JP2013013846A - Wastewater treatment method - Google Patents
Wastewater treatment method Download PDFInfo
- Publication number
- JP2013013846A JP2013013846A JP2011147514A JP2011147514A JP2013013846A JP 2013013846 A JP2013013846 A JP 2013013846A JP 2011147514 A JP2011147514 A JP 2011147514A JP 2011147514 A JP2011147514 A JP 2011147514A JP 2013013846 A JP2013013846 A JP 2013013846A
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- limonite
- solid catalyst
- reaction
- wastewater treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004065 wastewater treatment Methods 0.000 title claims abstract description 27
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000002351 wastewater Substances 0.000 claims abstract description 40
- 239000011949 solid catalyst Substances 0.000 claims abstract description 27
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 20
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims abstract description 18
- 150000002978 peroxides Chemical class 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000001301 oxygen Substances 0.000 claims abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical group OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 41
- 238000006477 desulfuration reaction Methods 0.000 claims description 9
- 230000023556 desulfurization Effects 0.000 claims description 9
- -1 sulfide ions Chemical class 0.000 claims description 9
- 150000003573 thiols Chemical class 0.000 claims description 3
- 150000003568 thioethers Chemical class 0.000 claims 1
- 150000002894 organic compounds Chemical class 0.000 abstract description 23
- 230000003009 desulfurizing effect Effects 0.000 abstract description 9
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000003344 environmental pollutant Substances 0.000 abstract description 2
- 231100000719 pollutant Toxicity 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 239000007864 aqueous solution Substances 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 10
- 230000001590 oxidative effect Effects 0.000 description 9
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 8
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 8
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 7
- 229960000907 methylthioninium chloride Drugs 0.000 description 7
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 6
- GLDQAMYCGOIJDV-UHFFFAOYSA-N Pyrocatechuic acid Natural products OC(=O)C1=CC=CC(O)=C1O GLDQAMYCGOIJDV-UHFFFAOYSA-N 0.000 description 6
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 150000002505 iron Chemical class 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000004042 decolorization Methods 0.000 description 3
- 210000003608 fece Anatomy 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000010871 livestock manure Substances 0.000 description 3
- 150000004045 organic chlorine compounds Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000006864 oxidative decomposition reaction Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910052598 goethite Inorganic materials 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- IJFXRHURBJZNAO-UHFFFAOYSA-N meta--hydroxybenzoic acid Natural products OC(=O)C1=CC=CC(O)=C1 IJFXRHURBJZNAO-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- ZHBYCCVSWKWSMR-UHFFFAOYSA-N 2-hydroperoxybenzoic acid Chemical compound OOC1=CC=CC=C1C(O)=O ZHBYCCVSWKWSMR-UHFFFAOYSA-N 0.000 description 1
- LODHFNUFVRVKTH-ZHACJKMWSA-N 2-hydroxy-n'-[(e)-3-phenylprop-2-enoyl]benzohydrazide Chemical compound OC1=CC=CC=C1C(=O)NNC(=O)\C=C\C1=CC=CC=C1 LODHFNUFVRVKTH-ZHACJKMWSA-N 0.000 description 1
- 208000035985 Body Odor Diseases 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010040904 Skin odour abnormal Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003674 animal food additive Substances 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910006540 α-FeOOH Inorganic materials 0.000 description 1
- 229910006299 γ-FeOOH Inorganic materials 0.000 description 1
Images
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は、排水中の有機化合物やアンモニア態窒素等を迅速かつ効率的に酸化分解できる排水の処理方法に関するものである。 The present invention relates to a wastewater treatment method capable of quickly and efficiently oxidizing and decomposing organic compounds and ammonia nitrogen in wastewater.
種々の有機化合物等を含有する排水を環境に放出可能な程度まで浄化するための処理方法としては、生物処理法、活性炭吸着法、凝集沈殿法等がある。これらのいずれの方法においても、大量に発生する汚泥の二次処理が問題となる。また、従来の方法では、処理できる有機化合物が限られており、処理しきれなかった有機化合物が排水中に残存するおそれがある。環境中に放出された場合、これらの難分解性有機化合物の方がむしろ問題である。 Examples of treatment methods for purifying wastewater containing various organic compounds to the extent that they can be released to the environment include biological treatment methods, activated carbon adsorption methods, and coagulation precipitation methods. In any of these methods, secondary treatment of sludge generated in large quantities becomes a problem. Further, in the conventional method, the organic compounds that can be treated are limited, and there is a possibility that the organic compounds that could not be treated remain in the waste water. These persistent organic compounds are rather problematic when released into the environment.
例えば、活性汚泥法に代表される生物処理法には、トリハロメタン類、ダイオキシン類の生物難分解性の有機化合物を分解処理することができず、微生物の活動が阻害されるため、フェノール類の分解処理や、高濃度の有機化合物を含む排水処理への生物処理法の適用は困難であるという問題も存在する。 For example, biological treatment methods such as the activated sludge method cannot decompose biologically degradable organic compounds such as trihalomethanes and dioxins, and the activity of microorganisms is inhibited. There is also a problem that it is difficult to apply biological treatment methods to treatment and wastewater treatment containing high concentrations of organic compounds.
近年、これらの従来方法の問題を解決するために、排水中に含まれる有機化合物を分解除去する方法として、化学的酸化処理法や、電気化学的処理方法等が提案されており、いずれの方法でも、排水に含有する有機化合物を酸化分解することによって低分子化したり、二酸化炭素として系外に排出したりすることが可能となっている。 In recent years, in order to solve the problems of these conventional methods, a chemical oxidation treatment method, an electrochemical treatment method, and the like have been proposed as a method for decomposing and removing organic compounds contained in waste water. However, it is possible to reduce the molecular weight by oxidizing and decomposing the organic compound contained in the wastewater or to discharge it as carbon dioxide out of the system.
電気化学的処理方法としては、電気化学的に酸化剤を合成し、合成された酸化剤によって排水に含まれる有機化合物を酸化分解する方法と、電気化学反応によって有機化合物を直接酸化分解する方法の2種類が提案されている。 The electrochemical treatment method includes an electrochemical synthesis of an oxidant, an oxidative decomposition of the organic compound contained in the wastewater by the synthesized oxidant, and a method of direct oxidative decomposition of the organic compound by an electrochemical reaction. Two types have been proposed.
前者の方法として、例えば、特許文献1には、塩化物イオンを含有する水質条件においてエタノールアミン含有水を電解処理する方法、具体的には、塩化物イオンが陽極酸化されて生成する次亜塩素酸によってエタノールアミンを分解する方法が開示されている。 As the former method, for example, Patent Document 1 discloses a method of electrolytically treating ethanolamine-containing water under water quality conditions containing chloride ions, specifically hypochlorous acid produced by anodization of chloride ions. A method for decomposing ethanolamine with an acid is disclosed.
後者の方法として、例えば、特許文献2には、塩化物よりなる電解質を含む原水を第1の電解槽と第2の電解槽を用いて電解してヒドロキシラジカルを生成させ、このヒドロキシラジカルの酸化力により有機化合物を分解する方法が開示されている。 As the latter method, for example, in Patent Document 2, raw water containing an electrolyte made of a chloride is electrolyzed using a first electrolytic cell and a second electrolytic cell to generate hydroxy radicals, and oxidation of the hydroxy radicals is performed. A method for decomposing organic compounds by force is disclosed.
一方、化学的酸化処理方法としては、例えば、特許文献3に開示されているように、排水に次亜塩素酸を添加して有機化合物を酸化処理する方法が広く利用されている。 On the other hand, as a chemical oxidation method, for example, as disclosed in Patent Document 3, a method of oxidizing an organic compound by adding hypochlorous acid to wastewater is widely used.
次亜塩素酸以外の酸化剤としてオゾンを用いる方法が提案されている。例えば、特許文献4には、排水1リットルに対してオゾンが10〜200mgとなる量のオゾン化酸素を、排水に吹き込み混合して排水をオゾン酸化処理し、排水の脱色を連続的に行う方法が開示されている。 A method using ozone as an oxidizing agent other than hypochlorous acid has been proposed. For example, Patent Document 4 discloses a method of continuously decolorizing wastewater by ozone-oxidizing the wastewater by blowing and mixing ozone-oxidized oxygen in an amount of 10 to 200 mg with respect to 1 liter of wastewater. Is disclosed.
また、鉄塩と過酸化水素の反応(フェントン反応)により発生するヒドロキシルラジカルを利用して、排水中の有機化合物等を酸化分解する方法が検討されている。例えば、特許文献5には、有機物および還元剤が含まれている排水に3価の鉄塩を添加混合して反応させる鉄塩反応手段と、鉄塩が添加混合された後の排水に過酸化水素を添加混合して反応させる過酸化水素反応手段と、過酸化水素が添加混合された後の排水を生物処理する生物処理手段とを有することを特徴とする排水処理装置が開示されている。
In addition, a method of oxidizing and decomposing organic compounds and the like in wastewater using hydroxyl radicals generated by the reaction between iron salt and hydrogen peroxide (Fenton reaction) has been studied. For example,
しかしながら、特許文献1記載の方法では、次亜塩素酸とエタノールアミンとの反応過程で発生するトリハロメタン類等の有害な有機塩素化合物による二次汚染の可能性が指摘されている。特許文献2記載の方法では、酸化剤として次亜塩素酸は利用していないものの、ヒドロキシラジカルを合成する過程で次亜塩素酸が関与するため、特許文献1記載の方法と同様にトリハロメタン等の有害な有機塩素化合物を生成する可能性がある。また、ヒドロキシラジカルの生成効率が低いため、経済性に問題がある。 However, the method described in Patent Document 1 points out the possibility of secondary contamination by harmful organic chlorine compounds such as trihalomethanes generated in the reaction process of hypochlorous acid and ethanolamine. In the method described in Patent Document 2, hypochlorous acid is not used as an oxidant, but hypochlorous acid is involved in the process of synthesizing a hydroxy radical. Therefore, as in the method described in Patent Document 1, trihalomethane or the like is used. May produce harmful organochlorine compounds. Moreover, since the production | generation efficiency of a hydroxyl radical is low, there exists a problem in economical efficiency.
特許文献3記載の方法には、有害で危険な次亜塩素酸の処理現場への運送や貯蔵に関する安全性の問題がある。また、本方法では、次亜塩素酸と有機化合物との反応によりトリハロメタン等の有害な有機塩素化合物を発生するという前述の問題は解決できない。 The method described in Patent Document 3 has a safety problem regarding transportation and storage of harmful and dangerous hypochlorous acid to the processing site. Further, this method cannot solve the above-mentioned problem that harmful organic chlorine compounds such as trihalomethane are generated by the reaction of hypochlorous acid with an organic compound.
特許文献4記載の方法には、オゾンの発生のために大がかりな装置を必要とする上に電気代等のランニングコストが高いという問題があった。また、特許文献5記載の排水処理装置およびこれを用いた排水処理方法には、排水基準の厳しい(環境省制定の一律排水基準において、溶解性鉄の許容限度は10mg/Lという低い値に設定されている。)鉄イオンを触媒として使用するため、更に鉄分の除去のための後処理工程を必要とする場合がある。
The method described in Patent Document 4 has a problem that a large apparatus is required for generating ozone and running cost such as electricity bill is high. In addition, the wastewater treatment apparatus described in
本発明は、かかる課題に鑑みてなされたものであり、簡便かつ低コストで実施でき、二次汚染物質の副生を伴うことなく高効率で排水中の有機化合物やアンモニア態窒素等を酸化分解できる排水の処理方法を提供することを目的とする。 The present invention has been made in view of such problems, and can be carried out easily and at low cost, and oxidatively decomposes organic compounds, ammonia nitrogen, and the like in wastewater with high efficiency without accompanying by-products of secondary pollutants. It aims at providing the processing method of waste water which can be done.
本発明者は、鋭意検討を重ねた結果、硫化水素等の無機および有機化合物と接触および反応させたリモナイト(褐鉄鉱)を過酸化水素等と接触させることにより、ヒドロキシルラジカル等の酸化活性種を生成し、これを利用することにより排水中に含まれる有機化合物等を効率的に酸化分解できることを見いだした。
すなわち、本発明は下記の[1]〜[4]記載の排水の処理方法を提供する。
[1] 硫化水素、硫化物イオン、水硫化物イオン、チオールおよびスルフィドのいずれかと接触させたリモナイトを含む固体触媒に、前記固体触媒との反応により活性酸素種を生成する化合物を添加した排水を接触させる排水の処理方法。
[2] 前記固体触媒が、脱硫剤として使用後、回収されたリモナイトである上記[1]記載の排水の処理方法。
[3] 前記過酸化物が過酸化水素である上記[1]または[2]記載の排水の処理方法。
[4] 前記過酸化物が過酸化水素である上記[4]記載の排水の処理方法。
As a result of intensive studies, the present inventor produced limonite (limonite) contacted and reacted with inorganic and organic compounds such as hydrogen sulfide with hydrogen peroxide and the like to generate oxidizing radicals such as hydroxyl radicals. In addition, the present inventors have found that organic compounds contained in waste water can be efficiently oxidized and decomposed by using this.
That is, the present invention provides the wastewater treatment method according to the following [1] to [4].
[1] Drainage obtained by adding a compound that generates active oxygen species by reaction with the solid catalyst to a solid catalyst containing limonite brought into contact with any of hydrogen sulfide, sulfide ions, hydrosulfide ions, thiols and sulfides Wastewater treatment method for contact.
[2] The method for treating waste water according to the above [1], wherein the solid catalyst is limonite recovered after use as a desulfurizing agent.
[3] The wastewater treatment method according to the above [1] or [2], wherein the peroxide is hydrogen peroxide.
[4] The wastewater treatment method according to the above [4], wherein the peroxide is hydrogen peroxide.
