toward the peripheral part in the main scanning direction with respect to the radius of curvature r in the central part in the main scanning direction, and D 2 to D 10 are change coefficients of the radius of curvature of the child line. . ΣG jk Y j is the aspheric coefficient of the fourth, sixth,. The aspheric coefficients of the child lines change along the main scanning direction, and G 0k to G 16k are change coefficients of the aspheric coefficients of the 2k-th order child lines. The aspheric coefficients G 0 to G 6 of the child lines shown in Table 2 are G 0k to G 6k , respectively, and the non-element of the child line when the subscript k = 2 (fourth order with respect to Z) is shown. The numerical value of G jk in the spherical coefficient ΣG jk Y j is shown. As is apparent from Table 2, in this embodiment, the aspheric coefficients of orders other than the fourth order are set to 0. However, the present invention is not limited to this, and the aspheric coefficients of the sixth order or higher may be set to finite values. Here, when the coefficients on the laser side (the lower side of the figure) and the anti-laser side (the upper side of the figure) are different, the subscript u is added to the coefficient on the laser side, and the subscript l is added to the coefficient on the anti-laser side. doing.

子線の曲率半径は各主走査位置において母線に垂直な断面内における曲率半径である。   The radius of curvature of the child line is the radius of curvature in the cross section perpendicular to the bus line at each main scanning position.

また、ΣFjYjからなる子線チルト変化項を有する。従って、レンズ面62bは主走査方向の各位置における子線のチルト量が異なる子線チルト変化面であり、かつ子線形状が非円弧形状となっている。 Further, it has a sub-line tilt change term composed of ΣF j Y j . Accordingly, the lens surface 62b is a sub-line tilt changing surface in which the sub-line tilt amount is different at each position in the main scanning direction, and the sub-line shape is a non-arc shape.

さらに、子線の非円弧形状の原点は常に母線上にある。実施例2では母線形状自体を副走査方向に湾曲させることで、子線の非円弧形状の原点を副走査方向に湾曲させている(図9(b)及び図9(c))。   Furthermore, the origin of the non-arc shape of the child line is always on the bus. In the second embodiment, the origin of the non-arc shape of the child line is curved in the sub-scanning direction by curving the bus shape itself in the sub-scanning direction (FIGS. 9B and 9C).

図9(a)は本実施例の光走査装置の副走査方向の要部断面図である。図9(a)から分かるように本実施例において第2fθレンズ62は副走査方向に偏芯されて配置されており、偏芯量は4.074mmである。   FIG. 9A is a cross-sectional view of the main part in the sub-scanning direction of the optical scanning device of this embodiment. As can be seen from FIG. 9A, in the present embodiment, the second fθ lens 62 is arranged eccentrically in the sub-scanning direction, and the amount of eccentricity is 4.074 mm.

図10に本実施例において、偏向反射面51が加工誤差により副走査方向上向きに3′の面倒れが生じた場合の、面倒れによる走査線湾曲(ピッチムラ)を示す。図10において、破線は被走査面70上の主光線到達位置のずれ量、実線は被走査面70上のスポット重心位置のずれ量を示している。   FIG. 10 shows scanning line curvature (pitch unevenness) due to surface tilt when the deflecting / reflecting surface 51 is tilted 3 'upward in the sub-scanning direction due to a processing error in this embodiment. In FIG. 10, the broken line indicates the shift amount of the principal ray arrival position on the scanned surface 70, and the solid line indicates the shift amount of the spot centroid position on the scanned surface 70.

図11に本実施例における副走査方向の像面湾曲を示す。図11において、「Slice-」は副走査方向のスポット径が90μmとなるマイナス側のデフォーカス位置、「Slice+」は副走査方向のスポット径が90μmとなるプラス側のデフォーカス位置、そして「Center」は「Slice-」と「Slice+」の中間のデフォーカス位置を示しており、「Center」が副走査方向の像面湾曲を表している。   FIG. 11 shows field curvature in the sub-scanning direction in the present embodiment. In FIG. 11, “Slice-” is a negative defocus position where the spot diameter in the sub-scanning direction is 90 μm, “Slice +” is a positive defocus position where the spot diameter in the sub-scanning direction is 90 μm, and “Center "Indicates a defocus position between" Slice- "and" Slice + ", and" Center "indicates field curvature in the sub-scanning direction.

本実施例においては図10、図11から分かるように加工誤差により偏向反射面51が副走査方向下向きに3′倒れ誤差が生じたときの面倒れによるスポット重心位置のずれ量は、Peak to Peakで0.56μm以下という良好な性能を達成している。また副走査の像面湾曲もPeak to Peakで0.31mm以下と良好な性能を同時に達成することに成功している。   In this embodiment, as can be seen from FIGS. 10 and 11, the deviation amount of the spot center of gravity due to the surface tilt when the deflecting / reflecting surface 51 is tilted 3 'downward in the sub-scanning direction due to the processing error is Peak to Peak. As a result, good performance of 0.56 μm or less is achieved. Further, the field curvature of the sub-scanning has been achieved at the same time with a peak-to-peak of 0.31 mm or less and good performance.

本実施例においては、第2fθレンズ62の被走査面70側のレンズ面62bの子線形状を前述したように4次の非球面項を含む非円弧形状としていること、及び母線を副走査方向に湾曲させることで子線の非円弧形状の原点を副走査方向に湾曲させていること、そしてその非球面係数をY座標に従って変化させていることに特徴がある。   In the present embodiment, the sub-wire shape of the lens surface 62b on the scanned surface 70 side of the second fθ lens 62 is a non-arc shape including a quaternary aspheric term as described above, and the bus bar is in the sub-scanning direction. Is characterized in that the origin of the non-arc shape of the child line is curved in the sub-scanning direction and the aspheric coefficient is changed according to the Y coordinate.

図12に本実施例における子線の非円弧形状の原点位置と主光線通過位置を示す。実施例2においては、子線の非円弧形状の原点を結んだ曲線と湾曲させた母線とは一致している。   FIG. 12 shows the origin position and the principal ray passing position of the non-arc shape of the child wire in this embodiment. In the second embodiment, the curved line connecting the non-arc-shaped origins of the child lines coincides with the curved bus bar.

図12に示されているように子線の非円弧形状の原点を結んだ曲線は主光線通過位置の軌跡に沿った形状となっている。また同じY座標における子線の非円弧形状の原点と主光線通過位置との副走査方向のずれ量は最大で0.24mmであり、レンズ面62b上における副走査方向の光束幅2.2mmよりも小さくなっており、有効領域内全域において子線の非円弧形状の原点は光束内に位置している。   As shown in FIG. 12, the curve connecting the origins of the non-arc shapes of the child lines has a shape along the locus of the principal ray passing position. Further, the maximum amount of deviation in the sub-scanning direction between the origin of the non-arc shape of the child line and the principal ray passing position at the same Y coordinate is 0.24 mm at the maximum, and the light flux width in the sub-scanning direction on the lens surface 62b is 2.2 mm. The origin of the non-arc shape of the child line is located in the light beam throughout the effective area.

図13に子線の4次の非球面係数の変化の様子を示す。図13から分かるように子線の4次の非球面係数は極値を持つように変化させている。また、その極値を示す主走査方向における位置は、主走査方向中央部(Y=0)を基準とすると、光源が配置されている側とは反対側の有効端の位置に対して0〜5割の間にある。即ち、その極値を示す主走査方向における主走査方向中央部(Y=0)からの位置Hは、光源が配置されている側とは反対側の有効端の位置Wに対して、0<H<0.5W、を満たす。   FIG. 13 shows how the fourth-order aspheric coefficient of the child line changes. As can be seen from FIG. 13, the fourth-order aspheric coefficient of the child line is changed to have an extreme value. Further, the position in the main scanning direction indicating the extreme value is 0 to the position of the effective end on the side opposite to the side where the light source is disposed, with reference to the center in the main scanning direction (Y = 0). It is between 50%. That is, the position H from the central portion (Y = 0) in the main scanning direction indicating the extreme value is 0 <with respect to the position W of the effective end on the side opposite to the side where the light source is disposed. H <0.5W is satisfied.

以上述べたように、レンズ面62bに子線の4次の非球面項を導入し、その非球面係数をY座標に従って変化させると共に、有効領域内全域において子線の非円弧形状の原点が光束内に位置するようにすることで、副走査方向の像面湾曲を悪化させること無く、面倒れによるスポット重心位置のずれを低減させることに成功している。   As described above, the fourth-order aspherical term of the child line is introduced into the lens surface 62b, the aspheric coefficient is changed according to the Y coordinate, and the non-arc-shaped origin of the child line is the luminous flux in the entire effective area. By being positioned within, the deviation of the position of the center of gravity of the spot due to surface tilt has been successfully reduced without deteriorating the curvature of field in the sub-scanning direction.

これにより、スポット径のばらつきを悪化させること無く、スポット重心位置のずれによる波動光学的なピッチムラを0.56μm以下という微少量に抑えているため、一層高精細な画像形成が可能となる。   Thereby, the wave optical pitch unevenness due to the shift of the center of gravity of the spot is suppressed to a very small amount of 0.56 μm or less without deteriorating the variation of the spot diameter, so that a higher definition image can be formed.

なお、本実施例では子線の非円弧形状として4次の非球面を導入したが、4次以上の偶数次の項であれば6次以上の項を加えても良い。また、6次以上の偶数次の非球面係数のみを有し、前記非球面係数は光学面の有効領域内において極値を有し、主走査方向中央部に対する、前記極値の主走査方向の位置Hが、主走査方向において光軸に対し光源が配置されている側とは反対側の光学面の有効端の位置Wに対して、0<H<0.5W、を満足するとともに、前記非球面係数は、光学面の有効域の中央と、主走査方向において光軸に対し光源が配置されている側または反対側の少なくとも一方の側の光学面の有効端と、で符号が反転するように構成することでも同様な効果を得ることが出来る。   In the present embodiment, a fourth-order aspherical surface is introduced as the non-arc shape of the child wire, but a sixth-order or higher term may be added if it is an even-order term of the fourth or higher order. Further, it has only an even-order aspherical coefficient of 6th order or higher, and the aspherical coefficient has an extreme value in the effective area of the optical surface, and the extreme value in the main scanning direction of the extreme value with respect to the central part in the main scanning direction. The position H satisfies 0 <H <0.5 W with respect to the position W of the effective end of the optical surface on the side opposite to the side where the light source is disposed with respect to the optical axis in the main scanning direction. The sign of the aspheric coefficient is inverted between the center of the effective area of the optical surface and the effective end of the optical surface on at least one side opposite to the side where the light source is disposed with respect to the optical axis in the main scanning direction. The same effect can be obtained by configuring as described above.

本実施例においては、子線の非円弧形状の効果をより大きく得るために最もレンズ面上での副走査方向の光束幅が大きいレンズ面62bの子線形状を非円弧形状としたが、これに限るものではない。   In the present embodiment, in order to obtain a greater effect of the non-arc shape of the child line, the child line shape of the lens surface 62b having the largest beam width in the sub-scanning direction on the lens surface is a non-arc shape. It is not limited to.

また、本実施例では結像光学系60を2枚の結像光学素子より構成したが、これに限らず1枚以上の結像光学素子より構成しても良い。   In this embodiment, the imaging optical system 60 is composed of two imaging optical elements. However, the imaging optical system 60 is not limited to this, and may be composed of one or more imaging optical elements.

図14は、本発明の第3の実施例の光走査装置の主走査方向と光軸を含む断面内の要部断面図(主走査断面図)である。
実施例3と実施例2とでは、結像光学系60を構成する第2fθレンズ62の各レンズ面61a〜62bの形状を表す式が異なっている。その他の構成に関しては、実施例2と同じである。
FIG. 14 is a sectional view (main scanning sectional view) of the main part in the section including the main scanning direction and the optical axis of the optical scanning apparatus according to the third embodiment of the present invention.
In Example 3 and Example 2, the expressions representing the shapes of the lens surfaces 61 a to 62 b of the second fθ lens 62 constituting the imaging optical system 60 are different. Other configurations are the same as those in the second embodiment.

表3に実施例3における光学系の諸特性を示す。   Table 3 shows various characteristics of the optical system in Example 3.

Figure 2013015611
Figure 2013015611

レンズ面61a〜62bの母線形状は、各レンズ面と光軸との交点(レンズ面頂点)を原点とし、光軸方向をX軸、主走査断面内において光軸と直交する方向をY軸、副走査断面内において光軸と直交する方向をZ軸としたときに、

Figure 2013015611
で表わされる。実施例2と異なる点は、レンズ面62bの母線を湾曲させていない点である。
ここで、レーザ側(図の下側)と反レーザ側(図の上側)で係数が異なる場合は、レーザ側の係数には添字uを附し、反レーザ側の係数には添字lを附している。 The generatrix shape of the lens surfaces 61a to 62b has an intersection (lens surface vertex) between each lens surface and the optical axis as the origin, the optical axis direction as the X axis, and the direction orthogonal to the optical axis in the main scanning section as the Y axis, When the direction perpendicular to the optical axis in the sub-scan section is the Z axis,
Figure 2013015611
It is represented by The difference from the second embodiment is that the generatrix of the lens surface 62b is not curved.
Here, when the coefficients on the laser side (the lower side of the figure) and the anti-laser side (the upper side of the figure) are different, the subscript u is added to the coefficient on the laser side, and the subscript l is added to the coefficient on the anti-laser side. doing.

第1fθレンズ61の両レンズ面61a及び61bの子線形状は、

Figure 2013015611
で表される。子線の曲率半径r´は、主走査方向中央部における子線曲率半径rに対して主走査方向周辺部に向かい変化しており、D2〜D10は子線曲率半径の変化係数である。ここで、レーザ側(図の下側)と反レーザ側(図の上側)で係数が異なる場合は、レーザ側の係数には添字uを附し、反レーザ側の係数には添字lを附している。 The sub-wire shape of both lens surfaces 61a and 61b of the first fθ lens 61 is
Figure 2013015611
It is represented by The radius of curvature r ′ of the child line changes toward the peripheral part in the main scanning direction with respect to the radius of curvature r in the central part in the main scanning direction, and D 2 to D 10 are change coefficients of the radius of curvature of the child line. . Here, when the coefficients on the laser side (the lower side of the figure) and the anti-laser side (the upper side of the figure) are different, the subscript u is added to the coefficient on the laser side, and the subscript l is added to the coefficient on the anti-laser side. doing.

次に第2fθレンズ62のレンズ面62a及び62bの子線形状は4次の項を含む非円弧形状(非球面形状)をしており、

Figure 2013015611
で表される。ここでZ´は各主走査方向の位置における母線からみた副走査方向の座標である。子線の曲率半径r´は、主走査方向中央部における子線曲率半径rに対して主走査方向周辺部に向かい変化しており、D2〜D10は子線曲率半径の変化係数である。ΣGjkYjは4次、6次、…の子線の非球面係数である。子線の非球面係数は主走査方向に沿って変化しており、G0k〜G16kは各2k次の子線の非球面係数の変化係数である。表3に示した子線の非球面係数G0〜G6は、それぞれ、G0k〜G6kであって、添え字のk=2の場合(Zに対する4次の場合)の子線の非球面係数ΣGjkYj中のGjkの数値を示している。表3より明らかなように本実施例においては、4次以外の次数の非球面係数は0としているが、これに限らず6次以上の非球面係数を有限の値としても良い。ここで、レーザ側(図の下側)と反レーザ側(図の上側)で係数が異なる場合は、レーザ側の係数には添字uを附し、反レーザ側の係数には添字lを附している。 Next, the sub-wire shape of the lens surfaces 62a and 62b of the second fθ lens 62 is an aspherical shape (aspherical shape) including a quartic term,
Figure 2013015611
It is represented by Here, Z ′ is a coordinate in the sub-scanning direction as viewed from the bus at each position in the main scanning direction. The radius of curvature r ′ of the child line changes toward the peripheral part in the main scanning direction with respect to the radius of curvature r in the central part in the main scanning direction, and D 2 to D 10 are change coefficients of the radius of curvature of the child line. . ΣG jk Y j is the aspheric coefficient of the fourth, sixth,. The aspheric coefficients of the child lines change along the main scanning direction, and G 0k to G 16k are change coefficients of the aspheric coefficients of the 2k-th order child lines. The aspherical coefficients G 0 to G 6 of the child lines shown in Table 3 are G 0k to G 6k , respectively, and the non-element of the child line when the subscript k = 2 (fourth order with respect to Z) is shown. The numerical value of G jk in the spherical coefficient ΣG jk Y j is shown. As is apparent from Table 3, in this embodiment, the aspherical coefficients of orders other than the fourth order are set to 0. However, the present invention is not limited to this, and the aspherical coefficients of the sixth or higher order may be finite values. Here, when the coefficients on the laser side (the lower side of the figure) and the anti-laser side (the upper side of the figure) are different, the subscript u is added to the coefficient on the laser side, and the subscript l is added to the coefficient on the anti-laser side. doing.

レンズ面62bは主走査方向の各位置における子線のチルト量が異なる子線チルト変化面であり、かつ子線形状が非円弧形状となっている。   The lens surface 62b is a sub-line tilt changing surface in which the sub-line tilt amount at each position in the main scanning direction is different, and the sub-line shape is a non-arc shape.

図15に本実施例において、偏向反射面51が加工誤差により副走査方向上向きに3′の面倒れが生じた場合の、面倒れによる走査線湾曲(ピッチムラ)を示す。図15において、破線は被走査面70上の主光線到達位置のずれ量、実線は被走査面70上のスポット重心位置のずれ量を示している。   FIG. 15 shows scanning line curvature (pitch unevenness) due to surface tilt when the deflecting / reflecting surface 51 is tilted 3 'upward in the sub-scanning direction due to a processing error in this embodiment. In FIG. 15, the broken line indicates the amount of deviation of the principal ray arrival position on the scanned surface 70, and the solid line indicates the amount of deviation of the spot centroid position on the scanned surface 70.

図16に本実施例における副走査方向の像面湾曲を示す。図16において、「Slice-」は副走査方向のスポット径が90μmとなるマイナス側のデフォーカス位置、「Slice+」は副走査方向のスポット径が90μmとなるプラス側のデフォーカス位置、そして「Center」は「Slice-」と「Slice+」の中間のデフォーカス位置を示しており、「Center」が副走査方向の像面湾曲を表している。   FIG. 16 shows field curvature in the sub-scanning direction in the present embodiment. In FIG. 16, “Slice−” is a negative defocus position where the spot diameter in the sub-scanning direction is 90 μm, “Slice +” is a positive defocus position where the spot diameter in the sub-scanning direction is 90 μm, and “Center "Indicates a defocus position between" Slice- "and" Slice + ", and" Center "indicates field curvature in the sub-scanning direction.

本実施例においては図15、図16から分かるように加工誤差により偏向反射面51が副走査方向下向きに3’倒れ誤差が生じたときの面倒れによるスポット重心位置のずれ量は、Peak to Peakで 0.64μm以下という良好な性能を達成している。また副走査の像面湾曲もPeak to Peakで 0.50mm以下と良好な性能を同時に達成することに成功している。   In this embodiment, as can be seen from FIG. 15 and FIG. 16, the deviation amount of the center of gravity position of the spot due to the surface tilt when the deflecting / reflecting surface 51 is tilted 3 'downward in the sub-scanning direction due to the processing error is Peak to Peak. As a result, good performance of 0.64 μm or less has been achieved. In addition, the sub-scan field curvature is 0.50 mm or less in Peak to Peak, and it has succeeded in achieving good performance at the same time.

本実施例においては、第2fθレンズ62の被走査面70側のレンズ面62bの子線形状を前述したように4次の非球面項を含む非円弧形状としており、その非球面係数をY座標に従って変化させている。また、母線を湾曲させなくとも子線の非円弧形状の原点が有効領域内全域において光束内に位置するように第2fθレンズ62を副走査方向に4.074mm偏芯させている。
図17に本実施例における子線の非円弧形状の原点位置と主光線通過位置を示す。
In this embodiment, the sub-wire shape of the lens surface 62b on the scanned surface 70 side of the second fθ lens 62 is an aspherical shape including a fourth-order aspherical term as described above, and the aspherical coefficient is expressed as a Y coordinate. It is changed according to. Further, the second fθ lens 62 is decentered by 4.074 mm in the sub-scanning direction so that the non-arc-shaped origin of the child line is located in the light beam in the entire effective area without bending the bus.
FIG. 17 shows the origin position and the principal ray passing position of the non-arc shape of the child line in the present embodiment.

実施例3においては母線を湾曲させていないため子線の非円弧形状の原点は有効領域内全域においてZ=0の位置にある。同じY座標における子線の非円弧形状の原点と主光線通過位置との副走査方向のずれ量は最大で0.54mmであり、レンズ面62b上における副走査方向の光束幅2.2mmよりも小さくなっており、有効領域内全域において子線の非円弧形状の原点は光束内に位置している。   In Example 3, since the bus bar is not curved, the origin of the non-arc shape of the child wire is at the position of Z = 0 in the entire effective area. The maximum amount of deviation in the sub-scanning direction between the origin of the non-arc shape of the child line at the same Y coordinate and the principal ray passing position is 0.54 mm, which is larger than the light flux width of 2.2 mm in the sub-scanning direction on the lens surface 62b. The origin of the non-arc shape of the child wire is located in the light beam in the entire effective area.

図18に子線の4次の非球面係数の変化の様子を示す。図18から分かるように子線の4次の非球面係数は極値を持つように変化させている。また、その極値を示す主走査方向における位置は、主走査方向中央部(Y=0)を基準とすると、光源が配置されている側とは反対側の有効端の位置に対して0〜5割の間にある。即ち、その極値を示す主走査方向における主走査方向中央部(Y=0)からの位置Hは、光源が配置されている側とは反対側の有効端の位置Wに対して、0<H<0.5W、を満たす。   FIG. 18 shows how the fourth-order aspheric coefficient of the child line changes. As can be seen from FIG. 18, the fourth-order aspheric coefficient of the child line is changed to have an extreme value. Further, the position in the main scanning direction indicating the extreme value is 0 to the position of the effective end on the side opposite to the side where the light source is disposed, with reference to the center in the main scanning direction (Y = 0). It is between 50%. That is, the position H from the central portion (Y = 0) in the main scanning direction indicating the extreme value is 0 <with respect to the position W of the effective end on the side opposite to the side where the light source is disposed. H <0.5W is satisfied.

以上述べたように、レンズ面62bに子線の4次の非球面項を導入し、その非球面係数をY座標に従って変化させると共に、有効領域内全域において子線の非円弧形状の原点が光束内に位置するようにすることで、副走査方向の像面湾曲を悪化させること無く、面倒れによるスポット重心位置のずれを低減させることに成功している。   As described above, the fourth-order aspherical term of the child line is introduced into the lens surface 62b, the aspheric coefficient is changed according to the Y coordinate, and the non-arc-shaped origin of the child line is the luminous flux in the entire effective area. By being positioned within, the deviation of the position of the center of gravity of the spot due to surface tilt has been successfully reduced without deteriorating the curvature of field in the sub-scanning direction.

なお、本実施例では子線の非円弧形状として4次の非球面を導入したが、4次以上の偶数次の項であれば6次以上の項を加えても良い。また、6次以上の偶数次の非球面係数のみを有し、前記非球面係数は光学面の有効領域内において極値を有し、主走査方向中央部に対する、前記極値の主走査方向の位置Hが、主走査方向において光軸に対し光源が配置されている側とは反対側の光学面の有効端の位置Wに対して、0<H<0.5W、を満足するとともに、前記非球面係数は、光学面の有効域の中央と、主走査方向において光軸に対し光源が配置されている側または反対側の少なくとも一方の側の光学面の有効端と、で符号が反転するように構成することでも同様な効果を得ることが出来る。   In the present embodiment, a fourth-order aspherical surface is introduced as the non-arc shape of the child wire, but a sixth-order or higher term may be added if it is an even-order term of the fourth or higher order. Further, it has only an even-order aspherical coefficient of 6th order or higher, and the aspherical coefficient has an extreme value in the effective area of the optical surface, and the extreme value in the main scanning direction of the extreme value with respect to the central part in the main scanning direction. The position H satisfies 0 <H <0.5 W with respect to the position W of the effective end of the optical surface on the side opposite to the side where the light source is disposed with respect to the optical axis in the main scanning direction. The sign of the aspheric coefficient is inverted between the center of the effective area of the optical surface and the effective end of the optical surface on at least one side opposite to the side where the light source is disposed with respect to the optical axis in the main scanning direction. The same effect can be obtained by configuring as described above.

本実施例においては、子線の非円弧形状の効果をより大きく得るために最もレンズ面上での副走査方向の光束幅が大きいレンズ面62bの子線形状を非円弧形状としたが、これに限るものではない。
また、本実施例では結増光学系60を2枚の結像光学素子より構成したが、これに限らず1枚以上の結像光学素子より構成しても良い。
In the present embodiment, in order to obtain a greater effect of the non-arc shape of the child line, the child line shape of the lens surface 62b having the largest beam width in the sub-scanning direction on the lens surface is a non-arc shape. It is not limited to.
In this embodiment, the multiplication optical system 60 is composed of two imaging optical elements. However, the present invention is not limited to this, and it may be composed of one or more imaging optical elements.

次に本発明の第4の実施例について説明する。実施例4が実施例1と異なる点は、4つの発光部を有するモノリシックマルチビームレーザを光源手段10として用いた点である。その他の構成及び光学的作用は実施例1と同様であり、これにより同様な効果を得ている。   Next, a fourth embodiment of the present invention will be described. The fourth embodiment is different from the first embodiment in that a monolithic multi-beam laser having four light emitting units is used as the light source means 10. Other configurations and optical functions are the same as those in the first embodiment, and the same effects are obtained.

面倒れによるスポット重心位置のずれをPeak to Peakで0.4μm以下と微小に抑えているため、発光部が増えてピッチムラの周期が大きくなっても高精細な画像形成が可能である。   Since the displacement of the center of gravity of the spot due to surface tilt is suppressed to a very small value of 0.4 μm or less by Peak to Peak, high-definition image formation is possible even when the number of light emitting portions increases and the pitch unevenness period increases.

次に本発明の第5の実施例について説明する。実施例5が実施例4と異なる点は、32個の二次元配列された発光部を有する面発光レーザを光源手段10として用いた点である。その他の構成及び光学的作用は実施例4と同様であり、これにより同様な効果を得ている。   Next, a fifth embodiment of the present invention will be described. The fifth embodiment differs from the fourth embodiment in that a surface emitting laser having 32 light emitting portions arranged two-dimensionally is used as the light source means 10. Other configurations and optical actions are the same as those in the fourth embodiment, and the same effects are obtained.

面倒れによるスポット重心位置のずれをPeak to Peakで0.4μmと微小に抑えているため、発光部が増えてもピッチムラを低減することができ、より高速・高精細な画像形成が可能である。   The deviation of the center of gravity of the spot due to surface tilt is suppressed to a very small value of 0.4 μm by Peak to Peak, so even if the number of light emitting parts increases, uneven pitch can be reduced, enabling higher speed and higher definition image formation. .

[画像形成装置]
図19は、本発明の画像形成装置104の実施形態を示す副走査方向の要部断面図である。
[Image forming apparatus]
FIG. 19 is a cross-sectional view of the main part in the sub-scanning direction showing the embodiment of the image forming apparatus 104 of the present invention.

画像形成装置104には、パーソナルコンピュータ等の外部機器117からコードデータDcが入力され、プリンタコントローラ111によって、画像データ(ドットデータ)Diに変換される。画像データDiは、実施形態1乃至4のいずれかに示した構成を有する光走査ユニット100に入力され、光走査ユニット100からは、画像データDiに応じて変調された光ビーム103が出射され、感光ドラム101の感光面が主走査方向に走査される。静電潜像担持体たる感光ドラムは、モータ115によって時計廻りに回転し、その感光面が光ビーム103に対して、主走査方向と直交する副走査方向に移動する。感光ドラムの上方で帯電ローラ102がその表面に当接し、感光ドラム表面を一様に帯電せしめ、帯電された感光ドラムの表面に、前記光走査ユニットによって走査される光ビームが照射され、静電潜像を形成する。   Code data Dc is input to the image forming apparatus 104 from an external device 117 such as a personal computer, and converted into image data (dot data) Di by the printer controller 111. The image data Di is input to the optical scanning unit 100 having the configuration shown in any of Embodiments 1 to 4, and the optical beam 103 modulated in accordance with the image data Di is emitted from the optical scanning unit 100. The photosensitive surface of the photosensitive drum 101 is scanned in the main scanning direction. The photosensitive drum as the electrostatic latent image carrier is rotated clockwise by the motor 115 and the photosensitive surface thereof moves in the sub-scanning direction perpendicular to the main scanning direction with respect to the light beam 103. The charging roller 102 contacts the surface of the photosensitive drum above the photosensitive drum, uniformly charges the photosensitive drum surface, and the surface of the charged photosensitive drum is irradiated with a light beam scanned by the optical scanning unit. A latent image is formed.

静電潜像は、光ビームの照射位置よりも下流側で感光ドラムに当接するように配設された現像器107によってトナー像として現像され、感光ドラムに対向するように配設された転写ローラ108によって、感光ドラムの前方の用紙カセット109内に収納されている被転写材たる用紙112上に転写される。用紙カセット端部には、給紙ローラ110が配設されており、用紙カセット内の用紙112を搬送路へ送り込む。   The electrostatic latent image is developed as a toner image by a developing device 107 disposed so as to abut on the photosensitive drum downstream of the light beam irradiation position, and a transfer roller disposed so as to face the photosensitive drum. The image is transferred onto a sheet 112 as a transfer material stored in a sheet cassette 109 in front of the photosensitive drum. A paper feed roller 110 is disposed at the end of the paper cassette, and feeds the paper 112 in the paper cassette into the transport path.

以上のようにして、未定着トナー像が転写された用紙112はさらに感光ドラム後方の定着器へと搬送される。定着器は内部に不図示の定着ヒータを有する定着ローラ113と、それに圧接するように配設された加圧ローラ114とで構成され、転写部からの用紙112を両ローラ113、114の圧接部にて加圧及び加熱することにより未定着トナー像を定着する。更に定着ローラ113の後方には排紙ローラ116が配設されており、用紙112を画像形成装置の外に排出する。   As described above, the sheet 112 on which the unfixed toner image is transferred is further conveyed to a fixing device behind the photosensitive drum. The fixing device includes a fixing roller 113 having a fixing heater (not shown) inside and a pressure roller 114 disposed so as to be in pressure contact with the fixing roller 113, and the sheet 112 from the transfer portion is pressed against the pressure contact portion between the rollers 113 and 114. The unfixed toner image is fixed by pressurizing and heating at. Further, a paper discharge roller 116 is disposed behind the fixing roller 113, and discharges the paper 112 out of the image forming apparatus.

[カラー画像形成装置]
図20は本発明の実施態様のカラー画像形成装置の要部概略図である。
[Color image forming apparatus]
FIG. 20 is a schematic view of a main part of a color image forming apparatus according to an embodiment of the present invention.

本実施形態は、複数(4個)の光走査装置を並べ各々並行して像担持体である感光ドラム面上に画像情報を記録するタンデムタイプのカラー画像形成装置である。カラー画像形成装置360、実施例1乃至4のいずれかの構成を有する光走査装置311,312,313,314、各々像担持体としての感光ドラム341,342,343,344、現像器321,322,323,324、搬送ベルト351である。   The present embodiment is a tandem type color image forming apparatus in which a plurality of (four) optical scanning devices are arranged in parallel and image information is recorded on a photosensitive drum surface as an image carrier. Color image forming apparatus 360, optical scanning apparatuses 311, 312, 313, and 314 having any one of Embodiments 1 to 4, photosensitive drums 341, 342, 343, and 344 as image carriers, and developing devices 321 and 322, respectively. , 323, 324 and the conveyor belt 351.

カラー画像形成装置360には、パーソナルコンピュータ等の外部機器352からR(レッド)、G(グリーン)、B(ブルー)の各色信号が入力する。これらの色信号は、装置内のプリンタコントローラ353によって、C,M,Y、Bの画像データ(ドットデータ)に変換される。画像データは、それぞれ光走査装置に入力され、光走査装置から各画像データに応じて変調された光ビーム331,332,333,334が出射され、これらの光ビームによって感光ドラムの感光面が主走査方向に走査される。   The color image forming apparatus 360 receives R (red), G (green), and B (blue) color signals from an external device 352 such as a personal computer. These color signals are converted into C, M, Y, and B image data (dot data) by a printer controller 353 in the apparatus. The image data is respectively input to the optical scanning device, and light beams 331, 332, 333, and 334 modulated according to the respective image data are emitted from the optical scanning device, and the photosensitive surface of the photosensitive drum is mainly used by these light beams. Scanned in the scanning direction.

本実施態様におけるカラー画像形成装置は光走査装置(311,312)、(313,314)を2個並べ、各々がC,M,Y、Bの各色に対応し、各々平行して感光ドラム面上に画像信号(画像情報)を記録し、カラー画像を高速に印字するものである。   In this embodiment, the color image forming apparatus includes two optical scanning devices (311, 312), (313, 314), each corresponding to each color of C, M, Y, and B, and parallel to the photosensitive drum surface. An image signal (image information) is recorded thereon, and a color image is printed at high speed.

本実施態様におけるカラー画像形成装置は上述の如く4つの光走査装置により各々の画像データに基づいた光ビームを用いて各色の潜像を各々対応する感光ドラム面上に形成している。その後、記録材に多重転写して1枚のフルカラー画像を形成している。   In the color image forming apparatus according to this embodiment, the latent images of the respective colors are formed on the corresponding photosensitive drum surfaces by using the light beams based on the respective image data by the four optical scanning devices as described above. Thereafter, a single full color image is formed by multiple transfer onto a recording material.

前記外部機器352としては、例えばCCDセンサを備えたカラー画像読取装置が用いられても良い。この場合には、このカラー画像読取装置と、カラー画像形成装置360とで、カラーデジタル複写機が構成される。   As the external device 352, for example, a color image reading apparatus including a CCD sensor may be used. In this case, the color image reading apparatus and the color image forming apparatus 360 constitute a color digital copying machine.

10 半導体レーザ
20 コリメータレンズ
30 シリンドリカルレンズ
40 開口絞り
50 回転多面鏡
51 回転多面鏡の偏向反射面
60 結像光学系
61 1つめの結像レンズ(61a:入射面、61b:射出面)
62 2つめの結像レンズ(62a:入射面、62b:射出面)
70 感光ドラム面
DESCRIPTION OF SYMBOLS 10 Semiconductor laser 20 Collimator lens 30 Cylindrical lens 40 Aperture stop 50 Rotating polygon mirror 51 Deflection reflecting surface 60 of rotating polygon mirror Imaging optical system 61 The first imaging lens (61a: entrance surface, 61b: exit surface)
62 Second imaging lens (62a: entrance surface, 62b: exit surface)
70 Photosensitive drum surface

Claims (9)

光源手段と、
前記光源手段からの光束を偏向する偏向手段と、
前記光源手段からの光束を前記偏向手段へ導く入射光学系と、
前記偏向手段により反射偏向された光束を被走査面上にスポットとして結像させる結像光学系と、
を有し、
前記入射光学系は、前記光源手段からの光束を前記偏向手段の偏向面の回転軸に垂直な面に対して副走査断面内で所定の角度で斜入射させ、
前記結像光学系は、少なくとも1つの光学面の子線形状が4次以上の偶数次の非球面係数を含む非円弧形状である光学素子を有し、
前記光学面の子線形状の4次以上の偶数次の非球面係数のうち、何れかの次数の非球面係数は、主走査方向の位置に従って変化し、
前記光学面の各主走査方向の位置における子線の非円弧形状の原点は、有効領域内全域において光束内に位置する、
ことを特徴とする光走査装置。
Light source means;
Deflecting means for deflecting a light beam from the light source means;
An incident optical system for guiding the light beam from the light source means to the deflecting means;
An imaging optical system that forms an image of the light beam reflected and deflected by the deflecting means as a spot on the surface to be scanned;
Have
The incident optical system obliquely enters a light beam from the light source means at a predetermined angle within a sub-scan section with respect to a plane perpendicular to a rotation axis of a deflection surface of the deflection means,
The imaging optical system includes an optical element having a non-arc shape in which a sub-wire shape of at least one optical surface includes a fourth-order or higher-order aspheric coefficient,
Among the even-order aspherical coefficients of the fourth or higher order of the sub-line shape of the optical surface, the aspherical coefficient of any order changes according to the position in the main scanning direction,
The origin of the non-arc shape of the child line at the position in each main scanning direction of the optical surface is located in the light flux in the entire effective area,
An optical scanning device.
前記光学面の子線形状の4次以上の偶数次の非球面係数のうち、何れかの次数の非球面係数は、前記光学面の有効領域内において極値を有するように主走査方向に変化している、ことを特徴とする請求項1に記載の光走査装置。 The aspherical coefficient of any order among the fourth-order and higher-order aspherical coefficients of the sub-line shape of the optical surface changes in the main scanning direction so as to have an extreme value within the effective area of the optical surface. The optical scanning device according to claim 1, wherein: 前記光学面の子線形状の4次以上の偶数次の非球面係数のうち、何れかの次数の非球面係数の極値は、主走査方向中央部に対する、前記極値の主走査方向の位置Hが、主走査方向において光軸に対し前記光源手段が配置されている側とは反対側の前記光学面の有効端の位置Wに対して、0<H<0.5W、を満足することを特徴とする請求項2に記載の光走査装置。   The extreme value of any order of the aspherical coefficients of the fourth and higher order aspherical coefficients of the sub-line shape of the optical surface is the position of the extreme value in the main scanning direction with respect to the central part in the main scanning direction. H satisfies 0 <H <0.5W with respect to the position W of the effective end of the optical surface on the side opposite to the side where the light source means is disposed with respect to the optical axis in the main scanning direction. The optical scanning device according to claim 2. 前記光学面の子線形状の4次以上の偶数次の非球面係数のうち、何れかの次数の非球面係数は、前記光学面の主走査方向における有効領域の中央と、主走査方向において光軸に対し前記光源手段が配置されている側または前記反対側の少なくとも一方の側の前記光学面の有効端と、で符号が反転していることを特徴とする請求項1乃至3のいずれか1項に記載の光走査装置。   Among the fourth-order or higher-order even-numbered aspheric coefficients of the sub-line shape of the optical surface, the aspheric coefficient of any order is the center of the effective area in the main scanning direction of the optical surface and light in the main scanning direction. The sign is inverted between the side where the light source means is arranged with respect to the axis or the effective end of the optical surface on at least one side opposite to the axis. 2. An optical scanning device according to item 1. 前記光源手段は、2つ以上の発光点を有するモノリシックマルチレーザである、ことを特徴とする請求項1乃至4のいずれか1項に記載の光走査装置。   5. The optical scanning device according to claim 1, wherein the light source unit is a monolithic multi-laser having two or more light emitting points. 6. 前記光源手段は、面発光レーザである、ことを特徴とする請求項1乃至4のいずれか1項に記載の光走査装置。   5. The optical scanning device according to claim 1, wherein the light source means is a surface emitting laser. 前記結像光学系は、副走査断面内において、前記偏向手段の偏向面近傍と前記被走査面とを共役な関係とする面倒れ補正光学系を構成している、ことを特徴とする請求項1乃至6のいずれか1項に記載の光走査装置。   The imaging optical system constitutes a surface tilt correction optical system having a conjugate relation between a vicinity of a deflection surface of the deflection unit and the surface to be scanned in a sub-scan section. The optical scanning device according to any one of 1 to 6. 請求項1乃至7のいずれか1項に記載の光走査装置と、
外部機器から入力したコードデータを画像信号に変換して前記走査光学装置に入力せしめるプリンタコントローラと、
を有する画像形成装置。
An optical scanning device according to any one of claims 1 to 7,
A printer controller that converts code data input from an external device into an image signal and inputs the image signal to the scanning optical device;
An image forming apparatus.
各々が請求項1乃至8のいずれか1項に記載の光走査装置から成る複数の光走査装置と、
前記複数の光走査装置の被走査面の位置に配置され、夫々異なった色の画像を形成する複数の像担持体と
を有するカラー画像形成装置。
A plurality of optical scanning devices each comprising the optical scanning device according to any one of claims 1 to 8,
A color image forming apparatus having a plurality of image carriers that are arranged at positions on the surface to be scanned of the plurality of optical scanning devices and form images of different colors.
JP2011147075A 2011-07-01 2011-07-01 Optical scanning device and image forming apparatus having the same Expired - Fee Related JP5843500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011147075A JP5843500B2 (en) 2011-07-01 2011-07-01 Optical scanning device and image forming apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011147075A JP5843500B2 (en) 2011-07-01 2011-07-01 Optical scanning device and image forming apparatus having the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015093979A Division JP6005209B2 (en) 2015-05-01 2015-05-01 Optical scanning device and image forming apparatus having the same

Publications (3)

Publication Number Publication Date
JP2013015611A true JP2013015611A (en) 2013-01-24
JP2013015611A5 JP2013015611A5 (en) 2014-07-17
JP5843500B2 JP5843500B2 (en) 2016-01-13

Family

ID=47688360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011147075A Expired - Fee Related JP5843500B2 (en) 2011-07-01 2011-07-01 Optical scanning device and image forming apparatus having the same

Country Status (1)

Country Link
JP (1) JP5843500B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073778A (en) * 1996-06-13 1998-03-17 Canon Inc Scanning optical device and laser beam printer device
JPH10197821A (en) * 1996-12-28 1998-07-31 Canon Inc Scanning optical instrument
JPH1184285A (en) * 1997-09-12 1999-03-26 Minolta Co Ltd Scanning lens system
JP2000180780A (en) * 1998-12-11 2000-06-30 Fuji Xerox Co Ltd Optical scanner
JP2001194601A (en) * 2000-01-07 2001-07-19 Canon Inc Optical scanning optical system
JP2002207185A (en) * 2001-01-09 2002-07-26 Canon Inc Optical scanner and image forming apparatus using the same
JP2002214559A (en) * 2001-01-18 2002-07-31 Ricoh Co Ltd Scanning image-formation optical system, optical scanner and image forming device
JP2004151387A (en) * 2002-10-30 2004-05-27 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2004223928A (en) * 2003-01-24 2004-08-12 Ricoh Co Ltd Method for manufacturing plastic optical element and plastic optial element/optical scanning device
JP2009014953A (en) * 2007-07-04 2009-01-22 Canon Inc Optical scanning device and image forming apparatus using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073778A (en) * 1996-06-13 1998-03-17 Canon Inc Scanning optical device and laser beam printer device
JPH10197821A (en) * 1996-12-28 1998-07-31 Canon Inc Scanning optical instrument
JPH1184285A (en) * 1997-09-12 1999-03-26 Minolta Co Ltd Scanning lens system
JP2000180780A (en) * 1998-12-11 2000-06-30 Fuji Xerox Co Ltd Optical scanner
JP2001194601A (en) * 2000-01-07 2001-07-19 Canon Inc Optical scanning optical system
JP2002207185A (en) * 2001-01-09 2002-07-26 Canon Inc Optical scanner and image forming apparatus using the same
JP2002214559A (en) * 2001-01-18 2002-07-31 Ricoh Co Ltd Scanning image-formation optical system, optical scanner and image forming device
JP2004151387A (en) * 2002-10-30 2004-05-27 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2004223928A (en) * 2003-01-24 2004-08-12 Ricoh Co Ltd Method for manufacturing plastic optical element and plastic optial element/optical scanning device
JP2009014953A (en) * 2007-07-04 2009-01-22 Canon Inc Optical scanning device and image forming apparatus using the same

Also Published As

Publication number Publication date
JP5843500B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP4717285B2 (en) Scanning optical device and image forming apparatus using the same
JP5046760B2 (en) Optical scanning device and image forming apparatus using the same
JP5896651B2 (en) Optical scanning device and image forming apparatus using the same
JP5100018B2 (en) Optical scanning device and image forming apparatus using the same
JP2009122329A (en) Optical scanning device and image forming apparatus using the same
JP2004070109A (en) Optical scanner and image forming apparatus using the same
JP4378081B2 (en) Optical scanning device and image forming apparatus using the same
JP2004070108A (en) Optical scanner and image forming apparatus using the same
JP4819392B2 (en) Scanning optical device and image forming apparatus using the same
JP3943820B2 (en) Optical scanning device, multi-beam optical scanning device, and image forming apparatus
JP2007114484A (en) Optical scanner and image forming device using it
JP5300505B2 (en) Method for adjusting optical scanning device
US8791974B2 (en) Optical scanning apparatus and image forming apparatus
JP2006330581A (en) Multibeam optical scanner and image forming apparatus using the same
JP4708862B2 (en) Optical scanning device and image forming apparatus using the same
JP2005241727A (en) Optical scanner and image forming apparatus using the same
JP6005209B2 (en) Optical scanning device and image forming apparatus having the same
JP5843500B2 (en) Optical scanning device and image forming apparatus having the same
JP5765926B2 (en) Optical scanning device and image forming apparatus using the same
JP5094221B2 (en) Optical scanning device and image forming apparatus using the same
JP6355329B2 (en) Manufacturing method of optical scanning device
JP4378416B2 (en) Scanning optical device and image forming apparatus using the same
JP4227404B2 (en) Scanning optical device and image forming apparatus using the same
JP4551569B2 (en) Optical scanning device and image forming apparatus using the same
JP2007102237A (en) Optical scanner and image forming apparatus using same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R151 Written notification of patent or utility model registration

Ref document number: 5843500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees