[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013014777A - Cyclic olefin compositions for temporary wafer bonding - Google Patents

Cyclic olefin compositions for temporary wafer bonding Download PDF

Info

Publication number
JP2013014777A
JP2013014777A JP2012196932A JP2012196932A JP2013014777A JP 2013014777 A JP2013014777 A JP 2013014777A JP 2012196932 A JP2012196932 A JP 2012196932A JP 2012196932 A JP2012196932 A JP 2012196932A JP 2013014777 A JP2013014777 A JP 2013014777A
Authority
JP
Japan
Prior art keywords
wafer
substrate
composition
grams
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012196932A
Other languages
Japanese (ja)
Other versions
JP5792699B2 (en
Inventor
Wenbin Hong
ウェンビン ホン
Dongshun Bai
ドングシャン バイ
Tony D Flaim
トニー ディー. フレイム
Rama Puligadda
ラマ プリガッダ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brewer Science Inc
Original Assignee
Brewer Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brewer Science Inc filed Critical Brewer Science Inc
Publication of JP2013014777A publication Critical patent/JP2013014777A/en
Application granted granted Critical
Publication of JP5792699B2 publication Critical patent/JP5792699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C09J123/0815Copolymers of ethene with aliphatic 1-olefins
    • C09J123/0823Copolymers of ethene with aliphatic cyclic olefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • Y10T156/1153Temperature change for delamination [e.g., heating during delaminating, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide new compositions and methods of using those compositions as bonding compositions.SOLUTION: The compositions comprise a cycloolefin copolymer dispersed or dissolved in a solvent system, and can be used to bond an active wafer to a carrier wafer or substrate to assist in protecting the active wafer and its active sites during subsequent processing and handling. The compositions form bonding layers that are chemically and thermally resistant, but that can also be softened or dissolved to allow the wafers to slide or be pulled apart at the appropriate stage in the fabrication process.

Description

本発明は空軍研究所(AFRL)の裁定による契約番号 FA8650−05−D−5807に基づく政府支援により行われた。合衆国政府は本発明に対する所定の権利を保有する。   This invention was made with government support under contract number FA8650-05-D-5807 as determined by the Air Force Research Laboratory (AFRL). The United States government has certain rights to this invention.

本発明は広く新規の組成物およびそれらの組成物を用いてキャリヤーウェーハーまたは基板上のアクティブウェーハーをウェーハーの菲薄化および他の処理中に支持できる接着組成物を形成する方法に関係する。   The present invention relates broadly to novel compositions and methods of using these compositions to form an adhesive composition that can support an active wafer on a carrier wafer or substrate during wafer thinning and other processing.

ウェーハー(基板)の菲薄化は熱を放散させることにより集積回路(IC)の電気的動作を助けるために用いられてきた。厚い基板は静電容量の増加の原因となり、より太い伝送回線を、そして結果的により大きなICの設置面積を必要とする。基板の菲薄化はインピーダンスを増加させるが一方で静電容量はインピーダンスを減少させ、伝送回線の太さを減少させ、そして結果的にICの寸法を減少させる。斯くして、基板の菲薄化によりICの小型化が促進される。   Wafer thinning has been used to help electrical operation of integrated circuits (ICs) by dissipating heat. Thicker substrates cause increased capacitance, requiring thicker transmission lines and consequently a larger IC footprint. Substrate thinning increases impedance, while capacitance reduces impedance, reduces transmission line thickness, and consequently reduces IC dimensions. Thus, the thinning of the substrate facilitates the miniaturization of the IC.

幾何学的な制約も基板の希薄化に対するもう一つの動機である。基板の背面側にビアホールが刻まれ表面側の接触を促進する。通常の乾式エッチング技法を用いてビアホールを作る際には、幾何学的な制約が作用する。厚みが100μm未満の基板に関しては、乾式エッチング技法を用いて許容される時間内に最小限のエッチング後の残渣しか出さずに直径30〜70μmのビアホールが作られる。厚い基板については、より大きな直径のビアホールが必要となる。これにはより長い乾式エッチング時間を要しさらにより多くの量のエッチング後の残渣を作りだすため、処理能力を著しく減少させる。より大きなビアホールは同時により多くの量の金属溶射を必要とし、このことはより多くの費用を要す。したがって、背面処理に関しては、菲薄基板の方がより速くかつ安価に処理することができる。   Geometric constraints are another motivation for substrate dilution. Via holes are carved on the back side of the substrate to facilitate contact on the front side. When making a via hole using a normal dry etching technique, geometrical constraints are applied. For substrates having a thickness of less than 100 μm, via holes with a diameter of 30-70 μm are made with minimal post-etch residue within the time allowed using dry etching techniques. For thick substrates, larger diameter via holes are required. This requires a longer dry etching time and creates a greater amount of post-etch residue, thus significantly reducing throughput. Larger via holes require a greater amount of metal spraying at the same time, which is more expensive. Therefore, with respect to the back surface processing, the thin substrate can be processed faster and cheaper.

また薄い基板はより容易に切断および罫書いてICにすることができる。薄い基板の方が貫通および切断する素材の量が小さいため少ない労力しか必要としない。どのような方法(鋸挽き、罫書きおよび破断、またはレーザー切断)を用いるにせよ、ICは薄い基板からの方が切りやすい。ほとんどの半導体ウェーハーは表側の処理の後に薄くされる。取扱いを容易にするため、ウェーハーはその通常の原寸厚み、たとえば600〜700μmで処理(すなわち、表側のデバイス)される。完成した時点で、これらは100〜150μmまで薄くされる。ある場合には(例えば、高出力装置のためにガリウムヒ素(GaAs)基板が用いられるとき)、厚みは25μmまで取り下げられることもある。   Thin substrates can be cut and scored more easily to make an IC. A thin substrate requires less labor because the amount of material to penetrate and cut is smaller. Whatever method (saw cutting, scribing and breaking, or laser cutting) is used, the IC is easier to cut from a thin substrate. Most semiconductor wafers are thinned after front side processing. For ease of handling, the wafer is processed (ie, the front side device) at its normal full thickness, eg 600-700 μm. When completed, they are thinned to 100-150 μm. In some cases (eg, when a gallium arsenide (GaAs) substrate is used for high power devices), the thickness may be reduced to 25 μm.

基板の機械的な菲薄化はウェーハー面を液体スラリーを含む硬くて平らな回転水平円盤に接触させて行われる。スラリーは研磨媒体をアンモニア、フッ化物、またはこれらの組合せの様な化学エッチング液と共に含む場合がある。研磨剤は「大まかな」基板除去、すなわち、菲薄化をもたらし、一方でエッチング液の化学作用がサブミクロンレベルの「研磨」を促進する。ウェーハーは所定量の基板が除去され目標とする厚みとなるまで媒体との接触を維持される。   Mechanical thinning of the substrate is performed by contacting the wafer surface with a hard, flat rotating horizontal disk containing a liquid slurry. The slurry may include a polishing medium with a chemical etchant such as ammonia, fluoride, or combinations thereof. The abrasive provides "rough" substrate removal, i.e. thinning, while the etchant chemistry promotes "polishing" at the submicron level. The wafer is maintained in contact with the medium until a predetermined amount of substrate is removed and the target thickness is reached.

300μm以上の厚みのウェーハーについては、ウェーハーは真空チャックまたは何らかの方法の機械的アタッチメントを用いた工作機械により所定位置に保持される。ウェーハー厚みが300μm未満まで削減されると、あえてさらに菲薄化および処理を行おうとするとアタッチメントおよびウェーハーの取扱いに関して制御を維持することが困難または不可能になってしまう。場合によっては、薄くされたウェーハーに取付けて保持する機械的装置が作られることがあるが、とりわけ処理が変動する場合にはこれらは多くの問題に曝される。このため、ウェーハー(「アクティブ」ウェーハー)は別の堅固な(キャリヤー)基板またはウェーハー上に取り付けられる。この基板が一層の菲薄化および菲薄後の処理用の保持プラットホームとなる。キャリヤー基板はサファイヤ、水晶、特定のガラス類、およびケイ素のような材料から構成され、通常は1000μmの厚みを示す。基板の選択はそれぞれの素材間の熱膨張係数(CTE)がどれだけ近似しているかによる。しかしながら、現在利用可能な接着方法は溶射または誘電溶着および焼鈍しのような背面処理工程で遭遇する高温に耐えられる十分な熱的または機械的安定性がない。さらに現在の多くの方法は平坦性に乏しく(これはウェーハー直径方向を横切る合計厚みの過大なバラツキの原因となる)、かつ耐薬品性に乏しい。   For wafers with a thickness of 300 μm or more, the wafer is held in place by a machine tool using a vacuum chuck or some form of mechanical attachment. If the wafer thickness is reduced to less than 300 μm, it will be difficult or impossible to maintain control over attachment and wafer handling if further thinning and processing is attempted. In some cases, mechanical devices can be made that attach and hold to thinned wafers, but these are subject to many problems, especially when the process varies. For this purpose, the wafer (“active” wafer) is mounted on another rigid (carrier) substrate or wafer. This substrate becomes a holding platform for further thinning and processing after thinning. The carrier substrate is composed of materials such as sapphire, quartz, certain glasses, and silicon, and typically exhibits a thickness of 1000 μm. The selection of the substrate depends on how close the coefficient of thermal expansion (CTE) between the materials is. However, currently available bonding methods do not have sufficient thermal or mechanical stability to withstand the high temperatures encountered in backside processing processes such as thermal spraying or dielectric welding and annealing. Furthermore, many current methods have poor flatness (which causes excessive variation in the total thickness across the wafer diameter) and poor chemical resistance.

アクティブウェーハーをキャリヤー基板に固定するために用いられている一つの方法は熱放散接着テープを介するものである。この処理方法には2つの大きな欠点がある。第1は、アクティブウェーハー/基板の界面を横切るこのテープの厚みの均一性には限界があるため、この均一性の限界が極めて薄いウェーハーの取扱いにはしばしば不十分である。第2に、熱放散接着剤はより高温で実施される多くの代表的なウェーハー処理段階に接着されたウェーハー/キャリヤー基板のスタックが耐えられない様な低温度で軟化してしまうことである。   One method used to secure the active wafer to the carrier substrate is through a heat dissipating adhesive tape. This processing method has two major drawbacks. First, the tape thickness uniformity across the active wafer / substrate interface is limited, and this uniformity limit is often insufficient for handling very thin wafers. Second, heat dissipating adhesives will soften at low temperatures such that the wafer / carrier substrate stack bonded to many typical wafer processing steps performed at higher temperatures cannot be tolerated.

一方で、熱的に安定している接着剤は良好な接着形態を生じさせるだけの十分な溶融流れを得るためにはしばしば過度に高い接着圧力または接着温度を必要とする。同様に、アクティブウェーハーおよびキャリヤーウェーハーを分離するために過度の機械的な力を必要とする場合があり、それは接着剤の粘度が現実的な剥離温度において未だ高すぎるためである。さらに熱的に安定な接着剤は残渣を残さずに除去することが難しい場合もある。   On the other hand, thermally stable adhesives often require excessively high adhesion pressures or temperatures in order to obtain a sufficient melt flow to produce good adhesion morphology. Similarly, excessive mechanical force may be required to separate the active and carrier wafers because the viscosity of the adhesive is still too high at realistic peel temperatures. Furthermore, thermally stable adhesives may be difficult to remove without leaving a residue.

米国特許第6008298号US Patent No. 6008298 米国特許第5191026号US Pat. No. 5,191,026

アクティブウェーハーをキャリヤー基板に接着する新しい組成物および方法が必要であり、これは高い処理温度に耐えられかつ処理工程の適切な段階でウェーハーおよび基板を直ちに分離することを可能にするものである。   There is a need for new compositions and methods for adhering active wafers to carrier substrates, which can withstand high processing temperatures and allow immediate separation of the wafer and substrate at the appropriate stage of the processing process.

本発明は先行技術の問題点を克服するウェーハー接着方法を広く提供し、これには接着層を介して接着結合された第1および第2基板から構成されるスタックを提供すること、ならびに第1および第2基板を分離することが含まれる。接着層は溶媒系に溶解または分散されたシクロオレフィン共重合体(COC)を含む組成物から形成されている。   The present invention broadly provides a wafer bonding method that overcomes the problems of the prior art, including providing a stack composed of first and second substrates adhesively bonded via an adhesive layer, and first And separating the second substrate. The adhesive layer is formed from a composition containing a cycloolefin copolymer (COC) dissolved or dispersed in a solvent system.

本発明はさらに第1および第2基板および接着層から構成される物品を提供する。第1の基板は背面、および少なくとも1つのアクティブ部位および複数の微細構造地物(topographical features)から構成されるアクティブ面から構成される。第2の基板には接着面がある。接着層は第1基板のアクティブ面および第2基板の接着面に接着される。接着層は溶媒系に溶解または分散したシクロオレフィン共重合体を含む組成物から形成される。   The present invention further provides an article comprising first and second substrates and an adhesive layer. The first substrate is comprised of a back surface and an active surface comprised of at least one active site and a plurality of topographical features. The second substrate has an adhesive surface. The adhesive layer is adhered to the active surface of the first substrate and the adhesive surface of the second substrate. The adhesive layer is formed from a composition comprising a cycloolefin copolymer dissolved or dispersed in a solvent system.

追加的な実施態様では、本発明は2つの基板を結合して接着するために有用な組成物に関係している。独創的な組成物は溶媒系に溶解または分散したシクロオレフィン共重合体および添加成分から構成されている。添加成分は、粘着付与樹脂、低分子量シクロオレフィン共重合体、およびこれらの混合物からなる群から選択される。   In an additional embodiment, the present invention relates to a composition useful for bonding and bonding two substrates. The original composition is composed of a cycloolefin copolymer dissolved or dispersed in a solvent system and an additive component. The additive component is selected from the group consisting of tackifying resins, low molecular weight cycloolefin copolymers, and mixtures thereof.

本発明による菲薄化および2つのウェーハーを剥離する独創的な方法を図解している。Fig. 3 illustrates the inventive method of thinning and peeling two wafers according to the present invention. 実施例がたどっている代表的な処理段階を示すフロー図である。FIG. 5 is a flow diagram illustrating representative processing steps followed by an example. 150℃で剥離された本発明による接着組成物のレオロジー解析の結果を描いたグラフである。2 is a graph depicting the results of rheological analysis of an adhesive composition according to the present invention peeled at 150 ° C. FIG. 200℃で剥離された本発明による接着組成物のレオロジー解析の結果を描いたグラフである。2 is a graph depicting the results of rheological analysis of an adhesive composition according to the present invention peeled at 200 ° C. FIG. 250℃で剥離された本発明による接着組成物のレオロジー解析の結果を描いたグラフである。3 is a graph depicting the results of rheological analysis of an adhesive composition according to the present invention peeled at 250 ° C.

より具体的には、この独創的な組成物は溶媒系に溶解または分散したシクロオレフィン共重合体(COC)を含む。共重合体は組成物の合計重量を重量で100%としたものをベースとして、組成物内に重量で約5%から約85%のレベルで存在することが好ましく、重量で約5%から約60%がより好ましく、重量で約10%から約40%が最も好ましい。   More specifically, this inventive composition comprises a cycloolefin copolymer (COC) dissolved or dispersed in a solvent system. The copolymer is preferably present in the composition at a level of from about 5% to about 85% by weight, based on the total weight of the composition as 100% by weight, and from about 5% to about 85% by weight. 60% is more preferred, with about 10% to about 40% by weight being most preferred.

好適な共重合体は熱可塑性で重量平均分子量(M)が約2000ダルトンから約200000ダルトンであることが好ましく、約5000ダルトンから約100000ダルトンであることがより好ましい。好適な共重合体は軟化温度(3000Pa・Sにおける溶融粘度)が少なくとも約100℃あることが好ましく、少なくとも約140℃あることがより好ましく、少なくとも約160℃から約220℃あることがさらにより好ましい。好適な共重合体はさらにガラス転移点(T)が少なくとも約60℃であることが好ましく、約60℃から約200℃であることがより好ましく、約75℃から約160℃であることが最も好ましい。 Suitable copolymers are preferably thermoplastic and have a weight average molecular weight (M w ) of from about 2000 Daltons to about 200,000 Daltons, more preferably from about 5000 Daltons to about 100,000 Daltons. Suitable copolymers preferably have a softening temperature (melt viscosity at 3000 Pa · S) of at least about 100 ° C, more preferably at least about 140 ° C, and even more preferably at least about 160 ° C to about 220 ° C. . Suitable copolymers further preferably have a glass transition temperature (T g ) of at least about 60 ° C, more preferably from about 60 ° C to about 200 ° C, and from about 75 ° C to about 160 ° C. Most preferred.

好適なシクロオレフィン共重合体は環状オレフィンおよび非環状オレフィンの反復モノマー類、または環状オレフィンをベースとした開環ポリマー類から構成されている。本発明に用いるために好適な環状オレフィン類はノルボルネンをベースとしたオレフィン類、テトラシクロドデセンをベースとしたオレフィン類、ジシクロペンタジエンをベースとしたオレフィン類、およびこれらの誘導体からなる群から選択される。誘導体にはアルキル(C〜C20 アルキル類が好ましく、C〜C10 アルキル類がより好ましい)、アルキリデン(C〜C20 アルキリデン類が好ましく、C〜C10 アルキリデン類がより好ましい)、アラルキル(C〜C30 アラルキル類が好ましく、C〜C18 アラルキル類がより好ましい)、シクロアルキル(C〜C30 シクロアルキル類が好ましく、C〜C18 シクロアルキル類がより好ましい)、エーテル、アセチル、芳香族、エステル、ヒドロキシ、アルコキシ、シアノ、アミド、イミド、およびシリル置換の誘導体が含まれる。本発明に用いられるとりわけ好適な環状オレフィン類には
および前述の組合せから成る群から選択されるものを含み、ここにそれぞれの Rおよび Rは個別に −H、およびアルキル基類(C〜C20 アルキル類が好ましく、C〜C10 アルキル類がより好ましい)から成る群から選択され、それぞれの Rは個別に −H、置換または非置換アリール基類(C〜C18 アリール類が好ましい)、アルキル基類(C〜C20 アルキル類が好ましく、C〜C10 アルキル類がより好ましい)、シクロアルキル基類(C〜C30 シクロアルキル類が好ましく、C〜C18 シクロアルキル類がより好ましい)、アラルキル基類(C〜C30 アラルキル類が好ましく、ベンジル、フェネチル、およびフェニルプロピル、等のような C〜C18 アラルキル基類がより好ましい)、エステル基類、エーテル基類、アセチル基類、アルコール類(C〜C10 アルコール類が好ましい)、アルデヒド基類、ケトン類、ニトリル類、およびこれらの組合せから成る群から選択される。
Suitable cycloolefin copolymers are composed of cyclic and acyclic olefin repeating monomers, or ring-opening polymers based on cyclic olefins. Preferred cyclic olefins for use in the present invention are selected from the group consisting of olefins based on norbornene, olefins based on tetracyclododecene, olefins based on dicyclopentadiene, and derivatives thereof. Is done. Derivatives are alkyl (C 1 -C 20 alkyls are preferred, C 1 -C 10 alkyls are more preferred), alkylidenes (C 1 -C 20 alkylidenes are preferred, C 1 -C 10 alkylidenes are more preferred) Aralkyl (C 6 -C 30 aralkyl is preferred, C 6 -C 18 aralkyl is more preferred), cycloalkyl (C 3 -C 30 cycloalkyl is preferred, C 3 -C 18 cycloalkyl is more preferred. ), Ether, acetyl, aromatic, ester, hydroxy, alkoxy, cyano, amide, imide, and silyl-substituted derivatives. Particularly suitable cyclic olefins used in the present invention include
And those selected from the group consisting of the foregoing combinations, wherein each R 1 and R 2 is independently —H, and alkyl groups (C 1 -C 20 alkyls are preferred, C 1 -C 10 Each R 3 is individually —H, substituted or unsubstituted aryl groups (preferably C 6 -C 18 aryls), alkyl groups (C 1 -C 20 alkyls are preferred, C 1 -C 10 alkyls are more preferred), cycloalkyl groups (C 3 -C 30 cycloalkyls are preferred, C 3 -C 18 cycloalkyls are more preferred), aralkyl groups (C 6 -C 30 aralkyl are preferable, more benzyl, phenethyl, and phenylpropyl, and C 6 -C 18 aralkyl groups, such as equal Masui), esters Motorui, ethers Motorui, acetyl groups, alcohols (C 1 -C 10 alcohols are preferred), an aldehyde group, ketones, nitriles, and is selected from the group consisting of combinations The

好適な非環状オレフィン類は枝分かれしたおよび枝分かれしていない C〜C20 アルケン類(C〜C10 アルケン類が好ましい)から成る群から選択される。より好ましくは、本発明に用いるために適切な非環状オレフィン類は
次の構造を持ち、ここにそれぞれの Rは個別に −H およびアルキル基類(C〜C20 アルキル類が好ましく、C〜C10 アルキル類がより好ましい)から成る群から選択される。本発明に用いるためにとりわけ好適な非環状オレフィン類には、エテン、プロペン、およびブテンから成る群から選択されるものが含まれるが、エテンが最も好適である。
Suitable acyclic olefins are selected from the group consisting of branched and unbranched C 2 -C 20 alkenes (preferably C 2 -C 10 alkenes). More preferably, suitable acyclic olefins for use in the present invention are
Having the following structure, wherein each R 4 is individually selected from the group consisting of —H and alkyl groups (preferably C 1 -C 20 alkyls, more preferably C 1 -C 10 alkyls): . Particularly preferred acyclic olefins for use in the present invention include those selected from the group consisting of ethene, propene, and butene, with ethene being most preferred.

シクロオレフィン共重合体類を製造する方法は技術的に知られている。例えば、シクロオレフィン共重合体類は反復モノマーと非反復モノマーとを(下に示すノルボルネンとエテンのように)連鎖重合させることにより生産できる。
上に示した反応により、交互ノルボルナンジイルおよびエチレン単位を含むエテン−ノルボルネン共重合体になっている。この方法により生産された共重合体の例には Goodfellow Corporation and TOPAS Advanced Polymers社の製造による TOPASTM、および三井化学(株)の製造による APELTM が含まれる。これらの共重合体を生産する適切な方法は米国特許第6008298号に開示され、本願に引用して本明細書とする。
Methods for producing cycloolefin copolymers are known in the art. For example, cycloolefin copolymers can be produced by chain polymerization of repeating and non-repeating monomers (such as norbornene and ethene shown below).
The reaction shown above results in an ethene-norbornene copolymer containing alternating norbornanediyl and ethylene units. Examples of copolymers produced by this method include TOPAS manufactured by Goodfellow Corporation and TOPAS Advanced Polymers, and APEL manufactured by Mitsui Chemicals. A suitable method for producing these copolymers is disclosed in US Pat. No. 6,0082,988, incorporated herein by reference.

シクロオレフィン共重合体はさらに下に図解したような種々の環状モノマー類の開環メタセシス重合とこれに続く水素添加を行うことにより生産することができる。
この種の重合による重合物は概念的にエテンおよび環状オレフィンモノマーの共重合体(下に示すようなエチレンおよびシクロペンタン−1,3−ジイルの交互単位のような)と考えることができる。
この方法により製造された共重合体の例には Zeon Chemicals 社の ZEUMORTM、および JSR社の ARTONTM が含まれる。これらの共重合体を作る適切な方法は米国特許第5191026号に開示され、本願に引用して本明細書とする。
Cycloolefin copolymers can be produced by further ring-opening metathesis polymerization of various cyclic monomers as illustrated below followed by hydrogenation.
Polymers of this type of polymerization can conceptually be considered as copolymers of ethene and cyclic olefin monomers (such as alternating units of ethylene and cyclopentane-1,3-diyl as shown below).
Examples of copolymers produced by this method include ZEUMOR ™ from Zeon Chemicals and ARTON ™ from JSR. Suitable methods for making these copolymers are disclosed in US Pat. No. 5,191,026, herein incorporated by reference.

したがって、本発明による共重合体は:
(I)
および前述の組合せの反復モノマーを含むことが好ましく、ここに:
それぞれの Rおよび Rは個別に −H、およびアルキル基類(C〜C20 アルキル類が好ましく、C〜C10 アルキル類がより好ましい)から成る群から選択され、さらに
それぞれの Rは個別に −H、置換または非置換アリール基類(C〜C18 アリール類が好ましい)、アルキル基類(C〜C20 アルキル類が好ましく、C〜C10 アルキル類がより好ましい)、シクロアルキル基類(C〜C30 シクロアルキル類が好ましく、C〜C18 シクロアルキル類がより好ましい)、アラルキル基類(C〜C30 アラルキル類が好ましく、ベンジル、フェネチル、およびフェニルプロピル、等のような C〜C18 アラルキル基類がより好ましい)、エステル基類、エーテル基類、アセチル基類、アルコール類(C〜C10 アルコール類が好ましい)、アルデヒド基類、ケトン類、ニトリル類、およびこれらの組合せ、
ならびに
(II)
ここに:
----- は1重または2重結合;および
それぞれの Rは個別に −H およびアルキル基類(C〜C20 アルキル類が好ましく、C〜C10 アルキル類がより好ましい);から成る群から選択される。
Thus, the copolymer according to the invention is:
(I)
And preferably contains repeating monomers of the aforementioned combination, where:
Each R 1 and R 2 is independently selected from the group consisting of —H, and alkyl groups (preferably C 1 -C 20 alkyls, more preferably C 1 -C 10 alkyls); 3 is individually -H, substituted or unsubstituted aryl groups (C 6 -C 18 aryls are preferred), alkyl groups (C 1 -C 20 alkyls are preferred, and C 1 -C 10 alkyls are more preferred. ), a cycloalkyl group such (C 3 -C 30 cycloalkyl are preferable, C 3 -C 18 cycloalkyls are more preferred), an aralkyl group such (C 6 -C 30 aralkyl are preferable, benzyl, phenethyl, and phenylpropyl, more preferably C 6 -C 18 aralkyl group such that like the like), esters Motorui, ethers Motorui, acetyl groups, (Preferably C 1 -C 10 alcohols) alcohols, aldehyde groups, ketones, nitriles, and combinations thereof,
And (II)
here:
----- is a single or double bond; and each R 4 is individually -H and an alkyl group (preferably C 1 -C 20 alkyl, more preferably C 1 -C 10 alkyl); Selected from the group consisting of

ポリマー内のモノマー(II)に対するモノマー(I)の割合は約5:95から約95:5が好ましく、約30:70から約70:30がより好ましい。
この独創的な組成物はシクロオレフィン共重合体および全ての他の添加成分を溶媒系と共に、好ましくは室温から約150℃で、約1〜72時間の間、単に混合することで形成される。
The ratio of monomer (I) to monomer (II) in the polymer is preferably from about 5:95 to about 95: 5, more preferably from about 30:70 to about 70:30.
This ingenious composition is formed by simply mixing the cycloolefin copolymer and all other additive components with a solvent system, preferably from room temperature to about 150 ° C. for about 1 to 72 hours.

組成物は組成物の全重量を重量で100%としたものをベースとして、少なくとも重量で約15%の溶媒系を含むべきで、重量で約30%から約95%の溶媒系が好ましく、重量で約40%から約90%の溶媒系がより好ましく、重量で約60%から約90%の溶媒系がさらにより好ましい。溶媒系の沸点は約50〜280℃であるべきで、約120〜250℃が好ましい。好適な溶媒には、メチルエチルケトン(MEK)およびシクロペンタノン、同様にリモネン、メシチレン、ジペンテン、ピネン、ビシクロヘキシル、シクロドデセン、1−tert−ブチル−3,5−ジメチルベンゼン、ブチルシクロヘキサン、シクロオクタン、シクロヘプタン、シクロヘキサン、メチルシクロヘキサン、およびこれらの混合物から成る群から選択される炭化水素溶媒類が含まれるが、これらに限定されない。   The composition should contain at least about 15% by weight solvent system, preferably from about 30% to about 95% by weight, based on the total weight of the composition being 100% by weight, A solvent system of about 40% to about 90% is more preferred, and a solvent system of about 60% to about 90% by weight is even more preferred. The boiling point of the solvent system should be about 50-280 ° C, preferably about 120-250 ° C. Suitable solvents include methyl ethyl ketone (MEK) and cyclopentanone, as well as limonene, mesitylene, dipentene, pinene, bicyclohexyl, cyclododecene, 1-tert-butyl-3,5-dimethylbenzene, butylcyclohexane, cyclooctane, cyclo Hydrocarbon solvents selected from the group consisting of heptane, cyclohexane, methylcyclohexane, and mixtures thereof include, but are not limited to.

組成物内の固形分レベルの合計は組成物の全重量を重量で100%としたものをベースとして、少なくとも重量で約5%であるべきで、重量で約5%から約85%が好ましく、重量で約5%から約60%がより好ましく、重量で約10%から約40%がさらにより好ましい。   The total solids level in the composition should be at least about 5% by weight, preferably about 5% to about 85% by weight, based on the total weight of the composition as 100% by weight, More preferably from about 5% to about 60% by weight, and even more preferably from about 10% to about 40% by weight.

本発明によると、組成物は追加的な添加成分を含むことが可能で、低分子量シクロオレフィン共重合体(COC)樹脂および/または粘着付与樹脂類またはロジン類が含まれる。組成物はさらに可塑剤、酸化防止剤、およびこれらの混合物から成る群から選択される幾つかの随意の添加成分を含むことができる。   According to the present invention, the composition can include additional additive components, including low molecular weight cycloolefin copolymer (COC) resins and / or tackifying resins or rosins. The composition may further comprise several optional additive components selected from the group consisting of plasticizers, antioxidants, and mixtures thereof.

低分子量COCが組成物に用いられる場合、組成物の全重量を重量で100%としたものをベースとして、組成物内に重量で約2%から約80%のレベルで存在することが好ましく、重量で約5%から約50%がより好ましく、重量で約15%から約35%がさらにより好ましい。「低分子量シクロオレフィン共重合体」という用語は重量平均分子量(M)が約50000ダルトン未満、好ましくは約20000ダルトン未満、そしてより好ましくは約500から約10000ダルトンのCOC類に言及することを意図したものである。このような共重合体はさらに約50℃から約120℃の T を持つことが好ましく、約60℃から約90℃がより好ましく、約60℃から約70℃が最も好ましい。本発明で用いる低分子量COC樹脂の代表的なものは Topas Advanced Polymers 社から TOPASTM Toner TMの名称で市販されているもの(M8000)である。 When low molecular weight COC is used in the composition, it is preferably present in the composition at a level of about 2% to about 80% by weight, based on the total weight of the composition being 100% by weight, More preferably from about 5% to about 50% by weight, and even more preferably from about 15% to about 35% by weight. The term “low molecular weight cycloolefin copolymer” refers to COCs having a weight average molecular weight (M w ) of less than about 50,000 daltons, preferably less than about 20,000 daltons, and more preferably from about 500 to about 10,000 daltons. It is intended. Such copolymer preferably further has a T g from about 50 ° C. to about 120 ° C., more preferably from about 60 ° C. to about 90 ° C., about 60 ° C. to about 70 ° C. being most preferred. A typical low molecular weight COC resin used in the present invention is commercially available from Topas Advanced Polymers under the name TOPAS Toner ™ (M w 8000).

粘着付与剤またはロジンが活用される場合、組成物の全重量を重量で100%としたものをベースとして、重量で約2%から約80%のレベルで存在することが好ましく、重量で約5%から約50%がより好ましく、重量で約15%から約35%がさらにより好ましい。粘着付与剤は組成物内で相分離が起きないようにシクロオレフィン共重合体と相溶性のある化学的性質のあるものから選定される。適切な粘着付与剤の例には、ポリテルペン樹脂類(Arizona Chemical 社から SYLVARESTM TR 樹脂の名称で販売)、β‐ポリテルペン樹脂類(Arizona Chemical 社から SYLVARESTM TR−B 樹脂の名称で販売)、スチレン化テルペン樹脂類(Arizona Chemical 社から ZONATAC NG 樹脂の名称で販売)、重合したロジン樹脂類(Arizona Chemical 社から SYLVAROSTM PR 樹脂の名称で販売)、ロジンエステル樹脂類(Eastman Chemical 社から EASTOTACTM 樹脂の名称で販売)、脂環式炭化水素樹脂類(Eastman Chemical 社から PLASTOLYNTM 樹脂の名称で、または Arakawa Chemical 社から ARKONTM 樹脂の名称で販売)、C5脂肪族炭化水素樹脂類(Eastman Chemical 社から PICCOTACTM 樹脂の名称で販売)、水素化炭化水素樹脂類(Eastman Chemical 社から REGALITETM 樹脂の名称で販売)、およびこれらの混合物が含まれるが、これらに限定されるものではない。 When a tackifier or rosin is utilized, it is preferably present at a level of about 2% to about 80% by weight, based on the total weight of the composition being 100% by weight, and about 5% by weight. % To about 50% is more preferred, and about 15% to about 35% by weight is even more preferred. The tackifier is selected from those having chemical properties compatible with the cycloolefin copolymer so that phase separation does not occur in the composition. Examples of suitable tackifiers include polyterpene resins (sold by Arizona Chemical under the name SYLVARES TR resin), β-polyterpene resins (sold by Arizona Chemical under the name SYLVARES TR-B resin), styrenated terpene resins (sold by Arizona Chemical under the name Zonatac NG resin), polymerized rosin resins (sold by Arizona Chemical under the name SYLVAROS TM PR resin), Eastotac TM rosin ester resins (Eastman Chemical Co. Sold under the name of the resin), alicyclic hydrocarbon resins (from Eastman Chemical under the name of PLASTOLYN TM resin, or Arakawa) a Commercially available under the name ARKON resin from Chemical, C5 aliphatic hydrocarbon resins (sold under the name PICCOTAC resin from Eastman Chemical), Hydrogenated hydrocarbons (named REGALITE resin from Eastman Chemical) ), And mixtures thereof, but are not limited to these.

酸化防止剤が利用される場合は、組成物の全重量を重量で100%としたものをベースとして、重量で約0.1%から約2%のレベルで組成物内に存在することが好ましく、重量で約0.5%から約1.5%がより好ましい。適切な酸化防止剤の例には、フェノール系酸化防止剤(Ciba 社から IRGANOXTM 1010 の名称で販売されている ペンタエリスリトールテトラキス(3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート等)、亜リン酸エステル酸化防止剤(Ciba 社から IRGAFOSTM 168 の名称で販売されている トリス(2,4−ジテルト−ブチルフェニル)ホスフィット等)、亜ホスホン酸エステル酸化防止剤(Ciba 社 から IRGAFOXTM P−EPQ の名称で販売されているテトラキス(2,4−ジ−tert−ブチルフェニル)[l,l−ビフェニル]−4,4’−ジイルビスホスホニット等)、およびこれらの混合物から成る群から選択されるものを含む。 When antioxidants are utilized, they are preferably present in the composition at a level of about 0.1% to about 2% by weight, based on the total weight of the composition being 100% by weight. More preferably, from about 0.5% to about 1.5% by weight. Examples of suitable antioxidants include phenolic antioxidants (pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl sold under the name IRGANOX 1010 by the company Ciba). ) Propionate, etc.), phosphite antioxidant (such as tris (2,4-ditert-butylphenyl) phosphite sold under the name IRGAFOS 168 from Ciba), phosphonite antioxidant ( Tetrakis (2,4-di-tert-butylphenyl) [l, l-biphenyl] -4,4′-diylbisphosphonite, etc.) sold under the name IRGAFOX P-EPQ by Ciba, and these Including those selected from the group consisting of:

別の実施態様では組成物が、ビス(トリメトキシシリルエチル)ベンゼン、アミノプロピルトリ(アルコキシシラン類)(例えば、アミノプロピルトリ(メトキシシラン)、アミノプロピルトリ(エトキシシラン類)、−−フェニルアミノプロピルトリ(エトキシシラン))、および他のシランカップリング剤、またはこれらの混合物等、接着促進剤を本質的に含まない(重量で約0.1%未満そして好ましくは約0%)方が好まれる。 幾つかの実施態様においては、最終組成物もまた熱可塑性物質である(すなわち、架橋性がない)。斯くして、これら別の実施態様においては、組成物は本質的に Cytec 社の POWDERLINKTM 、および Hexion Specialty Chemicals 社の EPI−CURETM 3200 の様な架橋剤を本質的に含まない(重量で約0.1%未満そして好ましくは約0%)。 In another embodiment, the composition comprises bis (trimethoxysilylethyl) benzene, aminopropyltri (alkoxysilanes) (eg, aminopropyltri (methoxysilane), aminopropyltri (ethoxysilanes), --phenylamino Propyltri (ethoxysilane)), and other silane coupling agents, or mixtures thereof are essentially free of adhesion promoters (less than about 0.1% and preferably about 0% by weight). It is. In some embodiments, the final composition is also a thermoplastic (ie, not crosslinkable). Thus, in these alternative embodiments, the composition is essentially free of cross-linking agents such as Cytec's POWDERLINK and Hexion Specialty Chemicals' EPI-CURE 3200 (about by weight). Less than 0.1% and preferably about 0%).

一つの態様によると、最終組成物の溶融粘度(複合粘性係数)は約100Pa・S未満であることが好ましく、約50Pa・S未満であることがより好ましく、約1Pa・Sから約35Pa・Sであることがさらにより好ましい。これらの測定を目的として、溶融粘度はレオロジー的動態分析を介して決定される(TA Instruments 社の AR−2000、2枚の平行板構成で板の直径は25mmである)。さらに、溶融粘度は問題となっている組成物の好適な剥離温度で決定されることが好ましい。ここに用いた組成物の「好適な剥離温度」という用語は組成物の溶融粘度が100Pa・S未満で、かつ温度傾斜が1ヘルツの振動周波数における動的測定により決定される。組成物を好適な剥離温度で測定した場合、組成物の貯蔵弾性率(G’)もまた好ましくは約100Pa未満で、約50Pa未満が好ましく、約1Paから約26Paがさらに好ましい。貯蔵弾性率は温度傾斜が1ヘルツの振動周波数における動的測定により決定される。   According to one embodiment, the melt viscosity (complex viscosity coefficient) of the final composition is preferably less than about 100 Pa · S, more preferably less than about 50 Pa · S, and from about 1 Pa · S to about 35 Pa · S. Even more preferably. For these measurements, the melt viscosity is determined via rheological kinetic analysis (TA Instruments AR-2000, two parallel plate configurations with a plate diameter of 25 mm). Furthermore, the melt viscosity is preferably determined at a suitable stripping temperature for the composition in question. The term “preferred stripping temperature” for the composition used here is determined by dynamic measurements at an oscillation frequency of the composition having a melt viscosity of less than 100 Pa · S and a temperature gradient of 1 Hertz. When the composition is measured at a suitable release temperature, the storage modulus (G ') of the composition is also preferably less than about 100 Pa, preferably less than about 50 Pa, and more preferably from about 1 Pa to about 26 Pa. The storage modulus is determined by dynamic measurements at a vibration frequency with a temperature gradient of 1 Hertz.

組成物は約350℃まで熱的に安定している。さらに、好適な剥離温度プラス50℃(約200℃から約300℃の温度が好ましい)で1時間後の組成物の減量が組成物によるが、重量で約5%未満であることが好ましく、重量で約1.5%未満であることがより好ましい。言い換えると、この温度ではここに記述した熱重量分析(TGA)により決定される組成物の熱分解がほとんどか全く起こらないということである。   The composition is thermally stable up to about 350 ° C. Further, the weight loss of the composition after 1 hour at a suitable stripping temperature plus 50 ° C. (preferably a temperature of about 200 ° C. to about 300 ° C.) depends on the composition, but is preferably less than about 5% by weight, More preferably, it is less than about 1.5%. In other words, at this temperature, there is little or no thermal decomposition of the composition as determined by the thermogravimetric analysis (TGA) described herein.

組成物はキャリヤー基板またはアクティブウェーハーのいずれにも最初に塗布することができるが、アクティブウェーハーに最初に塗布されることが好ましい。これらの組成物は段差のあるウェーハーに対する塗工に要求される空隙の無い厚いフィルムが得られ、さらにウェーハーを横切って要求される均一さを達成するように塗布することが可能である。好適な塗工方法は約500〜5000rpmのスピン速度(より好ましくは約1000〜3500rpm)、約3000〜10000rpm/秒 の加速度、および約30〜180秒間のスピン時間による組成物のスピンコートを伴う。特定の厚みを達成するために塗工段階を変動できることは当然である。   The composition can be applied first to either the carrier substrate or the active wafer, but is preferably applied first to the active wafer. These compositions can be applied to achieve thick films without voids required for coating on stepped wafers and to achieve the required uniformity across the wafer. A suitable coating method involves spin coating of the composition with a spin speed of about 500-5000 rpm (more preferably about 1000-3500 rpm), an acceleration of about 3000-10000 rpm / second, and a spin time of about 30-180 seconds. Of course, the coating stage can be varied to achieve a specific thickness.

塗工の後、基板を(例えば熱板の上で)焼成することにより溶媒を気化させることができる。代表的な焼成は約70〜250℃の温度、好ましくは約80〜240℃で約1〜60分の時間、より好ましくは約2〜10分である。焼成後のフィルム厚みは(微細構造の頂点で)一般に少なくとも約1μmで、より好ましくは約10〜200μmである。   After coating, the solvent can be evaporated by firing the substrate (eg on a hot plate). A typical calcination is at a temperature of about 70-250 ° C., preferably about 80-240 ° C. for a time of about 1-60 minutes, more preferably about 2-10 minutes. The film thickness after firing is generally at least about 1 μm (at the top of the microstructure), more preferably about 10-200 μm.

焼成の後、望ましいキャリヤー基板をこの独創的な組成物の層に接触させ、かつこれに押しつける。キャリヤー基板は約100〜300℃、好ましくは約120〜180℃の温度に加熱してこの独創的な組成物に接着される。この加熱は真空下で約1〜10分の時間、約0.1から約25キロニュートンの結合力で実施されることが好ましい。接着されたウェーハーは背面研削、金属溶射、パターニング、不動態化、ビアホール形成、および/またはウェーハー菲薄化に関係する処理工程に曝すことができるが、以下でより詳細に説明する。   After firing, the desired carrier substrate is brought into contact with and pressed against this inventive composition layer. The carrier substrate is heated to a temperature of about 100-300 ° C., preferably about 120-180 ° C., to adhere to the inventive composition. This heating is preferably carried out under vacuum for a time of about 1 to 10 minutes with a binding force of about 0.1 to about 25 kilonewtons. The bonded wafer can be exposed to processing steps related to back grinding, metal spraying, patterning, passivation, via hole formation, and / or wafer thinning, as described in more detail below.

図1(a)には代表的なスタック10が図解されアクティブウェーハー12およびキャリヤーウェーハーまたは基板14を含んでいる。当然ながらスタック10は縮尺通りではなくこの図解の目的のため誇張されている。アクティブウェーハー12にはアクティブ面18がある。図1(a)に示すように、アクティブ面18は種々の微細構造地物20a〜20dを含むことができる。典型的なアクティブウェーハー12はどの様なマイクロエレクトロニクス基板を含むこともできる。幾つかの可能性のあるアクティブウェーハー12の例では、マイクロマシン技術(MEMS)デバイス、ディスプレーデバイス、フレキシブル基板(例えば、加硫エポキシ基板、地図を形成するために使える巻き取り基板)、複合半導体、低k誘電層、誘電層(例えば、酸化ケイ素、窒化ケイ素)、イオン埋込層、ならびにケイ素、アルミニウム、タングステン、ケイ化タングステン、ガリウムヒ素、ゲルマニウム、タンタル、亜硝酸タンタル、SiGe、およびこれらの混合物を含む基板から成る群から選択されるものを含む。   Illustrated in FIG. 1 (a) is a representative stack 10 that includes an active wafer 12 and a carrier wafer or substrate 14. Of course, the stack 10 is not drawn to scale and is exaggerated for purposes of this illustration. The active wafer 12 has an active surface 18. As shown in FIG. 1 (a), the active surface 18 can include various microstructured features 20a-20d. A typical active wafer 12 can include any microelectronic substrate. Some possible active wafer 12 examples include micromachined technology (MEMS) devices, display devices, flexible substrates (eg, vulcanized epoxy substrates, winding substrates that can be used to form maps), composite semiconductors, low k dielectric layers, dielectric layers (eg, silicon oxide, silicon nitride), ion implant layers, and silicon, aluminum, tungsten, tungsten silicide, gallium arsenide, germanium, tantalum, tantalum nitrite, SiGe, and mixtures thereof Including those selected from the group consisting of:

キャリヤー基板14には接着面22がある。代表的なキャリヤー基板14は、サファイヤ、セラミックス、ガラス、水晶、アルミニウム、銀、ケイ素、ガラス−セラミックス複合材料(Schott AG社から入手可能な ZerodureTM の名称で販売されている製品のような)、およびこれらの組合せから成る群から選択される素材から構成される。 The carrier substrate 14 has an adhesive surface 22. A typical carrier substrate 14 is sapphire, ceramics, glass, quartz, aluminum, silver, silicon, glass-ceramic composites (such as products sold under the name Zerodure available from Schott AG), And a material selected from the group consisting of these combinations.

ウェーハー12およびキャリヤー基板14は接着組成物層24を介して接着結合されている。接着層24は上に記述したシクロオレフィン共重合体組成物で形成されていて、これも上に記述したように塗布され乾燥されている。図1(a)に示すように、接着層24は基板14の接着面22と同様にウェーハー12のアクティブ面18にも接着されている。先行技術のテープとは異なり、接着層24は厚みを通して均一な(化学的に同じ)素材である。言い換えると、接着層24全体が同一の組成物で形成されている。   Wafer 12 and carrier substrate 14 are adhesively bonded via an adhesive composition layer 24. Adhesive layer 24 is formed of the cycloolefin copolymer composition described above and is also applied and dried as described above. As shown in FIG. 1A, the adhesive layer 24 is adhered to the active surface 18 of the wafer 12 as well as the adhesive surface 22 of the substrate 14. Unlike prior art tapes, the adhesive layer 24 is a uniform (chemically the same) material throughout its thickness. In other words, the entire adhesive layer 24 is formed of the same composition.

接着層24はアクティブ面18にスピンコートまたはスプレーコートにより塗布できるため、接着組成物は種々の微細構造地物の内部および上に流れることは明らかである。さらに、接着層24はアクティブ面18の微細構造の上に均一な層を形成する。この点を説明するために、図1では端部21および背面16に実質的に平行な破線26で指定した平面を示している。この平面から接着面22までの距離は厚み「T」で表されている。厚み「T」の平面26および基板14を横切る長さは約20%未満で変動するものであるが、約10%未満が好ましく、約5%未満がより好ましく、約2%未満がさらにより好ましく、約1%未満が最も好ましい。   It is clear that the adhesive composition 24 can be applied to the active surface 18 by spin coating or spray coating so that the adhesive composition flows in and on various microstructured features. Furthermore, the adhesive layer 24 forms a uniform layer on the microstructure of the active surface 18. In order to explain this point, FIG. 1 shows a plane designated by a broken line 26 substantially parallel to the end portion 21 and the back surface 16. The distance from this plane to the bonding surface 22 is represented by the thickness “T”. The length across the flat surface 26 and substrate 14 of thickness “T” varies by less than about 20%, but is preferably less than about 10%, more preferably less than about 5%, and even more preferably less than about 2%. Most preferred is less than about 1%.

これでウェーハーパッケージは図1(b)に示すように後続の菲薄化(または他の処理)を受けさせることが可能となり、ここに12’は菲薄化後のウェーハー12を表す。基板を厚み約100μm未満まで、好ましくは約50μm未満まで、より好ましくは約25μm未満まで薄くできることは明らかである。菲薄化の後、背面研削、パターニング(例えば、フォトリソグラフィー、ビアホールエッチング)、不動態化、および金属溶射、およびこれらの組合せを含む特有の背面処理を行うことができる。   The wafer package can now be subjected to subsequent thinning (or other processing) as shown in FIG. 1 (b), where 12 'represents the wafer 12 after thinning. Obviously, the substrate can be thinned to a thickness of less than about 100 μm, preferably to less than about 50 μm, more preferably to less than about 25 μm. After thinning, specific backside processing can be performed, including backside grinding, patterning (eg, photolithography, via hole etching), passivation, and metal spraying, and combinations thereof.

都合のよいことに、この独創的な組成物の乾燥された層は幾つかの非常に望ましい特性を持っている。例えば、真空エッチング処理に対してガス放出性が低い。すなわち、本組成物の15−μm厚みのフィルムを80〜250℃で2〜60分(2〜4分がより好ましい)焼成した場合、溶媒が組成物から追い出されるため後続する140〜300℃で2〜4分の焼成によるフィルム厚みの変化は約5%未満、好ましくは約2%未満、さらにより好ましくは約1%未満または0%にすらなることになる(「フィルム縮み試験」と称される)。斯くして、乾燥された層は約350℃の温度まで、好ましくは約320℃まで、より好ましくは約300℃まで、層内で化学反応を起こすことなく加熱できる。幾つかの実施態様においては、層をさらに極性溶媒(例えば、N−メチル−2−ピロリドン) に80℃の温度で15分間、反応させることなく曝すことができている。   Conveniently, the dried layer of this inventive composition has several highly desirable properties. For example, the gas releasing property is low with respect to the vacuum etching process. That is, if a 15-μm thick film of this composition is baked at 80-250 ° C. for 2-60 minutes (more preferably 2-4 minutes), the solvent is expelled from the composition and the subsequent 140-300 ° C. The change in film thickness upon firing for 2-4 minutes will be less than about 5%, preferably less than about 2%, and even more preferably less than about 1% or even 0% (referred to as “film shrinkage test”). ) Thus, the dried layer can be heated to a temperature of about 350 ° C., preferably up to about 320 ° C., and more preferably up to about 300 ° C. without causing a chemical reaction in the layer. In some embodiments, the layer can be further exposed to a polar solvent (eg, N-methyl-2-pyrrolidone) at a temperature of 80 ° C. for 15 minutes without reaction.

乾燥した層の接着の完全性は酸や塩基に対する暴露によっても維持される。すなわち、組成物の厚みが約15μmの乾燥層を酸性媒体(例えば、濃硫酸)または塩基(例えば、30wt%のKOH)に85℃で約45分間浸漬しても接着の完全性を維持し続けることができる。接着の完全性はガラスのキャリヤー基板を用い、接着組成物層をガラスキャリヤー基板越しに目視で観察して気泡、空隙、その他をチェックすることにより評価できる。さらに、接着の完全性はアクティブウェーハーおよびキャリヤー基板が手で分離できないようなら維持されている。   The integrity of the dry layer adhesion is maintained by exposure to acids and bases. That is, even if a dry layer having a thickness of about 15 μm is immersed in an acidic medium (for example, concentrated sulfuric acid) or a base (for example, 30 wt% KOH) at 85 ° C. for about 45 minutes, the integrity of adhesion is maintained. be able to. Adhesion integrity can be assessed by using a glass carrier substrate and visually checking the adhesive composition layer over the glass carrier substrate to check for bubbles, voids, and the like. Furthermore, the integrity of the bond is maintained if the active wafer and carrier substrate cannot be separated by hand.

希望する処理が行われた後、アクティブウェーハーまたは基板はキャリヤー基板から分離することができる。1つの実施態様においては、接着層を軟化させるのに十分な温度まで加熱することによりアクティブウェーハーおよび基板を分離している。より具体的には、スタックを少なくとも約100℃の温度まで、好ましくは少なくとも約120℃まで、より好ましくは約150℃から約300℃まで加熱する。これらの温度範囲は接着組成物の好適な剥離温度を表している。この加熱が図1(c)に示したように接着組成物層の軟化を引き起こし軟化した接着組成物層24’を形成し、この時点で2つの基板は、例えば脇へ滑らせることにより、分離できる。図1(c)にはウェーハー12および基板14の両方を貫通する軸28が示され、通常は軸28に対し横断する方向に滑り力が加えられる。滑らせる代わりに上方へ(すなわち、ウェーハー12または基板14を一般には互いから遠ざける方向に)持ち上げてウェーハー12を基板14から分離することもできる。   After the desired processing is performed, the active wafer or substrate can be separated from the carrier substrate. In one embodiment, the active wafer and substrate are separated by heating to a temperature sufficient to soften the adhesive layer. More specifically, the stack is heated to a temperature of at least about 100 ° C, preferably to at least about 120 ° C, more preferably from about 150 ° C to about 300 ° C. These temperature ranges represent suitable stripping temperatures for the adhesive composition. This heating causes the adhesive composition layer to soften as shown in FIG. 1 (c) to form a softened adhesive composition layer 24 ′, at which point the two substrates are separated by, for example, sliding to the side. it can. FIG. 1 (c) shows an axis 28 that penetrates both the wafer 12 and the substrate 14, and a sliding force is usually applied in a direction transverse to the axis 28. Instead of sliding, the wafer 12 can be separated from the substrate 14 by lifting upwards (ie, the wafer 12 or substrate 14 generally away from each other).

代案として、層を加熱して軟化させる代わりに接着組成物は溶媒を用いて溶解することもできる。層が溶解し次第、その後にアクティブウェーハーおよび基板を分離することができる。接着層を溶解するために用いる適切な溶媒は、MEKおよびシクロペンタノンから成る群から選択されるような乾燥の前には組成物の一部であった全ての溶媒、同様にリモネン、メシチレン、ジペンテン、ピネン、ビシクロヘキシル、シクロドデセン、1−tert−ブチル−3,5−ジメチルベンゼン、ブチルシクロヘキサン、シクロオクタン、シクロヘプタン、シクロヘキサン、メチルシクロヘキサン、およびこれらの混合物から成る群から選択される炭化水素溶媒でもよい。   Alternatively, instead of heating and softening the layer, the adhesive composition can be dissolved using a solvent. As soon as the layer is dissolved, the active wafer and substrate can be separated. Suitable solvents used to dissolve the adhesive layer are all solvents that were part of the composition prior to drying as selected from the group consisting of MEK and cyclopentanone, as well as limonene, mesitylene, A hydrocarbon solvent selected from the group consisting of dipentene, pinene, bicyclohexyl, cyclododecene, 1-tert-butyl-3,5-dimethylbenzene, butylcyclohexane, cyclooctane, cycloheptane, cyclohexane, methylcyclohexane, and mixtures thereof But you can.

接着組成物が軟化されるにせよ溶解されるにせよ、分離は単にウェーハー12または基板14の一方を滑らせおよび/または持ち上げる力を加えると同時に他方を滑りまたは持ち上げ力に抗する様に事実上停止位置に維持することにより達成できることは明らかである(例えば、ウェーハー12および基板14に同時に反対向きの滑りまたは持ち上げ力を加える)。これは従来からある道具により達成できる。   Whether the adhesive composition is softened or dissolved, the separation simply applies a force that slides and / or lifts one of the wafers 12 or the substrate 14 and at the same time resists the slipping or lifting forces on the other. Obviously, this can be accomplished by maintaining the stop position (eg, applying opposite sliding or lifting forces to the wafer 12 and the substrate 14 simultaneously). This can be achieved with conventional tools.

デバイス領域に残っている接着組成物は全て適切な溶媒ですすぎその後スピン乾燥することにより除去できる。適切な溶媒には乾燥前に組成物の一部であった全ての元の溶媒と同様に剥離の際に適切な溶媒として上に挙げたものが含まれる。後に残っている全ての組成物は5〜15分間溶媒に曝すことにより完全に溶解される(少なくとも約98%、好ましくは少なくとも約99%、そしてより好ましくは約100%)。残留接着組成物全てはプラズマエッチングを単独でまたは溶媒除去処理法との組合せのいずれかを用いて除去することもまた容認できる。この段階の後、きれいな、接着組成物のないウェーハー12’およびキャリヤー基板14が残る(これらのきれいな状態では示されていない)。   Any adhesive composition remaining in the device area can be removed by rinsing with a suitable solvent followed by spin drying. Suitable solvents include those listed above as suitable solvents for stripping as well as all original solvents that were part of the composition prior to drying. Any remaining composition is completely dissolved by exposure to the solvent for 5-15 minutes (at least about 98%, preferably at least about 99%, and more preferably about 100%). It is also acceptable to remove all residual adhesive composition using either plasma etching alone or in combination with a solvent removal process. After this stage, a clean, adhesive-free wafer 12 'and carrier substrate 14 remain (not shown in these clean states).

後に続く実施例は本発明に基づく好適な方法を示している。しかしながら、これらの実施例は説明のために準備されたものでその中のいかなるものも本発明の全体的範囲を制約するものではないことは当然である。   The examples that follow illustrate preferred methods according to the present invention. However, it should be understood that these examples are provided for illustrative purposes and that none of them limits the overall scope of the present invention.

<実施例1> シクロオレフィン共重合体樹脂および低分子量COC樹脂ブレンド品
この実施例では、シクロオレフィン共重合体および低分子量COC樹脂を含む調合物が作られた。幾つかの調合物には酸化防止剤が加えられた。
Example 1 Cycloolefin Copolymer Resin and Low Molecular Weight COC Resin Blend In this example, a formulation comprising a cycloolefin copolymer and a low molecular weight COC resin was made. In some formulations, an antioxidant was added.

<1.サンプル1.1>
この手順では、1.2グラムのエテン−ノルボルネン共重合体(TOPASTM 5010、T110℃;TOPAS Advanced Polymers 社、ケンタッキー州フロレンスから入手)を6グラムのD−リモネン(Florida Chemical 社)内に 2.8グラムの低分子量シクロオレフィン共重合体(TOPASTM Toner TM、M8000、M/M 2.0)と共に溶解した。溶液を室温で添加成分が溶液になるまでかき混ぜた。溶液の固形物は約40%であった。
<1. Sample 1.1>
In this procedure, 1.2 grams of ethene-norbornene copolymer (TOPAS 5010, T g 110 ° C .; obtained from TOPAS Advanced Polymers, Florence, KY) in 6 grams of D-limonene (Florida Chemical). Dissolved with 2.8 grams of low molecular weight cycloolefin copolymer (TOPAS Toner ™, M w 8000, M w / M n 2.0). The solution was stirred at room temperature until the added ingredients were in solution. The solid content of the solution was about 40%.

<2.サンプル1.2>
この手順では、0.75グラムのエテン−ノルボルネン共重合体(TOPASTM 8007、T 78℃)および 3.25グラムの低分子量 COC(TOPASTM Toner TM)を 6グラムのD−リモネン内に溶解した。溶液を室温で添加成分が溶液になるまでかき混ぜた。溶液の固形物は約40%であった。
<2. Sample 1.2>
In this procedure, 0.75 grams of ethene-norbornene copolymer (TOPAS 8007, T g 78 ° C) and 3.25 grams of low molecular weight COC (TOPAS Toner ™) are dissolved in 6 grams of D-limonene. did. The solution was stirred at room temperature until the added ingredients were in solution. The solid content of the solution was about 40%.

<3.サンプル1.3>
この手順については、1.519グラムのエテン−ノルボルネン共重合体(TOPASTM 5013、T134℃)を 5.92グラムのD−リモネン内に 2.48グラムの低分子量シクロオレフィン共重合体(TOPASTM Toner TM)、0.04グラムのフェノール系酸化防止剤(IRGANOXTM1010)、および 0.04グラムの亜ホスホン酸エステル酸化防止剤(IRGAFOXTM P−EPQ) と共に溶解した。溶液を室温で添加成分が溶液になるまでかき混ぜた。溶液の固形物は約40%であった。
<3. Sample 1.3>
For this procedure, 1.519 grams of ethene-norbornene copolymer (TOPAS 5013, T g 134 ° C.) was placed in 5.92 grams of D-limonene, 2.48 grams of low molecular weight cycloolefin copolymer ( TOPAS Toner ™), 0.04 grams of phenolic antioxidant (IRGANOX 1010), and 0.04 grams of phosphonite antioxidant (IRGAFOX P-EPQ). The solution was stirred at room temperature until the added ingredients were in solution. The solid content of the solution was about 40%.

<4.サンプル1.4>
この手順では、1.2グラムのエテン−ノルボルネン共重合体(TOPASTM 8007)を 5.92グラムの D−リモネン内に 2.81グラムの低分子量シクロオレフィン共重合体(TOPASTM Toner TM)、0.04グラムのフェノール系酸化防止剤(IRGANOXTM1010)、および 0.04グラムの亜ホスホン酸エステル酸化防止剤(IRGAFOXTM P−EPQ) と共に溶解した。溶液を室温で添加成分が溶液になるまでかき混ぜた。溶液の固形物は約40%であった。
<4. Sample 1.4>
In this procedure, 1.2 grams of ethene-norbornene copolymer (TOPAS 8007) was mixed with 5.81 grams of low molecular weight cycloolefin copolymer (TOPAS Toner ™) in 5.92 grams of D-limonene, Dissolved with 0.04 grams of phenolic antioxidant (IRGANOX 1010), and 0.04 grams of phosphonite antioxidant (IRGAFOX P-EPQ). The solution was stirred at room temperature until the added ingredients were in solution. The solid content of the solution was about 40%.

<5.サンプル1.5>
この手順においては、2.365グラムのエテン−ノルボルネン共重合体(TOPASTM 5013)を 5.92グラムの D−リモネン内に 1.635グラムの低分子量シクロオレフィン共重合体(TOPASTM Toner TM)、0.04グラムのフェノール系酸化防止剤(IRGANOXTM1010)、および 0.04グラムの亜ホスホン酸エステル酸化防止剤(IRGAFOXTM P−EPQ) と共に溶解した。溶液を室温で添加成分が溶液になるまでかき混ぜた。溶液の固形物は約40%であった。
<5. Sample 1.5>
In this procedure, 2.365 grams of ethene-norbornene copolymer (TOPAS 5013) was transferred to 1.635 grams of low molecular weight cycloolefin copolymer (TOPAS Toner ™) in 5.92 grams of D-limonene. , 0.04 grams of phenolic antioxidant (IRGANOX 1010), and 0.04 grams of phosphonite antioxidant (IRGAFOX P-EPQ). The solution was stirred at room temperature until the added ingredients were in solution. The solid content of the solution was about 40%.

<6.サンプル1.6>
この手順では、開環重合により準備した 2.2グラムの水素化ノルボルネンをベースとした共重合体(ZEONORTM1060、T 100℃;Zeon Chemicals 社、ケンタッキー州ルイズビルから入手)および 1.8グラムの低分子量シクロオレフィン共重合体(TOPASTM Toner TM)を 5.92グラムの シクロオクタン(Aldrich、ウィスコンシン州ミルウォーキー)内に溶解した。溶液を室温で添加成分が溶液になるまでかき混ぜた。溶液の固形物は約40%であった。
<6. Sample 1.6>
In this procedure, 2.2 grams of a hydrogenated norbornene based copolymer (ZEONOR 1060, T g 100 ° C .; obtained from Zeon Chemicals, Louisville, KY) prepared by ring opening polymerization and 1.8 grams Of low molecular weight cycloolefin copolymer (TOPAS Toner ™) was dissolved in 5.92 grams of cyclooctane (Aldrich, Milwaukee, WI). The solution was stirred at room temperature until the added ingredients were in solution. The solid content of the solution was about 40%.

<実施例2> シクロオレフィン共重合体樹脂および粘着付与剤のブレンド
この実施例では、種々の粘着付与剤と共にブレンドしたシクロオレフィン共重合体を含む調合物を作った。実施例1のように、幾つかの調合物には酸化防止剤が加えられた。
Example 2 Blend of Cycloolefin Copolymer Resin and Tackifier In this example, a formulation comprising a cycloolefin copolymer blended with various tackifiers was made. As in Example 1, antioxidants were added to some formulations.

<1.サンプル2.1>
この手順では、0.83グラムのエテン−ノルボルネン共重合体(TOPASTM 8007)を 5.92グラムの D−リモネン内に 3.17グラムの水素化炭化水素樹脂(REGALITETM R1125; Eastman Chemical社、テネシー州キングスポートから入手)、0.04グラムのフェノール系酸化防止剤(IRGANOXTM 1010)、および 0.04グラムの亜ホスホン酸エステル酸化防止剤(IRGAFOXTM P−EPQ) と共に溶解した。溶液を室温で添加成分が溶液になるまでかき混ぜた。溶液の固形物は約40%であった。
<1. Sample 2.1>
In this procedure, 0.83 grams of ethene-norbornene copolymer (TOPAS 8007) was placed in 5.92 grams of D-limonene, 3.17 grams of a hydrogenated hydrocarbon resin (REGALITE R1125; Eastman Chemical Company, Obtained from Kingsport, Tennessee), 0.04 grams of phenolic antioxidant (IRGANOX 1010), and 0.04 grams of phosphonite antioxidant (IRGAFOX P-EPQ). The solution was stirred at room temperature until the added ingredients were in solution. The solid content of the solution was about 40%.

<2.サンプル2.2>
この手順については、0.7グラムのエテン−ノルボルネン共重合体(TOPASTM 8007)および 3.3グラムのスチレン化テルペン樹脂(ZONATACTM NG98;Arizona Chemical社、フロリダ州ジャクソンビルから入手)を 5.92グラムの D−リモネン内に 0.04グラムのフェノール系酸化防止剤(IRGANOXTM 1010)、および 0.04グラムの亜ホスホン酸エステル酸化防止剤(IRGAFOXTM P−EPQ)と共に溶解した。溶液を室温で添加成分が溶液になるまでかき混ぜた。溶液の固形物は約40%であった。
<2. Sample 2.2>
For this procedure, 0.7 grams of ethene-norbornene copolymer (TOPAS 8007) and 3.3 grams of styrenated terpene resin (ZONATA NG98; obtained from Arizona Chemical, Jacksonville, FL). Dissolved in 92 grams of D-limonene with 0.04 grams of phenolic antioxidant (IRGANOX 1010) and 0.04 grams of phosphonite antioxidant (IRGAFOX P-EPQ). The solution was stirred at room temperature until the added ingredients were in solution. The solid content of the solution was about 40%.

<3.サンプル2.3>
この手順では、1.9グラムのエテン−ノルボルネン共重合体(TOPASTM 5013)を 5.92グラムの D−リモネン内に 2.1グラムの脂環式炭化水素樹脂(ARKONTM P−140; Arakawa Chemical USA 社、イリノイ州シカゴから入手)、0.04グラムのフェノール系酸化防止剤(IRGANOXTM 1010)、および 0.04グラムの亜ホスホン酸エステル酸化防止剤(IRGAFOXTM P−EPQ)と共に溶解した。溶液を室温で添加成分が溶液になるまでかき混ぜた。
<3. Sample 2.3>
In this procedure, 1.9 grams of ethene-norbornene copolymer (TOPAS 5013) was placed in 5.92 grams of D-limonene and 2.1 grams of alicyclic hydrocarbon resin (ARKON P-140; Arakawa). Dissolved with Chemical USA, Chicago, Illinois), 0.04 grams of phenolic antioxidant (IRGANOX 1010), and 0.04 grams of phosphonite antioxidant (IRGAFOX P-EPQ) . The solution was stirred at room temperature until the added ingredients were in solution.

<4.サンプル2.4>
この手順においては、2.42グラムのエテン−ノルボルネン共重合体(TOPASTM 5013)を 5.92グラムの D−リモネン内に 1.58グラムの脂環式炭化水素樹脂(PLASTOLYNTM R−1140; Arakawa Chemical USA 社、イリノイ州シカゴから入手)、0.04グラムのフェノール系酸化防止剤(IRGANOXTM 1010)、および 0.04グラムの亜ホスホン酸エステル酸化防止剤(IRGAFOXTM P−EPQ)と共に溶解した。溶液を室温で添加成分が溶液になるまでかき混ぜた。溶液の固形物は約40%であった。
<4. Sample 2.4>
In this procedure, 2.42 grams of ethene-norbornene copolymer (TOPAS 5013) was placed in 5.92 grams of D-limonene, 1.58 grams of alicyclic hydrocarbon resin (PLASTOLYN R-1140; Arakawa Chemical USA, obtained from Chicago, Illinois), dissolved with 0.04 grams of phenolic antioxidant (IRGANOX 1010), and 0.04 grams of phosphonite ester antioxidant (IRGAFOX P-EPQ) did. The solution was stirred at room temperature until the added ingredients were in solution. The solid content of the solution was about 40%.

<実施例3> 塗工、接着および剥離、ならびに解析
上の実施例1および2で準備された調合物を種々の基板ウェーハー上にスピンコートした。焼成して溶媒を気化させさらに接着組成物を再流動化した後、第2ウェーハーをそれぞれの塗布済みウェーハーに圧力をかけて接着した。接着組成物を用いた一時的なウェーハー接着の代表的な手順が図2に説明してある。接着したウェーハーについて機械的強度、熱安定性、および耐薬品性について試験した。ウェーハーは容認できる温度で手動によりこれらを脇に滑らせることにより剥離について試験した。剥離の後、溶媒すすぎおよびスピンを用いて接着組成物の残渣をきれいにした。
Example 3 Coating, Adhesion and Peeling and Analysis The formulations prepared in Examples 1 and 2 above were spin coated onto various substrate wafers. After baking to evaporate the solvent and reflow the adhesive composition, the second wafer was bonded to each coated wafer by applying pressure. A representative procedure for temporary wafer bonding using an adhesive composition is illustrated in FIG. The bonded wafers were tested for mechanical strength, thermal stability, and chemical resistance. Wafers were tested for delamination by manually sliding them aside at an acceptable temperature. After stripping, the adhesive composition residue was cleaned using a solvent rinse and spin.

実施例1および2によるそれぞれの調合物のレオロジー特性を試験した。これら全ての素材は剥離については成功裏に試験できた。サンプル1.1、1.2、2.1、および2.2に対する好適な剥離温度は150℃であると決定された。サンプル1.3、1.4、および2.3に対する好適な剥離温度は200℃、およびサンプル1.5、1.6、および2.4に対する好適な剥離温度は250℃であった。それぞれのサンプルのその好適な剥離温度における貯蔵弾性率(G’)および溶融粘度(η、粘度の複素係数、complex coefficient of viscosity)が以下に記録されている。さらにそれぞれの剥離温度におけるレオロジーデータが図3〜5に図解されている。 The rheological properties of each formulation according to Examples 1 and 2 were tested. All these materials were successfully tested for delamination. The preferred stripping temperature for samples 1.1, 1.2, 2.1, and 2.2 was determined to be 150 ° C. The preferred stripping temperature for samples 1.3, 1.4, and 2.3 was 200 ° C. and the preferred stripping temperature for samples 1.5, 1.6, and 2.4 was 250 ° C. The storage modulus (G ′) and melt viscosity (η * , complex coefficient of viscosity) of each sample at its preferred release temperature are recorded below. Furthermore, the rheological data at each stripping temperature is illustrated in FIGS.

さらに、これらの組成物について熱安定性および耐薬品性に関するさらなる検討も実施された。熱重量分析(TGA)が TA Instruments 社の熱重量分析装置により実施された。TGAサンプルは実施例1および2のスピンコートおよび焼成された接着組成物から削り取って入手した。等温TGA測定については、サンプルを窒素内で10℃/分の速度でその好適な剥離温度プラス50℃まで加熱し、その温度で1時間保つことにより特定の接着組成物の熱安定性を決定した。それぞれのサンプル調合物の等温測定は下の表2に記録されている。走査TGA測定については、サンプルは窒素内で10℃/分の速度で室温から650℃まで加熱された。   In addition, further studies on thermal stability and chemical resistance were also conducted on these compositions. Thermogravimetric analysis (TGA) was performed with a TA Instruments thermogravimetric analyzer. TGA samples were obtained by scraping from the spin coat and fired adhesive compositions of Examples 1 and 2. For isothermal TGA measurements, the thermal stability of a particular adhesive composition was determined by heating the sample in nitrogen at a rate of 10 ° C./min to its preferred release temperature plus 50 ° C. and holding at that temperature for 1 hour. . The isothermal measurements for each sample formulation are recorded in Table 2 below. For scanning TGA measurements, the samples were heated from room temperature to 650 ° C. at a rate of 10 ° C./min in nitrogen.

表 2 等温熱重量分析結果−熱安定性(N 内)
Table 2 Isothermal thermogravimetric analysis results-thermal stability (within N 2 )

上の表から判るように、全てのCOC−低分子量のCOC樹脂ブレンド(実施例1)は必要とされた熱安定性を少なくとも300℃まで持ち、さらに最小限の重量減(<1.5wt%)を呈した。COC−粘着付与剤ブレンド(実施例2)の平均重量減は試験温度に保たれた場合には約5wt%であった。しかしながら下の表3に示すように、1wt%重量減の温度はこれらそれぞれの接着/剥離温度より高く、ウェーハー接着用途には十分な耐熱性であることを示唆している。   As can be seen from the table above, all COC-low molecular weight COC resin blends (Example 1) have the required thermal stability to at least 300 ° C., with minimal weight loss (<1.5 wt%). ). The average weight loss of the COC-tackifier blend (Example 2) was about 5 wt% when kept at the test temperature. However, as shown in Table 3 below, the 1 wt% weight loss temperature is higher than their respective adhesion / peeling temperatures, suggesting sufficient heat resistance for wafer bonding applications.

表 3 走査熱重量分析結果
Table 3 Scanning thermogravimetric analysis results

耐薬品性を決定するために、試験される特定の接着組成物を用いて2つのシリコンウェーハーを接着した。接着したウェーハーを N−メチル−2−ピロリドン(NMP)または重量で30%の85℃のKOH、および室温の濃硫酸の化学浴に入れ耐薬品性を決定した。接着の完全性は45分後に目視で観察し、それぞれの薬品に対する接着組成物の安定性を確定した。全ての接着組成物は接着の完全性を維持した。   In order to determine chemical resistance, two silicon wafers were bonded using the specific bonding composition being tested. The bonded wafers were placed in a chemical bath of N-methyl-2-pyrrolidone (NMP) or 30% by weight KOH at 85 ° C. and concentrated sulfuric acid at room temperature to determine chemical resistance. Adhesion integrity was visually observed after 45 minutes to determine the stability of the adhesive composition for each chemical. All adhesive compositions maintained adhesion integrity.

Claims (6)

接着組成物を第1基板または第2基板のどちらかに、スピンコートによって塗布することであって、層が前記組成物から形成される厚みを横切って均一な物質であること;および
接着層を介して第1および第2基板を一緒に接着させること
を含む、ウェーハーを接着する方法。
Applying the adhesive composition to either the first substrate or the second substrate by spin coating, wherein the layer is a uniform material across the thickness formed from the composition; and Bonding the wafer through the first and second substrates together.
前記第1基板が、層が塗布される面に、微細構造地物を含むアクティブ表面を有するアクティブウェーハーである、請求項1に記載の方法。   The method of claim 1, wherein the first substrate is an active wafer having an active surface including microstructure features on a surface to which a layer is applied. 前記接着組成物が、微細構造地物の内部および上に流れる、請求項2に記載の方法。   The method of claim 2, wherein the adhesive composition flows in and on microstructured features. 接着層が、アクティブ表面の微細構造の上に均一な層を形成する、請求項2に記載の方法。   The method of claim 2, wherein the adhesive layer forms a uniform layer over the microstructure of the active surface. 接着層が、接着層の厚み「T」の第2基板を横切る長さが約20%未満、好ましくは約10%未満、より好ましくは約5%未満、さらにより好ましくは約2%未満、最も好ましくは約1%未満で変動するように塗布される、請求項1に記載の方法。   The adhesive layer has a length across the second substrate of adhesive layer thickness “T” of less than about 20%, preferably less than about 10%, more preferably less than about 5%, even more preferably less than about 2%, most The method of claim 1, wherein the method is applied to vary preferably less than about 1%. 接着層がスプレーコートによって塗布される、請求項1に記載の方法。   The method of claim 1, wherein the adhesive layer is applied by spray coating.
JP2012196932A 2008-10-31 2012-09-07 Cyclic olefin compositions for temporary bonding of wafers Active JP5792699B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/263,120 US8092628B2 (en) 2008-10-31 2008-10-31 Cyclic olefin compositions for temporary wafer bonding
US12/263,120 2008-10-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011534630A Division JP5836804B2 (en) 2008-10-31 2009-10-22 Cyclic olefin compositions for temporary bonding of wafers

Publications (2)

Publication Number Publication Date
JP2013014777A true JP2013014777A (en) 2013-01-24
JP5792699B2 JP5792699B2 (en) 2015-10-14

Family

ID=42129517

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011534630A Active JP5836804B2 (en) 2008-10-31 2009-10-22 Cyclic olefin compositions for temporary bonding of wafers
JP2012196932A Active JP5792699B2 (en) 2008-10-31 2012-09-07 Cyclic olefin compositions for temporary bonding of wafers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011534630A Active JP5836804B2 (en) 2008-10-31 2009-10-22 Cyclic olefin compositions for temporary bonding of wafers

Country Status (8)

Country Link
US (3) US8092628B2 (en)
EP (2) EP2362970B1 (en)
JP (2) JP5836804B2 (en)
KR (2) KR101717807B1 (en)
CN (2) CN103021807B (en)
SG (1) SG185250A1 (en)
TW (2) TWI437062B (en)
WO (1) WO2010051212A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107914564A (en) * 2017-12-08 2018-04-17 广西玉柴机器股份有限公司 A kind of one-way clutch double planet wheel rows of mixing bi-motor integrated form hybrid power system

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092628B2 (en) 2008-10-31 2012-01-10 Brewer Science Inc. Cyclic olefin compositions for temporary wafer bonding
US8771927B2 (en) * 2009-04-15 2014-07-08 Brewer Science Inc. Acid-etch resistant, protective coatings
WO2010143510A1 (en) * 2009-06-11 2010-12-16 東京応化工業株式会社 Adhesive composition
JP5619481B2 (en) * 2010-06-15 2014-11-05 東京応化工業株式会社 Adhesive composition
US9263314B2 (en) 2010-08-06 2016-02-16 Brewer Science Inc. Multiple bonding layers for thin-wafer handling
JP5681501B2 (en) * 2010-09-02 2015-03-11 東京応化工業株式会社 Adhesive composition
JP5681502B2 (en) 2010-09-30 2015-03-11 東京応化工業株式会社 Adhesive composition
FR2967058B1 (en) * 2010-11-05 2013-10-04 Oreal COSMETIC COMPOSITION AND PROCESS FOR RECOVERING KERATIN FIBERS
JP5729097B2 (en) * 2011-04-07 2015-06-03 Jsr株式会社 Substrate processing method, temporary fixing material and electronic component
US9827757B2 (en) 2011-07-07 2017-11-28 Brewer Science Inc. Methods of transferring device wafers or layers between carrier substrates and other surfaces
JP5861304B2 (en) * 2011-08-01 2016-02-16 Jsr株式会社 Substrate treatment method, semiconductor device, and temporary fixing composition
US8940104B2 (en) 2011-08-02 2015-01-27 Brewer Science Inc. Cleaning composition for temporary wafer bonding materials
US9558983B2 (en) * 2011-09-16 2017-01-31 Lintec Corporation Base film for dicing sheet and dicing sheet
JP5361092B2 (en) * 2011-09-16 2013-12-04 リンテック株式会社 Dicing sheet base film and dicing sheet
JP5661669B2 (en) 2011-09-30 2015-01-28 東京応化工業株式会社 Adhesive composition, adhesive film and substrate processing method
JP5592328B2 (en) * 2011-09-30 2014-09-17 信越化学工業株式会社 Temporary adhesive composition and thin wafer manufacturing method using the same
US20140249269A1 (en) * 2011-10-20 2014-09-04 Nitto Denko Corporation Thermally-detachable sheet
WO2013058054A1 (en) * 2011-10-20 2013-04-25 日東電工株式会社 Thermally-detachable sheet
WO2013095146A1 (en) * 2011-12-23 2013-06-27 Frans Nooren Afdichtingssystemen B.V. Composition for coating a substrate and method for coating a substrate
JP6093187B2 (en) * 2012-02-08 2017-03-08 東京応化工業株式会社 Stripping composition, stripping composition manufacturing method, and use thereof
US9127126B2 (en) 2012-04-30 2015-09-08 Brewer Science Inc. Development of high-viscosity bonding layer through in-situ polymer chain extension
CN104521025B (en) * 2012-09-11 2017-08-25 日本瑞翁株式会社 Secondary cell is with encapsulant and secondary cell Encapulant composition
US9269623B2 (en) 2012-10-25 2016-02-23 Rohm And Haas Electronic Materials Llc Ephemeral bonding
KR102077248B1 (en) 2013-01-25 2020-02-13 삼성전자주식회사 Methods for processing substrates
WO2014165406A1 (en) 2013-04-01 2014-10-09 Brewer Science Inc. Apparatus and method for thin wafer transfer
WO2015000150A1 (en) 2013-07-03 2015-01-08 Henkel IP & Holding GmbH High temperature debondable adhesive
US10103048B2 (en) 2013-08-28 2018-10-16 Brewer Science, Inc. Dual-layer bonding material process for temporary bonding of microelectronic substrates to carrier substrates
US9315696B2 (en) 2013-10-31 2016-04-19 Dow Global Technologies Llc Ephemeral bonding
SG11201605469PA (en) * 2014-01-07 2016-08-30 Brewer Science Inc Cyclic olefin polymer compositions and polysiloxane release layers for use in temporary wafer bonding processes
US9865490B2 (en) 2014-01-07 2018-01-09 Brewer Science Inc. Cyclic olefin polymer compositions and polysiloxane release layers for use in temporary wafer bonding processes
US9355881B2 (en) 2014-02-18 2016-05-31 Infineon Technologies Ag Semiconductor device including a dielectric material
DE102014205885B3 (en) * 2014-03-28 2015-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for integrally bonding substrates and then releasing the integral connection, composite system and its use
JP6479862B2 (en) 2014-06-24 2019-03-06 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA One component UV and thermoset high temperature peelable adhesive
EP3172762B1 (en) 2014-07-22 2021-04-21 Brewer Science, Inc. Temporary substrate bonding method using a polyimide release layer and substrate stack including said polyimide release layer
CN104559852B (en) 2014-12-31 2018-02-27 深圳市化讯半导体材料有限公司 A kind of ephemeral key rubber alloy for the processing of thin wafer and preparation method thereof
JP2016146429A (en) * 2015-02-09 2016-08-12 トヨタ自動車株式会社 Semiconductor device manufacturing method
US9644118B2 (en) 2015-03-03 2017-05-09 Dow Global Technologies Llc Method of releasably attaching a semiconductor substrate to a carrier
CN105176456A (en) * 2015-08-27 2015-12-23 烟台德邦科技有限公司 Wafer thinning temporary binder and preparation method therefor
TWI638043B (en) * 2017-03-22 2018-10-11 中美矽晶製品股份有限公司 Cleaner for silicon wafer and method for cleaning silicon wafer
SG10201913156WA (en) * 2017-07-14 2020-02-27 Shinetsu Chemical Co Device substrate with high thermal conductivity and method of manufacturing the same
US10403598B2 (en) * 2017-08-11 2019-09-03 Micron Technology, Inc. Methods and system for processing semiconductor device structures
WO2019227955A1 (en) * 2018-05-31 2019-12-05 浙江清华柔性电子技术研究院 Transition device for flexible device and preparation method therefor, and manufacturing method for flexible device
CN109628012B (en) * 2018-12-19 2021-11-09 广东莱尔新材料科技股份有限公司 Moisture-proof, high-temperature-resistant and low-dielectric-constant hot-melt adhesive film and preparation method thereof
SG11202107879PA (en) 2019-01-22 2021-08-30 Brewer Science Inc Laser-releasable bonding materials for 3-d ic applications
US11791191B2 (en) 2020-07-08 2023-10-17 Raytheon Company Ultraviolet radiation shield layer
CN116285709A (en) * 2023-02-17 2023-06-23 黑龙江省科学院石油化学研究院 Low-stress bonding adhesive material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265151A (en) * 1999-03-17 2000-09-26 The Inctec Inc Temporary liquid adhesive
JP2001274128A (en) * 2000-01-21 2001-10-05 Seiko Epson Corp Method of polishing and processing thin sheet, and method of manufacturing piezoelectric vibrating piece
JP2005159155A (en) * 2003-11-27 2005-06-16 Three M Innovative Properties Co Manufacturing method of semiconductor chip
JP2005191550A (en) * 2003-12-01 2005-07-14 Tokyo Ohka Kogyo Co Ltd Method for sticking substrates
US20080200011A1 (en) * 2006-10-06 2008-08-21 Pillalamarri Sunil K High-temperature, spin-on, bonding compositions for temporary wafer bonding using sliding approach
JP2012507600A (en) * 2008-10-31 2012-03-29 ブルーワー サイエンス アイ エヌ シー. Cyclic olefin compositions for temporary bonding of wafers

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868433A (en) 1972-04-03 1975-02-25 Exxon Research Engineering Co Thermoplastic adhesive compositions
US3987122A (en) 1972-04-03 1976-10-19 Exxon Research And Engineering Company Thermoplastic adhesive compositions
US3959062A (en) 1972-08-10 1976-05-25 E. I. Du Pont De Nemours And Company Method of joining surfaces using segmented copolyester adhesive
US3970494A (en) 1975-04-18 1976-07-20 Western Electric Co., Inc. Method for adhering one surface to another
US4474942A (en) 1982-06-28 1984-10-02 Takeda Chemical Industries, Ltd. Cross-linked polyesteramide from bis(2-oxazoline)
GB8320270D0 (en) 1983-07-27 1983-09-01 Raychem Ltd Polymer composition
US4558114A (en) 1985-01-23 1985-12-10 Ashland Oil, Inc. Polymers derived from polyisocyanates, bicyclic amide acetals and oxazolines
US4710542A (en) 1986-05-16 1987-12-01 American Cyanamid Company Alkylcarbamylmethylated amino-triazine crosslinking agents and curable compositions containing the same
US4793337A (en) 1986-11-17 1988-12-27 E. R. Squibb & Sons, Inc. Adhesive structure and products including same
EP0395764A4 (en) 1987-12-25 1991-05-15 Nippon Zeon Co., Ltd. Hydrogenated derivative of ring-opening copolymer and process for its production
DE3922546A1 (en) 1989-07-08 1991-01-17 Hoechst Ag METHOD FOR THE PRODUCTION OF CYCLOOLEFINPOLYMERS
NL8902683A (en) 1989-10-31 1991-05-16 Stamicarbon MULTIPLE COMPONENT SYSTEM BASED ON OXAZOLINE AND A PHOSPHORUS CONTAINING COMPOUND.
US5043250A (en) 1990-07-17 1991-08-27 Eastman Kodak Company Radiation-sensitive composition containing a poly (N-acyl-alkyleneimine) and use thereof in lithographic printing plates
EP0610851B1 (en) 1993-02-12 1997-05-07 Hoechst Aktiengesellschaft Process for preparing cyclo-olefin copolymers
EP0647676B1 (en) 1993-10-06 1999-07-21 Ticona GmbH Modified cycloolefin copolymer
DE4422157A1 (en) 1994-06-24 1996-01-04 Hoechst Ag Process for the preparation of cycloolefin copolymers
MY115462A (en) * 1995-06-01 2003-06-30 Chugoku Marine Paints Antifouling coating composition, coating film formed from said antifouling coating composition, antifouling method using said antifouling coating composition and hull or underwater structure coated with said coating film
US5888650A (en) 1996-06-03 1999-03-30 Minnesota Mining And Manufacturing Company Temperature-responsive adhesive article
US5773561A (en) 1996-08-02 1998-06-30 International Business Machines Corporation Polymer sealants/adhesives and use thereof in electronic package assembly
DE69711378T2 (en) * 1996-11-04 2002-10-24 The B.F. Goodrich Co., Richfield PHOTOSTRUCTURABLE DIELECTRIC COMPOSITIONS
US6054363A (en) 1996-11-15 2000-04-25 Canon Kabushiki Kaisha Method of manufacturing semiconductor article
KR100225956B1 (en) 1997-01-10 1999-10-15 김영환 Arf photoresist introducing amine
WO1998033861A1 (en) 1997-01-30 1998-08-06 Mitsui Chemicals, Inc. Hot melt adhesive compositions
JP3978832B2 (en) * 1997-10-23 2007-09-19 日本ゼオン株式会社 Circuit board adhesive
DE69839896D1 (en) 1997-10-29 2008-09-25 Hitachi Chemical Co Ltd Siloxane-modified polyamide resin composition adhesive sheet, CSP circuit board and film, and semiconductor device manufactured
US6110999A (en) 1998-03-06 2000-08-29 Denovus Llc Reusable adhesive composition and method of making the same
US6156820A (en) 1998-12-28 2000-12-05 Occidental Chemical Corporation Polyamideimidesiloxane hot melt adhesive
ATE384082T1 (en) * 1999-02-05 2008-02-15 Materia Inc METATHESIS-ACTIVE ADHESION AGENTS AND METHODS FOR INCREASE THE ADHESION OF POLYMERS TO SURFACES
EP1197509B1 (en) * 1999-05-31 2011-07-06 Zeon Corporation Process for producing hydrogenated ring-opening polymerization polymer of cycloolefin
US6440259B1 (en) 1999-08-04 2002-08-27 3M Innovative Properties Company One-part storage-stable water-based contact adhesive composition with an internal coagulant
DE19956422A1 (en) 1999-11-24 2001-06-13 Hella Kg Hueck & Co Detachable adhesives for joining substrates
JP4320882B2 (en) * 1999-12-10 2009-08-26 日立化成工業株式会社 Adhesive composition for semiconductor element and semiconductor device using the same
AU778576B2 (en) 2000-03-30 2004-12-09 H.B. Fuller Company Adhesive composition comprising a particulate thermoplastic component
US6590047B1 (en) 2000-07-28 2003-07-08 Industrial Technology Research Institute Modified copolymer of olefin and cycloolefin
KR20030042454A (en) 2000-08-22 2003-05-28 제온 코포레이션 Method of film laminating
KR100816931B1 (en) 2000-10-04 2008-03-25 제이에스알 가부시끼가이샤 Composition of Cyclic Olefin Addition Copolymer and Cross-Linked Material
US20020127821A1 (en) 2000-12-28 2002-09-12 Kazuyuki Ohya Process for the production of thinned wafer
US20020115263A1 (en) 2001-02-16 2002-08-22 Worth Thomas Michael Method and related apparatus of processing a substrate
TW574753B (en) 2001-04-13 2004-02-01 Sony Corp Manufacturing method of thin film apparatus and semiconductor device
DE10137375A1 (en) 2001-07-31 2003-02-27 Infineon Technologies Ag Use of polybenzoxazole polymers for adhesive bonding, especially for bonding chips and-or wafers, e.g. silicon wafers with titanium nitride-coated silicon chips
EP1295926A1 (en) 2001-09-19 2003-03-26 ExxonMobil Chemical Patents Inc. Components for adhesive compositions and process for manufacture
DE10213227A1 (en) 2002-03-25 2003-10-16 Bayer Ag composition
EP1522567A4 (en) 2002-05-13 2005-11-16 Jsr Corp Composition and method for temporarily fixing solid
US6828020B2 (en) 2002-08-14 2004-12-07 Adco Products, Inc. Self-adhesive vibration damping tape and composition
US7608336B2 (en) 2002-11-28 2009-10-27 Nippon Kayaku Kabushiki Kaisha Flame-retardant epoxy resin composition and cured product obtained therefrom
US6869894B2 (en) 2002-12-20 2005-03-22 General Chemical Corporation Spin-on adhesive for temporary wafer coating and mounting to support wafer thinning and backside processing
JP4171898B2 (en) 2003-04-25 2008-10-29 信越化学工業株式会社 Adhesive tape for dicing and die bonding
ITMI20030969A1 (en) * 2003-05-15 2004-11-16 Enitecnologie Spa PROCEDURE FOR THE CONTINUOUS PRODUCTION OF HYDROCARBONS FROM SYNTHESIS GAS IN SUSPENSION REACTORS AND FOR THE SEPARATION OF THE LIQUID PHASE PRODUCED FROM THE SOLID PHASE.
DE10334576B4 (en) 2003-07-28 2007-04-05 Infineon Technologies Ag Method for producing a semiconductor component with a plastic housing
US7011924B2 (en) 2003-07-30 2006-03-14 Hynix Semiconductor Inc. Photoresist polymers and photoresist compositions comprising the same
US7270937B2 (en) 2003-10-17 2007-09-18 Hynix Semiconductor Inc. Over-coating composition for photoresist and process for forming photoresist pattern using the same
US7084201B2 (en) 2003-11-14 2006-08-01 Wall-Guard Corporation Of Ohio Non-flammable waterproofing composition
US7288316B2 (en) 2003-11-21 2007-10-30 Topas Advanced Polymers, Inc. Cycloolefin copolymer heat sealable films
KR20060126674A (en) 2003-11-27 2006-12-08 제이에스알 가부시끼가이샤 Hot melt adhesive composition
JP2006135272A (en) 2003-12-01 2006-05-25 Tokyo Ohka Kogyo Co Ltd Substrate support plate and peeling method of support plate
US7316844B2 (en) 2004-01-16 2008-01-08 Brewer Science Inc. Spin-on protective coatings for wet-etch processing of microelectronic substrates
KR100696287B1 (en) 2004-01-28 2007-03-19 미쓰이 가가쿠 가부시키가이샤 Method of protecting semiconductor wafer
DE102004007060B3 (en) 2004-02-13 2005-07-07 Thallner, Erich, Dipl.-Ing. Semiconductor wafer bonding device using application of adhesive before alignment and contacting of corresponding surfaces of semiconductor wafers
FR2866983B1 (en) 2004-03-01 2006-05-26 Soitec Silicon On Insulator REALIZING AN ENTITY IN SEMICONDUCTOR MATERIAL ON SUBSTRATE
US7208334B2 (en) 2004-03-31 2007-04-24 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device, acid etching resistance material and copolymer
EP1805013A1 (en) 2004-10-29 2007-07-11 3M Innovative Properties Company Optical films incorporating cyclic olefin copolymers
US7595369B2 (en) 2004-11-10 2009-09-29 Lg Chem, Ltd. Method of polymerizing cyclic olefins and vinyl olefins, copolymer produced by the method and optical anisotropic film comprising the same
US20060141241A1 (en) 2004-12-23 2006-06-29 Carespodi Dennis L Peelable breakaway multi-layered structures and methods and compositions for making such structures
JP2006193666A (en) * 2005-01-14 2006-07-27 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, carrier material having adhesive film for semiconductor and semiconductor device
US7799883B2 (en) 2005-02-22 2010-09-21 Promerus Llc Norbornene-type polymers, compositions thereof and lithographic process using such compositions
US20080075901A1 (en) 2005-02-23 2008-03-27 Lee S Thomas Multilayer Films Including Cycloolefin Copolymer and Styrene-Butadiene Copolymer
JP5068674B2 (en) 2005-03-01 2012-11-07 ダウ・コーニング・コーポレイション Temporary wafer bonding method for semiconductor processing.
ATE468375T1 (en) 2005-09-09 2010-06-15 Avery Dennison Corp HEAT SHRINKABLE FILM WITH METHACRYLATE RESIN-BASED CURRENT ADHESIVE
US20090081387A1 (en) 2005-09-13 2009-03-26 Fujifilm Corporation Method of Producing Cyclic Polyolefin Film, Cyclic Polyolefin Film Produced by the Production Method, Method of Preparing Liquid Dispersion of Fine Particles, Liquid Dispersion of Fine Particles and Method of Preparing Dope
US7655289B2 (en) 2005-12-12 2010-02-02 Eastman Kodak Company Optical film composite having spatially controlled adhesive strength
US8268449B2 (en) 2006-02-06 2012-09-18 Brewer Science Inc. Thermal- and chemical-resistant acid protection coating material and spin-on thermoplastic adhesive
US8120168B2 (en) 2006-03-21 2012-02-21 Promerus Llc Methods and materials useful for chip stacking, chip and wafer bonding
JP5618537B2 (en) 2006-03-21 2014-11-05 プロメラス,エルエルシー Methods and materials useful for chip stacking and chip / wafer bonding
US7713835B2 (en) 2006-10-06 2010-05-11 Brewer Science Inc. Thermally decomposable spin-on bonding compositions for temporary wafer bonding
US7482412B2 (en) 2006-10-10 2009-01-27 Jsr Corporation Process for manufacturing cycloolefin addition polymer
US7935780B2 (en) 2007-06-25 2011-05-03 Brewer Science Inc. High-temperature spin-on temporary bonding compositions
CA2711266A1 (en) * 2008-01-24 2009-07-30 Brewer Science Inc. Method for reversibly mounting a device wafer to a carrier substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265151A (en) * 1999-03-17 2000-09-26 The Inctec Inc Temporary liquid adhesive
JP2001274128A (en) * 2000-01-21 2001-10-05 Seiko Epson Corp Method of polishing and processing thin sheet, and method of manufacturing piezoelectric vibrating piece
JP2005159155A (en) * 2003-11-27 2005-06-16 Three M Innovative Properties Co Manufacturing method of semiconductor chip
JP2005191550A (en) * 2003-12-01 2005-07-14 Tokyo Ohka Kogyo Co Ltd Method for sticking substrates
US20080200011A1 (en) * 2006-10-06 2008-08-21 Pillalamarri Sunil K High-temperature, spin-on, bonding compositions for temporary wafer bonding using sliding approach
JP2012507600A (en) * 2008-10-31 2012-03-29 ブルーワー サイエンス アイ エヌ シー. Cyclic olefin compositions for temporary bonding of wafers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107914564A (en) * 2017-12-08 2018-04-17 广西玉柴机器股份有限公司 A kind of one-way clutch double planet wheel rows of mixing bi-motor integrated form hybrid power system

Also Published As

Publication number Publication date
US8221571B2 (en) 2012-07-17
JP5836804B2 (en) 2015-12-24
KR20110089861A (en) 2011-08-09
US8771442B2 (en) 2014-07-08
KR20120115579A (en) 2012-10-18
WO2010051212A2 (en) 2010-05-06
TWI437062B (en) 2014-05-11
TW201022388A (en) 2010-06-16
SG185250A1 (en) 2012-11-29
TWI494398B (en) 2015-08-01
US20110086955A1 (en) 2011-04-14
EP2623573A2 (en) 2013-08-07
CN102203917B (en) 2015-09-02
EP2362970A4 (en) 2013-05-29
EP2623573B9 (en) 2020-07-29
US8092628B2 (en) 2012-01-10
CN103021807A (en) 2013-04-03
KR101717807B1 (en) 2017-03-17
US20120291938A1 (en) 2012-11-22
EP2623573B1 (en) 2020-03-25
CN103021807B (en) 2016-05-04
EP2362970B1 (en) 2019-04-10
JP2012507600A (en) 2012-03-29
EP2362970A2 (en) 2011-09-07
CN102203917A (en) 2011-09-28
EP2623573A3 (en) 2014-01-15
TW201350552A (en) 2013-12-16
WO2010051212A3 (en) 2010-07-08
KR101705915B1 (en) 2017-02-10
US20100112305A1 (en) 2010-05-06
JP5792699B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5792699B2 (en) Cyclic olefin compositions for temporary bonding of wafers
JP5656405B2 (en) High temperature and spin-on bonding composition for temporary bonding of wafers using a sliding technique
TWI418602B (en) High-temperature spin-on temporary bonding compositions
JP6446290B2 (en) Adhesive composition, laminate and peeling method
KR101581484B1 (en) Stripping method and stripping solution
JP5189124B2 (en) Dicing fixing sheet and dicing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R150 Certificate of patent or registration of utility model

Ref document number: 5792699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250