本発明の排水の処理方法は、オゾン発生装置や電解装置等の大がかりな設備を必要としない。そのため、大きな電力消費もなく、ランニングコストが低い。また、沈殿法等と異なり、排液のpH等を制御する必要もない。さらに、本発明の廃液の処理方法では、高い活性を有するヒドロキシルラジカルを酸化剤として用いるため、脱色等の処理速度がきわめて速く、従来法に比べ効率の良い排水処理が可能になる。また、ヒドロキシラジカル生成の触媒として硫化水素と接触後のリモナイトを含む固体触媒を使用しているため、排水中への鉄イオンの溶出も少ない。したがって、本発明の排水の処理方法を用いて処理後の排水は、鉄イオンの除去を行うことなくそのまま環境へ放出することができる。 The wastewater treatment method of the present invention does not require large-scale facilities such as an ozone generator and an electrolyzer. Therefore, there is no large power consumption and the running cost is low. Further, unlike the precipitation method or the like, there is no need to control the pH of the drainage. Furthermore, in the waste liquid treatment method of the present invention, since hydroxyl radicals having high activity are used as an oxidizing agent, the treatment speed for decolorization and the like is extremely fast, and waste water treatment that is more efficient than conventional methods becomes possible. In addition, since a solid catalyst containing limonite after contact with hydrogen sulfide is used as a catalyst for generating hydroxy radicals, iron ions are not easily eluted into the waste water. Therefore, the wastewater after the treatment using the wastewater treatment method of the present invention can be directly released to the environment without removing iron ions.
特に、本発明の排水の処理方法では、排ガスの脱硫剤として使用したリモナイトの廃材をそのまま排水処理に利用することができる。表面の一部が硫化したリモナイトは、排水処理に利用することで、過酸化水素との反応の際にもとの状態に再生し、成型後再度排ガス処理に用いることができる。したがって、脱硫剤として使用後、回収されたリモナイトを固体触媒として用いる場合、その廃棄に要するコストが不要になるだけでなく、リモナイトの半永久的なリサイクル使用が可能になることが期待される。 In particular, in the wastewater treatment method of the present invention, the waste material of limonite used as an exhaust gas desulfurization agent can be used as it is for wastewater treatment. Limonite having a part of its surface sulfided can be used for wastewater treatment to be regenerated to its original state upon reaction with hydrogen peroxide and used again for exhaust gas treatment after molding. Therefore, when the recovered limonite is used as a solid catalyst after being used as a desulfurizing agent, it is expected that not only the cost required for the disposal becomes unnecessary, but also the limonite can be recycled semipermanently.
以下、本発明の実施形態について説明する。
本発明の一実施の形態に係る排水の処理方法(以下、「排水の処理方法」または「処理方法」と略称する場合がある。)において、硫化水素と接触させたリモナイトを含む固体触媒に、過酸化物を添加した排水を接触させ、フェントン様反応により生成するヒドロキシルラジカルを利用して排水中の有機化合物やアンモニア態窒素等を酸化分解する。
Hereinafter, embodiments of the present invention will be described.
In the wastewater treatment method according to an embodiment of the present invention (hereinafter sometimes abbreviated as “wastewater treatment method” or “treatment method”), a solid catalyst containing limonite in contact with hydrogen sulfide is used. The wastewater to which the peroxide is added is brought into contact, and the organic compounds and ammonia nitrogen in the wastewater are oxidatively decomposed using hydroxyl radicals generated by the Fenton-like reaction.
リモナイト(褐鉄鉱)は、針鉄鉱(ゲーサイト、α-FeOOH)、または鱗鉄鉱(レピドクロサイト、γ-FeOOH)の一方または両者の集合体であり、暗褐色または黒色の団塊、土状のものとして産出される。リモナイトは、鉄鉱石や顔料として古くから利用されてきたが、硫化水素と反応する性質を利用して、ペットの体臭や糞尿臭を低減させるための飼料への添加剤や、下水、排ガス等に含まれる硫化水素の除去剤(脱硫剤)としても利用されている。リモナイトによる硫化水素の除去は、硫化水素とリモナイトの表面に存在する鉄とが反応して硫化鉄を生成することによると考えられる。 Limonite (limonite) is an aggregate of one or both of goethite (goethite, α-FeOOH) and spheroite (repidocrocite, γ-FeOOH), dark brown or black nodules, soil-like Is produced as Limonite has long been used as an iron ore and pigment, but it can be used in feed additives, sewage, exhaust gas, etc. to reduce the body odor and excrement odor of pets by utilizing its property of reacting with hydrogen sulfide. It is also used as a removal agent (desulfurization agent) for contained hydrogen sulfide. The removal of hydrogen sulfide by limonite is thought to be due to the reaction between hydrogen sulfide and iron present on the surface of limonite to produce iron sulfide.
本実施の形態に係る排水の処理方法では、硫化水素と接触後のリモナイトを過酸化水素(固体触媒との反応により活性酸素種を生成する化合物の一例)と接触させることにより、きわめて迅速に生成するヒドロキシラジカルを、排水中の有機化合物等の分解に利用する。ヒドロキシルラジカルの生成は、下式に示すフェントン様反応によると考えられる。 In the wastewater treatment method according to the present embodiment, limonite after contact with hydrogen sulfide is generated very rapidly by contacting with hydrogen peroxide (an example of a compound that generates active oxygen species by reaction with a solid catalyst). Hydroxy radicals to be used for decomposition of organic compounds in waste water. The generation of hydroxyl radicals is thought to be due to the Fenton-like reaction shown in the following formula.
この反応により、リモナイトの表面に生成した硫化鉄(II)が酸化されることにより3価の鉄を含むリモナイトが再生されると考えられる。事実、硫化水素と接触後のリモナイトの表面は、硫化鉄に起因すると思われる黒褐色を呈しているが、排水の処理に使用後のリモナイトは黄褐色を呈している。したがって、排水の処理方法に利用後のリモナイトは、そのまま脱硫剤として使用可能であり、脱硫剤と排水処理の固体触媒としてのサイクル利用が可能である。 By this reaction, it is thought that the limonite containing trivalent iron is regenerated by oxidizing iron (II) sulfide generated on the surface of limonite. In fact, the surface of limonite after contact with hydrogen sulfide has a blackish brown color that is thought to be due to iron sulfide, but the limonite after use for wastewater treatment has a yellowish brown color. Therefore, limonite after use in the wastewater treatment method can be used as it is as a desulfurization agent, and can be used as a desulfurization agent and a solid catalyst for wastewater treatment.
従来、脱硫剤として利用された後のリモナイトは、産業廃棄物として廃棄処理されていたが、上述のようなサイクル利用が可能になることにより、脱硫後のリモナイトの処理コストの削減や、環境負荷の低減等の効果も期待される。 Conventionally, limonite after being used as a desulfurizing agent has been disposed of as industrial waste, but by making it possible to use the cycle as described above, the processing cost of limonite after desulfurization can be reduced and the environmental load can be reduced. It is also expected to have an effect such as reduction of
硫化水素と接触後のリモナイトは、例えば、脱硫剤として使用したものをそのまま用いてもよいが、硫化水素と接触後のリモナイトのみを単独で、あるいはバインダーとの混合物を造粒または焼結したものを固体触媒として用いてもよい。造粒または焼結は、任意の公知の方法および装置を用いて行うことができ、造粒または焼結時に必要に応じて用いられるバインダーについても、任意の公知のものを適宜選択して用いることができる。 Limonite after contact with hydrogen sulfide, for example, may be used as it is as a desulfurization agent, but only limonite after contact with hydrogen sulfide alone, or a granulated or sintered mixture of binder May be used as a solid catalyst. Granulation or sintering can be performed using any known method and apparatus, and any known binder can be appropriately selected and used for the binder used as needed during granulation or sintering. Can do.
なお、本実施の形態において、硫化水素と接触させた後のリモナイトの例について説明したが、リモナイトと接触させる含硫黄化合物または化学種は、リモナイトと反応して硫化鉄を生成する限りにおいて任意のものであってよい。そのような含硫黄化合物または化学種の具体例としては、硫化水素、硫化物イオン、水硫化物イオン、チオール、スルフィド等が挙げられる。 In the present embodiment, an example of limonite after being brought into contact with hydrogen sulfide has been described. However, the sulfur-containing compound or chemical species to be brought into contact with limonite is not limited as long as it reacts with limonite to produce iron sulfide. It may be a thing. Specific examples of such sulfur-containing compounds or chemical species include hydrogen sulfide, sulfide ions, hydrosulfide ions, thiols, sulfides and the like.
処理方法の対象となる排水は、特に制限されず、家庭排水、事業排水、中水もしくは下水および屎尿等のいずれであってもよい。これらの排水は、直接処理に供してもよいが、必要に応じて、凝集法、沈殿分離法、浮上分離法、ろ過法、遠心分離法等の公知の固液分離方法を用いて固形分を除去しておくことが好ましい。 The wastewater to be treated is not particularly limited, and may be any of household wastewater, business wastewater, middle water or sewage, and human waste. These wastewaters may be subjected to direct treatment, but if necessary, the solid content can be removed using a known solid-liquid separation method such as agglomeration method, precipitation separation method, flotation separation method, filtration method, and centrifugal separation method. It is preferable to remove it.
排水に接触させる固体触媒の量は、固体触媒中のリモナイトの含有量、固体触媒の粒径、排水の種類および汚染の程度等に応じて適宜決定されるが、脱硫剤として使用後回収されたリモナイトを用いる場合、例えば、排水1Lあたり0.1〜50g、好ましくは5〜25gである。 The amount of the solid catalyst brought into contact with the wastewater is appropriately determined according to the content of limonite in the solid catalyst, the particle size of the solid catalyst, the type of wastewater, the degree of contamination, etc., but recovered after use as a desulfurizing agent. When using limonite, it is 0.1-50g per 1L of waste_water | drain, Preferably it is 5-25g.
排水に添加する過酸化水素の量は、固体触媒中のリモナイトの含有量、固体触媒の粒径、排水の種類および汚染の程度等に応じて適宜決定されるが、排水中の濃度が0.01〜100mmol/Lであることが好ましい。なお、過酸化水素以外に、過炭酸塩、過硫酸塩、過酢酸等の過酸化物を用いることもできるが、価格や取り扱いの容易さ等の観点から、過酸化水素であることが好ましい。 The amount of hydrogen peroxide added to the wastewater is appropriately determined according to the content of limonite in the solid catalyst, the particle size of the solid catalyst, the type of wastewater, the degree of contamination, and the like. It is preferable that it is 01-100 mmol / L. In addition to hydrogen peroxide, peroxides such as percarbonate, persulfate, and peracetic acid can be used, but hydrogen peroxide is preferred from the viewpoint of cost and ease of handling.
過酸化物を含む排水と、固体触媒とを接触させる方法についても特に制限はなく、例えば、排水と過酸化物の混合液に固体触媒を添加し、必要に応じて撹拌等を行うバッチ法、固体触媒を充填したカラムに、排水および過酸化物の混合液を通過させる連続法のいずれであってもよい。 There is no particular limitation on the method of bringing the wastewater containing peroxide into contact with the solid catalyst, for example, a batch method in which the solid catalyst is added to the mixed solution of wastewater and peroxide, and stirring is performed as necessary. Any of continuous methods in which a mixed solution of waste water and peroxide is passed through a column packed with a solid catalyst may be used.
本発明の効果を検討するために行った実施例について説明する。
(1)メチレンブルー水溶液の脱色実験
16μMメチレンブルー水溶液を70mLずつビーカーに取り、何も加えないもの(Blank)を2個、脱硫剤として使用したリモナイトを回収したもの(脱硫剤)、未処理のリモナイト(未処理)、リモナイトの焼結体(焼結)、炭酸水素ナトリウムを加えて焼結したもの(NaHCO3)をそれぞれ2.2gずつ添加したビーカーを各2個用意した。これらの5組のビーカーの一方にのみ、30%過酸化水素100μLを添加し、マグネチックスターラーで撹拌しながら、665nmでの吸光度の経時変化を測定した。過酸化水素を添加しなかった群における測定結果を図1(A)に、過酸化水素を添加した群における測定結果を図1(B)に示す。なお、吸光度は、撹拌開始直前の吸光度に対する百分率(C/C0(%))で示している。
Examples carried out to study the effects of the present invention will be described.
(1) Decolorization experiment of methylene blue aqueous solution Take 70 mL each of 16 μM methylene blue aqueous solution into a beaker, collect 2 blanks (Blank), recover limonite used as desulfurization agent (desulfurization agent), untreated limonite ( Untreated), limonite sintered body (sintered), and two beakers each containing 2.2 g each of sodium carbonate added and sintered (NaHCO 3 ) were prepared. Only in one of these five sets of beakers, 100 μL of 30% hydrogen peroxide was added, and the change with time in absorbance at 665 nm was measured while stirring with a magnetic stirrer. FIG. 1A shows the measurement results in the group to which hydrogen peroxide was not added, and FIG. 1B shows the measurement results in the group to which hydrogen peroxide was added. The absorbance is indicated as a percentage (C / C 0 (%)) with respect to the absorbance immediately before the start of stirring.
図1(A)に示したように、過酸化水素を添加しなかった場合、固体触媒が存在しない試料について、吸光度は殆ど変化しないのに対し、固体触媒を添加した試料については、時間の経過に伴う吸光度の減少がわずかながら観測された。 As shown in FIG. 1 (A), when hydrogen peroxide is not added, the absorbance hardly changes for the sample in which the solid catalyst is not present, whereas for the sample to which the solid catalyst is added, time elapses. A slight decrease in absorbance associated with was observed.
図1(B)に示したように、過酸化水素を添加した場合、脱硫剤として使用したリモナイトを回収したものを添加した試料については、吸光度の急速な減少が観測され、このことは、過酸化水素の添加後1分以内に、ほぼ完全にメチレンブルーが酸化分解されたことを示している。一方、それ以外の試料については、図1(A)とほぼ同様な結果が得られた。これらの結果より、リモナイトは、物理吸着により水溶液中のメチレンブルーの一部を水溶液から除去する能力を有してはいるが、フェントン様反応によるヒドロキシルラジカルの生成を触媒する能力は殆ど有していないこと、および硫化水素と接触させたリモナイトは、フェントン様反応によるヒドロキシルラジカルの生成を触媒する高い能力を有しており、水溶液中の有機化合物をきわめて迅速に酸化分解することができることがわかる。 As shown in FIG. 1B, when hydrogen peroxide was added, a rapid decrease in absorbance was observed for the sample to which the recovered limonite used as the desulfurizing agent was added. It shows that methylene blue was almost completely oxidatively decomposed within 1 minute after the addition of hydrogen oxide. On the other hand, for the other samples, results similar to those shown in FIG. From these results, limonite has the ability to remove a part of methylene blue in the aqueous solution from the aqueous solution by physical adsorption, but has little ability to catalyze the generation of hydroxyl radical by Fenton-like reaction. It can be seen that limonite in contact with hydrogen sulfide has a high ability to catalyze the production of hydroxyl radicals by Fenton-like reaction and can oxidize and decompose organic compounds in aqueous solution very rapidly.
リモナイトにおいて、鉄は主に3価(Fe(III))の状態で存在しているため、上述の反応によりヒドロキシルラジカルを生成することが殆どできないのに対し、硫化水素と接触後のリモナイトの表面には、硫化鉄(II)が存在しており、この2価の鉄がフェントン様反応を起こして、迅速にヒドロキシルラジカルを生成させていると考えられる。 In limonite, iron exists mainly in a trivalent (Fe (III)) state, so that hydroxyl radicals can hardly be generated by the above reaction, whereas the surface of limonite after contact with hydrogen sulfide. Has iron sulfide (II), and this divalent iron is considered to cause a Fenton-like reaction to rapidly generate hydroxyl radicals.
(2)ビリルビン水溶液および屎尿の脱色実験
難分解性のビリルビン水溶液および畜舎より回収した屎尿の試料を用いて、上記(1)と同様の手順により分解実験を行い、ビリルビンに由来する吸収帯の吸光度の経時変化を観測した。メチレンブルー水溶液を用いた実験と同様、脱硫剤として使用したリモナイトを回収したものを添加した試料については、ビリルビン水溶液および屎尿の両者とも、吸光度の急速な減少が観測された。
(2) Decolorization experiment of bilirubin aqueous solution and manure The decomposition experiment was performed in the same procedure as the above (1) using the hardly degradable bilirubin aqueous solution and the manure sample collected from barns, and the absorbance of the absorption band derived from bilirubin Was observed over time. Similar to the experiment using the methylene blue aqueous solution, in the sample added with the recovered limonite used as the desulfurizing agent, a rapid decrease in absorbance was observed in both the bilirubin aqueous solution and the manure.
(3)ヒドロキシルラジカルの生成の確認
ヒドロキシルラジカルと反応して、2,3−または2,5−ジヒドロキシ安息香酸(DHBA)を生成するサリチル酸をトラップ剤として用い、ヒドロキシルラジカルの生成について検討を行った。
(3) Confirmation of hydroxyl radical generation Using salicylic acid that reacts with hydroxyl radical to produce 2,3- or 2,5-dihydroxybenzoic acid (DHBA) as a trapping agent, hydroxyl radical generation was investigated. .
サリチル酸水溶液(350μM、100mL)に、脱硫剤として使用したリモナイトを回収したもの(2g)を接触後、マグネチックスターラーで撹拌しながら過酸化水素を添加した。DHBAの濃度の経時変化は、紫外可視吸収スペクトルの経時変化および高速液体クロマトグラフィー(HPLC)におけるピーク強度の経時変化より、検量線法を用いて決定した。結果を図2に示す。 After contacting the recovered salmonylic acid aqueous solution (350 μM, 100 mL) with the recovered limonite used as the desulfurizing agent (2 g), hydrogen peroxide was added while stirring with a magnetic stirrer. The time course of the concentration of DHBA was determined using a calibration curve method from the time course of the UV-visible absorption spectrum and the time course of the peak intensity in high performance liquid chromatography (HPLC). The results are shown in FIG.
過酸化水素の添加から数分でDHBAの濃度が極大に達していることがわかる。なお、DHBA濃度は、極大に到達した後わずかに減少しているが、これは、ヒドロキシルラジカルによるDHBAの酸化分解に起因すると考えられる。
この結果から、脱硫剤として使用したリモナイトを回収したものを固体触媒として使用した場合、過酸化水素を添加すると、ヒドロキシルラジカルの濃度は速やかに増大し、数分以内で極大に達することが確認された。
It can be seen that the concentration of DHBA reaches a maximum within a few minutes after the addition of hydrogen peroxide. Note that the DHBA concentration slightly decreases after reaching the maximum, which is considered to be due to oxidative decomposition of DHBA by hydroxyl radicals.
From this result, it was confirmed that when the recovered limonite used as a desulfurizing agent was used as a solid catalyst, the concentration of hydroxyl radicals rapidly increased and reached a maximum within a few minutes when hydrogen peroxide was added. It was.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011147514A JP5791981B2 (en) | 2011-07-01 | 2011-07-01 | Wastewater treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011147514A JP5791981B2 (en) | 2011-07-01 | 2011-07-01 | Wastewater treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013013846A true JP2013013846A (en) | 2013-01-24 |
JP5791981B2 JP5791981B2 (en) | 2015-10-07 |
Family
ID=47687065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011147514A Active JP5791981B2 (en) | 2011-07-01 | 2011-07-01 | Wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5791981B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016098460A (en) * | 2014-11-21 | 2016-05-30 | カースル株式会社 | Functional non-woven fabric |
CN107720930A (en) * | 2017-11-20 | 2018-02-23 | 华东理工大学 | The Industrial Wastewater Treatment reagent and its reaction method of a kind of sulfur compound |
-
2011
- 2011-07-01 JP JP2011147514A patent/JP5791981B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016098460A (en) * | 2014-11-21 | 2016-05-30 | カースル株式会社 | Functional non-woven fabric |
CN107720930A (en) * | 2017-11-20 | 2018-02-23 | 华东理工大学 | The Industrial Wastewater Treatment reagent and its reaction method of a kind of sulfur compound |
Also Published As
Publication number | Publication date |
---|---|
JP5791981B2 (en) | 2015-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sheng et al. | Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe (II)/PMS | |
Li et al. | Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe0): Performance, mechanisms, and the role of sulfur species | |
Brillas | Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017–2021 | |
Gao et al. | Copper in LaMnO3 to promote peroxymonosulfate activation by regulating the reactive oxygen species in sulfamethoxazole degradation | |
Kashani et al. | Electro-peroxone application for ciprofloxacin degradation in aqueous solution using sacrificial iron anode: a new hybrid process | |
Neyens et al. | A review of classic Fenton’s peroxidation as an advanced oxidation technique | |
Huang et al. | Degrading arsanilic acid and adsorbing the released inorganic arsenic simultaneously in aqueous media with CuFe2O4 activating peroxymonosulfate system: factors, performance, and mechanism | |
Zhang et al. | Enhanced ferrate (VI)) oxidation of sulfamethoxazole in water by CaO2: The role of Fe (IV) and Fe (V | |
KR101438713B1 (en) | water treatment agent for separating hexavalent chromium from wastewater, and method for treating wastewater using the same | |
Gasim et al. | Peracetic acid activation using heterogeneous catalysts for environmental decontamination: A review | |
Liang et al. | Breaking rate-limiting steps in a red mud-sewage sludge carbon catalyst activated peroxymonosulfate system: Effect of pyrolysis temperature | |
RU2366617C1 (en) | Method for purification of waste waters from thiocynate | |
JP5945682B2 (en) | Treatment method of wastewater containing cyanide | |
Yu et al. | Removal of microorganic pollutants in aquatic environment: The utilization of Fe (VI) | |
Sangeetha et al. | Treatment of stabilized landfill leachate using pyrite-activated persulfate oxidation process | |
Wang et al. | Fast peroxydisulfate oxidation of the antibiotic norfloxacin catalyzed by cyanobacterial biochar | |
RU2480423C1 (en) | Combined method of treating waste water containing organic contaminants | |
CN105347457B (en) | A kind of method that percolate is handled using singlet oxygen | |
CN109437386B (en) | Method for removing metal thallium in wastewater | |
JP5791981B2 (en) | Wastewater treatment method | |
Hu et al. | Overcoming metals redox rate limitations in spinel oxide-driven Fenton-like reactions via synergistic heteroatom doping and carbon anchoring for efficient micropollutant removal | |
JP5637796B2 (en) | Method and apparatus for treating wastewater containing persistent materials | |
Li et al. | Simultaneous decomplexation of Pb-EDTA and elimination of free Pb ions by MoS2/H2O2: Mechanisms and applications | |
Pan et al. | New insight into wastewater treatment by activation of sulfite with humic acid under visible light irradiation | |
KR102193775B1 (en) | Permeable reactive barrier and the method for removing pollutants by using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150714 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150805 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5791981 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |