[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013012377A - Light-emitting device and display device - Google Patents

Light-emitting device and display device Download PDF

Info

Publication number
JP2013012377A
JP2013012377A JP2011143896A JP2011143896A JP2013012377A JP 2013012377 A JP2013012377 A JP 2013012377A JP 2011143896 A JP2011143896 A JP 2011143896A JP 2011143896 A JP2011143896 A JP 2011143896A JP 2013012377 A JP2013012377 A JP 2013012377A
Authority
JP
Japan
Prior art keywords
light
organic
refractive index
layer
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011143896A
Other languages
Japanese (ja)
Inventor
Nobutaka Mizuno
信貴 水野
Masahiro Okuda
昌宏 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011143896A priority Critical patent/JP2013012377A/en
Publication of JP2013012377A publication Critical patent/JP2013012377A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device and a display device, using an organic EL element, capable of improving light extraction efficiency by suppressing attenuation of guided light caused by absorption in a metal film.SOLUTION: The light-emitting device and the display device comprise: a transparent electrode 4, having refractive index higher than that of an organic compound layer 3 and disposed in the opposite side of a light extraction side of an organic EL element 5; a low refractive index layer 6, touching the electrode 4 and having refractive index lower than that of the organic compound layer 3 and thickness thicker than or equal to an emission peak wavelength; and a metal reflection film 7, so that a guided light propagating within the organic EL element 5 is totally reflected between the electrode 4 and the low refractive index layer 6, resulting in reduction in absorption of the guided light in the metal film.

Description

本発明は、有機EL素子(有機エレクトロルミネッセンス素子)を備えた発光装置及び表示装置に関する。   The present invention relates to a light emitting device and a display device including an organic EL element (organic electroluminescence element).

有機EL発光装置は、薄膜で自発光を特徴とした有機EL素子を画素として用いた新方式の発光装置であるが、課題の1つとして発光効率の向上がある。有機EL素子の発光は空気よりも屈折率が高い有機発光層内で起こるため、屈折率差から起こる全反射により有機EL素子から射出された光の大部分は基板に水平な方向に伝播する導波光となる。その結果、空気中に取り出されて利用できる光の割合は約20%乃至30%でしかない。有機EL素子の取り出し効率を上げるには導波光を空気中に取り出す構造を設ける必要がある。特許文献1では、周期構造(回折格子)を有機EL素子の構成要素とすることで、導波光を回折により空気中に取り出す。また特許文献2では、有機EL素子の端面に低屈折率材料を配置することで、有機EL素子内を伝搬する導波光を端面から低屈折率材料中に放射し、低屈折率材料中に放射された光の一部を空気中に取り出している。   The organic EL light-emitting device is a new type of light-emitting device using, as a pixel, an organic EL element that is a thin film and is characterized by self-light emission. One of the problems is an improvement in luminous efficiency. Since light emission of the organic EL element occurs in the organic light emitting layer having a refractive index higher than that of air, most of the light emitted from the organic EL element is propagated in a direction horizontal to the substrate due to total reflection caused by the difference in refractive index. It becomes wave light. As a result, only about 20% to 30% of the light can be extracted and used in the air. In order to increase the extraction efficiency of the organic EL element, it is necessary to provide a structure for extracting the guided light into the air. In Patent Literature 1, guided light is extracted into the air by diffraction by using a periodic structure (diffraction grating) as a component of the organic EL element. Further, in Patent Document 2, by arranging a low refractive index material on the end face of the organic EL element, guided light propagating in the organic EL element is emitted from the end face into the low refractive index material, and is emitted into the low refractive index material. Part of the emitted light is taken out into the air.

特開2006−85985号公報JP 2006-85985 A 米国特許出願公開第2008/0238310号明細書US Patent Application Publication No. 2008/0238310

しかしながら、有機EL発光装置内を伝搬する導波光は金属からなる反射膜で反射する際に一部が該反射膜に吸収され、減衰するため、単純に光取り出し構造を設けるだけでは大きな光取り出し効率の向上は望めない。   However, when the reflected light propagating in the organic EL light emitting device is reflected by the reflective film made of metal, a part of the guided light is absorbed and attenuated by the reflective film. I cannot expect improvement.

本発明の目的は、導波光の金属膜での吸収による減衰を抑制することで、光取り出し効率を向上させた発光装置及び表示装置を提供することにある。   An object of the present invention is to provide a light emitting device and a display device in which light extraction efficiency is improved by suppressing attenuation due to absorption of guided light by a metal film.

本発明の第1は、一対の透明電極と、前記透明電極の間に配置された発光層を含む有機化合物層とを有する有機EL素子と、
前記有機EL素子の光取り出し面とは逆側の透明電極が、前記有機化合物層よりも屈折率が高く、
前記有機EL素子の光取り出し面とは逆側に、有機化合物層よりも屈折率が低い低屈折率層と、金属反射膜とを前記有機化合物層側からこの順で有し、
前記低屈折率層の膜厚が、前記透明電極との界面において、低屈折率層から臨界角以上で入射する光が全反射を起こす厚さを有し、
導波光を取り出す光取り出し構造が設けられていることを特徴とする発光装置である。
本発明の第2は、赤色を発する有機EL素子と、緑色を発する有機EL素子と、青色を発する有機EL素子を備えた表示装置であって、
前記有機EL素子は、一対の透明電極と、前記透明電極の間に配置された発光層を含む有機化合物層とを有し、
前記有機EL素子の光取り出し面とは逆側の透明電極が、前記有機化合物層よりも屈折率が高く、
前記有機EL素子の光取り出し面とは逆側に、有機化合物層よりも屈折率が低い低屈折率層と、金属反射膜とを前記有機化合物層側からこの順で有し、
前記低屈折率層の膜厚が、前記透明電極との界面において、低屈折率層から臨界角以上で入射する光が全反射を起こす厚さを有し、
導波光を取り出す光取り出し構造が設けられ、
前記低屈折率層の厚さが全ての有機EL素子に共通しており、且つ、赤色発光の発光ピーク波長以上であることを特徴とする表示装置である。
The first of the present invention is an organic EL device having a pair of transparent electrodes and an organic compound layer including a light emitting layer disposed between the transparent electrodes,
The transparent electrode opposite to the light extraction surface of the organic EL element has a refractive index higher than that of the organic compound layer,
On the side opposite to the light extraction surface of the organic EL element, a low refractive index layer having a refractive index lower than that of the organic compound layer, and a metal reflective film in this order from the organic compound layer side,
The film thickness of the low refractive index layer has a thickness that causes total reflection of light incident at a critical angle or more from the low refractive index layer at the interface with the transparent electrode,
The light-emitting device is provided with a light extraction structure for extracting guided light.
A second aspect of the present invention is a display device including an organic EL element that emits red, an organic EL element that emits green, and an organic EL element that emits blue.
The organic EL element has a pair of transparent electrodes and an organic compound layer including a light emitting layer disposed between the transparent electrodes,
The transparent electrode opposite to the light extraction surface of the organic EL element has a refractive index higher than that of the organic compound layer,
On the side opposite to the light extraction surface of the organic EL element, a low refractive index layer having a refractive index lower than that of the organic compound layer, and a metal reflective film in this order from the organic compound layer side,
The film thickness of the low refractive index layer has a thickness that causes total reflection of light incident at a critical angle or more from the low refractive index layer at the interface with the transparent electrode,
A light extraction structure for extracting guided light is provided,
The display device is characterized in that the thickness of the low refractive index layer is common to all organic EL elements and is equal to or greater than the emission peak wavelength of red light emission.

本発明によれば、有機EL素子の光取り出し側とは反対側の電極を透明電極とし、該透明電極側に所定の厚さの低屈折率層と金属反射膜とを設けることにより、金属反射膜での導波光の吸収による減衰を抑制することができる。よって、導波光の取り出し効率を上げ、発光効率が向上した発光装置及び表示装置が提供される。   According to the present invention, the electrode opposite to the light extraction side of the organic EL element is used as a transparent electrode, and a low refractive index layer having a predetermined thickness and a metal reflection film are provided on the transparent electrode side, thereby providing a metal reflection. Attenuation due to absorption of guided light in the film can be suppressed. Therefore, a light emitting device and a display device with improved guided light extraction efficiency and improved light emission efficiency are provided.

本発明の発光装置の一実施形態の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of one Embodiment of the light-emitting device of this invention. 低屈折率層の膜厚と金属反射膜の光の吸収率との関係を示す図である。It is a figure which shows the relationship between the film thickness of a low-refractive-index layer, and the light absorption rate of a metal reflective film. 本発明の発光装置の金属反射膜での光の反射率の角度依存性を示す図である。It is a figure which shows the angle dependence of the reflectance of the light in the metal reflective film of the light-emitting device of this invention. 図3の反射率を5乗したものの角度依存性を示す図である。It is a figure which shows the angle dependence of what raised the reflectance of FIG. 3 to the 5th power. 本発明の発光装置の構成例を模式的に示す断面図である。It is sectional drawing which shows typically the structural example of the light-emitting device of this invention. 本発明の発光装置の他の構成例を模式的に示す断面図である。It is sectional drawing which shows the other structural example of the light-emitting device of this invention typically. 本発明の発光装置の他の構成例を模式的に示す断面図である。It is sectional drawing which shows the other structural example of the light-emitting device of this invention typically.

本発明の発光装置及び表示装置は、有機EL素子の光取り出し側とは逆側に、低屈折率層と金属反射膜とを備えており、光取り出し側の電極が有機化合物層よりも屈折率が高い。よって、有機EL素子内で伝播する導波光の一部は光取り出し側の電極と低屈折率層との間で全反射し、従来の金属電極で反射する場合よりも光の吸収が低減される。さらに、本発明においては、低屈折率層を所定の厚さに調整することで、光取り出し側の電極と低屈折率層との間で導波光が全反射する際に低屈折率層側にしみ出すエバネッセント光の金属反射膜への吸収が防止され、導波光の減衰がさらに低減される。   The light emitting device and the display device of the present invention include a low refractive index layer and a metal reflective film on the side opposite to the light extraction side of the organic EL element, and the electrode on the light extraction side has a refractive index higher than that of the organic compound layer. Is expensive. Therefore, a part of the guided light propagating in the organic EL element is totally reflected between the light extraction side electrode and the low refractive index layer, and the light absorption is reduced as compared with the case where it is reflected by the conventional metal electrode. . Furthermore, in the present invention, by adjusting the low refractive index layer to a predetermined thickness, when the guided light is totally reflected between the electrode on the light extraction side and the low refractive index layer, the low refractive index layer side is changed. Absorption of the evanescent light that protrudes into the metal reflective film is prevented, and attenuation of the guided light is further reduced.

以下、本発明の発光装置の実施の形態について図面を参照して説明する。尚、本明細書で特に図示又は記載されない部分に関しては、当該技術分野の周知又は公知技術を適用する。また以下に説明する実施形態は、発明の一つの実施形態であって、これらに限定されるものではない。   Embodiments of a light emitting device according to the present invention will be described below with reference to the drawings. In addition, the well-known or well-known technique of the said technical field is applied regarding the part which is not illustrated or described in particular in this specification. The embodiment described below is one embodiment of the present invention and is not limited thereto.

図1は、本発明の発光装置の一実施形態の構成を模式的に示す断面図である。本実施形態の発光装置は、有機EL素子が形成された基板側に光を取り出すボトムエミッション型である。   FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a light emitting device of the present invention. The light emitting device of the present embodiment is a bottom emission type that extracts light to the substrate side on which the organic EL element is formed.

本実施形態では、透明な絶縁性基板1上に有機EL素子5が配置されている。有機EL素子5は、一対の透明電極2,4間に挟まれた、発光層を含む有機化合物層(有機EL層)3を備えたものである。具体的には、基板1の上にアノード電極2と、アノード電極2上に設けられた有機化合物層3と、有機化合物層3の上に設けられたカソード電極4とを有している。本発明においては、アノード電極2、有機化合物層3、カソード電極4、を合わせて有機EL素子5とする。   In the present embodiment, the organic EL element 5 is disposed on the transparent insulating substrate 1. The organic EL element 5 includes an organic compound layer (organic EL layer) 3 including a light emitting layer sandwiched between a pair of transparent electrodes 2 and 4. Specifically, the substrate 1 has an anode electrode 2, an organic compound layer 3 provided on the anode electrode 2, and a cathode electrode 4 provided on the organic compound layer 3. In the present invention, the anode electrode 2, the organic compound layer 3, and the cathode electrode 4 are combined to form an organic EL element 5.

絶縁性基板1には屈折率1.5程度のガラス基板が一般的に用いられる。アノード電極2としては、正孔注入性の観点から仕事関数の高い電極が好ましく、ITO,IZOといった透明電極が挙げられる。尚、絶縁性基板1の屈折率が有機化合物層3の屈折率よりも低い場合には、アノード電極2と絶縁性基板1との界面で全反射が起こる。有機化合物層3には発光層以外に、正孔注入層、正孔輸送層、電子輸送層、電子注入層を含むことができ、各層には公知の材料を使用することができ、成膜手法も蒸着や転写等公知の成膜手法を用いることができる。カソード電極4としては、ITO,IZOといった透明電極を用い、必要に応じて公知の電子注入層を用いることで電子注入性を確保するのがよい。   As the insulating substrate 1, a glass substrate having a refractive index of about 1.5 is generally used. As the anode electrode 2, an electrode having a high work function is preferable from the viewpoint of hole injection properties, and transparent electrodes such as ITO and IZO are exemplified. When the refractive index of the insulating substrate 1 is lower than the refractive index of the organic compound layer 3, total reflection occurs at the interface between the anode electrode 2 and the insulating substrate 1. In addition to the light emitting layer, the organic compound layer 3 can include a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer, and each layer can be made of a known material. Also, a known film forming method such as vapor deposition or transfer can be used. As the cathode electrode 4, it is preferable to use a transparent electrode such as ITO or IZO, and to ensure the electron injection property by using a known electron injection layer as required.

ここで、従来の有機EL素子においてはカソード電極4が高反射な金属膜からなる。そのため、絶縁性基板1と空気との界面と、カソード電極4との間、もしくは、アノード電極2と絶縁性基板1との界面と、カソード電極4との間を、反射を繰り返しながら導波光は伝搬していくことになる。しかしながら、一般的に高反射金属と言われるAlやAgでの反射率は90%乃至95%程度であり、5%乃至10%程度は金属膜に吸収される。従って、有機EL素子内を5往復すると金属膜における吸収は20%乃至40%程度になり、導波光を取り出す構造を設けたとしても大きな光取り出し効率の向上は望めない。   Here, in the conventional organic EL element, the cathode electrode 4 is made of a highly reflective metal film. Therefore, the guided light is repeatedly reflected between the interface between the insulating substrate 1 and air and the cathode electrode 4 or between the interface between the anode electrode 2 and the insulating substrate 1 and the cathode electrode 4. Will propagate. However, the reflectance of Al or Ag, which is generally called a highly reflective metal, is about 90% to 95%, and about 5% to 10% is absorbed by the metal film. Therefore, when the inside of the organic EL element is reciprocated five times, the absorption in the metal film becomes about 20% to 40%, and even if a structure for extracting guided light is provided, a large improvement in light extraction efficiency cannot be expected.

そこで本発明では、光取り出し側とは反対側に位置する電極(本実施形態ではカソード電極4)に接して、有機化合物層3よりも屈折率の低い材料からなる低屈折率層6と、金属反射膜7とをこの順に設ける。そして、光取り出し側とは反対側の電極(本実施形態ではカソード電極4)を、有機化合物層3よりも屈折率の高い透明電極とする。これにより、有機EL素子5内を伝搬する導波光は、カソード電極4と低屈折率層6との界面で全反射し、金属反射膜7に導波光が入射しないため、金属反射膜7への導波光の吸収が抑制される。   Therefore, in the present invention, a low refractive index layer 6 made of a material having a refractive index lower than that of the organic compound layer 3 in contact with an electrode (cathode electrode 4 in the present embodiment) located on the side opposite to the light extraction side, a metal The reflective film 7 is provided in this order. The electrode opposite to the light extraction side (the cathode electrode 4 in this embodiment) is a transparent electrode having a higher refractive index than the organic compound layer 3. Thereby, the guided light propagating in the organic EL element 5 is totally reflected at the interface between the cathode electrode 4 and the low refractive index layer 6, and the guided light does not enter the metal reflecting film 7. Absorption of guided light is suppressed.

ここで、導波光をカソード電極4と低屈折率層6との界面で全反射させるための条件は2つあり、低屈折率層6の屈折率が有機化合物層3の屈折率よりも小さいことと、低屈折率層6が導波光が全反射を起こすのに十分な厚みを有していることである。有機化合物層3の屈折率以上の屈折率を有するカソード電極4と低屈折率層6との界面において、臨界角以上の入射角度で導波光が入射すると近接場光であるエバネッセント波が生じる。低屈折率層6の膜厚が薄いとエバネッセント波が金属反射膜7に入射することで金属吸収もしくは表面プラズモンによる反射率低下が起こる。ここで、金属反射膜7に入射したエバネッセント波は全て吸収されると仮定して、低屈折率層6の膜厚dと吸収率の関係を示したのが図2である。横軸は基板に垂直な方向を0°とした時の有機化合物層3内における導波光の入射角度であり、縦軸は低屈折率層6の膜厚を波長で規格化(d/λ)したものである。計算条件としては有機化合物層3の屈折率を1.8、カソード電極4の屈折率を2.0、低屈折率層6の屈折率を1.4とした。図2から分かる通り、本条件では60°以上の入射角度を有する導波光の吸収率を5%以下にするには低屈折率層6の膜厚dを入射波長λ以上にすればよい。さらには、60°以上の入射角度を有する導波光の吸収率を1%以下にするには低屈折率層6の膜厚dを入射波長λの1.5倍以上にすればよい。実際は金属反射膜7に入射したエバネッセント波全てが吸収されるわけではないので、低屈折率層6の膜厚dを波長λ以上にすれば従来の有機EL素子に比べて金属膜による吸収を抑えることができる。   Here, there are two conditions for totally reflecting the guided light at the interface between the cathode electrode 4 and the low refractive index layer 6, and the refractive index of the low refractive index layer 6 is smaller than the refractive index of the organic compound layer 3. In other words, the low refractive index layer 6 has a sufficient thickness to cause total reflection of the guided light. When guided light is incident at an incident angle greater than the critical angle at the interface between the cathode electrode 4 having a refractive index higher than that of the organic compound layer 3 and the low refractive index layer 6, an evanescent wave as near-field light is generated. When the film thickness of the low refractive index layer 6 is thin, an evanescent wave is incident on the metal reflection film 7, so that the reflectivity decreases due to metal absorption or surface plasmon. Here, FIG. 2 shows the relationship between the film thickness d of the low refractive index layer 6 and the absorptance, assuming that all the evanescent waves incident on the metal reflecting film 7 are absorbed. The horizontal axis is the incident angle of guided light in the organic compound layer 3 when the direction perpendicular to the substrate is 0 °, and the vertical axis is the thickness of the low refractive index layer 6 normalized by wavelength (d / λ). It is a thing. As calculation conditions, the refractive index of the organic compound layer 3 was 1.8, the refractive index of the cathode electrode 4 was 2.0, and the refractive index of the low refractive index layer 6 was 1.4. As can be seen from FIG. 2, under this condition, the film thickness d of the low refractive index layer 6 may be set to the incident wavelength λ or more in order to make the absorption rate of the guided light having an incident angle of 60 ° or more 5% or less. Furthermore, the film thickness d of the low refractive index layer 6 may be 1.5 times or more of the incident wavelength λ in order to make the absorption rate of the guided light having an incident angle of 60 ° or more 1% or less. Actually, not all evanescent waves incident on the metal reflection film 7 are absorbed, so if the film thickness d of the low refractive index layer 6 is set to a wavelength λ or more, the absorption by the metal film is suppressed as compared with the conventional organic EL element. be able to.

尚、通常有機化合物層3で発光した光のうち入射角が約35°乃至90°の光が全反射により有機EL素子5内に閉じ込められるため、入射角60°以上の光は導波光の内の半分以上を占める。入射角が60°未満の導波光の大部分は、カソード電極4と低屈折率層6との界面において臨界角内のため、金属反射膜7と、絶縁性基板1と空気との界面との間で反射を繰り返すことになる。しかしながら、入射角が60°以上の導波光において金属膜による吸収を抑制しておけば、本発明の効果は期待できる。   Note that light having an incident angle of about 35 ° to 90 ° is normally confined in the organic EL element 5 by total reflection among the light emitted from the organic compound layer 3, so that light having an incident angle of 60 ° or more is included in the guided light. Accounts for more than half. Most of the guided light having an incident angle of less than 60 ° is within the critical angle at the interface between the cathode electrode 4 and the low refractive index layer 6, so that the metal reflection film 7 and the interface between the insulating substrate 1 and the air The reflection will be repeated between them. However, the effect of the present invention can be expected if the absorption by the metal film is suppressed in the guided light having an incident angle of 60 ° or more.

本発明の効果についてさらに詳しく説明する。本発明における有機化合物層3から金属反射膜7に入射した光の反射率を示したものが図3である。低屈折率層6の膜厚は波長と同じ520nmとし、金属反射膜7はAlとして波長520nmの光の反射率の計算を行った。比較例として従来の有機EL素子における有機化合物層3から直接金属反射膜に光が入射した際の結果も記載した。低屈折率層6の屈折率を、1.2と1.4の2通りで計算しているが、どちらの場合でも従来の構成よりも反射率が高く、金属反射膜での吸収が抑えられていることが分かる。一般的に有機EL素子におけるカソード電極からアノード電極までの膜厚は200nm乃至300nm程度であるため、5μm導波すると導波光はカソード電極とアノード電極との間を5乃至10往復程度することになる。導波光が5往復したという前提で図3における反射率を5乗したものが図4であるが、5往復すると従来の構成における導波光は半減することが分かる。それに対して本構成では、低屈折率層6の屈折率が1.4の場合は従来構成に比べて略1.5倍、低屈折率層6の屈折率が1.2の場合は従来構成に比べて略2.0倍の導波光が存在することが分かる。尚、有機EL素子を構成する有機材料やITO,IZOといった透明電極は短波長領域で若干吸収があるものの、可視光のほとんどの波長帯域において吸収はほぼ無視できる。従って、導波光の減衰の大半は金属反射膜による吸収であり、係る吸収を抑制する本発明は効果的である。   The effect of the present invention will be described in more detail. FIG. 3 shows the reflectance of light incident on the metal reflective film 7 from the organic compound layer 3 in the present invention. The film thickness of the low refractive index layer 6 was set to 520 nm which is the same as the wavelength, and the reflectance of light having a wavelength of 520 nm was calculated with the metal reflecting film 7 being Al. As a comparative example, the result when light is directly incident on the metal reflection film from the organic compound layer 3 in the conventional organic EL element is also described. The refractive index of the low refractive index layer 6 is calculated in two ways of 1.2 and 1.4. In either case, the reflectance is higher than the conventional configuration, and absorption in the metal reflective film can be suppressed. I understand that In general, the film thickness from the cathode electrode to the anode electrode in an organic EL element is about 200 nm to 300 nm. Therefore, when guided by 5 μm, the guided light travels between the cathode electrode and the anode electrode about 5 to 10 times. . FIG. 4 shows the fifth power of the reflectance in FIG. 3 on the assumption that the guided light has made five round trips, but it can be seen that the guided light in the conventional configuration is halved after five round trips. On the other hand, in this configuration, when the refractive index of the low refractive index layer 6 is 1.4, it is about 1.5 times that of the conventional configuration, and when the refractive index of the low refractive index layer 6 is 1.2, the conventional configuration. It can be seen that there is approximately 2.0 times as much guided light as. Although the organic material constituting the organic EL element and the transparent electrode such as ITO and IZO have some absorption in the short wavelength region, the absorption is almost negligible in most wavelength bands of visible light. Therefore, most of the attenuation of the guided light is absorption by the metal reflection film, and the present invention for suppressing such absorption is effective.

また、金属反射膜7による吸収を抑制された導波光を、光取り出し構造を設けて空気中に取り出すと光取り出し効率の向上が見込める。図1においては、光取り出し構造として光取り出し層8を設けている。本発明において、光取り出し構造としては、反射、回折、散乱等を利用して導波光を空気中に取り出す構造や、有機EL素子の端面に低屈折率材料を配置する構造がある。光取り出し構造を狭ピッチで配置すると、発光画素の開口率低下や作製手法が難解になることから、数μmピッチで配置されることが多い。   Further, when the guided light whose absorption by the metal reflecting film 7 is suppressed is provided in the air by providing a light extraction structure, the light extraction efficiency can be improved. In FIG. 1, a light extraction layer 8 is provided as a light extraction structure. In the present invention, examples of the light extraction structure include a structure in which guided light is extracted into the air using reflection, diffraction, scattering, and the like, and a structure in which a low refractive index material is disposed on the end face of the organic EL element. If the light extraction structures are arranged at a narrow pitch, the aperture ratio of the light emitting pixels is lowered and the manufacturing method becomes difficult, and therefore, the light extraction structures are often arranged at a pitch of several μm.

光取り出し構造の具体例として、以下の実施例に有機EL素子の端面に低屈折率材料を配置する構造(実施例1)、回折格子構造(実施例2)、反射ミラー構造(実施例3)を挙げるが、本発明は他の光取り出し構造にも適用できる。例えば、導波光を散乱により取り出す手法は、回折格子同様、発光装置内を往復しながら散乱により外部に取り出すことになるため本発明による色度調整は有効である。   As specific examples of the light extraction structure, in the following examples, a structure in which a low refractive index material is disposed on the end face of an organic EL element (Example 1), a diffraction grating structure (Example 2), and a reflection mirror structure (Example 3) The present invention can be applied to other light extraction structures. For example, the method of extracting guided light by scattering is effective for adjusting the chromaticity according to the present invention because it is extracted to the outside by scattering while reciprocating in the light emitting device as in the diffraction grating.

上記の発光装置は表示装置にも適用できる。本発明の表示装置においては、赤色を発する有機EL素子と、緑色を発する有機EL素子と、青色を発する有機EL素子を備え、これらの有機EL素子に対して共通の低屈折率層を設け、その厚さとしては、赤色発光のピーク波長以上とすることが好ましい。   The above light-emitting device can also be applied to a display device. In the display device of the present invention, the organic EL element that emits red, the organic EL element that emits green, and the organic EL element that emits blue, and a common low refractive index layer is provided for these organic EL elements, The thickness is preferably equal to or greater than the peak wavelength of red light emission.

(実施例1)
光取り出し構造として、青色発光の有機EL素子の端面(面内方向端部)に低屈折率材料を配置した実施例を図5を用いて説明する。アノード電極2としてITOが成膜された透明な絶縁性基板1上に、低屈折率材料(n=1.2)であるポーラスシリカを低屈折率構造体18として成膜する。そして通常のフォトリソ工程により幅1μm、高さ0.3μmのグリッドを作製する。この際、有機EL発光領域として5μm×5μmの開口部を設ける。
Example 1
An embodiment in which a low refractive index material is disposed on the end face (end portion in the in-plane direction) of a blue light emitting organic EL element as a light extraction structure will be described with reference to FIG. Porous silica, which is a low refractive index material (n = 1.2), is formed as a low refractive index structure 18 on a transparent insulating substrate 1 on which ITO is formed as the anode electrode 2. Then, a grid having a width of 1 μm and a height of 0.3 μm is produced by a normal photolithography process. At this time, an opening of 5 μm × 5 μm is provided as the organic EL light emitting region.

さらに、正孔注入層、正孔輸送層、青色発光の有機発光層、電子輸送層、電子注入層からなる有機化合物層3を蒸着により成膜し、カソード電極4としてIZOをスパッタする。尚、有機化合物層の材料としては公知のものが使用できるため詳細は省略する。   Further, an organic compound layer 3 including a hole injection layer, a hole transport layer, a blue light emitting organic light emitting layer, an electron transport layer, and an electron injection layer is formed by vapor deposition, and IZO is sputtered as the cathode electrode 4. In addition, since a well-known thing can be used as a material of an organic compound layer, it abbreviate | omits for details.

低屈折率層6としてLiF(n=1.4)蒸着により、有機EL素子の発光ピーク波長と同程度の膜厚で成膜し、さらに、金属反射膜7としてAgを蒸着により成膜した。さらに最後にキャップ缶で封止を行った。   The low refractive index layer 6 was formed by LiF (n = 1.4) vapor deposition with a film thickness approximately the same as the emission peak wavelength of the organic EL element, and the metal reflective film 7 was formed by vapor deposition. Finally, sealing was performed with a cap can.

以上の工程を真空一貫で行うことで、色純度が改善された導波光を有機EL素子5の端面に配置された低屈折率構造体18より空気中に取り出すことができる。   By performing the above steps consistently in a vacuum, guided light with improved color purity can be taken out into the air from the low refractive index structure 18 disposed on the end face of the organic EL element 5.

(実施例2)
図6は、本実施例の構成を模式的に示す断面図であり、本実施例の発光装置は、有機EL素子が形成された基板とは逆側に光を取り出すトップエミッション型である。光取り出し構造としては、有機EL素子の光取り出し側に回折格子を有する。回折格子の回折効率は通常5%乃至20%程度と低いため、回折により取り出すまでに導波光は発光装置内を往復することになる。従って、光取り出し構造として回折格子を設けた場合にも、導波光の色度を調整する本発明は有効である。以下具体的に説明する。
(Example 2)
FIG. 6 is a cross-sectional view schematically showing the configuration of this example. The light emitting device of this example is a top emission type that extracts light on the side opposite to the substrate on which the organic EL element is formed. As a light extraction structure, a diffraction grating is provided on the light extraction side of the organic EL element. Since the diffraction efficiency of the diffraction grating is usually as low as 5% to 20%, the guided light travels back and forth within the light emitting device before extraction by diffraction. Therefore, the present invention for adjusting the chromaticity of the guided light is effective even when a diffraction grating is provided as the light extraction structure. This will be specifically described below.

本実施例は、絶縁性基板1の上に、金属反射膜7、低屈折率層6、アノード電極2、有機化合物層3、カソード電極4を形成したものである。カソード電極4の上部には有機EL素子5を水分や酸素から保護する保護膜28と光取り出し構造として機能する回折格子層29がある。   In this embodiment, a metal reflection film 7, a low refractive index layer 6, an anode electrode 2, an organic compound layer 3, and a cathode electrode 4 are formed on an insulating substrate 1. Above the cathode electrode 4 is a protective film 28 that protects the organic EL element 5 from moisture and oxygen and a diffraction grating layer 29 that functions as a light extraction structure.

保護膜28は光の透過率が高く、防湿性に優れた部材が好ましく、窒化シリコン膜、酸化窒化シリコン膜が好適であり、成膜法としてはCVD法のような公知の手法が適用できる。回折格子層29は樹脂材料にナノインプリント法を適用すれば作製できる。樹脂材料としては熱硬化型樹脂、熱可塑性樹脂、光硬化型樹脂を用いることができる。一例としては、塗布した熱硬化型樹脂に対して所望の周期構造を成形するための型を押し当てたまま、熱により硬化させ、型を剥離すればよい。回折格子の周期は発光ピーク波長の0.5倍乃至1.5倍程度が、回折効率が高いため好適である。   The protective film 28 is preferably a member having high light transmittance and excellent moisture resistance, and is preferably a silicon nitride film or a silicon oxynitride film. A known method such as a CVD method can be applied as a film forming method. The diffraction grating layer 29 can be produced by applying a nanoimprint method to a resin material. As the resin material, a thermosetting resin, a thermoplastic resin, or a photocurable resin can be used. As an example, the mold may be peeled by being cured by heat while pressing a mold for forming a desired periodic structure against the applied thermosetting resin. The period of the diffraction grating is preferably about 0.5 to 1.5 times the emission peak wavelength because the diffraction efficiency is high.

(実施例3)
図7は、本実施例の構成を模式的に示す断面図であり、本実施例の発光装置は、有機EL素子が形成された基板とは逆側に光を取り出すトップエミッション型である。光取り出し構造としては、導波光を反射により空気中に取り出す反射ミラー38を有する。
(Example 3)
FIG. 7 is a cross-sectional view schematically showing the configuration of this example. The light emitting device of this example is a top emission type in which light is extracted to the side opposite to the substrate on which the organic EL element is formed. The light extraction structure includes a reflection mirror 38 that extracts guided light into the air by reflection.

本実施例における有機EL素子は、絶縁性基板1の上に、金属反射膜37、低屈折率層6、アノード電極2、有機化合物層3、カソード電極4を形成したものである。本実施例では外光の反射を抑えるために有機EL素子5の光取り出し面とは逆側に低反射膜である金属反射膜37を有する。低反射膜の定義としては可視光における反射率が20%以下、より好ましくは10%以下であることとする。導波光はアノード電極2と低屈折率層3との界面と、カソード電極4と空気との界面、との間を、全反射を繰り返して反射ミラー38により空気中に取り出される。低屈折率層6の膜厚を有機EL素子5の発光ピーク波長以上の膜厚にすることで、導波光は低反射膜である金属反射膜7に吸収されること無く、反射ミラーに入射する。従って、本実施例では、外光反射の低減と光取り出し効率の向上が両立される。   The organic EL element in this example is obtained by forming a metal reflective film 37, a low refractive index layer 6, an anode electrode 2, an organic compound layer 3, and a cathode electrode 4 on an insulating substrate 1. In this embodiment, in order to suppress reflection of external light, a metal reflection film 37 which is a low reflection film is provided on the side opposite to the light extraction surface of the organic EL element 5. The definition of the low reflection film is that the reflectance in visible light is 20% or less, more preferably 10% or less. The guided light repeats total reflection between the interface between the anode electrode 2 and the low refractive index layer 3 and the interface between the cathode electrode 4 and air and is taken out into the air by the reflection mirror 38. By making the film thickness of the low refractive index layer 6 equal to or greater than the emission peak wavelength of the organic EL element 5, the guided light is incident on the reflection mirror without being absorbed by the metal reflection film 7 which is a low reflection film. . Therefore, in the present embodiment, both reduction of external light reflection and improvement of light extraction efficiency are achieved.

2,4:透明電極、3:有機化合物層、5:有機EL素子、6:低屈折率層、7:金属反射膜   2, 4: Transparent electrode, 3: Organic compound layer, 5: Organic EL element, 6: Low refractive index layer, 7: Metal reflection film

Claims (6)

一対の透明電極と、前記透明電極の間に配置された発光層を含む有機化合物層とを有する有機EL素子と、
前記有機EL素子の光取り出し面とは逆側の透明電極が、前記有機化合物層よりも屈折率が高く、
前記有機EL素子の光取り出し面とは逆側に、有機化合物層よりも屈折率が低い低屈折率層と、金属反射膜とを前記有機化合物層側からこの順で有し、
前記低屈折率層の膜厚が、前記透明電極との界面において、低屈折率層から臨界角以上で入射する光が全反射を起こす厚さを有し、
導波光を取り出す光取り出し構造が設けられていることを特徴とする発光装置。
An organic EL element having a pair of transparent electrodes and an organic compound layer including a light emitting layer disposed between the transparent electrodes;
The transparent electrode opposite to the light extraction surface of the organic EL element has a refractive index higher than that of the organic compound layer,
On the side opposite to the light extraction surface of the organic EL element, a low refractive index layer having a refractive index lower than that of the organic compound layer, and a metal reflective film in this order from the organic compound layer side,
The film thickness of the low refractive index layer has a thickness that causes total reflection of light incident at a critical angle or more from the low refractive index layer at the interface with the transparent electrode,
A light-emitting device having a light extraction structure for extracting guided light.
前記低屈折率層の膜厚が、前記有機EL素子の発光ピーク波長以上であることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein a film thickness of the low refractive index layer is equal to or greater than a light emission peak wavelength of the organic EL element. 前記光取り出し構造が、前記有機EL素子の面内方向端部に配置された、有機化合物層よりも屈折率の低い低屈折率構造体であることを特徴とする請求項1又は2に記載の発光装置。   The said light extraction structure is a low-refractive-index structure body with a refractive index lower than the organic compound layer arrange | positioned in the in-plane direction edge part of the said organic EL element, The Claim 1 or 2 characterized by the above-mentioned. Light emitting device. 前記光取り出し構造が、導波光を反射、回折、或いは散乱することにより外部に取り出す構造体であることを特徴とする請求項1又は2に記載の発光装置。   The light-emitting device according to claim 1, wherein the light extraction structure is a structure that extracts guided light by reflecting, diffracting, or scattering the guided light. 前記金属反射膜が可視光における反射率が20%以下の低反射膜であることを特徴とする請求項1乃至4のいずれか1項に記載の発光装置。   5. The light emitting device according to claim 1, wherein the metal reflection film is a low reflection film having a reflectance in visible light of 20% or less. 赤色を発する有機EL素子と、緑色を発する有機EL素子と、青色を発する有機EL素子を備えた表示装置であって、
前記有機EL素子は、一対の透明電極と、前記透明電極の間に配置された発光層を含む有機化合物層とを有し、
前記有機EL素子の光取り出し面とは逆側の透明電極が、前記有機化合物層よりも屈折率が高く、
前記有機EL素子の光取り出し面とは逆側に、有機化合物層よりも屈折率が低い低屈折率層と、金属反射膜とを前記有機化合物層側からこの順で有し、
前記低屈折率層の膜厚が、前記透明電極との界面において、低屈折率層から臨界角以上で入射する光が全反射を起こす厚さを有し、
導波光を取り出す光取り出し構造が設けられ、
前記低屈折率層の厚さが全ての有機EL素子に共通しており、且つ、赤色発光の発光ピーク波長以上であることを特徴とする表示装置。
A display device comprising an organic EL element that emits red, an organic EL element that emits green, and an organic EL element that emits blue,
The organic EL element has a pair of transparent electrodes and an organic compound layer including a light emitting layer disposed between the transparent electrodes,
The transparent electrode opposite to the light extraction surface of the organic EL element has a refractive index higher than that of the organic compound layer,
On the side opposite to the light extraction surface of the organic EL element, a low refractive index layer having a refractive index lower than that of the organic compound layer, and a metal reflective film in this order from the organic compound layer side,
The film thickness of the low refractive index layer has a thickness that causes total reflection of light incident at a critical angle or more from the low refractive index layer at the interface with the transparent electrode,
A light extraction structure for extracting guided light is provided,
A display device characterized in that the thickness of the low refractive index layer is common to all organic EL elements and is equal to or greater than the emission peak wavelength of red light emission.
JP2011143896A 2011-06-29 2011-06-29 Light-emitting device and display device Withdrawn JP2013012377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011143896A JP2013012377A (en) 2011-06-29 2011-06-29 Light-emitting device and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143896A JP2013012377A (en) 2011-06-29 2011-06-29 Light-emitting device and display device

Publications (1)

Publication Number Publication Date
JP2013012377A true JP2013012377A (en) 2013-01-17

Family

ID=47686097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143896A Withdrawn JP2013012377A (en) 2011-06-29 2011-06-29 Light-emitting device and display device

Country Status (1)

Country Link
JP (1) JP2013012377A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108618A1 (en) * 2012-01-19 2013-07-25 パナソニック株式会社 Organic el element and method for producing same
CN103972266A (en) * 2014-04-16 2014-08-06 京东方科技集团股份有限公司 Organic electroluminescent display panel and display device
JP2014212102A (en) * 2013-04-05 2014-11-13 キヤノン株式会社 Organic el element, display device, image processing device, illuminating device, and image forming apparatus
WO2014185392A1 (en) * 2013-05-15 2014-11-20 コニカミノルタ株式会社 Organic electroluminescence element
KR20160042324A (en) * 2014-10-08 2016-04-19 삼성디스플레이 주식회사 Organic light emitting display device and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108618A1 (en) * 2012-01-19 2013-07-25 パナソニック株式会社 Organic el element and method for producing same
JPWO2013108618A1 (en) * 2012-01-19 2015-05-11 パナソニックIpマネジメント株式会社 Organic EL device and manufacturing method thereof
US9461276B2 (en) 2012-01-19 2016-10-04 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescence device and method of fabricating the same
JP2014212102A (en) * 2013-04-05 2014-11-13 キヤノン株式会社 Organic el element, display device, image processing device, illuminating device, and image forming apparatus
WO2014185392A1 (en) * 2013-05-15 2014-11-20 コニカミノルタ株式会社 Organic electroluminescence element
JPWO2014185392A1 (en) * 2013-05-15 2017-02-23 コニカミノルタ株式会社 Organic electroluminescence device
CN103972266A (en) * 2014-04-16 2014-08-06 京东方科技集团股份有限公司 Organic electroluminescent display panel and display device
US9780336B2 (en) 2014-04-16 2017-10-03 Boe Technology Group Co., Ltd. Organic light-emitting display panel and display device
KR20160042324A (en) * 2014-10-08 2016-04-19 삼성디스플레이 주식회사 Organic light emitting display device and method of manufacturing the same
KR102261643B1 (en) * 2014-10-08 2021-06-08 삼성디스플레이 주식회사 Organic light emitting display device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5219493B2 (en) Light emitting element and light emitting device using the same
US8482195B2 (en) Display apparatus
JP6182354B2 (en) Porous glass substrate for display and method for producing the same
WO2015184712A1 (en) Organic light-emitting display device and manufacturing method therefor
US20230094133A1 (en) Enhanced oled outcoupling by suppressing surface plasmon modes
JP6310638B2 (en) Organic light-emitting device substrate with improved light extraction efficiency, manufacturing method thereof, and organic light-emitting device including the same
US8941097B2 (en) Organic luminance device, method for manufacturing same and lighting apparatus including same
US20120032585A1 (en) Light emitting element
JP2013012377A (en) Light-emitting device and display device
CN109935674A (en) A kind of flip LED chips and preparation method thereof
JP2013073799A (en) Display device
WO2022267201A1 (en) Display panel and method for fabricating display panel
KR102033162B1 (en) OLED light emitting device and display device
JP2013054837A (en) Light-emitting device and manufacturing method therefor
JP2009044117A (en) Light-emitting device
WO2014069573A1 (en) Organic el element, and image display device and illumination device provided with same
JP2010287562A (en) Display device
JP2016136484A (en) Surface light-emitting device
WO2009064021A1 (en) Display apparatus and method of producing same
US10818869B2 (en) Top-emitting type organic electroluminescent device, manufacturing method thereof and display apparatus
JP2010040486A (en) Light-emitting device and light-emitting apparatus
US8492967B2 (en) Light emitting device and display panel
KR101602470B1 (en) Porous glass substrate for displays and method of fabricating thereof
JP2013073887A (en) Display device
JP2010244848A (en) Light-emitting device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902