[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013099869A - Metal made exterior material with resin film and method for manufacturing the same - Google Patents

Metal made exterior material with resin film and method for manufacturing the same Download PDF

Info

Publication number
JP2013099869A
JP2013099869A JP2011243944A JP2011243944A JP2013099869A JP 2013099869 A JP2013099869 A JP 2013099869A JP 2011243944 A JP2011243944 A JP 2011243944A JP 2011243944 A JP2011243944 A JP 2011243944A JP 2013099869 A JP2013099869 A JP 2013099869A
Authority
JP
Japan
Prior art keywords
film
metal
zinc
base
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243944A
Other languages
Japanese (ja)
Other versions
JP5980495B2 (en
Inventor
Takanobu Saito
貴延 斉藤
Takashi Ishikawa
貴 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2011243944A priority Critical patent/JP5980495B2/en
Priority to KR1020120124757A priority patent/KR101870455B1/en
Priority to CN201210439629.7A priority patent/CN103085384B/en
Priority to TW101141153A priority patent/TWI597161B/en
Publication of JP2013099869A publication Critical patent/JP2013099869A/en
Application granted granted Critical
Publication of JP5980495B2 publication Critical patent/JP5980495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/12Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal made exterior material with resin film excellent in chemical resistance capable of providing high adhesiveness in which a laminated film or a resin coating film does not peel further capable of maintaining the high adhesiveness even in the case of contacting an acid or solvents even in the case the resin film is laminated or resin coating film is formed on a base material metal such as aluminum or stainless steel and thereafter severe shaping machining such as deep-draw machining, ironing machining, or stretch draw machining is applied.SOLUTION: The metal made exterior material with resin film has a base material metal 1, a substrate film 2 arranged one or both surfaces of the base material metal 1, a laminate film or the resin coating film 3 arranged on the substrate film 2 and is characterized in that the substrate film 2 is a metal zinc film or a metal zinc-containing film. Here, it is preferable that the metal zinc film or the metal zinc-containing film is formed in a substituting plating method or an electroplating method.

Description

本発明は、樹脂フィルム付金属製外装材及びその製造方法に関する。詳しくは、電解液に接触した場合でも基材金属とラミネートフィルム又は樹脂塗膜との密着性を維持することができる樹脂フィルム付金属製外装材及びその製造方法に関する。   The present invention relates to a metal exterior material with a resin film and a method for producing the same. Specifically, the present invention relates to a metal exterior material with a resin film that can maintain the adhesion between a base metal and a laminate film or a resin coating film even when it comes into contact with an electrolytic solution, and a method for producing the same.

更に詳しくは、アルミニウムやステンレス等の基材金属に樹脂フィルムをラミネートし又は樹脂塗膜を形成し、その後に深絞り加工、しごき加工又はストレッチドロー加工等の厳しい成形加工を施した場合であっても、そのラミネートフィルム又は樹脂塗膜が剥離しないような高い密着性を付与することができ、更には酸や溶剤等に長時間接触しても高い密着性を維持し得る耐薬品性に優れた樹脂フィルム付金属製外装材等に関する。   More specifically, when a resin film is laminated or a resin coating film is formed on a base metal such as aluminum or stainless steel, and then severe molding processing such as deep drawing processing, ironing processing or stretch drawing processing is performed. The laminate film or resin coating film can be imparted with high adhesion such that it does not peel off, and it has excellent chemical resistance that can maintain high adhesion even if it is in contact with an acid or solvent for a long time. The present invention relates to a metal exterior material with a resin film.

ラミネート加工は、樹脂製のフィルム(以下、樹脂フィルム又はラミネートフィルムという。)を金属材料の表面に加熱圧着する加工手段であって、表面を保護すること又は意匠性を付与することを目的とした金属材料表面の被覆方法の一つであり、様々な分野で使用されている。ラミネート加工は、金属材料の表面に樹脂組成物を塗布乾燥することによって樹脂塗膜を形成する方法に比べ、乾燥時に発生する溶剤や二酸化炭素等の廃棄ガス又は温暖化ガスの発生量が少ない。そのため、環境保全の観点から好ましく適用され、その用途は拡大し、例えば、アルミニウム薄板材、スチール薄板材、包装用アルミニウム箔又はステンレス箔等を素材とした食品用缶のボディー若しくは蓋材、食品用容器、又は、乾電池容器等に用いられている。   Lamination is a processing means for heat-pressing a resin film (hereinafter referred to as a resin film or a laminate film) to the surface of a metal material, and is intended to protect the surface or impart design properties. This is one of the methods for coating the surface of a metal material, and is used in various fields. Laminating process generates less waste gas such as solvent, carbon dioxide, etc. or warming gas generated during drying compared to a method of forming a resin coating by applying and drying a resin composition on the surface of a metal material. Therefore, it is preferably applied from the viewpoint of environmental protection, and its use is expanded. For example, a body or lid of a food can made of aluminum thin plate material, steel thin plate material, packaging aluminum foil, stainless steel foil, etc. It is used for containers or dry battery containers.

特に最近では、携帯電話、電子手帳、ノート型パソコン又はビデオカメラ等に用いられるモバイル用リチウムイオン2次電池の外装材として、軽量でバリア性の高いアルミニウム板又はステンレス板等の金属板が好ましく用いられており、こうした金属板の表面にラミネート加工が適用されている。また、電気自動車又はハイブリッド自動車の駆動エネルギーとしてリチウムイオン2次電池が検討されているが、その外装材としても、ラミネート加工した金属板が検討されている。   Particularly recently, a metal plate such as a lightweight and high barrier metal plate such as an aluminum plate or a stainless steel plate is preferably used as the exterior material of a mobile lithium ion secondary battery used in a mobile phone, an electronic notebook, a notebook computer, a video camera, or the like. Lamination is applied to the surface of such a metal plate. In addition, lithium ion secondary batteries are being studied as driving energy for electric vehicles or hybrid vehicles, and laminated metal plates are also being examined as exterior materials.

こうしたラミネート加工に用いるラミネートフィルムは、直接金属材料に貼り合わせた後に加熱圧着する。そのため、樹脂組成物を塗布乾燥してなる一般的な樹脂塗膜に比べて原材料のムダを抑制できる、ピンホール(欠陥部)が少ない、及び加工性が優れる、等の利点がある。ラミネートフィルムの材料としては、一般に、ポリエチレンテレフタレート及びポリエチレンナフタレート等のポリエステル系樹脂、ポリエチレン及びポリプロピレン等のポリオレフィン、ナイロン等のポリアミド系樹脂が用いられている。   The laminate film used for such a lamination process is directly bonded to a metal material and then heat-pressed. Therefore, there are advantages such that the waste of the raw material can be suppressed, the number of pinholes (defects) is small, and the workability is excellent as compared with a general resin coating film formed by applying and drying a resin composition. As materials for the laminate film, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene and polypropylene, and polyamide resins such as nylon are generally used.

ラミネートフィルムを金属材料の表面(以下、単に「金属表面」ともいう。)にラミネート加工する際、ラミネートフィルムと金属表面との密着性及び金属表面の耐食性を向上させるために、金属表面を脱脂洗浄した後、通常、リン酸クロメート等の化成処理等が施される。しかしながら、こうした化成処理は、処理後に余剰の処理液を除去するための洗浄工程が必要であり、その洗浄工程から排出される洗浄水の廃水処理にコストがかかる。特にリン酸クロメート等の化成処理等は六価クロムを含む処理液が用いられるので、近年の環境的配慮から敬遠される傾向にある。   When laminating a laminate film to a metal material surface (hereinafter also simply referred to as “metal surface”), the metal surface is degreased and washed to improve the adhesion between the laminate film and the metal surface and the corrosion resistance of the metal surface. Thereafter, chemical conversion treatment such as phosphoric acid chromate is usually performed. However, such a chemical conversion treatment requires a washing step for removing excess treatment liquid after the treatment, and costs for waste water treatment of washing water discharged from the washing step. In particular, chemical treatments such as phosphoric acid chromate tend to be avoided from environmental considerations in recent years because a treatment solution containing hexavalent chromium is used.

一方、金属表面に化成処理等の処理を施さないでラミネート加工を行うと、金属表面からラミネートフィルムが剥離したり金属材料に腐食が生じたりするという問題がある。例えばリチウムイオン2次電池の外装材等においては、その製造工程で加工度の高い加工を受ける。リチウムイオン2次電池の電解質は、炭酸エチル又は炭酸ジエチル等の有機溶剤と、ヘキサフルオロリン酸リチウム又はテトラフルオロホウ酸リチウム等のフッ素系リチウム錯塩とが用いられる。そのため、こうした外装材が長期間使用されると、電解質である有機溶剤のみならず、大気中の水分が容器内に浸入し、これが電解質と反応してフッ化水素酸を生成し、そのフッ化水素酸がラミネートフィルムを透過して金属表面とラミネートフィルムとの剥離を発生させるとともに、金属表面を腐食するという問題がある。また、ラミネートする前に金属材料を予備加熱(200〜300℃)する場合があり、熱によって皮膜が劣化し密着性を低下させる問題がある。   On the other hand, when the lamination process is performed without performing a chemical conversion treatment or the like on the metal surface, there is a problem that the laminate film is peeled off from the metal surface or the metal material is corroded. For example, an exterior material of a lithium ion secondary battery is subjected to processing with a high degree of processing in the manufacturing process. As the electrolyte of the lithium ion secondary battery, an organic solvent such as ethyl carbonate or diethyl carbonate and a fluorine-based lithium complex salt such as lithium hexafluorophosphate or lithium tetrafluoroborate are used. Therefore, when such an exterior material is used for a long period of time, not only the organic solvent that is an electrolyte but also moisture in the atmosphere enters the container, which reacts with the electrolyte to produce hydrofluoric acid, There is a problem that hydrogen acid permeates the laminate film to cause peeling between the metal surface and the laminate film, and corrodes the metal surface. Moreover, there is a case where the metal material is preheated (200 to 300 ° C.) before laminating, and there is a problem that the film is deteriorated by heat and the adhesion is lowered.

リチウム2次電池を包装する包装材として、有機溶剤やフッ化水素酸に対して耐性を有する積層体が種々提案されている、例えば、特許文献1では、最外層/バリア層/最内層、又は、最外層/バリア層/中間層/最内層からなる積層体において、前記バリア層の最内層面側表面を脱脂、又は表面酸化物を除去し、リン酸塩皮膜、クロム酸塩、フッ化物系化合物又は、有機ケイ素化合物、有機チタン系化合物、有機アルミ系化合物からなる耐酸性皮膜の形成及び/又はシラン系、有機チタン系、有機アルミ系の物質からなるカップリング処理等を施した積層体が提案されている。この技術によれば、ポリマー電池を収納するケースに用いる積層フィルムとして、水蒸気その他のガスバリア性に優れ、また、耐内容物性と積層体の層間の接着強度とに優れ、かつ、耐突き刺し性等をはじめ機械的強度があり、また高温においても使用可能であり、電解液に対しても安定した積層体の構成を提供できるとされている。   As packaging materials for packaging lithium secondary batteries, various laminates having resistance to organic solvents and hydrofluoric acid have been proposed. For example, in Patent Document 1, outermost layer / barrier layer / innermost layer, or In the laminate comprising the outermost layer / barrier layer / intermediate layer / innermost layer, the innermost layer surface side surface of the barrier layer is degreased or the surface oxide is removed, and the phosphate film, chromate, fluoride system A laminated body subjected to formation of an acid-resistant film composed of a compound or an organosilicon compound, an organotitanium compound, an organoaluminum compound and / or a coupling treatment composed of a silane, organotitanium, or organoaluminum material Proposed. According to this technology, as a laminated film used for a case for housing a polymer battery, it is excellent in water vapor and other gas barrier properties, is excellent in content resistance and adhesive strength between layers of the laminate, and has puncture resistance, etc. It is said that it has mechanical strength, can be used at high temperatures, and can provide a stable laminate structure with respect to an electrolytic solution.

また、特許文献2では、シーラント層の一方の面に、少なくとも接着樹脂層、第1の化成処理層、アルミニウム箔層、第2の化成処理層、接着剤層及び基材層が順次積層されたリチウムイオン電池用包装材において、アルミニウム箔層が、両面がエッチングされたアルミニウム箔からなり、第1の化成処理層及び第2の化成処理層が酸化亜鉛被膜からなるリチウムイオン電池用包装材が提案されている。この技術によれば、環境負荷の可能性があるクロムを使用することなく、優れた耐電解液性、耐フッ酸性が得られ、かつアルミニウム箔の両面に簡便に化成処理層を形成できる高い生産性のリチウムイオン電池用包装材を提供できるとされている。   In Patent Document 2, at least an adhesive resin layer, a first chemical conversion treatment layer, an aluminum foil layer, a second chemical conversion treatment layer, an adhesive layer, and a base material layer are sequentially laminated on one surface of the sealant layer. In a lithium ion battery packaging material, a lithium ion battery packaging material is proposed in which the aluminum foil layer is made of an aluminum foil etched on both sides, and the first chemical conversion treatment layer and the second chemical conversion treatment layer are made of a zinc oxide coating. Has been. According to this technology, it is possible to obtain excellent electrolytic solution resistance and hydrofluoric acid resistance without using chromium, which may cause environmental impact, and high production that can easily form a chemical conversion treatment layer on both sides of an aluminum foil. It is said that a packaging material for a lithium ion battery can be provided.

また、特許文献3では、プラスチック製ベースフィルムと金属箔と機能性プラスチック層とを重ね合わせたプラスチックラミネートフィルムにおいて、金属箔の少なくとも機能性プラスチック層の方に向けられた面と機能性プラスチック層の金属箔の方に向けられた面と機能性プラスチック層の内部とに又はそのうちのいずれかに、少なくとも1つクロム層のような金属製保護層が物理気相蒸着法によって成膜する技術が提案されている。この技術によれば、個々の層間の密着性を高めて、リチウムイオンポリマー電池やリチウムポリマー電池のクラッディングに使用されるプラスチックラミネートフィルムとして好ましく用いることができるとされている。   Further, in Patent Document 3, in a plastic laminate film in which a plastic base film, a metal foil, and a functional plastic layer are overlaid, the surface of the metal foil facing at least the functional plastic layer and the functional plastic layer Proposed technology for physical vapor deposition of at least one metallic protective layer, such as a chromium layer, on the surface facing the metal foil and / or inside the functional plastic layer Has been. According to this technique, it is said that the adhesion between individual layers can be improved and it can be preferably used as a plastic laminate film used for cladding of a lithium ion polymer battery or a lithium polymer battery.

特開2001−35453号公報JP 2001-35453 A 特開2011−76887号公報JP 2011-76887 A 特表2009−544492号公報Special table 2009-544492

しかしながら、特許文献1〜3で提案された技術はいずれもリチウム2次電池を包装するためのラミネートフィルムであり、前記したような加工度の高い加工を受けない。そのため、そのラミネートフィルムに対して加工度の高い加工がされた後に長期間使用された場合に、依然として高い耐電解液性を有するか否かは不明である。   However, any of the techniques proposed in Patent Documents 1 to 3 is a laminate film for wrapping a lithium secondary battery, and does not receive processing with a high degree of processing as described above. Therefore, it is unclear whether or not the laminate film still has a high electrolytic solution resistance when used for a long time after being processed with a high degree of processing.

本発明の目的は、アルミニウムやステンレス等の基材金属に樹脂フィルムをラミネートし又は樹脂塗膜(以下「樹脂フィルム」ともいう。)を形成し、その後に深絞り加工、しごき加工又はストレッチドロー加工等の厳しい成形加工を施した場合であっても、そのラミネートフィルム又は樹脂塗膜が剥離しないような高い密着性を付与することができ、更には酸や溶剤等に長時間接触しても高い密着性を維持し得る耐薬品性に優れた樹脂フィルム付金属製外装材、及びその製造方法を提供することにある。   An object of the present invention is to laminate a resin film or form a resin coating film (hereinafter also referred to as “resin film”) on a base metal such as aluminum or stainless steel, and then perform deep drawing, ironing or stretch drawing. Even when it is subjected to severe molding such as, it can provide high adhesion so that the laminate film or resin coating does not peel off, and it is high even if it is in contact with acid or solvent for a long time An object of the present invention is to provide a metal exterior material with a resin film excellent in chemical resistance capable of maintaining adhesion and a method for producing the same.

上記課題を解決するための本発明に係る樹脂フィルム付金属製外装材は、基材金属と、該基材金属の一方又は両方の面に設けられた下地皮膜と、該下地皮膜上に設けられたラミネートフィルム又は樹脂塗膜とを有し、前記下地皮膜が金属亜鉛皮膜又は金属亜鉛含有皮膜であることを特徴とする。   A metal exterior material with a resin film according to the present invention for solving the above problems is provided with a base metal, a base film provided on one or both surfaces of the base metal, and the base film. The base film is a metal zinc film or a metal zinc-containing film.

この発明によれば、基材金属と樹脂フィルムとの間の下地皮膜として金属亜鉛皮膜又は金属亜鉛含有皮膜を設けたところ、ラミネートフィルム又は樹脂塗膜が剥離しない高い密着性を示し、かつ酸や溶剤等に長時間接触しても高い密着性を維持するという結果が得られた。   According to this invention, when a metal zinc film or a metal zinc-containing film is provided as a base film between the base metal and the resin film, the laminate film or the resin film exhibits high adhesion that does not peel off, and acid or The result was that high adhesion was maintained even after contact with a solvent or the like for a long time.

本発明に係る樹脂フィルム付金属製外装材において、前記ラミネートフィルム又は樹脂塗膜が、ポリオレフィン又は酸変性ポリオレフィンを含むことが好ましい。   In the metal exterior material with a resin film according to the present invention, the laminate film or the resin coating film preferably contains a polyolefin or an acid-modified polyolefin.

本発明に係る樹脂フィルム付金属製外装材において、前記基材金属が、アルミニウム又はその合金、ステンレス鋼、銅又はその合金、及びニッケル又はその合金、から選ばれるいずれかであることが好ましい。   In the metal exterior material with a resin film according to the present invention, the base metal is preferably selected from aluminum or an alloy thereof, stainless steel, copper or an alloy thereof, and nickel or an alloy thereof.

本発明に係る樹脂フィルム付金属製外装材において、前記金属亜鉛含有皮膜が、鉄、ニッケル及びコバルトから選ばれる1種又は2種以上の元素を含むように構成してもよい。   In the metal exterior material with a resin film according to the present invention, the metal zinc-containing coating may be configured to include one or more elements selected from iron, nickel, and cobalt.

この発明によれば、鉄、ニッケル及びコバルトから選ばれる1種又は2種以上の元素を含む金属亜鉛含有皮膜を下地皮膜として設けることにより、例えば置換めっきで下地皮膜を形成する場合には基材金属の置換量を低減でき、さらにその下地皮膜の機械的強度を高めることができる。   According to the present invention, by providing a metal zinc-containing film containing one or more elements selected from iron, nickel and cobalt as a base film, for example, when forming a base film by displacement plating, The amount of metal replacement can be reduced, and the mechanical strength of the underlying film can be increased.

本発明に係る樹脂フィルム付金属製外装材において、深絞り加工、しごき加工又はストレッチドロー加工が施されてなるように構成してもよい。   In the metal exterior material with a resin film according to the present invention, deep drawing processing, ironing processing, or stretch drawing processing may be performed.

この発明によれば、樹脂フィルムを設けた後の金属製外装材に対して深絞り加工、しごき加工又はストレッチドロー加工等の厳しい成形加工を施した場合であっても、樹脂フィルムが剥離しない高い密着性と、酸や溶剤等に長時間接触しても高い密着性を維持し得る耐薬品性とを備えている。   According to this invention, even if it is a case where severe shaping | molding processes, such as deep drawing process, ironing process, or stretch draw process, are given with respect to the metal exterior material after providing the resin film, the resin film is high It has adhesiveness and chemical resistance that can maintain high adhesion even when it is in contact with acid or solvent for a long time.

上記課題を解決するための本発明に係る樹脂フィルム付金属製外装材の製造方法は、基材金属の一方又は両方の面に、置換めっき法又は電気めっき法で金属亜鉛皮膜又は金属亜鉛含有皮膜を下地皮膜として形成する工程と、前記下地皮膜上に、ラミネートフィルム又は樹脂塗膜を形成する工程と、を有することを特徴とする。   In order to solve the above-mentioned problems, a method for producing a metal exterior material with a resin film according to the present invention comprises a metal zinc film or a metal zinc-containing film on one or both surfaces of a base metal by a displacement plating method or an electroplating method. And a step of forming a laminate film or a resin coating film on the base coating.

この発明によれば、基材金属の一方又は両方の面に置換めっき法又は電気めっき法で金属亜鉛皮膜又は金属亜鉛含有皮膜を下地皮膜として形成し、その後、下地皮膜上にラミネートフィルム又は樹脂塗膜を形成したところ、製造された樹脂フィルム付金属製外装材は、ラミネートフィルム又は樹脂塗膜が剥離しない高い密着性を示し、かつ酸や溶剤等に長時間接触しても高い密着性を維持するという結果が得られた。   According to this invention, a metal zinc film or a metal zinc-containing film is formed as a base film on one or both surfaces of the base metal by a displacement plating method or an electroplating method, and then a laminate film or a resin coating is formed on the base film. When the film is formed, the manufactured metal exterior material with resin film shows high adhesion that the laminate film or resin coating does not peel off, and maintains high adhesion even if it is in contact with acids or solvents for a long time. The result of doing was obtained.

本発明に係る樹脂フィルム付金属製外装材の製造方法において、深絞り加工、しごき加工及びストレッチドロー加工から選ばれるいずれか1又は2以上の加工工程をさらに有するように構成してもよい。   In the manufacturing method of the metal exterior material with a resin film which concerns on this invention, you may comprise so that it may further have any 1 or 2 or more processing processes chosen from deep drawing processing, ironing processing, and stretch drawing processing.

本発明に係る樹脂フィルム付金属製外装材の製造方法において、前記下地皮膜の形成工程の前に、前記基材金属の表面の酸化物皮膜を除去する工程をさらに有するように構成してもよい。   In the manufacturing method of the metal exterior material with a resin film according to the present invention, it may be configured to further include a step of removing the oxide film on the surface of the base metal before the base film forming step. .

この発明によれば、下地皮膜の形成工程の前に基材金属の表面の酸化物皮膜を除去する工程をさらに有するので、基材金属と下地皮膜との密着性をより高めることができる。   According to this invention, since it has further the process of removing the oxide film of the surface of a base metal before the formation process of a base film, the adhesiveness of a base metal and a base film can be improved more.

本発明に係る樹脂フィルム付金属製外装材及びその製造方法によれば、基材金属と樹脂フィルムとの間の下地皮膜として金属亜鉛皮膜又は金属亜鉛含有皮膜を設けることにより、ラミネートフィルム又は樹脂塗膜が剥離しない高い密着性を示し、かつ酸や溶剤等に長時間接触しても高い密着性を維持するという結果を得ることができた。こうした効果を備えた樹脂フィルム付金属製外装材に深絞り加工、しごき加工又はストレッチドロー加工等の厳しい成形加工を施した場合であっても、そのラミネートフィルム又は樹脂塗膜が剥離しないような高い密着性を付与することができ、更には酸や溶剤等に長時間接触しても高い密着性を維持し得る耐薬品性に優れるという効果が得られた。   According to the metal exterior material with a resin film and the method for producing the same according to the present invention, a laminate film or a resin coating is provided by providing a metal zinc film or a metal zinc-containing film as a base film between the base metal and the resin film. It was possible to obtain a result that the film showed high adhesion without peeling and maintained high adhesion even when contacted with an acid or a solvent for a long time. Even when severe molding processing such as deep drawing, ironing or stretch draw processing is applied to a metal exterior material with a resin film having such effects, the laminate film or the resin coating film is high enough not to peel off Adhesiveness can be imparted, and further, an effect of excellent chemical resistance capable of maintaining high adhesiveness even when contacted with an acid or a solvent for a long time was obtained.

本発明に係る樹脂フィルム付金属製外装材の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the metal exterior material with a resin film which concerns on this invention.

以下、本発明に係る樹脂フィルム付金属製外装材及びその製造方法について説明する。なお、以下の説明及び図面の形態により本発明の技術的範囲が限定されるものではない。   Hereafter, the metal exterior material with a resin film concerning the present invention and its manufacturing method are explained. The technical scope of the present invention is not limited by the following description and the form of the drawings.

[樹脂フィルム付金属製外装材]
本発明に係る樹脂フィルム付金属製外装材10は、図1に示すように、基材金属1と、その基材金属1の一方又は両方の面に設けられた下地皮膜2と、その下地皮膜2上に設けられたラミネートフィルム又は樹脂塗膜(以下、特に断らない限り「樹脂フィルム3」という。)とを有している。そして、その下地皮膜2が、金属亜鉛皮膜又は金属亜鉛含有皮膜であることに特徴がある。なお、図1では、基材金属1の片面に下地皮膜2と樹脂フィルム3を設けているが、基材金属1の両面に下地皮膜2と樹脂フィルム3を設けてもよい。
[Metal exterior material with resin film]
As shown in FIG. 1, a metal exterior material 10 with a resin film according to the present invention includes a base metal 1, a base film 2 provided on one or both surfaces of the base metal 1, and the base film 2 has a laminate film or resin coating (hereinafter referred to as “resin film 3” unless otherwise specified). And the base film 2 is characterized in that it is a metal zinc film or a metal zinc-containing film. In FIG. 1, the base coating 2 and the resin film 3 are provided on one side of the base metal 1, but the base coating 2 and the resin film 3 may be provided on both sides of the base metal 1.

以下、本発明の構成を詳しく説明する。   Hereinafter, the configuration of the present invention will be described in detail.

(基材金属)
基材金属1は、本発明に係る樹脂フィルム付金属製外装材10のベース(基材)となる金属の薄板材又は箔である。基材金属1の材質としては、アルミニウム又はその合金、ステンレス鋼、銅又はその合金、及びニッケル又はその合金、から選ばれるいずれかを挙げることができる。こうした基材金属1は、購入品であってもよいし、所定厚の板材を熱間圧延や冷間圧延して得たものであってもよい。基材金属1の厚さは特に限定されないが、例えば0.01mm〜2.0mm程度である。なお、後述する置換めっきで下地皮膜2を設ける場合は、基材金属1がエッチングされるので、そのエッチング量を考慮して厚さが設計される。
(Base metal)
The base metal 1 is a metal thin plate material or foil that serves as a base (base material) of the metal exterior member 10 with a resin film according to the present invention. Examples of the material of the base metal 1 include any one selected from aluminum or an alloy thereof, stainless steel, copper or an alloy thereof, and nickel or an alloy thereof. Such a base metal 1 may be a purchased product or may be obtained by hot rolling or cold rolling a plate material having a predetermined thickness. Although the thickness of the base metal 1 is not specifically limited, For example, it is about 0.01 mm-2.0 mm. In addition, when providing the base film 2 by the displacement plating mentioned later, since the base metal 1 is etched, thickness is designed in consideration of the etching amount.

また、これらの金属又は合金上に他の金属又は合金を設けたものであってもよい。他の金属又は合金の形成手段としては、めっき(電気めっき、無電解めっき)手段、蒸着手段、クラッド手段等を挙げることができる。一例として、銅又は銅合金上に電気ニッケルめっきしたニッケルめっき銅等を挙げることができる。   Further, other metals or alloys may be provided on these metals or alloys. Examples of other metal or alloy forming means include plating (electroplating, electroless plating) means, vapor deposition means, and clad means. As an example, nickel plating copper etc. which carried out electro nickel plating on copper or a copper alloy can be mentioned.

(下地皮膜)
下地皮膜2は、基材金属1の一方又は両方の面に設けられる金属亜鉛皮膜又は金属亜鉛含有皮膜である。本発明に係る樹脂フィルム付金属製外装材10では、金属亜鉛皮膜又は金属亜鉛含有皮膜を樹脂フィルム3の下地皮膜2として基材金属1上に設けることにより、樹脂フィルム3と基材金属1との密着性を高め、さらに酸や溶剤等に長時間接触しても高い密着性を維持することができるという結果を導くことができた。
(Undercoat)
The base film 2 is a metal zinc film or a metal zinc-containing film provided on one or both surfaces of the base metal 1. In the metal exterior material 10 with a resin film according to the present invention, by providing a metal zinc film or a metal zinc-containing film on the base metal 1 as the base film 2 of the resin film 3, the resin film 3 and the base metal 1 In addition, it was possible to obtain a result that the high adhesiveness can be maintained even if it is in contact with an acid or a solvent for a long time.

金属亜鉛皮膜は、金属亜鉛のみで構成された層であり、金属亜鉛含有皮膜は、金属亜鉛を含む金属皮膜からなる層である。「含む」とは亜鉛以外の金属元素を含む意味であるが、そうした金属元素としては、鉄、ニッケル及びコバルトから選ばれる1種又は2種以上の鉄族金属を挙げることができる。これらの鉄族金属を含む金属亜鉛含有皮膜は、硬度等の機械的強度を高めることができるとともに、後述する置換めっきの際に基材金属1のエッチング量を抑えることができるという利点がある。金属亜鉛含有皮膜中の鉄族金属の含有量は、0.5質量%〜15質量%の範囲であることが好ましい。こうした範囲の鉄族元素を含む金属亜鉛含有皮膜は、基材金属1のエッチング量を抑えることができるという観点からは、下地皮膜2の厚さを過度に厚くしなくても、十分に耐電解液密着維持性を有する下地皮膜を形成することができるという利点がある。なお、このときの金属亜鉛含有皮膜は、不可避不純物成分(微量酸化物成分を含む。)を除いた全てが金属亜鉛である。   The metal zinc film is a layer composed only of metal zinc, and the metal zinc-containing film is a layer made of a metal film containing metal zinc. “Contains” means that a metal element other than zinc is included. Examples of such a metal element include one or more iron group metals selected from iron, nickel, and cobalt. The metal zinc-containing coating containing these iron group metals has the advantage that the mechanical strength such as hardness can be increased and the etching amount of the base metal 1 can be suppressed during displacement plating described later. The content of the iron group metal in the metal zinc-containing film is preferably in the range of 0.5% by mass to 15% by mass. From the viewpoint that the metal zinc-containing film containing the iron group element in such a range can suppress the etching amount of the base metal 1, it is sufficiently resistant to electrolysis even if the thickness of the base film 2 is not excessively increased. There is an advantage that a base film having liquid adhesion maintaining property can be formed. In addition, the metal zinc containing film | membrane at this time is all metal zinc except an unavoidable impurity component (a trace amount oxide component is included).

下地皮膜2である金属亜鉛皮膜又は金属亜鉛含有皮膜は、置換めっき法又は電気めっき法で形成される。   The metal zinc film or the metal zinc-containing film that is the base film 2 is formed by a displacement plating method or an electroplating method.

置換めっき法は、置換めっき液に接触した基材金属1の酸化還元電位と、めっき液に含まれる亜鉛イオンの酸化還元電位との大小によって、基材金属1の酸化溶解と亜鉛イオンの還元析出とが化学反応によって同時に起こる酸化還元反応であり、基材金属1の溶解(エッチングともいう。)と同時に起こる亜鉛の析出によって下地皮膜2が形成される。したがって、置換めっき法は、置換めっき液中での基材金属1と析出し得る金属イオンとの酸化還元電位の大小に依存し、基材金属1が電子を残して酸化溶解する化学反応が起こり、その電子を液中の金属イオンが受け取って還元析出する化学反応が起こる酸化還元環境が整った場合に適用される方法である。また、めっき液に鉄、ニッケル及びコバルトから選ばれる1種又は2種以上が含まれている場合も同様であり、基材金属1と析出し得る金属イオンとの酸化還元電位の大小に依存し、下地皮膜2に含まれたり含まれなかったりする。こうした置換めっき法は、基材金属1の形状に関わらず、均一な厚さの下地皮膜2を形成できるので便利であり、さらに電気めっき法で形成される下地皮膜2に比べて硬く、引張強度等の機械的強度に優れている。   The displacement plating method oxidizes and dissolves the base metal 1 and reduces and precipitates zinc ions depending on the size of the redox potential of the base metal 1 in contact with the displacement plating solution and the redox potential of the zinc ions contained in the plating solution. Are redox reactions that occur simultaneously by a chemical reaction, and the base film 2 is formed by the precipitation of zinc that occurs simultaneously with the dissolution (also referred to as etching) of the base metal 1. Therefore, the displacement plating method depends on the oxidation-reduction potential between the base metal 1 and the metal ions that can be deposited in the displacement plating solution, and a chemical reaction occurs in which the base metal 1 is oxidized and dissolved leaving an electron. This method is applied when a redox environment is prepared in which a chemical reaction occurs in which the electrons are received by metal ions in the liquid and reduced and deposited. The same applies when the plating solution contains one or more selected from iron, nickel, and cobalt, depending on the redox potential of the base metal 1 and the metal ions that can be deposited. , It may or may not be included in the undercoat 2. This displacement plating method is convenient because it can form the base coating 2 having a uniform thickness regardless of the shape of the base metal 1, and is harder than the base coating 2 formed by electroplating, and has a tensile strength. Excellent mechanical strength.

置換めっき法による下地皮膜2の形成は、基材金属1と、アルカリ性又は酸性の置換めっき液とを接触させて行う。アルカリ性又は酸性のいずれの置換めっき液を用いるかは、置換めっき液中での基材金属1と金属イオンの酸化還元電位の大小によって置換めっきが起こるか否かで適宜選択することができる。「接触」させる手段は、置換めっき液への基材金属1の浸漬や、基材金属1への置換めっき液のスプレー噴射等を挙げることができる。   Formation of the base film 2 by the displacement plating method is performed by bringing the base metal 1 into contact with an alkaline or acidic displacement plating solution. Whether alkaline or acidic substitution plating solution is used can be appropriately selected depending on whether or not substitution plating occurs depending on the redox potential of the base metal 1 and metal ions in the substitution plating solution. Examples of the means for “contacting” include immersion of the base metal 1 in the displacement plating solution, spray injection of the displacement plating solution onto the base metal 1, and the like.

置換めっき液は特に限定されないが、例えば後述する実施例で用いるアルカリ性置換めっき液(ジンケート浴と呼ばれ、硫酸亜鉛と水酸化ナトリウムを主成分とする)、酸性置換めっき液(硫酸亜鉛と酸性フッ化アンモニウム又はフッ酸を主成分とする)等を挙げることができる。なお、これらの置換めっき液には、必要に応じて光沢剤、錯化剤、還元剤、pH調整剤、緩衝剤等の添加剤が含まれていてもよく、例えば、グルコン酸ナトリウム、その他の添加剤を挙げることができる。また、下地皮膜2に鉄、ニッケル及びコバルトから選ばれる1種又は2種以上の金属をさらに含有させる場合には、置換めっき液に例えば硫酸第1鉄、硫酸ニッケル、硫酸コバルト等を任意に配合する。   The displacement plating solution is not particularly limited. For example, an alkaline displacement plating solution (called a zincate bath, mainly composed of zinc sulfate and sodium hydroxide) and an acidic displacement plating solution (zinc sulfate and acidic fluoride) used in Examples described later. And ammonium fluoride or hydrofluoric acid as a main component). These substitution plating solutions may contain additives such as brighteners, complexing agents, reducing agents, pH adjusting agents, buffering agents, etc., if necessary, such as sodium gluconate, other Additives can be mentioned. In addition, when the undercoat 2 further contains one or more metals selected from iron, nickel and cobalt, for example, ferrous sulfate, nickel sulfate, cobalt sulfate, etc. are optionally blended in the replacement plating solution. To do.

なお、上記した各塩は例示であり、目的とする金属亜鉛皮膜又は金属亜鉛含有皮膜を基材金属1の一方又は両方の面に形成できれば、上記以外の亜鉛塩、各種金属塩等を用いてもよい。また、置換めっき液の液組成も特に限定されない。例えばジンケート浴の場合は、硫酸亜鉛8〜16g/L、水酸化ナトリウム90〜150g/Lが一般的である。   In addition, each above-mentioned salt is illustration, and if the target metal zinc film | membrane or a metal zinc containing film | membrane can be formed in the one or both surfaces of the base metal 1, zinc salts other than the above, various metal salts, etc. will be used. Also good. Moreover, the liquid composition of the displacement plating solution is not particularly limited. For example, in the case of a zincate bath, zinc sulfate 8 to 16 g / L and sodium hydroxide 90 to 150 g / L are common.

電気めっき法は、電気めっき液に接触した基材金属1と、同じく電気めっき液に接触させた対向電極(対極ともいう。)との間に電流を印加して、基材金属1上に電気めっき液中の金属イオンを強制的に還元析出させる手段である。   In the electroplating method, an electric current is applied between the base metal 1 in contact with the electroplating solution and a counter electrode (also referred to as a counter electrode) that is also in contact with the electroplating solution, and electricity is applied on the base metal 1. This is a means for forcibly reducing and depositing metal ions in the plating solution.

電気めっき法による下地皮膜2の形成は、基材金属1と対向電極とに電気亜鉛めっき液を接触させた状態で電流又は電圧を印加して行う。対向電極としては、亜鉛板や不溶性電極(例えば炭素電極、白金被覆チタン電極等)を用いることができる。また、金属亜鉛含有皮膜を、亜鉛成分以外の金属成分を含む電気めっき液を用いて形成する場合には、金属亜鉛含有皮膜に含まれる亜鉛以外の金属成分と同量の割合を含む対向電極を用いてもよい。こうすることで、電気めっき液中の金属成分の減少量に応じた量を対向電極から供給できる。こうした電気めっき法は、置換めっき法とは異なり化学反応を伴わないので、電流又は電圧を制御するだけで容易に所望の厚さの下地皮膜2を形成できる。また、置換めっき法に比べて析出速度が速いので、高速での形成が可能である。   Formation of the base film 2 by electroplating is performed by applying a current or voltage in a state where the electrogalvanizing solution is in contact with the base metal 1 and the counter electrode. As the counter electrode, a zinc plate or an insoluble electrode (for example, a carbon electrode, a platinum-coated titanium electrode, etc.) can be used. Further, when the metal zinc-containing film is formed using an electroplating solution containing a metal component other than the zinc component, a counter electrode containing the same amount of the metal component other than zinc contained in the metal zinc-containing film is formed. It may be used. By carrying out like this, the quantity according to the reduction | decrease amount of the metal component in an electroplating liquid can be supplied from a counter electrode. Since such an electroplating method does not involve a chemical reaction unlike the displacement plating method, the base film 2 having a desired thickness can be easily formed only by controlling the current or voltage. Further, since the deposition rate is higher than that of the displacement plating method, formation at a high speed is possible.

電気亜鉛めっき液は特に限定されないが、例えば後述する実施例で用いる硫酸亜鉛めっき液を挙げることができる。なお、電気めっき液には、必要に応じて光沢剤、錯化剤、pH調整剤、緩衝剤等の添加剤が含まれていてもよい。また、下地皮膜2に鉄、ニッケル及びコバルトから選ばれる1種又は2種以上の金属をさらに含有させる場合には、電気めっき液に例えば硫酸第1鉄、硫酸ニッケル、硫酸コバルト等を任意に配合する。   The electrogalvanizing solution is not particularly limited, and examples thereof include a zinc sulfate plating solution used in Examples described later. The electroplating solution may contain additives such as a brightener, a complexing agent, a pH adjuster, and a buffer as necessary. In addition, when the base film 2 further contains one or more metals selected from iron, nickel and cobalt, for example, ferrous sulfate, nickel sulfate, cobalt sulfate, etc. are arbitrarily blended in the electroplating solution. To do.

こうした各手段で形成した下地皮膜2の厚さは、通常、0.01μm〜0.70μm(総付着量で約0.10g/m〜約5.0g/mに相当)であり、好ましくは0.03μm〜0.28μm(総付着量で約0.2g/m〜約2.0g/mに相当)である。下地皮膜2の厚さが0.01μm未満では、十分な耐電解液密着維持性が得られないことがある。一方、下地皮膜2の厚さが0.70μmを超えると、耐電解液密着維持性に優れるものの、下地皮膜2の成膜時間がかかり、生産性に劣ることがある。なお、下地皮膜2の総付着量1g/mは下地皮膜2の厚さ約0.14μmに相当する。 The thickness of the base film 2 formed by each of these means is usually 0.01 μm to 0.70 μm (corresponding to a total adhesion amount of about 0.10 g / m 2 to about 5.0 g / m 2 ), preferably Is 0.03 μm to 0.28 μm (corresponding to a total deposition amount of about 0.2 g / m 2 to about 2.0 g / m 2 ). If the thickness of the base film 2 is less than 0.01 μm, sufficient resistance to electrolyte solution adhesion may not be obtained. On the other hand, when the thickness of the base film 2 exceeds 0.70 μm, although the electrolytic solution adhesion maintaining property is excellent, it takes time to form the base film 2 and the productivity may be inferior. The total adhesion amount 1 g / m 2 of the base film 2 corresponds to a thickness of the base film 2 of about 0.14 μm.

なお、下地皮膜2として金属亜鉛皮膜又は金属亜鉛含有皮膜を設けた場合に耐電解液密着性が維持される理由は現時点では明確ではないが、おそらく、LiPF等を電解質とした電解液中に本発明に係る樹脂フィルム付金属製外装材10を浸漬した場合、下地皮膜2と樹脂フィルム3との間に濃縮したリン元素が確認されたことから、浸漬した際にLiPFの加水分解生成物であるフッ酸によって下地皮膜2中の亜鉛成分が溶出し、その亜鉛成分が、同じくLiPFの加水分解生成物であるリン化合物と反応して不溶性塩が生成したためであり、こうした不溶性塩が耐電解液密着性を維持する要因になっているのではないかと考えられる。 The reason why the adhesion resistance of the electrolytic solution is maintained when a metal zinc coating or a metal zinc-containing coating is provided as the base coating 2 is not clear at this time, but is probably in the electrolyte containing LiPF 6 or the like as an electrolyte. When the metal outer packaging material 10 with a resin film according to the present invention was immersed, the concentrated phosphorus element was confirmed between the base film 2 and the resin film 3, and thus the hydrolysis product of LiPF 6 when immersed. This is because the zinc component in the undercoat 2 is eluted by hydrofluoric acid, and the zinc component reacts with the phosphorus compound which is also a hydrolysis product of LiPF 6 to form an insoluble salt. It may be a factor that maintains the electrolyte adhesion.

(樹脂フィルム)
樹脂フィルム3は、下地皮膜2上に樹脂製フィルムをラミネートしてなるラミネートフィルムとして、又は、下地皮膜2上に樹脂を塗布してなる樹脂塗膜として設けられる。樹脂フィルム3は、ポリオレフィン、酸変性ポリオレフィン、又はそれらを主成分として含む樹脂組成物で形成される。こうした樹脂フィルム3は、酸や溶剤等に長時間接触しても基材金属1が腐食や浸食されるのを防ぐために設けられる。
(Resin film)
The resin film 3 is provided as a laminate film obtained by laminating a resin film on the base film 2 or as a resin coating film obtained by applying a resin on the base film 2. The resin film 3 is formed of polyolefin, acid-modified polyolefin, or a resin composition containing them as a main component. Such a resin film 3 is provided in order to prevent the base metal 1 from being corroded or eroded even if it is in contact with an acid or a solvent for a long time.

ポリオレフィンとしては、高密度ポリエチレン、低密度ポリエチレン等のポリエチレン;エチレンとα−オレフィンとの共重合体;ホモポリマー、ランダムコポリマー又はブロックコポリマーを原料とするポリプロピレン;プロピレンとα−オレフィンとの共重合体;等を挙げることができ、これらから選ばれる1種又は2種以上を用いることができる。酸変性ポリオレフィンは、ポリオレフィンを無水マレイン酸等でクラフト変性させて得ることができる。   Polyolefins include polyethylenes such as high-density polyethylene and low-density polyethylene; copolymers of ethylene and α-olefins; polypropylenes based on homopolymers, random copolymers or block copolymers; copolymers of propylene and α-olefins And the like, and one or more selected from these can be used. The acid-modified polyolefin can be obtained by kraft modification of polyolefin with maleic anhydride or the like.

樹脂フィルム3は、単層であってもよいし、複数の層を積層した多層構造であってもよい。また、必要に応じて、エチレンと環状オレフィンとの共重合体等の樹脂をさらに積層して、防湿性を持たせてもよい。また、樹脂フィルム3は、必要に応じて、酸化防止剤、難燃剤及び粘着付与剤等の添加材を含んでいてもよい。樹脂フィルム3の厚さは、通常、10μm〜100μmであり、20μm〜50μmであることが好ましい。   The resin film 3 may be a single layer or a multilayer structure in which a plurality of layers are laminated. Further, if necessary, a resin such as a copolymer of ethylene and a cyclic olefin may be further laminated to provide moisture resistance. Moreover, the resin film 3 may contain additives, such as antioxidant, a flame retardant, and a tackifier, as needed. The thickness of the resin film 3 is usually 10 μm to 100 μm, and preferably 20 μm to 50 μm.

ラミネートフィルムを設けるためのラミネート加工は、ヒートラミネーション法、ドライラミネーション法、押出しラミネーション法又は共押出しラミネーション法等を挙げることができる。   Examples of the laminating process for providing the laminate film include a heat lamination method, a dry lamination method, an extrusion lamination method, and a coextrusion lamination method.

ヒートラミネーション法による樹脂フィルム3の形成は、下地皮膜2の表面に樹脂フィルム3を熱圧着することにより行う。熱圧着する際の温度と圧力等は、樹脂フィルム3の性質に応じて任意に設定される。なお、樹脂フィルム3の表面には必要に応じて接着剤層を設け、その接着剤層を熱圧着層として利用してもよい。こうした接着剤層としては、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ウレタン樹脂等の樹脂組成物からなる層を挙げることができ、そうした樹脂を塗布、乾燥等して設けることができる。   Formation of the resin film 3 by the heat lamination method is performed by thermocompression bonding the resin film 3 to the surface of the base film 2. The temperature and pressure at the time of thermocompression bonding are arbitrarily set according to the properties of the resin film 3. In addition, an adhesive layer may be provided on the surface of the resin film 3 as necessary, and the adhesive layer may be used as a thermocompression bonding layer. Examples of such an adhesive layer include a layer made of a resin composition such as an epoxy resin, a phenol resin, an acrylic resin, and a urethane resin, and such a resin can be provided by applying, drying, or the like.

ドライラミネーション法による樹脂フィルム3の形成は、下地皮膜2の表面に接着剤層を形成し、その接着剤層の表面に樹脂フィルム3を常温圧着することにより行う。接着剤層としては、ポリエステル系接着剤、ポリエチレン系接着剤、ポリエーテル系接着剤、シアノアクリレート系接着剤、ウレタン系接着剤、有機チタン系接着剤、ポリエーテルウレタン系接着剤、エポキシ系接着剤、ポリエステルウレタン系接着剤、イソシアネート系接着剤、ポリオレフィン系接着剤等の樹脂組成物を挙げることができ、接着剤層はそうした樹脂組成物を下地皮膜2の表面に塗布、乾燥して形成できる。   Formation of the resin film 3 by the dry lamination method is performed by forming an adhesive layer on the surface of the base film 2 and pressing the resin film 3 on the surface of the adhesive layer at room temperature. Adhesive layers include polyester adhesives, polyethylene adhesives, polyether adhesives, cyanoacrylate adhesives, urethane adhesives, organic titanium adhesives, polyether urethane adhesives, epoxy adhesives And resin compositions such as polyester urethane adhesives, isocyanate adhesives, polyolefin adhesives, and the like. The adhesive layer can be formed by applying and drying such a resin composition on the surface of the undercoat 2.

押出しラミネーション法又は共押出しラミネーション法による樹脂フィルム3の形成は、溶融した樹脂を下地皮膜2の表面に直接押し出した後に冷却することにより行う。樹脂の押し出し及び冷却には、例えばフラットダイ法や溶融押出成形法の設備を用いることができる。   Formation of the resin film 3 by the extrusion lamination method or the coextrusion lamination method is performed by directly extruding the molten resin onto the surface of the base coating 2 and then cooling. For extrusion and cooling of the resin, for example, equipment of a flat die method or a melt extrusion method can be used.

(樹脂フィルム付金属製外装材)
こうして構成された樹脂フィルム付金属製外装材10は、その後に必要に応じて、深絞り加工、しごき加工又はストレッチドロー加工が施され、所定の形状に成形されて各種の用途に用いられる。例えば、携帯電話、電子手帳、ノート型パソコン又はビデオカメラ等に用いられるモバイル用リチウムイオン2次電池の外装材として用いられる。また、スマートホンやタブレットPCのような携帯型機器の枠体として用いることもできる。また、電気自動車又はハイブリッド自動車の駆動エネルギーとしてリチウムイオン2次電池の外装材としても用いることができる。
(Metal exterior material with resin film)
The metal exterior material 10 with a resin film thus configured is then subjected to deep drawing processing, ironing processing, or stretch drawing processing as necessary, and is formed into a predetermined shape and used for various applications. For example, it is used as an exterior material for mobile lithium-ion secondary batteries used in mobile phones, electronic notebooks, notebook computers, video cameras, and the like. Moreover, it can also be used as a frame of a portable device such as a smart phone or a tablet PC. Moreover, it can also be used as an exterior material of a lithium ion secondary battery as drive energy of an electric vehicle or a hybrid vehicle.

以上説明したように、本発明に係る樹脂フィルム付金属製外装材10によれば、基材金属1と樹脂フィルム3との間の下地皮膜2として金属亜鉛皮膜又は金属亜鉛含有皮膜を設けることにより、樹脂フィルム3が剥離しない高い密着性を示し、かつ酸や溶剤等に長時間接触しても高い密着性を維持するという結果を得ることができた。こうした効果を備えた樹脂フィルム付金属製外装材10に深絞り加工、しごき加工又はストレッチドロー加工等の厳しい成形加工を施した場合であっても、その樹脂フィルム3が剥離しないような高い密着性を付与することができ、更には酸や溶剤等に長時間接触しても高い密着性を維持し得る耐薬品性に優れるという効果が得られた。   As explained above, according to the metal exterior material 10 with a resin film according to the present invention, by providing a metal zinc film or a metal zinc-containing film as the base film 2 between the base metal 1 and the resin film 3. Moreover, the high adhesiveness which the resin film 3 does not peel was shown, and the result that high adhesiveness was maintained even if it contacted an acid, a solvent, etc. for a long time was able to be obtained. Even if the metal exterior material 10 with a resin film having such an effect is subjected to severe molding processing such as deep drawing processing, ironing processing or stretch drawing processing, the high adhesion that the resin film 3 does not peel off. In addition, an effect of being excellent in chemical resistance capable of maintaining high adhesion even when contacted with an acid or a solvent for a long time was obtained.

[樹脂フィルム付金属製外装材の製造方法]
本発明に係る樹脂フィルム付金属製外装材10の製造方法は、基材金属1の一方又は両方の面に、置換めっき法又は電気めっき法で金属亜鉛皮膜又は金属亜鉛含有皮膜を下地皮膜2として形成する下地皮膜形成工程と、その下地皮膜2上に、ラミネートフィルム又は樹脂塗膜を形成する樹脂フィルム形成工程と、を有する。なお、「有する」としたのは、下地皮膜形成工程及び樹脂フィルム形成工程以外の工程を有していてもよいことを意味している。例えば、後述する前処理工程、加工工程、及び酸化物皮膜除去工程等のいずれか1又は2以上を有していてもよい。
[Method for producing metal exterior material with resin film]
The manufacturing method of the metal exterior material 10 with a resin film which concerns on this invention is using the metal zinc film | membrane or a metal zinc containing film | membrane as the base film 2 by the displacement plating method or the electroplating method on the one or both surfaces of the base metal 1. It has the base film formation process to form, and the resin film formation process which forms a laminate film or a resin coating film on the base film 2. “Having” means that a step other than the base film forming step and the resin film forming step may be included. For example, you may have any 1 or 2 or more of the pre-processing process mentioned later, a process process, an oxide film removal process, etc.

各工程についての詳細は、上記「樹脂フィルム付金属製外装材」の説明欄で説明したとおりであり、基材金属1の準備又は形成工程、下地皮膜2の形成工程、樹脂フィルム3の形成工程、深絞り加工等の加工工程は、以下ではその記載を省略する。この製造方法では、下地皮膜2を形成する前に、基材金属1の表面の酸化物皮膜を除去する工程をさらに設けてもよい。酸化物皮膜の除去は、例えば硫酸、硝酸、塩酸、硝フッ化水素酸等の酸を用いた一般的な酸洗浄によって行うことができる。酸洗浄手段としては、浸漬式洗浄又は噴射式洗浄等を挙げることができる。また、必要に応じて、一般的な前処理である脱脂処理も行うことができる。なお、水洗浄は、通常、各工程間に配置される。   The details of each step are as described in the explanation section of the above-mentioned “metal exterior material with resin film”, and the preparation or formation step of the base metal 1, the formation step of the base film 2, and the formation step of the resin film 3 The description of processing steps such as deep drawing will be omitted below. In this manufacturing method, a step of removing the oxide film on the surface of the base metal 1 may be further provided before the base film 2 is formed. The oxide film can be removed by general acid cleaning using an acid such as sulfuric acid, nitric acid, hydrochloric acid, or hydrofluoric acid. Examples of the acid cleaning means include immersion cleaning or spray cleaning. Moreover, the degreasing process which is a general pretreatment can also be performed as needed. In addition, water washing is normally arrange | positioned between each process.

樹脂フィルム付金属製外装材10は、その後に必要に応じて、深絞り加工、しごき加工又はストレッチドロー加工等の加工工程で加工される。そうした加工工程によって、所定の形状に成形されて各種の用途に用いられる。   Thereafter, the metal outer packaging material 10 with a resin film is processed by a processing step such as deep drawing, ironing, or stretch drawing as necessary. By such a processing step, it is formed into a predetermined shape and used for various applications.

以上、本発明に係る樹脂フィルム付金属製外装材10の製造方法によれば、基材金属1の一方又は両方の面に置換めっき法又は電気めっき法で金属亜鉛皮膜又は金属亜鉛含有皮膜を下地皮膜2として形成し、その後、その下地皮膜2上に樹脂フィルム3(ラミネートフィルム又は樹脂塗膜)を形成したところ、製造された樹脂フィルム付金属製外装材10は、樹脂フィルム3が剥離しない高い密着性を示し、かつ酸や溶剤等に長時間接触しても高い密着性を維持するという結果が得られた。   As mentioned above, according to the manufacturing method of the metal exterior material 10 with a resin film which concerns on this invention, the metal zinc film | membrane or a metal zinc containing film | membrane is grounded by the displacement plating method or the electroplating method to one or both surfaces of the base metal 1 When the resin film 3 (laminated film or resin coating film) was formed on the base film 2 after forming as the film 2, the resin-coated metal exterior material 10 with the resin film 3 was not peeled off. The result was that it showed adhesion and maintained high adhesion even when it was in contact with an acid or a solvent for a long time.

以下、実施例及び比較例により、本発明をさらに詳しく説明する。本発明は以下の実施例により限定されるものではない。なお、以下において、「部」は「質量部」のことであり、「質量%」は「重量%」と同義であり、以下では単に「%」と表すこともある。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited by the following examples. In the following, “part” means “part by mass”, “mass%” is synonymous with “wt%”, and may be simply expressed as “%” below.

[基材金属]
基材金属として以下の金属板又は金属箔を用いた。
[Base metal]
The following metal plates or metal foils were used as the base metal.

1a:アルミニウム板(JIS記号:A1100P、純アルミニウム、厚さ0.3mm)
1b:アルミニウム合金箔(JIS記号:A8079、厚さ0.03mm)
1c:ステンレス鋼箔(JIS記号:SUS304、厚さ0.1mm)
1d:銅板(JIS記号:C1020P、無酸素銅、厚さ0.3mm)
1e:ニッケル板(純度99質量%以上、厚さ0.3mm)
1f:NiめっきCu板(電気NiめっきCu、銅板:C1020Pの無酸素銅、厚さ0.3mm、Niめっき厚2μm)
1a: Aluminum plate (JIS symbol: A1100P, pure aluminum, thickness 0.3 mm)
1b: Aluminum alloy foil (JIS symbol: A8079, thickness 0.03 mm)
1c: Stainless steel foil (JIS symbol: SUS304, thickness 0.1 mm)
1d: Copper plate (JIS symbol: C1020P, oxygen-free copper, thickness 0.3 mm)
1e: Nickel plate (purity 99% by mass or more, thickness 0.3 mm)
1f: Ni plating Cu plate (electric Ni plating Cu, copper plate: oxygen free copper of C1020P, thickness 0.3 mm, Ni plating thickness 2 μm)

[下地皮膜の形成方法]
基材金属の表面に以下に示す方法で下地皮膜を形成した。
[Formation method of undercoat]
An undercoat was formed on the surface of the base metal by the following method.

(2a:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2a: Alkaline displacement plating)
A total of 1000 parts of alkaline displacement plating solution was produced, comprising 16.87 parts of zinc sulfate heptahydrate (as zinc), 116 parts of sodium hydroxide, 20 parts of sodium gluconate and the balance water. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2b:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、硫酸第1鉄5水和物1.16部(鉄として)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製しした。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2b: Alkaline displacement plating)
A total of 16.87 parts zinc sulfate heptahydrate (as zinc), 1.16 parts ferrous sulfate pentahydrate (as iron), 116 parts sodium hydroxide, 20 parts sodium gluconate and the balance water. 1000 parts of alkaline displacement plating solution was prepared. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2c:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、硫酸ニッケル6水和物2.0部(ニッケルとして)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2c: Alkaline displacement plating)
16.87 parts of zinc sulfate heptahydrate (as zinc), 2.0 parts of nickel sulfate hexahydrate (as nickel), 116 parts of sodium hydroxide, 20 parts of sodium gluconate, and the rest are water for a total of 1000 parts An alkaline displacement plating solution was prepared. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2d:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、硫酸コバルト7水和物3.0部(コバルトとして)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2d: Alkaline displacement plating)
16.87 parts of zinc sulfate heptahydrate (as zinc), 3.0 parts of cobalt sulfate heptahydrate (as cobalt), 116 parts of sodium hydroxide, 20 parts of sodium gluconate, and the balance is water for a total of 1000 parts An alkaline displacement plating solution was prepared. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2e:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、硫酸第1鉄5水和物1.16部(鉄として)、硫酸ニッケル6水和物0.23部(ニッケルとして)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2e: Alkaline displacement plating)
16.87 parts of zinc sulfate heptahydrate (as zinc), 1.16 parts of ferrous sulfate pentahydrate (as iron), 0.23 parts of nickel sulfate hexahydrate (as nickel), sodium hydroxide A total of 1000 parts of alkaline displacement plating solution was prepared with 116 parts, 20 parts of sodium gluconate and the balance water. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2f:アルカリ性置換めっき)
硫酸亜鉛7水和物16.87部(亜鉛として)、硫酸第1鉄5水和物1.16部(鉄として)、硫酸コバルト7水和物1.06部(コバルトとして)、水酸化ナトリウム116部、グルコン酸ナトリウム20部及び残りが水である計1000部のアルカリ性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2f: Alkaline displacement plating)
16.87 parts of zinc sulfate heptahydrate (as zinc), 1.16 parts of ferrous sulfate pentahydrate (as iron), 1.06 parts of cobalt sulfate heptahydrate (as cobalt), sodium hydroxide A total of 1000 parts of alkaline displacement plating solution was prepared with 116 parts, 20 parts of sodium gluconate and the balance water. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2g:酸性置換めっき)
硫酸亜鉛7水和物10部(亜鉛として)、酸性フッ化アンモニウム7.65部及び残りが水であり、さらに10質量%の水酸化ナトリウム水溶液を用いてpH3.0に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2g: acidic displacement plating)
10 parts of zinc sulfate heptahydrate (as zinc), 7.65 parts of ammonium ammonium fluoride and the rest are water, and a total of 1000 parts adjusted to pH 3.0 using a 10% by weight aqueous sodium hydroxide solution. An acidic displacement plating solution was prepared. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2h:酸性置換めっき)
硫酸亜鉛7水和物13部(亜鉛として)、硫酸第1鉄5水和物3.6部(鉄として)、55質量%フッ化水素酸水溶液12.1部及び残りが水であり、さらに10質量%の水酸化ナトリウム水溶液を用いてpH2.0に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2h: acidic displacement plating)
13 parts of zinc sulfate heptahydrate (as zinc), 3.6 parts of ferrous sulfate pentahydrate (as iron), 12.1 parts of 55% by weight aqueous hydrofluoric acid solution and the rest are water, A total of 1000 parts of acidic displacement plating solution adjusted to pH 2.0 using a 10% by mass aqueous sodium hydroxide solution was prepared. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2i:酸性置換めっき)
硫酸亜鉛7水和物13部(亜鉛として)、硫酸ニッケル6水和物0.8部(ニッケルとして)、55質量%フッ化水素酸水溶液12.1部及び残りが水であり、さらに10質量%の水酸化ナトリウム水溶液を用いてpH3.0に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2i: acidic displacement plating)
13 parts of zinc sulfate heptahydrate (as zinc), 0.8 part of nickel sulfate hexahydrate (as nickel), 12.1 parts of 55% by weight aqueous hydrofluoric acid solution and the rest are water, and further 10 parts by weight A total of 1000 parts of acidic displacement plating solution adjusted to pH 3.0 using an aqueous sodium hydroxide solution of 10% was prepared. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2j:酸性置換めっき)
硫酸亜鉛7水和物13部(亜鉛として)、硫酸コバルト7水和物2.1部(コバルトとして)、55質量%フッ化水素酸水溶液9.7部及び残りが水であり、さらに10質量%の水酸化ナトリウム水溶液を用いてpH3.0に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2j: acidic displacement plating)
13 parts of zinc sulfate heptahydrate (as zinc), 2.1 parts of cobalt sulfate heptahydrate (as cobalt), 9.7 parts of 55% by weight hydrofluoric acid aqueous solution and the rest are water, and further 10% A total of 1000 parts of acidic displacement plating solution adjusted to pH 3.0 using an aqueous sodium hydroxide solution of 10% was prepared. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2k:酸性置換めっき)
硫酸亜鉛7水和物13部(亜鉛として)、硫酸第1鉄5水和物2.5部(鉄として)、硫酸ニッケル6水和物0.3部(ニッケルとして)、55質量%フッ化水素酸水溶液12.1部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH2.5に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2k: acidic displacement plating)
13 parts of zinc sulfate heptahydrate (as zinc), 2.5 parts of ferrous sulfate pentahydrate (as iron), 0.3 part of nickel sulfate hexahydrate (as nickel), 55% by mass fluoride A total of 1000 parts of an acidic displacement plating solution was prepared in which 12.1 parts of aqueous hydrogen acid solution and the remainder were water, and further adjusted to pH 2.5 using a 10% by mass aqueous ammonia solution. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2l:酸性置換めっき)
硫酸亜鉛7水和物13部(亜鉛として)、硫酸第1鉄5水和物1.5部(鉄として)、硫酸コバルト7水和物0.4部(コバルトとして)、55質量%フッ化水素酸水溶液12.1部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH3.0に調整した計1000部の酸性置換めっき液を作製した。このめっき液中に基材金属を30℃で30秒間浸漬し、水洗した後、電気炉を用い、80℃で1分間加熱乾燥した。
(2l: acidic displacement plating)
Zinc sulfate heptahydrate 13 parts (as zinc), ferrous sulfate pentahydrate 1.5 parts (as iron), cobalt sulfate heptahydrate 0.4 parts (as cobalt), 55% by mass fluoride A total of 1000 parts of acidic displacement plating solution was prepared in which 12.1 parts of aqueous hydrogen acid solution and the remainder were water, and further adjusted to pH 3.0 using a 10% by mass aqueous ammonia solution. The base metal was immersed in this plating solution at 30 ° C. for 30 seconds, washed with water, and then heated and dried at 80 ° C. for 1 minute using an electric furnace.

(2m:電気亜鉛めっき)
硫酸亜鉛7水和物91.6部(亜鉛として)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH4.0に調整した1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dmにて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
(2m: electrogalvanizing)
91.6 parts of zinc sulfate heptahydrate (as zinc), 200 parts of sodium sulfate and the rest are water, and 1000 parts of an electrogalvanizing solution adjusted to pH 4.0 using a 10% by mass aqueous ammonia solution. Produced. The base metal was immersed in this plating solution, a zinc plate was used as a counter electrode, and cathode electrolysis was performed at 30 ° C. and a current density of 5 A / dm 2 for 10 seconds. Then, it washed with water and heat-dried at 80 degreeC for 1 minute using the electric furnace.

(2n:電気亜鉛めっき)
硫酸亜鉛7水和物32.7部(亜鉛として)、硫酸第1鉄5水和物27.5部(鉄として)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH3.5に調整した計1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dmにて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
(2n: Electrogalvanizing)
32.7 parts of zinc sulfate heptahydrate (as zinc), 27.5 parts of ferrous sulfate pentahydrate (as iron), 200 parts of sodium sulfate and the rest are water, and a 10% by mass aqueous ammonia solution A total of 1000 parts of electrogalvanizing solution adjusted to pH 3.5 using was prepared. The base metal was immersed in this plating solution, a zinc plate was used as a counter electrode, and cathode electrolysis was performed at 30 ° C. and a current density of 5 A / dm 2 for 10 seconds. Then, it washed with water and heat-dried at 80 degreeC for 1 minute using the electric furnace.

(2o:電気亜鉛めっき)
硫酸亜鉛7水和物32.7部(亜鉛として)、硫酸ニッケル6水和物25部(ニッケルとして)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH3.5に調整した計1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dmにて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
(2o: Electrogalvanizing)
32.7 parts of zinc sulfate heptahydrate (as zinc), 25 parts of nickel sulfate hexahydrate (as nickel), 200 parts of sodium sulfate and the rest are water, and pH 3 using a 10% by mass aqueous ammonia solution. A total of 1000 parts of electrogalvanizing solution adjusted to .5 was prepared. The base metal was immersed in this plating solution, a zinc plate was used as a counter electrode, and cathode electrolysis was performed at 30 ° C. and a current density of 5 A / dm 2 for 10 seconds. Then, it washed with water and heat-dried at 80 degreeC for 1 minute using the electric furnace.

(2p:電気亜鉛めっき)
硫酸亜鉛7水和物32.7部(亜鉛として)、硫酸コバルト7水和物25部(コバルトとして)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH4.0に調整した計1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dmにて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
(2p: electrogalvanization)
32.7 parts of zinc sulfate heptahydrate (as zinc), 25 parts of cobalt sulfate heptahydrate (as cobalt), 200 parts of sodium sulfate and the remainder are water, and pH 4 using a 10% by mass aqueous ammonia solution. A total of 1000 parts of electrogalvanizing solution adjusted to 0.0 was prepared. The base metal was immersed in this plating solution, a zinc plate was used as a counter electrode, and cathode electrolysis was performed at 30 ° C. and a current density of 5 A / dm 2 for 10 seconds. Then, it washed with water and heat-dried at 80 degreeC for 1 minute using the electric furnace.

(2q:電気亜鉛めっき)
硫酸亜鉛7水和物32.7部(亜鉛として)、硫酸第1鉄5水和物27.5部(鉄として)、硫酸ニッケル6水和物25部(ニッケルとして)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH3.5に調整した計1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dmにて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて0℃で1分間加熱乾燥した。
(2q: electrogalvanizing)
32.7 parts of zinc sulfate heptahydrate (as zinc), 27.5 parts of ferrous sulfate pentahydrate (as iron), 25 parts of nickel sulfate hexahydrate (as nickel), 200 parts of sodium sulfate and The balance was water, and a total of 1000 parts of an electrogalvanizing solution adjusted to pH 3.5 using a 10% by mass aqueous ammonia solution was prepared. The base metal was immersed in this plating solution, a zinc plate was used as a counter electrode, and cathode electrolysis was performed at 30 ° C. and a current density of 5 A / dm 2 for 10 seconds. Then, it washed with water and heat-dried at 0 degreeC for 1 minute using the electric furnace.

(2r:電気亜鉛めっき)
硫酸亜鉛7水和物32.7部(亜鉛として)、硫酸第1鉄5水和物27.5部(鉄として)、硫酸コバルト7水和物25部(コバルトとして)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH3.5に調整した計1000部の電気亜鉛めっき液を作製した。このめっき液中に基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dmにて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
(2r: electrogalvanizing)
32.7 parts of zinc sulfate heptahydrate (as zinc), 27.5 parts of ferrous sulfate pentahydrate (as iron), 25 parts of cobalt sulfate heptahydrate (as cobalt), 200 parts of sodium sulfate and The balance was water, and a total of 1000 parts of an electrogalvanizing solution adjusted to pH 3.5 using a 10% by mass aqueous ammonia solution was prepared. The base metal was immersed in this plating solution, a zinc plate was used as a counter electrode, and cathode electrolysis was performed at 30 ° C. and a current density of 5 A / dm 2 for 10 seconds. Then, it washed with water and heat-dried at 80 degreeC for 1 minute using the electric furnace.

(2s:電気亜鉛めっき)
硫酸亜鉛7水和物91.6部(亜鉛として)、硫酸ナトリウム200部及び残りが水であり、さらに10質量%のアンモニア水溶液を用いてpH4.0に調整した計1000部の電気亜鉛めっき液を作製した。その後、基材金属を、硝フッ化水素酸水溶液(硝酸10質量%、フッ化水素酸5質量%)中に、室温で1分間浸漬した後、水洗した。その後、上記電気亜鉛めっき液中に、上記基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dmにて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
(2s: electrogalvanizing)
91.6 parts of zinc sulfate heptahydrate (as zinc), 200 parts of sodium sulfate and the rest are water, and a total of 1000 parts of electrogalvanizing solution adjusted to pH 4.0 using 10% by mass aqueous ammonia solution Was made. Thereafter, the base metal was immersed in a hydrofluoric acid aqueous solution (nitric acid 10 mass%, hydrofluoric acid 5 mass%) at room temperature for 1 minute, and then washed with water. Thereafter, the base metal was immersed in the electrogalvanizing solution, a zinc plate was used as a counter electrode, and cathode electrolysis was performed at 30 ° C. and a current density of 5 A / dm 2 for 10 seconds. Then, it washed with water and heat-dried at 80 degreeC for 1 minute using the electric furnace.

(2t:電気亜鉛めっき)
硫酸亜鉛7水和物91.6部(亜鉛として)、硫酸第1鉄5水和物27.5部(鉄として)、硫酸ナトリウム200部及び残りが水であり、10質量%のアンモニア水溶液を用いてpH4.0に調整した計1000部の電気亜鉛めっき液を作製した。その後、基材金属を硝フッ化水素酸水溶液(硝酸10質量%、フッ化水素酸5質量%)中に、室温で1分間浸漬した後、水洗した。その後、上記電気亜鉛めっき液中に、上記基材金属を浸漬し、対極に亜鉛板を用い、30℃で電流密度5A/dmにて10秒間カソード電解を行なった。その後、水洗し、電気炉を用いて80℃で1分間加熱乾燥した。
(2t: Electrogalvanizing)
91.6 parts of zinc sulfate heptahydrate (as zinc), 27.5 parts of ferrous sulfate pentahydrate (as iron), 200 parts of sodium sulfate and the rest are water, and a 10% by mass aqueous ammonia solution A total of 1000 parts of electrogalvanizing solution adjusted to pH 4.0 by using was prepared. Thereafter, the base metal was immersed in a hydrofluoric acid aqueous solution (nitric acid 10 mass%, hydrofluoric acid 5 mass%) for 1 minute at room temperature, and then washed with water. Thereafter, the base metal was immersed in the electrogalvanizing solution, a zinc plate was used as a counter electrode, and cathode electrolysis was performed at 30 ° C. and a current density of 5 A / dm 2 for 10 seconds. Then, it washed with water and heat-dried at 80 degreeC for 1 minute using the electric furnace.

(2u:酸化亜鉛コーティング)
酸化亜鉛ゾル(分散粒経20nm、固形分濃度1.5質量%、pH9.0)を#3バーコーターにて塗工した後、電気炉にて120度で1分間加熱乾燥した。
(2u: Zinc oxide coating)
Zinc oxide sol (dispersed particle size 20 nm, solid content concentration 1.5 mass%, pH 9.0) was applied with a # 3 bar coater, and then heated and dried at 120 ° C. for 1 minute in an electric furnace.

(2v:下地皮膜なし)
基材金属について、下地皮膜を形成せずに、そのまま電気炉を用い、80℃で1分間加熱乾燥した。
(2v: No undercoat)
The base metal was heat-dried at 80 ° C. for 1 minute using an electric furnace as it was without forming a base film.

[樹脂フィルムの形成方法]
以下のいずれかの方法で樹脂フィルムを形成した。
[Method for forming resin film]
A resin film was formed by any of the following methods.

(3a:ヒートラミネーション)
下地皮膜の表面に、厚さ50μmのマレイン酸変性ポリプロピレンフィルムを190℃、1MPaで10秒間熱圧着した。
(3a: Heat lamination)
A maleic acid-modified polypropylene film having a thickness of 50 μm was thermocompression bonded to the surface of the base film at 190 ° C. and 1 MPa for 10 seconds.

(3b:ヒートラミネーション)
下地皮膜の表面に、厚さ20μmのマレイン酸変性ポリプロピレン層と厚さ30μmのプロピレン及びエチレンの共重合体層とが積層された2層構造の樹脂フィルムの、マレイン酸変性ポリプロピレンフィルム層側を、190℃、1MPaで10秒間熱圧着した。
(3b: Heat lamination)
The maleic acid-modified polypropylene film layer side of a two-layer resin film in which a maleic acid-modified polypropylene layer having a thickness of 20 μm and a copolymer layer of propylene and ethylene having a thickness of 30 μm are laminated on the surface of the base film, Thermocompression bonding was performed at 190 ° C. and 1 MPa for 10 seconds.

(3c:ヒートラミネーション)
下地皮膜の表面に、酸変性ポリプロピレンのディスパージョン(三井化学株式会社製、商品名:R-120K、不揮発分濃度:20質量%)を、#8SUSマイヤーバーを用い、バーコートによって塗布した後、熱風循環式乾燥炉内で200℃、1分間乾燥して接着剤層を形成した。その後、下地皮膜上の接着剤層の表面に、厚さ30μmのポリプロピレンフィルム(東セロ株式会社製、「CPPS」)を、190℃、1MPaで10秒間熱圧着した。
(3c: Heat lamination)
After applying a dispersion of acid-modified polypropylene (trade name: R-120K, non-volatile content: 20% by mass, manufactured by Mitsui Chemicals, Inc.) to the surface of the undercoat using a # 8SUS Meyer bar, An adhesive layer was formed by drying at 200 ° C. for 1 minute in a hot air circulating drying oven. Thereafter, a 30 μm-thick polypropylene film (manufactured by Tosero Co., Ltd., “CPPS”) was thermocompression bonded at 190 ° C. and 1 MPa for 10 seconds to the surface of the adhesive layer on the base film.

(3d:押出しラミネーション)
下地皮膜の表面に、酸変性ポリプロピレンを厚さ15μmの溶融樹脂層として押出し、その後さらに厚さ30μmのポリプロピレンフィルム(東セロ株式会社製、「CPPS」)を貼り合わせる押出しラミネーションを実施した。
(3d: extrusion lamination)
Extrusion lamination was performed by extruding acid-modified polypropylene as a molten resin layer having a thickness of 15 μm on the surface of the base film, and then bonding a polypropylene film having a thickness of 30 μm (manufactured by Tosero Co., Ltd., “CPPS”).

(3e:ドライラミネーション)
下地皮膜の表面に、ウレタン系ドライラミネート接着剤(東洋モートン株式会社製、商品名:AD−503/CAT10、不揮発分濃度:25質量%)を、#8SUSマイヤーバーを用い、バーコートによって塗布した後、電気炉で80℃、1分間乾燥して接着剤層を形成した。その後、この接着剤層と、厚さ30μmの未延伸ポリプロピレンフィルム(二村化学工業株式会社製、商品名:FCZX)のコロナ放電処理面とを、100℃、1MPaで圧着した後、40℃で4日間養生した。
(3e: Dry lamination)
A urethane-based dry laminate adhesive (manufactured by Toyo Morton Co., Ltd., trade name: AD-503 / CAT10, non-volatile content: 25% by mass) was applied to the surface of the base film by bar coating using a # 8SUS Meyer bar. Then, it dried at 80 degreeC and 1 minute with the electric furnace, and formed the adhesive bond layer. Thereafter, the adhesive layer and a corona discharge-treated surface of a 30 μm-thick unstretched polypropylene film (trade name: FCZX, manufactured by Nimura Chemical Industry Co., Ltd.) were pressure-bonded at 100 ° C. and 1 MPa, and then heated at 40 ° C. Cured for days.

[供試材の作製]
上記した基材金属をファインクリーナー359E(日本パーカライジング株式会社製、アルカリ脱脂剤)の2%水溶液で50℃、10秒間スプレー脱脂し、さらに表面を水洗し、表1〜表4に示した実施例1〜71及び比較例1〜12で用いる基材金属として準備した。
[Production of test materials]
The above-described base metal was spray-degreased with a 2% aqueous solution of fine cleaner 359E (manufactured by Nihon Parkerizing Co., Ltd., alkaline degreasing agent) at 50 ° C. for 10 seconds, and the surface was washed with water. It prepared as a base metal used by 1-71 and Comparative Examples 1-12.

次に、表1〜表4に示した実施例1〜71及び比較例1〜12で用いる基材金属に対し、表1〜表4に示した各処理を適用して下地皮膜を形成した。表1〜表4に示す実施例1〜実施例71では2a〜2tのいずれかの処理を選択し、比較例1〜比較例12では2u又は2vの処理を選択した。   Next, each treatment shown in Tables 1 to 4 was applied to the base metal used in Examples 1 to 71 and Comparative Examples 1 to 12 shown in Tables 1 to 4 to form a base film. In Examples 1 to 71 shown in Tables 1 to 4, any one of 2a to 2t was selected, and in Comparative Examples 1 to 12, 2u or 2v was selected.

ここで、置換めっき処理の場合には基材金属がエッチングするので、そのエッチング量(g/m)を測定した。エッチング量の測定は、置換めっき液中に溶出した基材金属をICP分析(株式会社島津製作所製、ICPE−9000)で定量した。その結果を表1〜表4に示した。また、下地皮膜を構成する金属元素(Zn、Fe、Ni、Co等)の付着量(g/m)もICP分析で定量した。この付着量は、下地皮膜を設けた基材金属を60%硝酸中に浸漬して溶解し、その溶解液をICP分析して測定した。なお、1g/mの金属元素が付着すると、下地皮膜の厚さは約0.5μmとなる。その結果を表1〜表4に示した。また、下地皮膜の表面について、XPS分析(株式会社島津製作所製、ESCA−850M)し、下地皮膜中の亜鉛元素の化学状態をZnLMMオージェスペクトルのピーク位置より同定した。ZnLMMオージェスペクトルのピーク位置が993.6eVの場合は、亜鉛元素が金属状態であり、988.6eVの場合は、亜鉛元素が酸化状態である。その結果を表1〜表4に示した。 Here, since the base metal is etched in the case of displacement plating, the etching amount (g / m 2 ) was measured. The amount of etching was determined by ICP analysis (ICPE-9000, manufactured by Shimadzu Corporation) for the base metal eluted in the displacement plating solution. The results are shown in Tables 1 to 4. Further, the adhesion amount (g / m 2 ) of metal elements (Zn, Fe, Ni, Co, etc.) constituting the undercoat was also quantified by ICP analysis. The amount of adhesion was measured by immersing and dissolving the base metal provided with the base film in 60% nitric acid, and analyzing the solution by ICP analysis. When 1 g / m 2 of metal element is attached, the thickness of the base film is about 0.5 μm. The results are shown in Tables 1 to 4. Further, the surface of the undercoat was subjected to XPS analysis (manufactured by Shimadzu Corporation, ESCA-850M), and the chemical state of the zinc element in the undercoat was identified from the peak position of the ZnLMM Auger spectrum. When the peak position of the ZnLMM Auger spectrum is 993.6 eV, the zinc element is in a metallic state, and when it is 988.6 eV, the zinc element is in an oxidized state. The results are shown in Tables 1 to 4.

次に、表1〜表4に示した実施例1〜71及び比較例1〜12で用いる下地皮膜付基材金属に対し、表1〜表4に示した各処ラミネート処理を適用して樹脂フィルムを形成した。   Next, each treatment laminating process shown in Tables 1 to 4 was applied to the base metal with base film used in Examples 1 to 71 and Comparative Examples 1 to 12 shown in Tables 1 to 4, and resin. A film was formed.

次に、得られた実施例1〜71及び比較例1〜12の樹脂フィルム付金属製外装材を深絞り加工を施した。先ず、直径160mmに打ち抜いた樹脂フィルム付金属製外装材を絞り加工(1回目)し、直径100mmのカップを作製した。続いて、そのカップを直径75mmに再度絞り加工(2回目)し、さらに直径65mmに絞り加工(3回目)し、供試材である缶を作製した。なお、1回目の絞り加工、2回目の絞り加工及び3回目の絞り加工におけるしごき率(薄肉化分率)は、それぞれ、5%、15%及び15%であった。   Next, the obtained metal exterior materials with resin films of Examples 1 to 71 and Comparative Examples 1 to 12 were subjected to deep drawing. First, the metal exterior material with a resin film punched out to a diameter of 160 mm was drawn (first time) to produce a cup having a diameter of 100 mm. Subsequently, the cup was again drawn to a diameter of 75 mm (second time), and further drawn to a diameter of 65 mm (third time) to prepare a can as a test material. The ironing ratio (thinning ratio) in the first drawing process, the second drawing process, and the third drawing process was 5%, 15%, and 15%, respectively.

[性能評価]
樹脂フィルム付金属製外装材を深絞り加工した後の缶(供試材)の初期密着性、耐久密着性、耐電解液密着維持性、及び液安定を以下のようにして評価した。その結果を表1〜表4に示した。
[Performance evaluation]
The initial adhesion, durability adhesion, electrolyte solution adhesion maintenance, and liquid stability of the can (test material) after deep drawing the metal exterior material with a resin film were evaluated as follows. The results are shown in Tables 1 to 4.

(初期密着性)
深絞り加工した後の供試材である缶について、初期密着性を評価した。缶が作製でき、樹脂フィルムの剥離がなく、初期密着性に優れるものを「3点」とし、樹脂フィルムの一部が剥離したものを「2点」とし、樹脂フィルムが全面剥離したものを「1点」とした。
(Initial adhesion)
The initial adhesion was evaluated for the can, which is a test material after deep drawing. Cans can be prepared, and there is no peeling of the resin film and excellent initial adhesion is designated as “3 points”, a part of the resin film is peeled off as “2 points”, and the resin film is peeled off as “ 1 point ".

(耐電解液密着維性)
深絞り加工した後の供試材である缶を、密閉容器中に充填されたイオン交換水を1000ppm添加したリチウムイオン2次電池用電解液(電解質:1mol/LのLiPF、溶媒体積比率;EC:DMC:DEC=1:1:1)中に浸漬した後、60℃の恒温槽中に7日間投入した。なお、「EC」は、エチレンカーボネートのことであり、「DMC」はジメチルカーボネートのことであり、「DEC」は、ジエチルカーボネートのことである。その後、供試材を取り出し、イオン交換水中に1分間浸漬し、揺動して洗浄した後、電気炉にて100℃で10分間乾燥した。その後、樹脂フィルム面をピンセットの先で引っ掻き、全く樹脂フィルムの剥離が起こらないものを「4点」とし、剥離するが引っ掻き抵抗が高く実用レベルにあるものを「3点」とし、非常に弱い力で剥離するものを「2点」とし、既に樹脂フィルムが剥離しているものを「1点」とした。
(Electrolytic solution adhesion resistance)
A can, which is a test material after deep drawing, is an electrolyte for a lithium ion secondary battery to which 1000 ppm of ion-exchanged water filled in an airtight container is added (electrolyte: 1 mol / L LiPF 6 , solvent volume ratio; After being immersed in EC: DMC: DEC = 1: 1: 1), it was put into a constant temperature bath at 60 ° C. for 7 days. “EC” refers to ethylene carbonate, “DMC” refers to dimethyl carbonate, and “DEC” refers to diethyl carbonate. Thereafter, the specimen was taken out, immersed in ion-exchanged water for 1 minute, swung and washed, and then dried at 100 ° C. for 10 minutes in an electric furnace. Then, the surface of the resin film is scratched with the tip of tweezers, and “4 points” indicates that the resin film does not peel at all, and “3 points” indicates that it is peeled but has high scratch resistance and is at a practical level. What peeled off by force was made into "2 points", and what has already peeled the resin film was made into "1 point."

表1〜表4に示すように、実施例1〜71の供試材(本発明に係る樹脂フィルム付金属製外装材)は、比較例1〜12の供試材に比べて、電解液に浸漬された場合でも密着性を維持することができ、耐電解液密着維持性が優れていることが確認された。   As shown in Tables 1 to 4, the test materials of Examples 1 to 71 (metal exterior materials with a resin film according to the present invention) were used as electrolytes compared to the test materials of Comparative Examples 1 to 12. Even when immersed, it was possible to maintain the adhesion, and it was confirmed that the electrolyte solution adhesion retention was excellent.

Figure 2013099869
Figure 2013099869

Figure 2013099869
Figure 2013099869

Figure 2013099869
Figure 2013099869

Figure 2013099869
Figure 2013099869

1 基材金属
2 下地皮膜(金属亜鉛皮膜又は金属亜鉛含有皮膜)
3 樹脂フィルム(ラミネートフィルム又は樹脂塗膜)
10 樹脂フィルム付金属製外装材
1 Base metal 2 Base film (metal zinc film or metal zinc-containing film)
3 Resin film (laminate film or resin coating)
10 Metal exterior with resin film

Claims (8)

基材金属と、該基材金属の一方又は両方の面に設けられた下地皮膜と、該下地皮膜上に設けられたラミネートフィルム又は樹脂塗膜とを有し、前記下地皮膜が金属亜鉛皮膜又は金属亜鉛含有皮膜であることを特徴とする樹脂フィルム付金属製外装材。   A base metal, a base coating provided on one or both surfaces of the base metal, and a laminate film or a resin coating provided on the base coating, wherein the base coating is a metal zinc coating or A metal exterior material with a resin film, which is a metal zinc-containing film. 前記ラミネートフィルム又は樹脂塗膜が、ポリオレフィン又は酸変性ポリオレフィンを含む、請求項1に記載の樹脂フィルム付金属製外装材。   The metal exterior material with a resin film according to claim 1, wherein the laminate film or the resin coating film contains polyolefin or acid-modified polyolefin. 前記基材金属が、アルミニウム又はその合金、ステンレス鋼、銅又はその合金、及びニッケル又はその合金、から選ばれるいずれかである、請求項1又は2に記載の樹脂フィルム付金属製外装材。   The metal exterior material with a resin film according to claim 1 or 2, wherein the base metal is any one selected from aluminum or an alloy thereof, stainless steel, copper or an alloy thereof, and nickel or an alloy thereof. 前記金属亜鉛含有皮膜が、鉄、ニッケル及びコバルトから選ばれる1種又は2種以上の元素を含む、請求項1〜3のいずれか1項に記載の樹脂フィルム付金属製外装材。   The metal exterior material with a resin film of any one of Claims 1-3 in which the said metal zinc containing film | membrane contains 1 type, or 2 or more types of elements chosen from iron, nickel, and cobalt. 深絞り加工、しごき加工又はストレッチドロー加工が施されてなる、請求項1〜4のいずれか1項に記載の樹脂フィルム付金属製外装材。   The metal exterior material with a resin film according to any one of claims 1 to 4, which is subjected to deep drawing processing, ironing processing, or stretch drawing processing. 基材金属の一方又は両方の面に、置換めっき法又は電気めっき法で金属亜鉛皮膜又は金属亜鉛含有皮膜を下地皮膜として形成する工程と、
前記下地皮膜上に、ラミネートフィルム又は樹脂塗膜を形成する工程と、を有することを特徴とする樹脂フィルム付金属製外装材の製造方法。
Forming a metal zinc film or a metal zinc-containing film as a base film by displacement plating or electroplating on one or both surfaces of the base metal; and
And a step of forming a laminate film or a resin coating film on the undercoat. The method for producing a metal exterior material with a resin film, comprising:
深絞り加工、しごき加工及びストレッチドロー加工から選ばれるいずれか1又は2以上の加工工程をさらに有する、請求項6に記載の樹脂フィルム付金属製外装材の製造方法。   The manufacturing method of the metal exterior material with a resin film of Claim 6 which further has any 1 or 2 or more processing process chosen from deep drawing processing, ironing processing, and stretch drawing processing. 前記下地皮膜の形成工程の前に、前記基材金属の表面の酸化物皮膜を除去する工程をさらに有する、請求項6又は7に記載の樹脂フィルム付金属製外装材の製造方法。   The manufacturing method of the metal exterior material with a resin film of Claim 6 or 7 which further has the process of removing the oxide film on the surface of the said base metal before the formation process of the said base film.
JP2011243944A 2011-11-07 2011-11-07 Metal exterior material with resin film and method for producing the same Expired - Fee Related JP5980495B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011243944A JP5980495B2 (en) 2011-11-07 2011-11-07 Metal exterior material with resin film and method for producing the same
KR1020120124757A KR101870455B1 (en) 2011-11-07 2012-11-06 A metal exterior material having a resin film and a method for manufacturing the same
CN201210439629.7A CN103085384B (en) 2011-11-07 2012-11-06 Metal exterior material and manufacture method thereof with resin molding
TW101141153A TWI597161B (en) 2011-11-07 2012-11-06 Metallic external material with resin film and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243944A JP5980495B2 (en) 2011-11-07 2011-11-07 Metal exterior material with resin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013099869A true JP2013099869A (en) 2013-05-23
JP5980495B2 JP5980495B2 (en) 2016-08-31

Family

ID=48198740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243944A Expired - Fee Related JP5980495B2 (en) 2011-11-07 2011-11-07 Metal exterior material with resin film and method for producing the same

Country Status (4)

Country Link
JP (1) JP5980495B2 (en)
KR (1) KR101870455B1 (en)
CN (1) CN103085384B (en)
TW (1) TWI597161B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150110324A (en) * 2014-03-24 2015-10-02 쇼와 덴코 패키징 가부시키가이샤 Exterior for electrochemical device and electrochemical device
JP2015205504A (en) * 2014-04-07 2015-11-19 昭和電工パッケージング株式会社 Method for producing laminate exterior material
JP2020179525A (en) * 2019-04-23 2020-11-05 株式会社シミズ Copper damage prevention membrane, method for manufacturing copper member with copper damage prevention membrane and copper damage prevention method
CN113381101A (en) * 2021-05-07 2021-09-10 厦门大学 Battery flexible packaging material with good heat dissipation performance and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103847162B (en) * 2014-02-21 2016-01-27 苏州米达思精密电子有限公司 A kind of golden reinforcing chip of surface gold-plating and preparation technology thereof
KR102144161B1 (en) * 2018-06-25 2020-08-12 현대제철 주식회사 Plating solution for electro-galvanized steel sheet, manufacturing method for electro-galvanized steel sheet using the same, and electro-galvanized steel sheet prepared using the same
KR20230003964A (en) * 2021-06-30 2023-01-06 삼성전자주식회사 Electronic device comprising plate, plate, and manufacturing method of plate
WO2023128234A1 (en) 2021-12-28 2023-07-06 주식회사 리베스트 Apparatus and method for forming pattern on exterior material of battery
KR20230100585A (en) 2021-12-28 2023-07-05 주식회사 리베스트 Apparatus and method for forming pattern on exterior material of battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221052A (en) * 1990-12-19 1992-08-11 Nisshin Steel Co Ltd Pretreatment of stainless steel material for hot dipping galvanizing
JPH04353439A (en) * 1991-05-30 1992-12-08 Sumitomo Metal Ind Ltd Lightweight sandwich steel plate with good corrosion resistance at end faces thereof
JPH0913146A (en) * 1995-06-27 1997-01-14 Kobe Steel Ltd Surface treated steel sheet excellent in punching workability and formability
JP2004176092A (en) * 2002-11-25 2004-06-24 Kobe Steel Ltd Resin-coating galvanize-base coated steel sheet excellent in weldability and corrosion resistance, and its producing method
JP2007069354A (en) * 2005-09-02 2007-03-22 Sekisui Film Kk Metal-like decorative sheet and decorative metal sheet
JP2008004506A (en) * 2006-06-26 2008-01-10 Sony Corp Nonaqueous electrolyte secondary battery and battery pack as well as manufacturing method of nonaqueous electrolyte secondary battery and battery pack
JP2008046477A (en) * 2006-08-18 2008-02-28 Toyo Kohan Co Ltd Reflecting plate for liquid crystal backlight
JP2008262803A (en) * 2007-04-12 2008-10-30 Sony Corp Battery pack
JP2010236022A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Film laminate treatment hot-dip zinc-plated steel sheet
JP2012212511A (en) * 2011-03-30 2012-11-01 Nisshin Steel Co Ltd Laminate for battery exterior and secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049697C (en) * 1995-06-09 2000-02-23 株式会社神户制钢所 Steel sheet having excellent processing characteristics manufacturing method therefor, and galvanized steel sheet and resin coating steel sheet
DE60036354T2 (en) * 1999-04-08 2008-05-29 Dai Nippon Printing Co., Ltd. Laminated multilayer structure for lithium battery packaging
JP4440376B2 (en) 1999-07-16 2010-03-24 大日本印刷株式会社 Polymer battery packaging materials
EP1884353A1 (en) 2006-07-24 2008-02-06 Alcan Technology & Management Ltd. Plastic composite film
CN101396888B (en) * 2007-09-27 2013-01-09 比亚迪股份有限公司 Metal composite board and preparation method thereof
JP2011076887A (en) 2009-09-30 2011-04-14 Toppan Printing Co Ltd Packaging material for lithium ion battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221052A (en) * 1990-12-19 1992-08-11 Nisshin Steel Co Ltd Pretreatment of stainless steel material for hot dipping galvanizing
JPH04353439A (en) * 1991-05-30 1992-12-08 Sumitomo Metal Ind Ltd Lightweight sandwich steel plate with good corrosion resistance at end faces thereof
JPH0913146A (en) * 1995-06-27 1997-01-14 Kobe Steel Ltd Surface treated steel sheet excellent in punching workability and formability
JP2004176092A (en) * 2002-11-25 2004-06-24 Kobe Steel Ltd Resin-coating galvanize-base coated steel sheet excellent in weldability and corrosion resistance, and its producing method
JP2007069354A (en) * 2005-09-02 2007-03-22 Sekisui Film Kk Metal-like decorative sheet and decorative metal sheet
JP2008004506A (en) * 2006-06-26 2008-01-10 Sony Corp Nonaqueous electrolyte secondary battery and battery pack as well as manufacturing method of nonaqueous electrolyte secondary battery and battery pack
JP2008046477A (en) * 2006-08-18 2008-02-28 Toyo Kohan Co Ltd Reflecting plate for liquid crystal backlight
JP2008262803A (en) * 2007-04-12 2008-10-30 Sony Corp Battery pack
JP2010236022A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Film laminate treatment hot-dip zinc-plated steel sheet
JP2012212511A (en) * 2011-03-30 2012-11-01 Nisshin Steel Co Ltd Laminate for battery exterior and secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150110324A (en) * 2014-03-24 2015-10-02 쇼와 덴코 패키징 가부시키가이샤 Exterior for electrochemical device and electrochemical device
JP2015185340A (en) * 2014-03-24 2015-10-22 昭和電工パッケージング株式会社 Outer packaging material for electrochemical device and electrochemical device
TWI646718B (en) * 2014-03-24 2019-01-01 日商昭和電工包裝股份有限公司 Exterior material for electrochemical device and electrochemical device
KR102325252B1 (en) * 2014-03-24 2021-11-10 쇼와 덴코 패키징 가부시키가이샤 Exterior for electrochemical device and electrochemical device
JP2015205504A (en) * 2014-04-07 2015-11-19 昭和電工パッケージング株式会社 Method for producing laminate exterior material
US11858251B2 (en) 2014-04-07 2024-01-02 Resonac Packaging Corporation Method of manufacturing laminated armoring material
JP2020179525A (en) * 2019-04-23 2020-11-05 株式会社シミズ Copper damage prevention membrane, method for manufacturing copper member with copper damage prevention membrane and copper damage prevention method
CN113381101A (en) * 2021-05-07 2021-09-10 厦门大学 Battery flexible packaging material with good heat dissipation performance and preparation method thereof

Also Published As

Publication number Publication date
TWI597161B (en) 2017-09-01
TW201325891A (en) 2013-07-01
JP5980495B2 (en) 2016-08-31
CN103085384B (en) 2016-08-10
KR101870455B1 (en) 2018-06-22
KR20130050255A (en) 2013-05-15
CN103085384A (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5980495B2 (en) Metal exterior material with resin film and method for producing the same
KR101108312B1 (en) Plated steel sheet for can and process for producing the same
TWI432610B (en) Surface treated copper foil
TWI582243B (en) Steel foil for electricity storage device container, container for electricity storage device, electricity storage device, and manufacturing method of steel foil for electricity storage device container
TW201203669A (en) Surface treatment method for copper foil, surface treated copper foil and copper foil for negative electrode collector of lithium ion secondary battery
KR101366217B1 (en) Packaging material for polymer cell and process for producing the same
JP5786296B2 (en) Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same
CN104241581B (en) Lead component
KR101992507B1 (en) Electrolysis copper alloy foil and electrolysis copper alloy foil with carrier foil
JP5470487B1 (en) Copper foil, copper clad laminate for semiconductor package using the same, printed wiring board, printed circuit board, resin substrate, circuit forming method, semi-additive method, circuit forming substrate for semiconductor package, and semiconductor package
JP2012059484A (en) Collector for lithium ion secondary battery negative electrode and method for manufacturing the same, and lithium ion secondary battery negative electrode
WO2020045627A1 (en) Metal plate for cell container, and method for manufacturing metal plate for cell container
CN103108999A (en) Apparatus for continuous electrolytic treatment of steel sheet and method of producing surface-treated steal sheet using same
JP4948654B2 (en) Copper foil for negative electrode current collector of lithium ion secondary battery, manufacturing method thereof, negative electrode of lithium ion secondary battery, manufacturing method thereof
CN114929944A (en) Surface-treated copper foil and method for producing same
JP2007257974A (en) Inspection method of pinhole
JP4948656B2 (en) Perforated roughening copper foil for secondary battery current collector, method for producing the same, and negative electrode for lithium ion secondary battery
JP2011198557A (en) Laminate for battery outer packaging, and secondary battery
JP5019654B2 (en) Copper (alloy) foil for negative electrode current collector of lithium ion secondary battery, manufacturing method thereof, negative electrode of lithium ion secondary battery, manufacturing method thereof
JP2012043747A (en) Secondary battery electrode and method of manufacturing the same
JP5053510B2 (en) Power supply device outer can and power supply device using the outer can
JP6168101B2 (en) Surface-treated steel sheet, method for producing the same, and resin-coated steel sheet using the same
TWI705160B (en) Electrolytic copper foil and electrode and copper-clad laminate comprising the same
TW201700752A (en) Stainless steel foil for outer package of battery
US20210328227A1 (en) Electrode terminal having high corrosion resistance for secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5980495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees