JP2013089346A - Nonaqueous electrolyte secondary battery and manufacturing method therefor - Google Patents
Nonaqueous electrolyte secondary battery and manufacturing method therefor Download PDFInfo
- Publication number
- JP2013089346A JP2013089346A JP2011226562A JP2011226562A JP2013089346A JP 2013089346 A JP2013089346 A JP 2013089346A JP 2011226562 A JP2011226562 A JP 2011226562A JP 2011226562 A JP2011226562 A JP 2011226562A JP 2013089346 A JP2013089346 A JP 2013089346A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- conductive material
- active material
- secondary battery
- mixture layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 239000000203 mixture Substances 0.000 claims abstract description 197
- 239000004020 conductor Substances 0.000 claims abstract description 114
- 239000007774 positive electrode material Substances 0.000 claims abstract description 91
- 238000010521 absorption reaction Methods 0.000 claims abstract description 74
- 239000002270 dispersing agent Substances 0.000 claims abstract description 43
- 239000007787 solid Substances 0.000 claims abstract description 24
- 239000006185 dispersion Substances 0.000 claims description 46
- 239000002904 solvent Substances 0.000 claims description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 21
- 238000002156 mixing Methods 0.000 claims description 21
- 239000006230 acetylene black Substances 0.000 claims description 20
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 19
- 239000011230 binding agent Substances 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 17
- 239000007773 negative electrode material Substances 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 11
- 239000006229 carbon black Substances 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 10
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 6
- 150000001449 anionic compounds Chemical class 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 125000000524 functional group Chemical group 0.000 claims description 5
- 125000001165 hydrophobic group Chemical group 0.000 claims description 5
- 150000001767 cationic compounds Chemical class 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 96
- 239000002245 particle Substances 0.000 description 75
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 43
- 229910001416 lithium ion Inorganic materials 0.000 description 42
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 31
- 229910052723 transition metal Inorganic materials 0.000 description 29
- 239000000243 solution Substances 0.000 description 27
- 239000011149 active material Substances 0.000 description 24
- 238000010304 firing Methods 0.000 description 24
- 150000003624 transition metals Chemical class 0.000 description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 239000002131 composite material Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000007864 aqueous solution Substances 0.000 description 17
- 238000004898 kneading Methods 0.000 description 17
- 230000006911 nucleation Effects 0.000 description 17
- 238000010899 nucleation Methods 0.000 description 17
- 239000002033 PVDF binder Substances 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 14
- -1 etc.) Chemical compound 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 12
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 12
- 239000011572 manganese Substances 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 description 8
- 235000019241 carbon black Nutrition 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 229910052748 manganese Inorganic materials 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000003125 aqueous solvent Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 239000012295 chemical reaction liquid Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 229910015010 LiNiCoMn Inorganic materials 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 239000002800 charge carrier Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 239000011254 layer-forming composition Substances 0.000 description 4
- 150000002642 lithium compounds Chemical class 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- 229910011221 Li1.15Ni0.33Co0.33Mn0.33O2 Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000006232 furnace black Substances 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 229910006025 NiCoMn Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229940053662 nickel sulfate Drugs 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000003115 supporting electrolyte Substances 0.000 description 2
- 150000003623 transition metal compounds Chemical class 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012258 LiPO Inorganic materials 0.000 description 1
- 229910015868 MSiO Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229910016366 Ni0.33Co0.33Mn0.33(OH)2 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- DGTVXEHQMSJRPE-UHFFFAOYSA-M difluorophosphinate Chemical compound [O-]P(F)(F)=O DGTVXEHQMSJRPE-UHFFFAOYSA-M 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- SWAIALBIBWIKKQ-UHFFFAOYSA-N lithium titanium Chemical compound [Li].[Ti] SWAIALBIBWIKKQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水電解質二次電池とその製法に関する。 The present invention relates to a non-aqueous electrolyte secondary battery and a method for producing the same.
リチウムイオン二次電池等の非水電解質二次電池は、例えば、電気を駆動源として利用する車両に搭載される電源、或いはパソコンや携帯端末その他の電気製品等に用いられる電源として重要性が高まっている。特に軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましい。 Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are becoming increasingly important as power sources mounted on vehicles that use electricity as a drive source, or power sources used in personal computers, portable terminals, and other electrical products. ing. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is preferable as a high-output power source mounted on a vehicle.
非水電解質二次電池の一つの典型的な例では、正極活物質を含む正極合材層と負極活物質を含む負極合材層との間を電荷担体(例えばリチウムイオン)が行き来することによって、充電および放電が行われる。かかる正極合材層は、例えば、正極活物質と、導電材と、結着材とを、適量の溶媒に加えて混練することでペースト状の組成物(ペースト状の組成物には、スラリー状組成物及びインク状組成物が包含される。)を調製し、これを正極集電体(導電性部材)上に塗布して乾燥することにより形成される。 In a typical example of a non-aqueous electrolyte secondary battery, charge carriers (for example, lithium ions) move back and forth between a positive electrode mixture layer containing a positive electrode active material and a negative electrode mixture layer containing a negative electrode active material. Charging and discharging are performed. Such a positive electrode mixture layer is obtained by, for example, adding a positive electrode active material, a conductive material, and a binder to an appropriate amount of a solvent and kneading the paste-like composition (the paste-like composition includes a slurry-like composition). A composition and an ink-like composition are prepared), and this is applied onto a positive electrode current collector (conductive member) and dried.
ところで、導電材(例えば炭素材料)は凝集しやすい性質を持っているため組成物(ペースト)の混練時(調製時)に再凝集してしまい、組成物の粘度が大きくなってしまう虞がある。組成物の粘度が大きすぎると、集電体上に組成物を塗布する際に塗布ムラが発生してしまう虞がある。混練時に溶媒を多く用いることで導電材の凝集を防止して導電材の分散状態を高める(即ち粘度を低下させ、導電性を向上させる)ことは可能であるが、その後の乾燥工程において溶媒の除去量が増大するため溶媒除去にかかるコストが高くなる虞がある。このため、混練時に分散剤を添加することによって導電材の凝集を防止し組成物の粘度を下げることが考えられる。
しかしながら、分散剤の添加量が多すぎると、添加した分散剤が正極活物質に吸着されて該正極活物質の表面を覆ってしまうため、電荷担体の吸蔵及び放出が妨げられる結果、反応抵抗が増大してしまう虞がある。このように導電材の凝集を防止して組成物の粘度の増加を抑制するために、単に分散剤を加えただけでは、所望の高出力特性を得ることが難しいという課題があった。
By the way, since a conductive material (for example, carbon material) has a property of easily agglomerating, it re-aggregates when kneading (preparing) the composition (paste), which may increase the viscosity of the composition. . When the viscosity of the composition is too large, there is a possibility that coating unevenness occurs when the composition is applied onto the current collector. It is possible to increase the dispersed state of the conductive material by preventing the aggregation of the conductive material by using a large amount of the solvent during kneading (that is, to reduce the viscosity and improve the conductivity). Since the removal amount increases, the cost for removing the solvent may increase. For this reason, it is conceivable to add a dispersant during kneading to prevent aggregation of the conductive material and lower the viscosity of the composition.
However, if the added amount of the dispersing agent is too large, the added dispersing agent is adsorbed on the positive electrode active material and covers the surface of the positive electrode active material. There is a risk of increase. Thus, in order to prevent the aggregation of the conductive material and suppress the increase in the viscosity of the composition, there is a problem that it is difficult to obtain a desired high output characteristic by simply adding a dispersant.
そこで、本発明は、上述した課題を解決すべく創出されたものであり、その目的は、分散剤の効果がより適切に発揮されて出力特性が向上した非水電解質二次電池を提供することであり、該非水電解質二次電池を好適に製造する方法を提供することである。 Therefore, the present invention has been created to solve the above-described problems, and its object is to provide a nonaqueous electrolyte secondary battery in which the effect of the dispersant is more appropriately exhibited and the output characteristics are improved. And providing a method for suitably producing the non-aqueous electrolyte secondary battery.
本発明により提供される非水電解質二次電池は、正極及び負極を備える非水電解質二次電池である。即ちここで開示される非水電解質二次電池において、上記正極は、正極集電体と、該正極集電体上に形成された少なくとも正極活物質及び導電材(典型的には粒状)及び分散剤を含む正極合材層と、を有している。上記正極活物質は、JIS K6217−4に基づくDBP吸収量[mL/100g]が30ml/100g以上である。ここで、上記正極活物質のDBP吸収量[mL/100g]をAとし、上記正極合材層中の全固形分に占める該正極活物質の質量割合をx[質量%](即ちx[質量%]は、正極合材層中の正極活物質の全質量p[g]と正極合材層中の全固形分の全質量S[g]との比(p/S)×100で表すことができる。)とし、且つ、上記導電材のDBP吸収量[mL/100g](JIS K6217−4参照)をBとし、上記正極合材層中の全固形分に占める該導電材の質量割合をy[質量%](即ちy[質量%]は、正極合材層中の導電材の全質量q[g]と正極合材層中の全固形分の全質量S[g]との比(q/S)×100で表すことができる。)としたときの以下の式(1)により求められる計算値a:
a=yB/xA (1);
が0.28〜0.47であることを特徴とする。
なお、本明細書において「非水電解質二次電池」とは、非水電解質(典型的には、非水溶媒中に支持塩(支持電解質)を含む電解液)を備えた電池をいう。また、「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウムイオン二次電池等のいわゆる化学電池ならびに電気二重層キャパシタ等の物理電池を包含する用語である。
The nonaqueous electrolyte secondary battery provided by the present invention is a nonaqueous electrolyte secondary battery including a positive electrode and a negative electrode. That is, in the nonaqueous electrolyte secondary battery disclosed herein, the positive electrode includes a positive electrode current collector, at least a positive electrode active material and a conductive material (typically granular) formed on the positive electrode current collector, and a dispersion. And a positive electrode mixture layer containing an agent. The positive electrode active material has a DBP absorption amount [mL / 100 g] based on JIS K6217-4 of 30 ml / 100 g or more. Here, the DBP absorption amount [mL / 100 g] of the positive electrode active material is A, and the mass ratio of the positive electrode active material to the total solid content in the positive electrode mixture layer is x [mass%] (that is, x [mass]. %] Is expressed as a ratio (p / S) × 100 of the total mass p [g] of the positive electrode active material in the positive electrode mixture layer and the total mass S [g] of the total solid content in the positive electrode mixture layer. And the DBP absorption amount [mL / 100 g] (see JIS K6217-4) of the conductive material is B, and the mass ratio of the conductive material in the total solid content in the positive electrode mixture layer is y [mass%] (that is, y [mass%] is a ratio of the total mass q [g] of the conductive material in the positive electrode mixture layer to the total mass S [g] of the total solid content in the positive electrode mixture layer ( q / S) × 100.) Calculated value a obtained by the following equation (1):
a = yB / xA (1);
Is 0.28 to 0.47.
In the present specification, the “nonaqueous electrolyte secondary battery” refers to a battery provided with a nonaqueous electrolyte (typically, an electrolytic solution containing a supporting salt (supporting electrolyte) in a nonaqueous solvent). The term “secondary battery” refers to a general battery that can be repeatedly charged and discharged, and is a term that includes a so-called chemical battery such as a lithium ion secondary battery and a physical battery such as an electric double layer capacitor.
本発明によって提供される非水電解質二次電池では、DBP吸収量A[mL/100g]が30mL/100g以上(例えば30ml/100g〜45ml/100g)という比較的DBP吸収量が大きい(即ち分散剤を吸着可能な表面積が大きい)正極活物質を備えており、且つ上記式(1)によって導き出される計算値aが上記範囲内にある正極合材層を備えている。このため、正極活物質の表面に吸着する分散剤の割合を小さくすることができ、且つ、導電材の良好な分散性を確保することができる。この結果、反応抵抗が低減されて出力性能が向上した非水電解質二次電池となり得る。
なお、上記特許文献1〜3には、正極活物質、導電材、又は正極活物質と導電材との混合粉体のDBP吸収量について規定した技術が開示されているが、かかる特許文献1〜3の技術では正極合材層に分散剤を添加した際に正極活物質の大部分が分散剤によって被覆されるため、ここで開示される発明の作用効果を奏するものではない。
In the nonaqueous electrolyte secondary battery provided by the present invention, the DBP absorption amount A [mL / 100 g] is 30 mL / 100 g or more (for example, 30 ml / 100 g to 45 ml / 100 g), and the DBP absorption amount is relatively large (that is, the dispersant). A positive electrode active material), and a positive electrode mixture layer having a calculated value a derived from the above formula (1) within the above range. For this reason, the ratio of the dispersing agent adsorb | sucking to the surface of a positive electrode active material can be made small, and the favorable dispersibility of an electrically conductive material can be ensured. As a result, a non-aqueous electrolyte secondary battery with reduced reaction resistance and improved output performance can be obtained.
In addition, the above Patent Documents 1 to 3 disclose techniques that define the DBP absorption amount of the positive electrode active material, the conductive material, or the mixed powder of the positive electrode active material and the conductive material. In the third technique, when the dispersant is added to the positive electrode mixture layer, most of the positive electrode active material is covered with the dispersant, and thus the effects of the invention disclosed herein are not exhibited.
ここで開示される非水電解質二次電池の好適な一態様では、上記導電材(典型的には粒状の導電材)は、上記DBP吸収量B[mL/100g]が130mL/100g〜180mL/100gのカーボンブラック(例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック等)であることを特徴とする。導電材としてこのようなカーボンブラックを備える非水電解質二次電池では、良好な導電性を得ることができる。アセチレンブラックが使用するカーボンブラックとして特に好ましい。 In a preferred embodiment of the nonaqueous electrolyte secondary battery disclosed herein, the conductive material (typically a granular conductive material) has a DBP absorption amount B [mL / 100 g] of 130 mL / 100 g to 180 mL / 100 g of carbon black (for example, acetylene black, ketjen black, furnace black, etc.). In a nonaqueous electrolyte secondary battery including such carbon black as a conductive material, good conductivity can be obtained. Acetylene black is particularly preferred as the carbon black used.
ここで開示される非水電解質二次電池の好適な他の一態様では、上記正極合材層に含まれる上記導電材を100質量%としたときに、該正極合材層に含まれる上記分散剤の質量割合は、1質量%以上5質量%以下であることを特徴とする。
かかる構成によると、導電材の凝集が抑制されて導電材が良好に分散しており、且つ正極活物質への分散剤の過度な吸着が抑制された正極合材層を備える非水電解質二次電池となるので反応抵抗の低減が実現され得る。好ましくは、上記分散剤は、疎水性基と親水性基とを有する高分子化合物、又は極性官能基を有するアニオン性化合物或いはカチオン性化合物から選択される少なくとも一種である。ポリビニルブチラール及び/又はポリビニルピロリドンが上記高分子化合物として好ましい。
In another preferred embodiment of the nonaqueous electrolyte secondary battery disclosed herein, the dispersion contained in the positive electrode mixture layer when the conductive material contained in the positive electrode mixture layer is 100% by mass. The mass ratio of the agent is 1% by mass or more and 5% by mass or less.
According to such a configuration, the non-aqueous electrolyte secondary provided with the positive electrode mixture layer in which aggregation of the conductive material is suppressed and the conductive material is well dispersed, and excessive adsorption of the dispersant to the positive electrode active material is suppressed. Since the battery is used, the reaction resistance can be reduced. Preferably, the dispersant is at least one selected from a polymer compound having a hydrophobic group and a hydrophilic group, an anionic compound having a polar functional group, or a cationic compound. Polyvinyl butyral and / or polyvinyl pyrrolidone are preferred as the polymer compound.
また、本発明によると、上記目的を実現する他の側面として、少なくとも正極活物質及び導電材を含む正極合材層が正極集電体上に形成された正極と、少なくとも負極活物質を含む負極合材層が負極集電体上に形成された負極と、を備える非水電解質二次電池の製造方法が提供される。即ち、ここで開示される非水電解質二次電池の製造方法は、上記導電材と、分散剤と、結着材とを所定の溶媒に分散させてなる導電材分散液を用意(準備)すること、上記用意した導電材分散液と、上記正極活物質としてJIS K6217−4に基づくDBP吸収量[mL/100g]が30mL/100g以上の正極活物質と、を混合してなるペースト状の正極合材層形成用組成物を用意(準備)すること、上記用意した正極合材層形成用組成物を上記正極集電体の表面に塗布して乾燥させることによって正極合材層を形成すること、を包含する。ここで、上記正極活物質のDBP吸収量[mL/100g]をAとし、上記正極合材層形成用組成物中の全固形分に占める該正極活物質の質量割合をx[質量%]とし、且つ、上記導電材のDBP吸収量[mL/100g]をBとし、上記正極合材層形成用組成物中の全固形分に占める該導電材の質量割合をy[質量%]としたときの以下の式(1)により求められる計算値a:
a=yB/xA (1);
が0.28〜0.47となるように、上記DBP吸収量Aと上記質量割合xと上記DBP吸収量Bと上記質量割合yとを決定することを特徴とする。
According to the present invention, as another aspect for realizing the above object, a positive electrode in which a positive electrode mixture layer including at least a positive electrode active material and a conductive material is formed on a positive electrode current collector, and a negative electrode including at least a negative electrode active material There is provided a method for producing a nonaqueous electrolyte secondary battery, comprising: a negative electrode having a composite material layer formed on a negative electrode current collector. That is, in the method for manufacturing a nonaqueous electrolyte secondary battery disclosed herein, a conductive material dispersion is prepared (prepared) in which the conductive material, the dispersant, and the binder are dispersed in a predetermined solvent. A paste-like positive electrode obtained by mixing the prepared conductive material dispersion and a positive electrode active material having a DBP absorption amount [mL / 100 g] based on JIS K6217-4 of 30 mL / 100 g or more as the positive electrode active material. Preparing (preparing) a composition for forming a mixture layer, and forming the cathode mixture layer by applying the prepared composition for forming a cathode mixture layer on the surface of the cathode current collector and drying it. . Here, the DBP absorption amount [mL / 100 g] of the positive electrode active material is A, and the mass ratio of the positive electrode active material in the total solid content in the positive electrode mixture layer forming composition is x [mass%]. And when DBP absorption amount [mL / 100g] of the said electrically conductive material is set to B, and the mass ratio of this electrically conductive material to the total solid in the said composition for positive electrode mixture layer formation is set to y [mass%]. Calculated value a obtained by the following formula (1):
a = yB / xA (1);
The DBP absorption amount A, the mass ratio x, the DBP absorption amount B, and the mass ratio y are determined so that the value becomes 0.28 to 0.47.
このように、DBP吸収量A[mL/100g]が30mL/100g以上(例えば30ml/100g〜45ml/100g)の正極活物質を用いて正極合材層を形成する際に、上記式(1)によって導きだされる計算値aを求めて、計算値aが上記範囲となるように上記DBP吸収量Aと上記質量割合xと上記DBP吸収量Bと上記質量割合yとを決定することにより、正極活物質に吸着する分散剤の割合を減少させることができ、導電材を良好に分散させることができる。これにより、非水電解質二次電池の反応抵抗の増加を抑制して出力性能を向上させることを実現することができる。 Thus, when the positive electrode mixture layer is formed using the positive electrode active material having a DBP absorption amount A [mL / 100 g] of 30 mL / 100 g or more (for example, 30 ml / 100 g to 45 ml / 100 g), the above formula (1) By calculating the DBP absorption amount A, the mass ratio x, the DBP absorption amount B, and the mass ratio y so that the calculated value a falls within the above range. The proportion of the dispersant adsorbed on the positive electrode active material can be reduced, and the conductive material can be dispersed well. Thereby, it is possible to suppress the increase in reaction resistance of the nonaqueous electrolyte secondary battery and improve the output performance.
ここで開示される製造方法の好適な一態様では、上記導電材として、上記DBP吸収量B[mL/100g]が130mL/100g〜180mL/100gのカーボンブラック(例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック等)を用いる。カーボンブラックは導電性に優れる一方、凝集しやすい性質を有する。従って、導電材として上記カーボンブラックを用いた非水電解質二次電池を製造する場合には、分散剤を用いると共に正極活物質の物性及び質量割合と導電材の物性及び質量割合とのバランスを規定するという本発明の構成を採用することによる効果が特に発揮され得る。 In a preferred embodiment of the production method disclosed herein, as the conductive material, carbon black having a DBP absorption amount B [mL / 100 g] of 130 mL / 100 g to 180 mL / 100 g (for example, acetylene black, ketjen black, Furnace black or the like). While carbon black is excellent in conductivity, it has a property of being easily aggregated. Therefore, when manufacturing a non-aqueous electrolyte secondary battery using the above carbon black as a conductive material, a dispersant is used and the balance between the physical properties and mass ratio of the positive electrode active material and the physical properties and mass ratio of the conductive material is specified. In particular, the effect of adopting the configuration of the present invention can be exhibited.
ここで開示される製造方法の好適な他の一態様では、上記導電材分散液に含まれる上記導電材を100質量%としたときに、該導電材分散液に含まれる上記分散剤の質量割合が1質量%以上5質量%以下となるように該分散剤の量を調整する。
かかる構成によると、分散剤の添加に伴う内部抵抗の増加を抑制しつつ導電材を良好に分散させることができる。また、溶媒も低減することができるため高固形分で低粘度の正極合材層形成用組成物となり得る。
In another preferable aspect of the production method disclosed herein, when the conductive material contained in the conductive material dispersion is 100% by mass, the mass ratio of the dispersant contained in the conductive material dispersion The amount of the dispersing agent is adjusted so that the amount becomes 1 mass% or more and 5 mass% or less.
According to this configuration, it is possible to satisfactorily disperse the conductive material while suppressing an increase in internal resistance due to the addition of the dispersant. In addition, since the solvent can be reduced, the composition for forming a positive electrode mixture layer having a high solid content and a low viscosity can be obtained.
ここで開示される製造方法の好適な他の一態様では、上記分散剤として、疎水性基と親水性基とを有する高分子化合物、又は極性官能基を有するアニオン性化合物或いはカチオン性化合物から選択される少なくとも一種を用いる。例えば、上記高分子化合物として、ポリビニルブチラール及び/又はポリビニルピロリドンを用いる。かかる分散剤は、導電材を良好に分散させることができる。 In another preferred embodiment of the production method disclosed herein, the dispersant is selected from a polymer compound having a hydrophobic group and a hydrophilic group, or an anionic compound or a cationic compound having a polar functional group. Use at least one kind. For example, polyvinyl butyral and / or polyvinyl pyrrolidone is used as the polymer compound. Such a dispersant can favorably disperse the conductive material.
上述のように、ここで開示されるいずれかの非水電解質二次電池或いはいずれかの製造方法により得られた非水電解質二次電池は、充放電時(特に低温(例えば−30℃程度)ハイレート(例えば5C〜50C)充放電時)の反応抵抗が低減されて高出力を発揮し得る非水電解質二次電池(例えばリチウムイオン二次電池)となり得る。このため、車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)の駆動電源として用いることができる。また、本発明の他の側面として、ここで開示されるいずれかの非水電解質二次電池(複数個の電池が典型的には直列に接続された組電池の形態であり得る。)を駆動電源として備える車両を提供する。 As described above, any of the nonaqueous electrolyte secondary batteries disclosed herein or the nonaqueous electrolyte secondary battery obtained by any of the manufacturing methods is charged / discharged (particularly at a low temperature (eg, about −30 ° C.)). A non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) capable of exhibiting a high output due to a reduced reaction resistance at a high rate (for example, 5C to 50C) can be obtained. For this reason, it can be used as a drive power source for vehicles (typically automobiles, particularly automobiles equipped with electric motors such as hybrid cars, electric cars, and fuel cell cars). As another aspect of the present invention, any of the nonaqueous electrolyte secondary batteries disclosed herein (which may be in the form of an assembled battery in which a plurality of batteries are typically connected in series) is driven. A vehicle provided as a power source is provided.
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識に基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. It should be noted that matters other than matters specifically mentioned in the present specification and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
ここで開示される非水電解質二次電池の好適な実施形態の一つとして、リチウムイオン二次電池を例にして詳細に説明するが、本発明の適用対象をかかる種類の非水電解質二次電池に限定することを意図したものではない。例えば、他の金属イオン(例えばマグネシウムイオン)を電荷担体とする非水電解質二次電池にも適用することができる。 As a preferred embodiment of the non-aqueous electrolyte secondary battery disclosed herein, a lithium ion secondary battery will be described in detail as an example, but the application target of the present invention is a non-aqueous electrolyte secondary battery of this kind. It is not intended to be limited to batteries. For example, the present invention can also be applied to a non-aqueous electrolyte secondary battery using other metal ions (for example, magnesium ions) as charge carriers.
ここで開示されるリチウムイオン二次電池(非水電解質二次電池)の製造方法は、図3に示すように、導電材分散液準備(用意)工程(S10)と、正極合材層形成用組成物準備(用意)工程(S20)と、正極合材層形成工程(S30)とを包含する。
まず、導電材分散液準備(用意)工程(S10)について説明する。導電材分散液準備(用意)工程には、導電材と、分散剤と、結着材とを所定の溶媒に分散させてなる導電材分散液を用意することが含まれている。
As shown in FIG. 3, the manufacturing method of the lithium ion secondary battery (nonaqueous electrolyte secondary battery) disclosed herein includes a conductive material dispersion preparation (preparation) step (S10) and a positive electrode mixture layer formation. It includes a composition preparation (preparation) step (S20) and a positive electrode mixture layer formation step (S30).
First, the conductive material dispersion preparation (preparation) step (S10) will be described. The conductive material dispersion preparation (preparation) step includes preparing a conductive material dispersion in which a conductive material, a dispersant, and a binder are dispersed in a predetermined solvent.
上記導電材としては、一般的なリチウムイオン二次電池の正極に使用される導電材と同様のものを適宜採用することができる。例えば、種々のカーボンブラック(例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック等)、グラファイト粉末等のカーボン粉末を用いることができる。これらのうち一種又は二種以上を併用してもよい。好ましくは、導電性に優れるアセチレンブラックが用いられる。
上記導電材の質量割合(使用量)は、後述する式(1)の計算値aが所定の範囲に収まる限り特に限定されない。例えば、正極合材層中に含まれる正極活物質を100質量%としたときに1質量%〜20質量%(好ましくは5質量%〜15質量%、より好ましくは7質量%〜12質量%)とすることができる。
また、上記導電材のJIS K6217−4「ゴム用カーボンブラック‐基本特性‐第4部:DBP吸収量の求め方」に基づくDBP吸収量B[mL/100g]は、凡そ130mL/100g〜180mL/100g(例えば、凡そ135mL/100g〜175mL/100g)であることが好ましい。
As said electrically conductive material, the thing similar to the electrically conductive material used for the positive electrode of a general lithium ion secondary battery can be employ | adopted suitably. For example, various carbon blacks (for example, acetylene black, furnace black, ketjen black, etc.), carbon powders such as graphite powders can be used. Among these, you may use together 1 type, or 2 or more types. Preferably, acetylene black having excellent conductivity is used.
The mass ratio (amount used) of the conductive material is not particularly limited as long as the calculated value a of the formula (1) described later falls within a predetermined range. For example, when the positive electrode active material contained in the positive electrode mixture layer is 100% by mass, 1% by mass to 20% by mass (preferably 5% by mass to 15% by mass, more preferably 7% by mass to 12% by mass). It can be.
The DBP absorption amount B [mL / 100 g] based on JIS K6217-4 “Carbon black for rubber—Basic characteristics—Part 4: Determination of DBP absorption amount” of the conductive material is about 130 mL / 100 g to 180 mL / It is preferably 100 g (for example, approximately 135 mL / 100 g to 175 mL / 100 g).
上記分散剤としては、例えば、疎水性基(鎖)と親水性基(鎖)とを有する高分子化合物(例えばポリビニルブチラール、ポリビニルピロリドン等)を好ましく用いることができる。また、分散剤の他の例として、所定の極性官能基(例えばスルホン基、カルボキシル基、アミノ基等)を有するアニオン性化合物(例えば該化合物の硫酸塩、スルホン酸塩、燐酸塩等)、カチオン性化合物(例えば脂肪族アミン等)などが挙げられる。これらのうち一種又は二種以上を併用してもよい。例えば、ポリビニルピロリドンや、ポリビニルブチラールを好ましく用いることができる。上記分散剤は組成物の混練時に凝集しやすい上記導電材に吸着することにより、該導電材の凝集を防止して導電材の分散状態を高めることができると共に組成物の粘度を低下させることができる。
また、導電材分散液(及び後述する正極合材層)に含まれる分散剤の質量割合(使用量)は、該導電材分散液(及び後述する正極合材層)に含まれる上記導電材を100質量%としたときに1質量%以上5質量%以下(好ましくは2質量%以上3質量%以下)とすることができる。分散剤の使用量が1質量%よりも少なすぎる場合には、導電材を良好に分散させることができない虞がある。一方、分散剤の使用量が5質量%よりも多すぎる場合には、導電材自体は良好に分散させ得るものの、分散剤自体が過剰に含まれるため内部抵抗が上昇してしまう虞がある。
As the dispersant, for example, a polymer compound having a hydrophobic group (chain) and a hydrophilic group (chain) (for example, polyvinyl butyral, polyvinyl pyrrolidone, etc.) can be preferably used. Other examples of the dispersant include an anionic compound having a predetermined polar functional group (for example, sulfone group, carboxyl group, amino group, etc.) (for example, sulfate, sulfonate, phosphate, etc. of the compound), cation Compound (for example, aliphatic amine). Among these, you may use together 1 type, or 2 or more types. For example, polyvinyl pyrrolidone or polyvinyl butyral can be preferably used. By adsorbing the dispersing agent to the conductive material that easily aggregates during kneading of the composition, the conductive material can be prevented from aggregating to increase the dispersion state of the conductive material and reduce the viscosity of the composition. it can.
Moreover, the mass ratio (use amount) of the dispersant contained in the conductive material dispersion (and the positive electrode mixture layer described later) is the same as that of the conductive material contained in the conductive material dispersion (and the positive electrode mixture layer described later). When it is 100% by mass, it can be 1% by mass to 5% by mass (preferably 2% by mass to 3% by mass). When the usage-amount of a dispersing agent is too less than 1 mass%, there exists a possibility that a electrically conductive material cannot be disperse | distributed favorably. On the other hand, when the amount of the dispersant used is more than 5% by mass, the conductive material itself can be satisfactorily dispersed, but the dispersant itself is excessively contained, which may increase the internal resistance.
上記結着材(バインダ)としては、一般的なリチウムイオン二次電池の正極に使用される結着材と同様のものを適宜採用することができる。例えば、溶剤系の溶媒(有機溶媒)を用いて正極合材層形成用組成物を調製する場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等の有機溶媒(非水溶媒)に溶解するポリマー材料を用いることができる。有機溶媒としては、例えばN‐メチル‐2‐ピロリドン(NMP)等が挙げられる。 As said binder (binder), the thing similar to the binder used for the positive electrode of a common lithium ion secondary battery can be employ | adopted suitably. For example, when preparing a composition for forming a positive electrode mixture layer using a solvent-based solvent (organic solvent), an organic solvent (nonaqueous solvent) such as polyvinylidene fluoride (PVDF) or polyvinylidene chloride (PVDC). Polymer materials that dissolve in Examples of the organic solvent include N-methyl-2-pyrrolidone (NMP).
上記導電材、分散剤及び結着材を溶媒中で混ぜ合せる(混練)操作は、例えば、適当な混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を用いて行うことができる。上記導電材分散液を調製(用意)するにあたっては、先ず、導電材と分散剤とを溶媒中で混練し、分散剤を導電材に吸着させた後で結着材を添加して混練してもよい。 The above-mentioned conductive material, dispersant and binder can be mixed (kneaded) in a solvent, for example, using an appropriate kneader (planetary mixer, homodisper, clear mix, fill mix, etc.). . In preparing (preparing) the conductive material dispersion, first, the conductive material and the dispersant are kneaded in a solvent, and after the dispersant is adsorbed to the conductive material, the binder is added and kneaded. Also good.
次に、正極合材層形成用組成物準備(用意)工程(S20)について説明する。正極合材層形成用組成物準備(用意)工程には、上記工程で用意した導電材分散液と正極活物質とを混合してなるペースト状の正極合材層形成用組成物を用意することが含まれている。 Next, the composition preparation (preparation) step (S20) for forming the positive electrode mixture layer will be described. In the step of preparing (preparing) a composition for forming a positive electrode mixture layer, a paste-like composition for forming a positive electrode mixture layer formed by mixing the conductive material dispersion prepared in the above step and a positive electrode active material is prepared. It is included.
上記正極活物質としては、リチウムイオンを吸蔵及び放出可能な材料であって、リチウム元素と一種または二種以上の遷移金属元素を含むリチウム含有化合物(例えばリチウム遷移金属酸化物)が挙げられる。例えば、リチウムニッケル複合酸化物(例えばLiNiO2)、リチウムコバルト複合酸化物(例えばLiCoO2)、リチウムマンガン複合酸化物(例えばLiMn2O4)、或いは、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3O2)のような三元系リチウム含有複合酸化物が挙げられる。
また、一般式がLiMPO4或いはLiMVO4或いはLi2MSiO4(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素)等で表記されるようなポリアニオン系化合物(例えばLiFePO4、LiMnPO4、LiFeVO4、LiMnVO4、Li2FeSiO4、Li2MnSiO4、Li2CoSiO4)を上記正極活物質として用いてもよい。
また、上記正極活物質(典型的には粒子状)のJIS K6217−4に基づくDBP吸収量A[mL/100g]は、30mL/100g以上(例えば30ml/100g〜45ml/100g)である。上記DBP吸収量A[mL/100g]が30mL/100gよりも小さすぎる場合には、かかる正極活物質を備える非水電解質二次電池(リチウムイオン二次電池)において高い出力を得ることができない。
Examples of the positive electrode active material include lithium-containing compounds (for example, lithium transition metal oxides) that are materials capable of inserting and extracting lithium ions and include a lithium element and one or more transition metal elements. For example, lithium nickel composite oxide (for example, LiNiO 2 ), lithium cobalt composite oxide (for example, LiCoO 2 ), lithium manganese composite oxide (for example, LiMn 2 O 4 ), or lithium nickel cobalt manganese composite oxide (for example, LiNi 1). / 3 Co 1/3 Mn 1/3 O 2 ), a ternary lithium-containing composite oxide.
In addition, a polyanionic compound (for example, LiFePO 4) whose general formula is represented by LiMPO 4, LiMVO 4, or Li 2 MSiO 4 (wherein M is at least one element of Co, Ni, Mn, and Fe), etc. 4 , LiMnPO 4 , LiFeVO 4 , LiMnVO 4 , Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4 ) may be used as the positive electrode active material.
Moreover, DBP absorption amount A [mL / 100g] based on JISK6217-4 of the said positive electrode active material (typically particulate form) is 30 mL / 100g or more (for example, 30ml / 100g-45ml / 100g). When the DBP absorption amount A [mL / 100 g] is too smaller than 30 mL / 100 g, a high output cannot be obtained in a nonaqueous electrolyte secondary battery (lithium ion secondary battery) provided with such a positive electrode active material.
一般に、緻密な中実構造の粒子からなる正極活物質(例えば、層状構造のリチウム遷移金属酸化物の粉末)のDBP吸収量は、概ね10mL/100g〜20mL/100g程度である。他の条件(粒子サイズ等)が同程度であれば、かかる中実粒子のDBP吸収量に比べて、多孔質構造または中空構造の粒子のDBP吸収量は大きくなる傾向にある。ここで開示される技術における上記正極活物質としては、このような多孔質構造または中空構造の粒子である。 In general, the DBP absorption amount of a positive electrode active material (for example, a lithium transition metal oxide powder having a layered structure) composed of dense solid-structure particles is approximately 10 mL / 100 g to 20 mL / 100 g. If other conditions (particle size and the like) are about the same, the DBP absorption amount of the porous or hollow structure particles tends to be larger than the DBP absorption amount of the solid particles. The positive electrode active material in the technology disclosed herein is a particle having such a porous structure or a hollow structure.
ここで、多孔質構造とは、実体のある部分と空隙部分とが粒子全体にわたって混在している構造(スポンジ状構造)を指す。多孔質構造を有する正極活物質の代表例として、いわゆる噴霧焼成製法(スプレードライ製法と称されることもある。)により得られた正極活物質(典型的には、一次粒子が集まった二次粒子の形態を呈する。)が挙げられる。また、中空構造とは、殻部とその内側の中空部(空洞部)とを有する構造を指す。好ましい一態様において、上記殻部は、粒子外部と上記中空部とを連通させる貫通孔を有していてもよい(以下、殻部に上記貫通孔を有する中空構造を「孔空き中空構造」といい、かかる構造を有する活物質粒子を「孔空き中空活物質粒子」ということがある。)。このような中空構造(特記しない限り、孔空き中空構造を包含する意味である。)の粒子は、実体のある部分が殻部に偏っており、上記中空部にまとまった空間が確保されている点で、多孔質構造の粒子とは、構造上、明らかに区別されるものである。 Here, the porous structure refers to a structure (sponge-like structure) in which a substantial part and a void part are mixed over the entire particle. As a typical example of a positive electrode active material having a porous structure, a positive electrode active material obtained by a so-called spray baking method (sometimes referred to as a spray dry method) (typically a secondary in which primary particles are collected). It takes the form of particles.). The hollow structure refers to a structure having a shell portion and a hollow portion (cavity portion) inside thereof. In a preferred embodiment, the shell portion may have a through hole that allows the outside of the particle to communicate with the hollow portion (hereinafter, the hollow structure having the through hole in the shell portion is referred to as a “perforated hollow structure”. The active material particles having such a structure are sometimes referred to as “porous hollow active material particles”. The particles of such a hollow structure (meaning that it includes a perforated hollow structure unless otherwise specified) are such that the substantial part is biased toward the shell part, and a space is secured in the hollow part. In this respect, the particles having a porous structure are clearly distinguished from each other in terms of structure.
かかる孔空き中空構造の活物質粒子の材質としては、リチウム遷移金属酸化物(典型的には、層状構造のリチウム遷移金属酸化物)が好ましい。遷移金属として少なくともNiを含むリチウム遷移金属酸化物(典型的にはリチウムニッケル酸化物)が特に好ましい。 As the material of the active material particles having such a hollow structure, lithium transition metal oxide (typically, lithium transition metal oxide having a layered structure) is preferable. A lithium transition metal oxide (typically lithium nickel oxide) containing at least Ni as a transition metal is particularly preferred.
≪孔空き中空活物質粒子の製造方法≫
上記リチウム遷移金属酸化物を構成材質とする孔空き中空活物質粒子は、例えば以下のようにして好適に製造することができる。その製造方法は、該活物質粒子を構成するリチウム遷移金属酸化物に含まれる遷移金属元素の少なくとも一つ(好ましい一態様では、該酸化物に含まれるリチウム以外の金属元素の全部)を含む水性溶液から、該遷移金属の水酸化物を適切な条件で析出させること(原料水酸化物生成工程)を含む。また、その遷移金属水酸化物とリチウム化合物とを混合すること(混合工程)を含む。さらに、その混合物を焼成すること(焼成工程)を含み得る。以下、かかる製造方法の好適な一形態につき、層状構造のLiNiCoMn酸化物からなる孔開き中空活物質粒子を製造する場合を例として詳しく説明するが、この製造方法の適用対象をかかる組成の孔開き中空活物質粒子に限定する意図ではない。
≪Method for producing perforated hollow active material particles≫
The porous hollow active material particles having the lithium transition metal oxide as a constituent material can be preferably produced, for example, as follows. The production method includes an aqueous solution containing at least one of transition metal elements contained in the lithium transition metal oxide constituting the active material particles (in a preferred embodiment, all of the metal elements other than lithium contained in the oxide). It includes precipitating the transition metal hydroxide from a solution under appropriate conditions (raw material hydroxide generation step). Moreover, the transition metal hydroxide and the lithium compound are mixed (mixing step). Furthermore, it can include firing the mixture (firing step). Hereinafter, a preferred embodiment of such a production method will be described in detail by taking as an example the case of producing a perforated hollow active material particle composed of a LiNiCoMn oxide having a layered structure. It is not intended to be limited to hollow active material particles.
ここで開示される正極活物質粒子を製造する方法の好ましい一態様では、上記原料水酸化物生成工程が、遷移金属化合物の水性溶液にアンモニウムイオン(NH4 +)を供給して該水性溶液から遷移金属水酸化物の粒子を析出させることを含む。上記水性溶液を構成する溶媒(水性溶媒)は、典型的には水であり、水を主成分とする混合溶媒であってもよい。この混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール等)が好適である。上記遷移金属化合物の水性溶液(以下、「遷移金属溶液」ともいう。)は、製造目的たる活物質粒子を構成するリチウム遷移金属酸化物の組成に応じて、該リチウム遷移金属酸化物を構成する遷移金属元素(ここではNi,CoおよびMn)の少なくとも一つ(好ましくは全部)を含む。例えば、水性溶媒中にNiイオン,CoイオンおよびMnイオンを供給し得る一種または二種以上の化合物を含む遷移金属溶液を使用する。これらの金属イオン源となる化合物としては、該金属の硫酸塩、硝酸塩、塩化物等を適宜採用することができる。例えば、水性溶媒(好ましくは水)に硫酸ニッケル、硫酸コバルトおよび硫酸マンガンが溶解した組成の遷移金属溶液を好ましく使用し得る。 In a preferred embodiment of the method for producing positive electrode active material particles disclosed herein, the raw material hydroxide generation step supplies ammonium ions (NH 4 + ) to an aqueous solution of a transition metal compound, and then from the aqueous solution. Depositing particles of transition metal hydroxide. The solvent (aqueous solvent) constituting the aqueous solution is typically water, and may be a mixed solvent containing water as a main component. As the solvent other than water constituting the mixed solvent, an organic solvent (such as a lower alcohol) that can be uniformly mixed with water is preferable. The aqueous solution of the transition metal compound (hereinafter also referred to as “transition metal solution”) constitutes the lithium transition metal oxide in accordance with the composition of the lithium transition metal oxide constituting the active material particles as the production target. It contains at least one (preferably all) transition metal elements (here, Ni, Co and Mn). For example, a transition metal solution containing one or more compounds that can supply Ni ions, Co ions, and Mn ions in an aqueous solvent is used. As the metal ion source compound, sulfates, nitrates, chlorides, and the like of the metals can be appropriately employed. For example, a transition metal solution having a composition in which nickel sulfate, cobalt sulfate and manganese sulfate are dissolved in an aqueous solvent (preferably water) can be preferably used.
上記NH4 +は、例えば、NH4 +を含む水性溶液(典型的には水溶液)の形態で上記遷移金属溶液に供給されてもよく、該遷移金属溶液にアンモニアガスを直接吹き込むことにより供給されてもよく、これらの供給方法を併用してもよい。NH4 +を含む水性溶液は、例えば、NH4 +源となり得る化合物(水酸化アンモニウム、硝酸アンモニウム、アンモニアガス等)を水性溶媒に溶解させることにより調製することができる。好ましい一態様では、水酸化アンモニウム水溶液(すなわちアンモニア水)の形態でNH4 +を供給する。 The NH 4 + may be supplied to the transition metal solution in the form of an aqueous solution (typically an aqueous solution) containing NH 4 + , for example, and supplied by directly blowing ammonia gas into the transition metal solution. These supply methods may be used in combination. An aqueous solution containing NH 4 + can be prepared, for example, by dissolving a compound (ammonium hydroxide, ammonium nitrate, ammonia gas, or the like) that can be an NH 4 + source in an aqueous solvent. In a preferred embodiment, NH 4 + is supplied in the form of an aqueous ammonium hydroxide solution (ie, aqueous ammonia).
≪核生成段階≫
好ましい一態様では、上記原料水酸化物生成工程が、上記遷移金属溶液から遷移金属水酸化物の核を析出させる段階(核生成段階)と、その核を成長させる段階(粒子成長段階)とを含む。好ましい一態様において、上記核生成段階および上記粒子成長段階は、いずれもアンモニウムイオンの存在下で行われる。少なくとも、上記粒子成長段階は、上記溶液中のアンモニウムイオン濃度(アンモニア濃度)を制御しつつ(例えば、所定値以下に制御しつつ)行うことが好ましい。また、上記粒子成長段階は、上記核生成段階におけるpHより低pHであって且つアルカリ性の条件下で実施することが好ましい。
≪Nucleation stage≫
In a preferred embodiment, the raw material hydroxide generation step comprises a step of depositing transition metal hydroxide nuclei from the transition metal solution (nucleation generation step) and a step of growing the nuclei (particle growth step). Including. In a preferred embodiment, both the nucleation step and the particle growth step are performed in the presence of ammonium ions. At least the particle growth step is preferably performed while controlling the ammonium ion concentration (ammonia concentration) in the solution (for example, controlling it to a predetermined value or less). The particle growth stage is preferably carried out under alkaline conditions at a pH lower than that in the nucleation stage.
バラツキの少ない(例えば、粒径や粒子構造等が平均から大きく外れた粒子の個数割合が少ない)孔空き中空活物質粒子が得られやすいという観点から、上記核生成段階において、上記遷移金属溶液から短時間のうちに(例えば、ほぼ同時に)多数の核を析出させることが好ましい。例えば、上記遷移金属水酸化物が過飽和の状態にある溶液から(例えば、該溶液を臨界過飽和度に到達させることにより)上記核を析出させるとよい。かかる析出態様を好適に実現するには、上記核生成段階をpH12以上(典型的にはpH12以上14以下、例えばpH12.2以上13以下)の条件で行うことが有利である。 From the viewpoint that it is easy to obtain porous hollow active material particles with little variation (for example, a small number ratio of particles whose particle size or particle structure is greatly deviated from the average), in the nucleation stage, from the transition metal solution, It is preferable to deposit a large number of nuclei within a short time (eg, almost simultaneously). For example, the nuclei may be precipitated from a solution in which the transition metal hydroxide is in a supersaturated state (for example, by allowing the solution to reach a critical degree of supersaturation). In order to suitably realize such a precipitation mode, it is advantageous to perform the nucleation step under a condition of pH 12 or more (typically pH 12 or more and 14 or less, for example, pH 12.2 or more and 13 or less).
核生成段階におけるNH4 +濃度(アンモニウムイオン濃度)は特に限定されないが、通常は凡そ25g/L以下とすることが適当であり、例えば3〜25g/L程度とするとよい。上記pHおよびNH4 +濃度は、上記アンモニア水の使用量とアルカリ剤(液性をアルカリ性に傾ける作用のある化合物)の使用量とを適切にバランスさせることにより調整することができる。上記使用量は、例えば、反応系への供給レートとしても把握し得る。アルカリ剤としては、例えば水酸化ナトリウム、水酸化カリウム等を、典型的には水溶液の形態で用いることができる。好ましい一態様では水酸化ナトリウム水溶液を使用する。なお、本明細書中において、pHの値は、液温25℃を基準とするpH値をいうものとする。 The NH 4 + concentration (ammonium ion concentration) in the nucleation stage is not particularly limited, but usually it is suitably about 25 g / L or less, for example, about 3 to 25 g / L. The pH and NH 4 + concentration can be adjusted by appropriately balancing the usage amount of the ammonia water and the usage amount of an alkaline agent (a compound having an action of tilting the liquidity to alkalinity). The amount used can be grasped as a supply rate to the reaction system, for example. As the alkaline agent, for example, sodium hydroxide, potassium hydroxide and the like can be typically used in the form of an aqueous solution. In a preferred embodiment, an aqueous sodium hydroxide solution is used. In addition, in this specification, the value of pH shall mean pH value on the basis of liquid temperature of 25 degreeC.
≪粒子成長段階≫
上記粒子成長段階では、上記核生成段階で析出した遷移金属水酸化物の核(典型的には粒子状)を、好ましくは上記核生成段階よりも低pH域のアルカリ性条件下で成長させる。例えば、pH12未満(典型的にはpH10以上12未満、好ましくはpH10以上11.8以下、例えばpH11.0以上11.8以下)で成長させるとよい。この粒子成長段階を経て得られる遷移金属水酸化物粒子(原料水酸化物粒子)は、好ましくは、該粒子の外表面部の密度に比べて、該粒子の内部の密度が低い構造を有する。かかる構造の遷移金属水酸化物粒子を安定して得るためには、上記粒子成長段階におけるNH4 +濃度を高くしすぎない(低く抑える)ことが肝要である。このことによって、遷移金属水酸化物(ここでは、Ni,CoおよびMnを含む複合水酸化物)の析出速度が速くなり、ここで開示される孔開き中空活物質粒子の形成に適した原料水酸化物粒子(換言すれば、孔開き中空構造の焼成物を形成しやすい原料水酸化物粒子)が効果的に生成し得る。通常は、粒子成長段階におけるNH4 +濃度を25g/L以下とすることが適当であり、好ましくは15g/L以下、より好ましくは10g/L以下(例えば8g/L以下)である。NH4 +濃度の下限は特に限定されないが、製造条件の管理しやすさ、品質安定性、得られる活物質粒子の機械的強度(例えば硬度)等の観点から、通常は、NH4 +濃度を1g/L以上(好ましくは3g/L以上)とすることが適当である。粒子成長段階におけるpHおよびNH4 +濃度は、核生成段階と同様にして調整することができる。
≪Particle growth stage≫
In the particle growth stage, the transition metal hydroxide nuclei (typically particles) precipitated in the nucleation stage are preferably grown under alkaline conditions at a lower pH than in the nucleation stage. For example, the growth may be performed at a pH of less than 12 (typically a pH of 10 or more and less than 12, preferably a pH of 10 or more and 11.8 or less, such as a pH of 11.0 or more and 11.8 or less). The transition metal hydroxide particles (raw material hydroxide particles) obtained through this particle growth stage preferably have a structure in which the density inside the particles is lower than the density of the outer surface portion of the particles. In order to stably obtain transition metal hydroxide particles having such a structure, it is important not to make the NH 4 + concentration too high (suppress it low) in the particle growth stage. This increases the deposition rate of the transition metal hydroxide (here, the composite hydroxide containing Ni, Co, and Mn), and the raw material water suitable for the formation of the apertured hollow active material particles disclosed herein. Oxide particles (in other words, raw material hydroxide particles that easily form a fired product having a perforated hollow structure) can be effectively produced. Usually, it is appropriate that the NH 4 + concentration in the particle growth stage is 25 g / L or less, preferably 15 g / L or less, more preferably 10 g / L or less (for example, 8 g / L or less). Although NH 4 + lower limit of the concentration is not particularly limited, ease control of the manufacturing conditions, quality stability, from the viewpoint of the mechanical strength of the resulting active material particles (such as hardness), generally, the NH 4 + concentration It is appropriate to set it to 1 g / L or more (preferably 3 g / L or more). The pH and NH 4 + concentration in the particle growth stage can be adjusted in the same manner as in the nucleation stage.
好ましい一態様では、粒子成長段階におけるNH4 +濃度を7g/L以下(典型的には1〜7g/L、例えば3〜7g/L)とする。この粒子成長段階におけるNH4 +濃度は、例えば、核生成段階におけるNH4 +濃度と概ね同程度としてもよく、核生成段階におけるNH4 +濃度より低くしてもよい。なお、遷移金属水酸化物の析出速度は、例えば、反応液に供給される遷移金属溶液に含まれる遷移金属イオンの合計モル数に対して、反応液の液相中に含まれる遷移金属イオンの合計モル数(合計イオン濃度)の推移を調べることにより把握され得る。 In a preferred embodiment, the NH 4 + concentration in the particle growth stage is 7 g / L or less (typically 1 to 7 g / L, for example, 3 to 7 g / L). NH 4 + concentration in the particle growth step, for example, may be a substantially the same level as NH 4 + concentration in the nucleation stage may be lower than NH 4 + concentration in the nucleation stage. In addition, the precipitation rate of the transition metal hydroxide is, for example, the transition metal ions contained in the liquid phase of the reaction liquid with respect to the total number of moles of transition metal ions contained in the transition metal solution supplied to the reaction liquid. It can be grasped by examining the transition of the total number of moles (total ion concentration).
核生成段階および粒子成長段階のそれぞれにおいて、反応液の温度は、凡そ30℃〜60℃の範囲のほぼ一定温度(例えば、所定の温度±1℃)となるように制御することが好ましい。核生成段階と粒子成長段階とで反応液の温度を同程度としてもよい。また、反応液および反応槽内の雰囲気は、核生成段階および粒子成長段階を通じて非酸化性雰囲気に維持することが好ましい。また、反応液に含まれるNiイオン,CoイオンおよびMnイオンの合計モル数(合計イオン濃度)は、核生成段階および粒子成長段階を通じて、例えば凡そ0.5〜2.5モル/Lとすることができ、凡そ1.0〜2.2モル/Lとすることが好ましい。かかる合計イオン濃度が維持されるように、遷移金属水酸化物の析出速度に合わせて遷移金属溶液を補充(典型的には連続供給)するとよい。反応液に含まれるNiイオン,CoイオンおよびMnイオンの量は、目的物たる活物質粒子の組成(すなわち、該活物質粒子を構成するLiNiCoMn酸化物におけるNi,Co,Mnのモル比)に対応する量比とすることが好ましい。 In each of the nucleation stage and the particle growth stage, the temperature of the reaction solution is preferably controlled so as to be a substantially constant temperature (for example, a predetermined temperature ± 1 ° C.) in a range of about 30 ° C. to 60 ° C. The temperature of the reaction solution may be approximately the same in the nucleation stage and the particle growth stage. Moreover, it is preferable to maintain the reaction liquid and the atmosphere in the reaction tank in a non-oxidizing atmosphere through the nucleation stage and the particle growth stage. Further, the total number of moles (total ion concentration) of Ni ions, Co ions and Mn ions contained in the reaction solution is set to, for example, about 0.5 to 2.5 mol / L through the nucleation stage and the particle growth stage. It is preferably about 1.0 to 2.2 mol / L. The transition metal solution may be replenished (typically continuously supplied) in accordance with the deposition rate of the transition metal hydroxide so that the total ion concentration is maintained. The amounts of Ni ions, Co ions, and Mn ions contained in the reaction solution correspond to the composition of the active material particles as the target product (that is, the molar ratio of Ni, Co, and Mn in the LiNiCoMn oxide constituting the active material particles). It is preferable to set the quantity ratio.
≪混合工程≫
好ましい一態様では、このようにして生成した遷移金属水酸化物粒子(ここでは、Ni,CoおよびMnを含む複合水酸化物粒子)を反応液から分離し、洗浄して乾燥させる。そして、この遷移金属水酸化物粒子とリチウム化合物とを所望の量比で混合して未焼成の混合物を調製する(混合工程)。この混合工程では、典型的には、目的物たる活物質粒子の組成(すなわち、該活物質粒子を構成するLiNiCoMn酸化物におけるLi,Ni,Co,Mnのモル比)に対応する量比で、Li化合物と遷移金属水酸化物粒子とを混合する。上記リチウム化合物としては、加熱により酸化物となり得るリチウム化合物、例えば炭酸リチウム,水酸化リチウム等を好ましく用いることができる。
≪Mixing process≫
In a preferred embodiment, the transition metal hydroxide particles thus produced (here, composite hydroxide particles containing Ni, Co and Mn) are separated from the reaction solution, washed and dried. Then, the transition metal hydroxide particles and the lithium compound are mixed at a desired quantitative ratio to prepare an unfired mixture (mixing step). In this mixing step, typically, the quantitative ratio corresponding to the composition of the active material particles as the target (that is, the molar ratio of Li, Ni, Co, Mn in the LiNiCoMn oxide constituting the active material particles) Li compound and transition metal hydroxide particles are mixed. As the lithium compound, lithium compounds that can be converted into oxides upon heating, such as lithium carbonate and lithium hydroxide, can be preferably used.
≪焼成工程≫
そして、上記混合物を焼成して孔空き中空構造の活物質粒子を得る(焼成工程)。この焼成工程は、典型的には酸化性雰囲気中(例えば大気中)で行われる。この焼成工程における焼成温度は、例えば700℃〜1100℃とすることができる。最高焼成温度が800℃以上(好ましくは800℃〜1100℃、例えば800℃〜1050℃)となるように行われることが好ましい。この範囲の最高焼成温度によると、リチウム遷移金属酸化物(好ましくはNi含有Li酸化物、ここではLiNiCoMn酸化物)の一次粒子の焼結反応を適切に進行させることができる。好適には、焼成工程後に焼成物を解砕し、篩分けを行ない、活物質粒子の粒径を調整するとよい。
≪Baking process≫
And the said mixture is baked and the active material particle of a hole hollow structure is obtained (baking process). This firing step is typically performed in an oxidizing atmosphere (for example, in the air). The firing temperature in this firing step can be set to 700 ° C. to 1100 ° C., for example. It is preferable that the maximum baking temperature be 800 ° C or higher (preferably 800 ° C to 1100 ° C, for example, 800 ° C to 1050 ° C). According to the maximum firing temperature within this range, the sintering reaction of the primary particles of the lithium transition metal oxide (preferably Ni-containing Li oxide, here LiNiCoMn oxide) can proceed appropriately. Preferably, the fired product is crushed and sieved after the firing step to adjust the particle size of the active material particles.
好ましい一態様では、上記混合物を700℃以上900℃以下の温度T1(すなわち700℃≦T1≦900℃、例えば700℃≦T1≦800℃、典型的には700℃≦T1<800℃)で焼成する第一焼成段階と、その第一焼成段階を経た結果物を800℃以上1100℃以下の温度T2(すなわち800℃≦T2≦1100℃、例えば800℃≦T2≦1050℃)で焼成する第二焼成段階とを含む態様で行う。このことによって、孔開き中空構造の活物質粒子をより効率よく形成することができる。T1およびT2は、T1<T2となるように設定することが好ましい。 In a preferred embodiment, the mixture is calcined at a temperature T1 of 700 ° C. to 900 ° C. (that is, 700 ° C. ≦ T1 ≦ 900 ° C., for example, 700 ° C. ≦ T1 ≦ 800 ° C., typically 700 ° C. ≦ T1 <800 ° C.). A second firing step, and a result obtained through the first firing step is fired at a temperature T2 of 800 ° C. to 1100 ° C. (ie, 800 ° C. ≦ T2 ≦ 1100 ° C., for example, 800 ° C. ≦ T2 ≦ 1050 ° C.) And a firing step. By this, the active material particle of a perforated hollow structure can be formed more efficiently. T1 and T2 are preferably set so that T1 <T2.
第一焼成段階と第二焼成段階とは、連続して(例えば、上記混合物を第一焼成温度T1に保持した後、引き続き第二焼成温度T2まで昇温して該温度T2に保持することにより)行ってもよく、あるいは、第一焼成温度T1に保持した後、いったん冷却(例えば、常温まで冷却)し、必要に応じて解砕および篩い分けを行ってから第二焼成段階に供してもよい。 The first firing stage and the second firing stage are performed continuously (for example, by holding the mixture at the first firing temperature T1, and subsequently raising the temperature to the second firing temperature T2 and maintaining the temperature at T2. Alternatively, after maintaining at the first firing temperature T1, it is once cooled (for example, cooled to room temperature) and, if necessary, crushed and sieved before being subjected to the second firing stage. Good.
なお、ここで開示される技術において、上記第一焼成段階は、目的とするリチウム遷移金属酸化物の焼結反応が進行し且つ融点以下の温度域であって第二焼成段階よりも低い温度T1で焼成する段階として把握することができる。また、上記第二焼成段階は、目的とするリチウム遷移金属酸化物の焼結反応が進行し且つ融点以下の温度域であって第一焼成段階よりも高い温度T2で焼成する段階として把握することができる。T1とT2との間には50℃以上(典型的には100℃以上、例えば150℃以上)の温度差を設けることが好ましい。
以上のようにしてDBP吸収量A[mL/100g]が30mL/100g以上の正極活物質の好ましい例、ここでは孔空き中空活物質粒子を製造することができる。
In the technique disclosed herein, the first firing stage is a temperature T1 in which the sintering reaction of the target lithium transition metal oxide proceeds and is lower than the melting point and lower than the second firing stage. It can be grasped as a stage for firing. Further, the second firing stage should be understood as a stage in which the sintering reaction of the target lithium transition metal oxide proceeds and the firing is performed at a temperature T2 that is lower than the melting point and higher than the first firing stage. Can do. It is preferable to provide a temperature difference of 50 ° C. or higher (typically 100 ° C. or higher, for example, 150 ° C. or higher) between T1 and T2.
As described above, a preferable example of a positive electrode active material having a DBP absorption amount A [mL / 100 g] of 30 mL / 100 g or more, here, perforated hollow active material particles can be produced.
上記DBP吸収量A[mL/100g]が30mL/100g以上の正極活物質と上記用意した導電材分散液とを混合して正極合材層形成用組成物を調製する操作は、上記導電材分散液を調製した場合と同様の方法で行うことができる。
このとき、正極合材層形成用組成物において、上記正極活物質のDBP吸収量[mL/100g]をAとし、上記正極合材層形成用組成物中の全固形分に占める該正極活物質の質量割合をx[質量%]とし、且つ、上記導電材のDBP吸収量[mL/100g]をBとし、上記正極合材層形成用組成物中の全固形分に占める該導電材の質量割合をy[質量%]としたときの以下の式(1)により求められる計算値a:
a=yB/xA (1);
が0.28〜0.47となるように、上記DBP吸収量Aと上記質量割合xと上記DBP吸収量Bと上記質量割合yとを決定する。
上記式(1)の計算値aが0.47よりも大きすぎる場合には、正極合材層中の正極活物質の量が少ないため(即ち正極活物質全体の表面積(反応面積)が小さいため)充放電時の電荷担体(リチウムイオン)の吸蔵及び放出が良好に行われず反応抵抗が増大してしまう虞があり、且つ、正極合材層中の導電材の割合が大きいため十分な電池容量が得られず、結果として高出力を得ることができない虞がある。
一方、上記式(1)の計算値aが0.28よりも小さすぎる場合には、正極合材層中の導電材の量が少ないため、より多くの分散剤が正極活物質の表面に吸着してしまう虞がある。この結果、正極活物質全体の表面積(反応面積)が小さくなり、充放電時の電荷担体の吸蔵及び放出が良好に行われず反応抵抗が増大してしまう虞がある。
The operation of preparing the positive electrode mixture layer forming composition by mixing the positive electrode active material having the DBP absorption amount A [mL / 100 g] of 30 mL / 100 g or more and the prepared conductive material dispersion is performed by dispersing the conductive material. It can be carried out in the same manner as when the liquid is prepared.
At this time, in the composition for forming a positive electrode mixture layer, the positive electrode active material occupies the total solid content in the composition for forming a positive electrode mixture layer, where A is the DBP absorption amount [mL / 100 g] of the positive electrode active material. The mass ratio of the conductive material is x [mass%], the DBP absorption amount [mL / 100 g] of the conductive material is B, and the mass of the conductive material in the total solid content in the composition for forming a positive electrode mixture layer Calculated value a obtained by the following formula (1) when the ratio is y [mass%]:
a = yB / xA (1);
The DBP absorption amount A, the mass ratio x, the DBP absorption amount B, and the mass ratio y are determined so that the value becomes 0.28 to 0.47.
When the calculated value a of the above formula (1) is too larger than 0.47, the amount of the positive electrode active material in the positive electrode mixture layer is small (that is, the entire surface area (reaction area) of the positive electrode active material is small). ) Occlusion and release of charge carriers (lithium ions) during charge / discharge are not performed well, and there is a risk that reaction resistance will increase, and a sufficient proportion of the conductive material in the positive electrode mixture layer is sufficient. May not be obtained, and as a result, high output may not be obtained.
On the other hand, when the calculated value a of the above formula (1) is too smaller than 0.28, the amount of the conductive material in the positive electrode mixture layer is small, so that more dispersant is adsorbed on the surface of the positive electrode active material. There is a risk of it. As a result, the surface area (reaction area) of the entire positive electrode active material is reduced, and charge carriers are not occluded and released during charge / discharge, which may increase reaction resistance.
このときの正極合材層形成用組成物の固形分濃度:固形分濃度[質量%]=(組成物中の全固形分の質量)/(組成物中の全固形分及び溶媒の合計質量);は、凡そ50質量%〜70質量%(例えば55質量%〜60質量%)となる。本実施形態にかかる組成物は、従来の組成物(例えば固形分濃度45質量%程度)と比べて固形分濃度が高くなるため、該組成物を乾燥させて正極合材層を形成する際に必要な総熱量が少なくて済み乾燥に要する時間が短縮される。この結果、従来よりも小規模な乾燥設備(例えば乾燥炉)を用いることができコストの削減が実現され得る。 Solid content concentration of positive electrode mixture layer forming composition at this time: solid content concentration [mass%] = (mass of total solid content in composition) / (total mass of total solid content and solvent in composition) Is approximately 50% by mass to 70% by mass (for example, 55% by mass to 60% by mass). The composition according to the present embodiment has a higher solid content concentration than a conventional composition (for example, a solid content concentration of about 45% by mass). Therefore, when the positive electrode mixture layer is formed by drying the composition. The total amount of heat required is small and the time required for drying is shortened. As a result, a drying facility (for example, a drying furnace) smaller than conventional ones can be used, and cost reduction can be realized.
次に、正極合材層形成工程(S30)について説明する。正極合材層形成工程には、上記用意した正極合材層形成用組成物を正極集電体の表面に塗布すること、該正極集電体上に塗布した組成物を乾燥して正極合材層を形成することが含まれている。 Next, the positive electrode mixture layer forming step (S30) will be described. In the positive electrode mixture layer forming step, the prepared positive electrode mixture layer forming composition is applied to the surface of the positive electrode current collector, and the composition applied on the positive electrode current collector is dried to obtain the positive electrode mixture material. Forming a layer is included.
上記正極集電体としては、従来のリチウムイオン二次電池の正極に用いられている集電体と同様、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウム材又はアルミニウム材を主体とする合金材を用いることができる。正極集電体の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状等の種々の形態であり得る。
正極集電体に上記正極合材層形成用組成物を塗布する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、スリットコーター、ダイコーター、グラビアコーター等の適当な塗布装置を使用することにより、正極集電体に該組成物を好適に塗布することができる。
As the positive electrode current collector, a conductive member made of a metal having good conductivity is preferably used, like the current collector used in the positive electrode of a conventional lithium ion secondary battery. For example, an aluminum material or an alloy material mainly composed of an aluminum material can be used. The shape of the positive electrode current collector can vary depending on the shape of the lithium ion secondary battery and the like, and thus is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, and a foil shape.
As a method of applying the composition for forming a positive electrode mixture layer to the positive electrode current collector, a technique similar to a conventionally known method can be appropriately employed. For example, the composition can be suitably applied to the positive electrode current collector by using an appropriate application device such as a slit coater, a die coater, or a gravure coater.
そして、正極集電体上に塗布された上記組成物を乾燥することで正極合材層を形成することができる。
正極集電体に塗布された組成物を乾燥する際の乾燥温度は、例えば、100℃〜180℃程度(例えば150℃)であり、乾燥時間は、例えば、10秒〜120秒程度(例えば90秒)である。組成物から溶媒(例えばNMP)を除去することによって正極集電体の表面に正極合材層が形成される。なお、正極合材層が形成された後に、必要に応じて圧延(プレス)してもよい。圧延方法としては、従来公知のロールプレス法、平板プレス法等の圧延方法を採用することができる。
And the positive mix layer can be formed by drying the said composition apply | coated on the positive electrode electrical power collector.
The drying temperature at the time of drying the composition applied to the positive electrode current collector is, for example, about 100 ° C. to 180 ° C. (for example, 150 ° C.), and the drying time is, for example, about 10 seconds to 120 seconds (for example, 90 ° C.). Second). By removing a solvent (for example, NMP) from the composition, a positive electrode mixture layer is formed on the surface of the positive electrode current collector. In addition, after a positive electrode compound-material layer is formed, you may roll (press) as needed. As a rolling method, conventionally known rolling methods such as a roll press method and a flat plate press method can be employed.
上記のようにして作製された正極は、DBP吸収量[mL/100g]が30mL/100g以上の正極活物質を含んでおり、正極活物質のDBP吸収量[mL/100g]をAとし、正極合材層中の全固形分に占める該正極活物質の質量割合をx[質量%]とし、且つ、導電材のDBP吸収量[mL/100g]をBとし、正極合材層中の全固形分に占める該導電材の質量割合をy[質量%]としたときの以下の式(1)により求められる計算値a:
a=yB/xA (1);
が0.28〜0.47であるため、反応抵抗が低減されて出力性能が向上したリチウムイオン二次電池(非水電解質二次電池)となり得る。
The positive electrode produced as described above contains a positive electrode active material having a DBP absorption amount [mL / 100 g] of 30 mL / 100 g or more, and the DBP absorption amount [mL / 100 g] of the positive electrode active material is A. The mass ratio of the positive electrode active material to the total solid content in the composite material layer is x [mass%], the DBP absorption amount [mL / 100 g] of the conductive material is B, and the total solid content in the positive electrode material layer is Calculated value a obtained by the following formula (1) when the mass ratio of the conductive material in the minute is y [mass%]:
a = yB / xA (1);
Is 0.28 to 0.47, it can be a lithium ion secondary battery (non-aqueous electrolyte secondary battery) with reduced reaction resistance and improved output performance.
次に、本実施形態にかかるリチウムイオン二次電池(非水電解質二次電池)に備えられる負極について説明する。かかる負極は、負極集電体と、該負極集電体上に形成された少なくとも負極活物質を含む負極合材層とを備えている。
上記負極活物質としては、例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料、リチウム遷移金属複合酸化物((例えば、Li4Ti5O12等のリチウムチタン複合酸化物)、リチウム遷移金属複合窒化物等が挙げられる。炭素材料としては、例えば、天然黒鉛、人造黒鉛(人工黒鉛)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等が挙げられる。また、上記負極活物質の表面を非晶質炭素膜で被覆してもよい。例えば、負極活物質にピッチを混ぜて焼くことによって、少なくとも一部が非晶質炭素膜で被覆された負極活物質を得ることができる。
Next, the negative electrode provided in the lithium ion secondary battery (nonaqueous electrolyte secondary battery) according to the present embodiment will be described. The negative electrode includes a negative electrode current collector and a negative electrode mixture layer including at least a negative electrode active material formed on the negative electrode current collector.
Examples of the negative electrode active material include a particulate carbon material containing at least a graphite structure (layered structure), a lithium transition metal composite oxide (for example, a lithium titanium composite oxide such as Li 4 Ti 5 O 12 ). ), Lithium transition metal composite nitride, etc. Examples of the carbon material include natural graphite, artificial graphite (artificial graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), and the like. Alternatively, the surface of the negative electrode active material may be coated with an amorphous carbon film, for example, at least a part of the negative electrode active material is coated with an amorphous carbon film by mixing and baking the negative electrode active material. A negative electrode active material can be obtained.
上記負極合材層は、上記負極活物質の他に、結着材(バインダ)、増粘材等の任意の成分を必要に応じて含有し得る。
上記結着材としては、一般的なリチウムイオン二次電池の負極に使用される結着材と同様のものを適宜採用することができる。例えば、負極合材層を形成するために水系のペースト状組成物を用いる場合には、水に溶解または分散するポリマー材料を好ましく採用し得る。水に分散する(水分散性の)ポリマー材料としては、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム類;ポリエチレンオキサイド(PEO)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;酢酸ビニル共重合体等が例示される。
ここで、「水系のペースト状組成物」とは、上記所定の溶媒(分散媒)として水または水を主体とする混合溶媒(水系溶媒)を用いた組成物を指す概念である。該混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。
The negative electrode mixture layer may contain any component such as a binder (binder) and a thickener as necessary in addition to the negative electrode active material.
As said binder, the thing similar to the binder used for the negative electrode of a general lithium ion secondary battery can be employ | adopted suitably. For example, when an aqueous paste composition is used to form the negative electrode mixture layer, a polymer material that is dissolved or dispersed in water can be preferably used. Polymer materials that disperse in water (water dispersible) include rubbers such as styrene butadiene rubber (SBR) and fluorine rubber; fluorine resins such as polyethylene oxide (PEO) and polytetrafluoroethylene (PTFE); vinyl acetate Examples thereof include copolymers.
Here, the “aqueous paste-like composition” is a concept indicating a composition using water or a mixed solvent mainly composed of water (aqueous solvent) as the predetermined solvent (dispersion medium). As the solvent other than water constituting the mixed solvent, one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
また、上記増粘材としては、水若しくは溶剤(有機溶媒)に溶解又は分散するポリマー材料を採用し得る。水に溶解する(水溶性の)ポリマー材料としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が挙げられる。 Moreover, as the thickener, a polymer material that is dissolved or dispersed in water or a solvent (organic solvent) can be employed. Examples of water-soluble (water-soluble) polymer materials include cellulose polymers such as carboxymethyl cellulose (CMC), methyl cellulose (MC), cellulose acetate phthalate (CAP), and hydroxypropylmethyl cellulose (HPMC); polyvinyl alcohol ( PVA); and the like.
上記負極合材層は、例えば、上記負極活物質と、他の任意成分(結着材、増粘材等)とを適当な溶媒(例えば水)に分散させたペースト状の負極合材層形成用組成物を用意(調製、購入等)し、該組成物を負極集電体の表面に塗布(付与)して該組成物を乾燥させた後に、必要に応じてプレス(圧縮)することによって負極合材層が形成される。これにより、負極集電体と、負極合材層を備える負極を作製することができる。なお、上記負極集電体としては、従来のリチウムイオン二次電池の負極に用いられている集電体と同様、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅又はニッケル或いはこれらを主成分とする合金を用いることができる。 The negative electrode mixture layer is formed, for example, as a paste-like negative electrode mixture layer in which the negative electrode active material and other optional components (binder, thickener, etc.) are dispersed in an appropriate solvent (for example, water). By preparing (preparing, purchasing, etc.) the composition, applying (applying) the composition to the surface of the negative electrode current collector, drying the composition, and then pressing (compressing) as necessary. A negative electrode mixture layer is formed. Thereby, a negative electrode provided with a negative electrode current collector and a negative electrode mixture layer can be produced. As the negative electrode current collector, a conductive member made of a metal having good conductivity is preferably used as in the case of the current collector used in the negative electrode of a conventional lithium ion secondary battery. For example, copper, nickel, or an alloy containing these as a main component can be used.
以下、上記正極及び負極を用いて構築されるリチウムイオン二次電池の一形態を図面を参照しつつ説明するが、本発明をかかる実施形態に限定することを意図したものではない。以下の実施形態では、捲回電極体および電解質を角型形状の電池ケースに収容した構成のリチウムイオン二次電池を例にして説明する。
なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略することがある。また、各図における寸法関係(長さ、幅、厚さ等)は、必ずしも実際の寸法関係を反映するものではない。
Hereinafter, although one form of the lithium ion secondary battery constructed | assembled using the said positive electrode and negative electrode is demonstrated with reference to drawings, it is not intending to limit this invention to this embodiment. In the following embodiment, a lithium ion secondary battery having a configuration in which a wound electrode body and an electrolyte are housed in a rectangular battery case will be described as an example.
In addition, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted. Moreover, the dimensional relationship (length, width, thickness, etc.) in each drawing does not necessarily reflect the actual dimensional relationship.
図1は、本実施形態に係るリチウムイオン二次電池(非水電解質二次電池)10を模式的に示す斜視図である。図2は、図1中のII−II線に沿う縦断面図である。
図1に示すように、本実施形態に係るリチウムイオン二次電池10は、金属製(樹脂製又はラミネートフィルム製も好適である。)の電池ケース15を備える。このケース(外容器)15は、上端が開放された扁平な直方体状のケース本体30と、その開口部20を塞ぐ蓋体25とを備える。溶接等により蓋体25は、ケース本体30の開口部20を封止している。ケース15の上面(すなわち蓋体25)には、捲回電極体50の正極シート(正極)64と電気的に接続する正極端子60および該電極体の負極シート84と電気的に接続する負極端子80が設けられている。また、蓋体25には、従来のリチウムイオン二次電池のケースと同様に、電池異常の際にケース15内部で発生したガスをケース15の外部に排出するための安全弁40が設けられている。ケース15の内部には、正極シート64および負極シート84を計二枚のセパレータシート95とともに積層して捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体50及び電解質(例えば非水電解液)が収容されている。
FIG. 1 is a perspective view schematically showing a lithium ion secondary battery (nonaqueous electrolyte secondary battery) 10 according to the present embodiment. FIG. 2 is a longitudinal sectional view taken along line II-II in FIG.
As shown in FIG. 1, the lithium ion
上記積層の際には、図2に示すように、正極シート64の正極合材層非形成部分(即ち正極合材層66が形成されずに正極集電体62が露出した部分)と負極シート84の負極合材層非形成部分(即ち負極合材層90が形成されずに負極集電体82が露出した部分)とがセパレータシート95の幅方向の両側からそれぞれはみ出すように、正極シート64と負極シート84とを幅方向にややずらして重ね合わせる。その結果、捲回電極体50の捲回方向に対する横方向において、正極シート64および負極シート84の電極合材層非形成部分がそれぞれ捲回コア部分(すなわち正極シート64の正極合材層形成部分と負極シート84の負極合材層形成部分と二枚のセパレータシート95とが密に捲回された部分)から外方にはみ出ている。かかる正極側はみ出し部分に正極端子60を接合して、上記扁平形状に形成された捲回電極体50の正極シート64と正極端子60とを電気的に接続する。同様に負極側はみ出し部分に負極端子80を接合して、負極シート84と負極端子80とを電気的に接続する。なお、正負極端子60,80と正負極集電体62,82とは、例えば、超音波溶接、抵抗溶接等によりそれぞれ接合することができる。
At the time of the above lamination, as shown in FIG. 2, the positive electrode mixture layer non-formed portion of the positive electrode sheet 64 (that is, the portion where the positive electrode
上記電解質としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒(有機溶媒)に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選択される一種又は二種以上を用いることができる。また、上記支持塩(支持電解質)としては、例えば、LiPF6,LiBF4等のリチウム塩を用いることができる。さらに上記非水電解液に、ジフルオロリン酸塩(LiPO2F2)やリチウムビスオキサレートボレート(LiBOB)を溶解させてもよい。
また、上記セパレータシートとしては、従来公知のものを特に制限なく使用することができる。例えば、樹脂からなる多孔性シート(微多孔質樹脂シート)を好ましく用いることができる。ポリエチレン(PE)、ポリプロピレン(PP)等の多孔質ポリオレフィン系樹脂シートが好ましい。例えば、PEシート、PPシート、PE層の両側にPP層が積層された三層構造(PP/PE/PP構造)のシート等を好適に使用し得る。
As said electrolyte, the thing similar to the non-aqueous electrolyte conventionally used for a lithium ion secondary battery can be used without limitation. Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent (organic solvent). Examples of the non-aqueous solvent include one or more selected from ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like. Can be used. Further, as the supporting salt (supporting electrolyte), for example, it can be used lithium salts such as LiPF 6, LiBF 4. Further, difluorophosphate (LiPO 2 F 2 ) or lithium bisoxalate borate (LiBOB) may be dissolved in the non-aqueous electrolyte.
Moreover, as said separator sheet, a conventionally well-known thing can be especially used without a restriction | limiting. For example, a porous sheet made of resin (a microporous resin sheet) can be preferably used. A porous polyolefin resin sheet such as polyethylene (PE) or polypropylene (PP) is preferred. For example, a PE sheet, a PP sheet, a sheet having a three-layer structure (PP / PE / PP structure) in which PP layers are laminated on both sides of the PE layer, and the like can be suitably used.
以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.
[正極活物質の作製]
以下の実験における正極活物質としては、次のようにして作製された孔空き中空構造の活物質粒子を使用した。
槽内温度40℃に設定された反応槽内にイオン交換水を入れ、攪拌しつつ窒素ガスを流通させて、該イオン交換水を窒素置換するとともに反応槽内を酸素ガス(O2)濃度2.0%の非酸化性雰囲気に調整した。次いで、25%水酸化ナトリウム水溶液と25%アンモニア水とを、液温25℃を基準として測定するpHが12.5となり且つ液中NH4 +濃度が5g/Lとなるように加えた。
[Preparation of positive electrode active material]
As the positive electrode active material in the following experiments, active material particles having a perforated hollow structure produced as follows were used.
Ion exchange water is put into a reaction tank set at a temperature of 40 ° C., and nitrogen gas is circulated while stirring to replace the ion exchange water with nitrogen, and oxygen gas (O 2 ) concentration in the reaction tank is 2 Adjusted to 0.0% non-oxidizing atmosphere. Next, a 25% aqueous sodium hydroxide solution and 25% aqueous ammonia were added so that the pH measured on the basis of the liquid temperature of 25 ° C. was 12.5 and the NH 4 + concentration in the liquid was 5 g / L.
硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを、Ni:Co:Mnのモル比が0.33:0.33:0.33となり且つこれら金属元素の合計モル濃度が1.8モル/Lとなるように水に溶解させて、混合水溶液を調整した。この混合水溶液と25%NaOH水溶液と25%アンモニア水とを上記反応槽内に一定速度で供給することにより、反応液をpH12.5、アンモニア濃度5g/Lに制御しつつ、該反応液からNiCoMn複合水酸化物を晶析させた(核生成段階)。 In nickel sulfate, cobalt sulfate, and manganese sulfate, the molar ratio of Ni: Co: Mn is 0.33: 0.33: 0.33, and the total molar concentration of these metal elements is 1.8 mol / L. A mixed aqueous solution was prepared by dissolving in water. By supplying this mixed aqueous solution, 25% NaOH aqueous solution and 25% aqueous ammonia into the reaction vessel at a constant rate, the reaction solution was controlled to pH 12.5 and ammonia concentration 5 g / L, while the NiCoMn was removed from the reaction solution. The composite hydroxide was crystallized (nucleation stage).
上記混合水溶液の供給開始から2分30秒経過したところで、25%NaOH水溶液の供給を停止した。上記混合水溶液および25%アンモニア水については引き続き一定速度で供給を行った。反応液のpHが11.6まで低下した後、25%NaOH水溶液の供給を再開した。そして、反応液をpH11.6且つ後述するアンモニア濃度に制御しつつ、上記混合水溶液、25%NaOH水溶液および25%アンモニア水を供給する操作を4時間継続してNiCoMn複合水酸化物粒子を成長させた(粒子成長段階)。その後、生成物を反応槽から取り出し、水洗し、乾燥させた。このようにして、Ni0.33Co0.33Mn0.33(OH)2+α(ここで、式中のαは0≦α≦0.5である。)で表わされる組成の複合水酸化物粒子を得た。 When 2 minutes and 30 seconds had elapsed from the start of the supply of the mixed aqueous solution, the supply of the 25% NaOH aqueous solution was stopped. The mixed aqueous solution and 25% aqueous ammonia were continuously supplied at a constant rate. After the pH of the reaction solution dropped to 11.6, the supply of 25% aqueous NaOH solution was resumed. Then, while controlling the reaction solution to pH 11.6 and the ammonia concentration described later, the operation of supplying the above mixed aqueous solution, 25% NaOH aqueous solution and 25% ammonia water was continued for 4 hours to grow NiCoMn composite hydroxide particles. (Particle growth stage). The product was then removed from the reaction vessel, washed with water and dried. In this manner, composite hydroxide particles having a composition represented by Ni 0.33 Co 0.33 Mn 0.33 (OH) 2 + α (where α is 0 ≦ α ≦ 0.5) were obtained. .
上記複合水酸化物粒子に対し、大気雰囲気中、150℃で12時間の熱処理を施した。次いで、リチウム源としてのLi2CO3と上記複合水酸化物粒子とを、リチウムのモル数(MLi)と上記複合水酸化物を構成するNi,CoおよびMnの総モル数(MMe)との比(MLi:MMe)が1.15:1となるように混合した。この混合物を760℃で4時間焼成し(第一焼成段階)、次いで950℃で10時間焼成した(第二焼成段階)。その後、焼成物を解砕し、篩分けを行った。このようにして、Li1.15Ni0.33Co0.33Mn0.33O2で表わされる組成の活物質粒子サンプルを得た。 The composite hydroxide particles were heat-treated at 150 ° C. for 12 hours in an air atmosphere. Next, Li 2 CO 3 as the lithium source and the composite hydroxide particles are combined into the number of moles of lithium (M Li ) and the total number of moles of Ni, Co and Mn constituting the composite hydroxide (M Me ). And the mixture (M Li : M Me ) was 1.15: 1. This mixture was fired at 760 ° C. for 4 hours (first firing stage), and then fired at 950 ° C. for 10 hours (second firing stage). Thereafter, the fired product was crushed and sieved. In this manner, an active material particle sample having a composition represented by Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 O 2 was obtained.
上記の活物質粒子サンプル作製過程において、複合水酸化物粒子の作製時に使用する反応液等の条件を調節することにより、より具体的には、粒子成長段階において反応液のアンモニア濃度を1〜15g/mLの間の異なる濃度にそれぞれ維持(制御)することにより、上述した方法によるDBP吸収量xがそれぞれ43mL/100g(サンプルS1)、39mL/100g(サンプルS2)、38mL/100g(サンプルS3)、37mL/100g(サンプルS4)、36mL/100g(サンプルS5)、34mL/100g(サンプルS6)及び32mL/100g(サンプルS7)である7種類の活物質粒子を作製した。 In the above active material particle sample preparation process, by adjusting the conditions of the reaction liquid used when preparing the composite hydroxide particles, more specifically, the ammonia concentration of the reaction liquid is adjusted to 1 to 15 g in the particle growth stage. By maintaining (controlling) each at a different concentration between / mL, the DBP absorption amount x by the above-described method is 43 mL / 100 g (sample S1), 39 mL / 100 g (sample S2), and 38 mL / 100 g (sample S3), respectively. , 37 mL / 100 g (sample S4), 36 mL / 100 g (sample S5), 34 mL / 100 g (sample S6), and 32 mL / 100 g (sample S7) were produced.
[リチウムイオン二次電池の作製]
<例1>
正極活物質としての上記サンプルS1の活物質粒子(DBP吸収量A:43mL/100g)と、導電材としてのアセチレンブラック(DBP吸収量B:140mL/100g)と、結着材としてのPVDFと、分散剤としてのポリビニルブチラールとの質量比が90:8:2:0.2となるように秤量し、正極活物質を除く上記材料(即ち導電材、結着材及び分散剤)を溶媒NMPに分散させて導電材分散液を調製した。該導電材分散液と上記秤量した正極活物質とを混合して混練することによりペースト状の正極合材層形成用組成物を調製した。該組成物を厚さ15μmの正極集電体(アルミニウム箔)上に塗布量10mg/cm2で塗布してNMPを揮発させることにより、該正極集電体上に正極合材層が形成されてなる正極シートを作製した。このときの上記式(1)の計算値aは0.29であった。
一方、負極活物質としての天然黒鉛と、結着材としてのSBRと、増粘材であるCMCとの質量比が98:1:1となるように秤量し、これら材料をイオン交換水に分散させてペースト状の負極合材層形成用組成物を調製した。該組成物を厚さ10μmの負極集電体(銅箔)上に塗布してイオン交換水を揮発させることにより、該負極集電体上に負極合材層が形成されてなる負極シートを作製した。
そして、上記作製した正極シート及び負極シートをセパレータシート(ポリプロピレン/ポリエチレン複合体多孔質膜)を挟んで対向配置させ(積層させ)、これを電解液と共にラミネート型のケース(ラミネートフィルム)に収容することにより例1に係るリチウムイオン二次電池(定格容量150mAh)を作製した。電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との体積比3:7の混合溶媒に1mol/LのLiPF6を溶解させたものを使用した。
[Production of lithium ion secondary battery]
<Example 1>
Active material particles (DBP absorption A: 43 mL / 100 g) of the sample S1 as the positive electrode active material, acetylene black (DBP absorption B: 140 mL / 100 g) as the conductive material, PVDF as the binder, Weigh so that the mass ratio of polyvinyl butyral as a dispersant is 90: 8: 2: 0.2, and use the above materials excluding the positive electrode active material (ie, conductive material, binder, and dispersant) in the solvent NMP. A conductive material dispersion was prepared by dispersing. The conductive material dispersion and the weighed positive electrode active material were mixed and kneaded to prepare a paste-like composition for forming a positive electrode mixture layer. The composition was applied onto a positive electrode current collector (aluminum foil) having a thickness of 15 μm at an application amount of 10 mg / cm 2 to volatilize NMP, whereby a positive electrode mixture layer was formed on the positive electrode current collector. A positive electrode sheet was produced. At this time, the calculated value a of the above formula (1) was 0.29.
On the other hand, natural graphite as a negative electrode active material, SBR as a binder, and CMC as a thickener are weighed so that the mass ratio is 98: 1: 1, and these materials are dispersed in ion-exchanged water. Thus, a paste-like composition for forming a negative electrode mixture layer was prepared. A negative electrode sheet in which a negative electrode mixture layer is formed on the negative electrode current collector is prepared by coating the composition on a negative electrode current collector (copper foil) having a thickness of 10 μm and volatilizing ion-exchanged water. did.
Then, the prepared positive electrode sheet and negative electrode sheet are placed opposite to each other with a separator sheet (polypropylene / polyethylene composite porous membrane) interposed therebetween (laminated), and this is accommodated in a laminate type case (laminate film) together with the electrolyte. As a result, a lithium ion secondary battery (rated capacity 150 mAh) according to Example 1 was produced. As the electrolytic solution, a solution obtained by dissolving 1 mol / L LiPF 6 in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 was used.
<例2>
上記サンプルS2(DBP吸収量A:39mL/100g)と、アセチレンブラック(DBP吸収量B:142mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が90.5:7.5:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例2に係る導電材分散液を調製した。例2に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例2に係る正極合材層形成用組成物を調製した。例2に係る正極合材層形成用組成物を用いた他は例1と同様にして、例2に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.3であった。
<例3>
上記サンプルS3(DBP吸収量A:38mL/100g)と、アセチレンブラック(DBP吸収量B:175mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が93:5:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例3に係る導電材分散液を調製した。例3に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例3に係る正極合材層形成用組成物を調製した。例3に係る正極合材層形成用組成物を用いた他は例1と同様にして、例3に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.25であった。
<例4>
上記サンプルS3(DBP吸収量A:38mL/100g)と、アセチレンブラック(DBP吸収量B:175mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が90:8:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例4に係る導電材分散液を調製した。例4に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例4に係る正極合材層形成用組成物を調製した。例4に係る正極合材層形成用組成物を用いた他は例1と同様にして、例4に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.41であった。
<例5>
上記サンプルS3(DBP吸収量A:38mL/100g)と、アセチレンブラック(DBP吸収量B:175mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が88:10:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例5に係る導電材分散液を調製した。例5に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例5に係る正極合材層形成用組成物を調製した。例5に係る正極合材層形成用組成物を用いた他は例1と同様にして、例5に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.52であった。
<Example 2>
The mass ratio of the sample S2 (DBP absorption A: 39 mL / 100 g), acetylene black (DBP absorption B: 142 mL / 100 g), PVDF, and polyvinyl butyral is 90.5: 7.5: 2: 0. The conductive material dispersion liquid according to Example 2 was prepared by weighing the mixture so as to be .2 and dispersing the above materials excluding the positive electrode active material in the solvent NMP. The composition for forming a positive electrode mixture layer according to Example 2 was prepared by mixing and kneading the conductive material dispersion according to Example 2 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 2 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 2 was used. At this time, the calculated value a of the above formula (1) was 0.3.
<Example 3>
The mass ratio of the sample S3 (DBP absorption amount A: 38 mL / 100 g), acetylene black (DBP absorption amount B: 175 mL / 100 g), PVDF, and polyvinyl butyral is 93: 5: 2: 0.2. Thus, the above-mentioned materials excluding the positive electrode active material were dispersed in a solvent NMP to prepare a conductive material dispersion according to Example 3. The composition for forming a positive electrode mixture layer according to Example 3 was prepared by mixing and kneading the conductive material dispersion according to Example 3 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 3 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 3 was used. At this time, the calculated value a of the above formula (1) was 0.25.
<Example 4>
The mass ratio of the sample S3 (DBP absorption amount A: 38 mL / 100 g), acetylene black (DBP absorption amount B: 175 mL / 100 g), PVDF, and polyvinyl butyral is 90: 8: 2: 0.2. Thus, the above-mentioned materials excluding the positive electrode active material were dispersed in a solvent NMP to prepare a conductive material dispersion according to Example 4. The composition for forming a positive electrode mixture layer according to Example 4 was prepared by mixing and kneading the conductive material dispersion according to Example 4 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 4 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 4 was used. At this time, the calculated value a of the above formula (1) was 0.41.
<Example 5>
The mass ratio of the sample S3 (DBP absorption A: 38 mL / 100 g), acetylene black (DBP absorption B: 175 mL / 100 g), PVDF, and polyvinyl butyral is 88: 10: 2: 0.2. Thus, the above material excluding the positive electrode active material was dispersed in the solvent NMP to prepare a conductive material dispersion according to Example 5. The composition for forming a positive electrode mixture layer according to Example 5 was prepared by mixing and kneading the conductive material dispersion according to Example 5 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 5 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 5 was used. At this time, the calculated value a of the above formula (1) was 0.52.
<例6>
上記サンプルS3(DBP吸収量A:38mL/100g)と、アセチレンブラック(DBP吸収量B:175mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が85:13:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例6に係る導電材分散液を調製した。例6に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例6に係る正極合材層形成用組成物を調製した。例6に係る正極合材層形成用組成物を用いた他は例1と同様にして、例6に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.7であった。
<例7>
上記サンプルS4(DBP吸収量A:37mL/100g)と、アセチレンブラック(DBP吸収量B:135mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が91:7:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例7に係る導電材分散液を調製した。例7に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例7に係る正極合材層形成用組成物を調製した。例7に係る正極合材層形成用組成物を用いた他は例1と同様にして、例7に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.28であった。
<例8>
上記サンプルS4(DBP吸収量A:37mL/100g)と、アセチレンブラック(DBP吸収量B:135mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が90.5:7.5:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例8に係る導電材分散液を調製した。例8に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例8に係る正極合材層形成用組成物を調製した。例8に係る正極合材層形成用組成物を用いた他は例1と同様にして、例8に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.3であった。
<例9>
上記サンプルS5(DBP吸収量A:36mL/100g)と、アセチレンブラック(DBP吸収量B:140mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が90:8:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例9に係る導電材分散液を調製した。例9に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例9に係る正極合材層形成用組成物を調製した。例9に係る正極合材層形成用組成物を用いた他は例1と同様にして、例9に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.35であった。
<Example 6>
The mass ratio of the sample S3 (DBP absorption amount A: 38 mL / 100 g), acetylene black (DBP absorption amount B: 175 mL / 100 g), PVDF, and polyvinyl butyral is 85: 13: 2: 0.2. Thus, the above material excluding the positive electrode active material was dispersed in the solvent NMP to prepare a conductive material dispersion according to Example 6. The composition for forming a positive electrode mixture layer according to Example 6 was prepared by mixing and kneading the conductive material dispersion according to Example 6 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 6 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 6 was used. At this time, the calculated value a of the above formula (1) was 0.7.
<Example 7>
The mass ratio of sample S4 (DBP absorption A: 37 mL / 100 g), acetylene black (DBP absorption B: 135 mL / 100 g), PVDF, and polyvinyl butyral is 91: 7: 2: 0.2. Thus, the above material excluding the positive electrode active material was dispersed in the solvent NMP to prepare a conductive material dispersion according to Example 7. The composition for forming a positive electrode mixture layer according to Example 7 was prepared by mixing and kneading the conductive material dispersion according to Example 7 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 7 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 7 was used. At this time, the calculated value a of the above formula (1) was 0.28.
<Example 8>
The mass ratio of the sample S4 (DBP absorption amount A: 37 mL / 100 g), acetylene black (DBP absorption amount B: 135 mL / 100 g), PVDF, and polyvinyl butyral is 90.5: 7.5: 2: 0. The conductive material dispersion according to Example 8 was prepared by weighing the mixture so as to be .2 and dispersing the above-described materials excluding the positive electrode active material in the solvent NMP. The composition for forming a positive electrode mixture layer according to Example 8 was prepared by mixing and kneading the conductive material dispersion according to Example 8 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 8 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 8 was used. At this time, the calculated value a of the above formula (1) was 0.3.
<Example 9>
The mass ratio of the sample S5 (DBP absorption amount A: 36 mL / 100 g), acetylene black (DBP absorption amount B: 140 mL / 100 g), PVDF, and polyvinyl butyral is 90: 8: 2: 0.2. Thus, the above material excluding the positive electrode active material was dispersed in a solvent NMP to prepare a conductive material dispersion according to Example 9. The composition for forming a positive electrode mixture layer according to Example 9 was prepared by mixing and kneading the conductive material dispersion according to Example 9 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 9 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 9 was used. At this time, the calculated value a of the above formula (1) was 0.35.
<例10>
上記サンプルS6(DBP吸収量A:34mL/100g)と、アセチレンブラック(DBP吸収量B:140mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が88:10:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例10に係る導電材分散液を調製した。例10に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例10に係る正極合材層形成用組成物を調製した。例10に係る正極合材層形成用組成物を用いた他は例1と同様にして、例10に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.47であった。
<例11>
上記サンプルS7(DBP吸収量A:32mL/100g)と、アセチレンブラック(DBP吸収量B:140mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が90:8:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例11に係る導電材分散液を調製した。例11に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例11に係る正極合材層形成用組成物を調製した。例11に係る正極合材層形成用組成物を用いた他は例1と同様にして、例11に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.39であった。
<例12>
正極活物質としてのLi1.15Ni0.33Co0.33Mn0.33O2(DBP吸収量A:28mL/100g)と、アセチレンブラック(DBP吸収量B:175mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が90.5:7.5:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例12に係る導電材分散液を調製した。例12に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例12に係る正極合材層形成用組成物を調製した。例12に係る正極合材層形成用組成物を用いた他は例1と同様にして、例12に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.52であった。
<例13>
Li1.15Ni0.33Co0.33Mn0.33O2(DBP吸収量A:28mL/100g)と、アセチレンブラック(DBP吸収量B:175mL/100g)と、PVDFと、ポリビニルブチラールとの質量比が93:5:2:0.2となるように秤量し、正極活物質を除く上記材料を溶媒NMPに分散させて例13に係る導電材分散液を調製した。例13に係る導電材分散液と上記秤量した正極活物質とを混合して混練することにより例13に係る正極合材層形成用組成物を調製した。例13に係る正極合材層形成用組成物を用いた他は例1と同様にして、例13に係るリチウムイオン二次電池を作製した。このときの上記式(1)の計算値aは0.34であった。例1〜例13に係るリチウムイオン二次電池の構成を表1に示す。なお、表1中分散剤は、正極活物質と導電材と結着材との合計量に対する添加量(質量%)である。
<Example 10>
The mass ratio of the sample S6 (DBP absorption A: 34 mL / 100 g), acetylene black (DBP absorption B: 140 mL / 100 g), PVDF, and polyvinyl butyral is 88: 10: 2: 0.2. Thus, the above material excluding the positive electrode active material was dispersed in a solvent NMP to prepare a conductive material dispersion according to Example 10. The composition for forming a positive electrode mixture layer according to Example 10 was prepared by mixing and kneading the conductive material dispersion according to Example 10 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 10 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 10 was used. At this time, the calculated value a of the above formula (1) was 0.47.
<Example 11>
The mass ratio of the sample S7 (DBP absorption amount A: 32 mL / 100 g), acetylene black (DBP absorption amount B: 140 mL / 100 g), PVDF, and polyvinyl butyral is 90: 8: 2: 0.2. Thus, the above-mentioned materials excluding the positive electrode active material were dispersed in a solvent NMP to prepare a conductive material dispersion according to Example 11. The composition for forming a positive electrode mixture layer according to Example 11 was prepared by mixing and kneading the conductive material dispersion according to Example 11 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 11 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 11 was used. At this time, the calculated value a of the above formula (1) was 0.39.
<Example 12>
Mass ratio of Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 O 2 (DBP absorption A: 28 mL / 100 g), acetylene black (DBP absorption B: 175 mL / 100 g), PVDF, and polyvinyl butyral as a positive electrode active material Was measured to be 90.5: 7.5: 2: 0.2, and the above-mentioned materials excluding the positive electrode active material were dispersed in the solvent NMP to prepare a conductive material dispersion according to Example 12. The composition for forming a positive electrode mixture layer according to Example 12 was prepared by mixing and kneading the conductive material dispersion according to Example 12 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 12 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 12 was used. At this time, the calculated value a of the above formula (1) was 0.52.
<Example 13>
The mass ratio of Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 O 2 (DBP absorption A: 28 mL / 100 g), acetylene black (DBP absorption B: 175 mL / 100 g), PVDF, and polyvinyl butyral is 93: 5: 2: Weighed to 0.2, and dispersed the above materials excluding the positive electrode active material in the solvent NMP to prepare a conductive material dispersion according to Example 13. The composition for forming a positive electrode mixture layer according to Example 13 was prepared by mixing and kneading the conductive material dispersion according to Example 13 and the weighed positive electrode active material. A lithium ion secondary battery according to Example 13 was produced in the same manner as in Example 1 except that the composition for forming a positive electrode mixture layer according to Example 13 was used. At this time, the calculated value a of the above formula (1) was 0.34. Table 1 shows the configurations of the lithium ion secondary batteries according to Examples 1 to 13. In Table 1, the dispersant is an addition amount (% by mass) with respect to the total amount of the positive electrode active material, the conductive material, and the binder.
[コンディショニング処理]
上記作製した例1〜例13に係るリチウムイオン二次電池に対して、1/3C(1Cは1時間で満充放電可能な電流値)のレートで3時間の定電流(CC)充電を行い、次いで、1/3Cのレートで4.1Vまで充電する操作と、1/3Cのレートで3Vまで放電させる操作とを3回繰り返した。
[Conditioning process]
The lithium ion secondary batteries according to Examples 1 to 13 were charged with a constant current (CC) for 3 hours at a rate of 1/3 C (1 C is a current value that can be fully charged and discharged in 1 hour). Then, the operation of charging to 4.1 V at a rate of 1/3 C and the operation of discharging to 3 V at a rate of 1/3 C were repeated three times.
[IV抵抗測定試験]
上記コンディショニング処理後の各例にかかる二次電池について、IV抵抗(反応抵抗)を測定した。IV抵抗は以下のようにして測定した。即ち、各例に係る二次電池を3Vから1Cの定電流で充電し、SOC(State of Charge)60%の充電状態に調整した後、−30℃の温度条件下、10C(ハイレート放電)で2秒間の定電流(CC)放電を行い、このときの電流(I)‐電圧(V)プロット値の一次近似直線の傾きからIV抵抗[mΩ]を求めた。上記各例に係る二次電池のIV抵抗の測定結果を表1及び図4に示す。
[IV resistance measurement test]
About the secondary battery concerning each example after the said conditioning process, IV resistance (reaction resistance) was measured. The IV resistance was measured as follows. That is, the secondary battery according to each example is charged with a constant current of 3 V to 1 C, adjusted to a SOC (State of Charge) 60%, and then at a temperature of −30 ° C. and 10 C (high rate discharge). A constant current (CC) discharge was performed for 2 seconds, and IV resistance [mΩ] was determined from the slope of the first-order approximation line of the current (I) -voltage (V) plot value. The measurement results of the IV resistance of the secondary batteries according to the above examples are shown in Table 1 and FIG.
表1及び図4に示すように、例3、例5、例6及び例12に係る二次電池ではIV抵抗(反応抵抗)が他の例に係る二次電池と比較して増大していることが確認された。即ち、上記式(1)の計算値aの値が0.28〜0.47の場合にはIV抵抗が低減されており良好な性能(即ち高出力である)を示すことが確認された。
また、例13に係る二次電池では上記式(1)の計算値aの値は0.34であるが、DBP吸収量Aが28mL/100gと低く、正極活物質の表面積(反応面積)が十分に確保されないため、IV抵抗が増大したものと推察される。
以上の結果から、DBP吸収量A[mL/100g]は30mL/100g以上(例えば32mL/100g以上)であって、上記式(1)により求められる計算値aが0.28〜0.47である二次電池ではIV抵抗(反応抵抗)が低減されて良好な電池性能を示すことが確認された。
As shown in Table 1 and FIG. 4, in the secondary batteries according to Example 3, Example 5, Example 6, and Example 12, the IV resistance (reaction resistance) is increased as compared with the secondary batteries according to other examples. It was confirmed. That is, it was confirmed that when the value of the calculated value a of the above formula (1) is 0.28 to 0.47, the IV resistance is reduced and good performance (that is, high output) is exhibited.
In the secondary battery according to Example 13, the value of the calculated value a of the above formula (1) is 0.34, but the DBP absorption A is as low as 28 mL / 100 g, and the surface area (reaction area) of the positive electrode active material is small. It is presumed that IV resistance has increased because it is not sufficiently secured.
From the above results, the DBP absorption amount A [mL / 100 g] is 30 mL / 100 g or more (for example, 32 mL / 100 g or more), and the calculated value a obtained by the above formula (1) is 0.28 to 0.47. It was confirmed that a certain secondary battery exhibited good battery performance with reduced IV resistance (reaction resistance).
以上、本発明の具体例を詳細に説明したが、上記実施形態及び実施例は例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 As mentioned above, although the specific example of this invention was demonstrated in detail, the said embodiment and Example are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
本発明に係る非水電解質二次電池は、充放電時(特に低温(例えば−30℃)ハイレート充放電時)の内部抵抗の増加が抑制されており、出力性能に優れることから、各種用途向けの非水電解質二次電池として利用可能である。例えば、図5に示すように、自動車等の車両100に搭載される車両駆動用モーターの電源(駆動電源)として好適に利用することができる。車両100に使用される非水電解質二次電池(リチウムイオン二次電池)10は、単独で使用されてもよく、直列及び/又は並列に複数接続されてなる組電池の形態で使用されてもよい。
The non-aqueous electrolyte secondary battery according to the present invention is suppressed in an increase in internal resistance during charge / discharge (particularly during low-temperature (for example, −30 ° C.) high-rate charge / discharge) and has excellent output performance. It can be used as a non-aqueous electrolyte secondary battery. For example, as shown in FIG. 5, it can be suitably used as a power source (drive power source) for a vehicle driving motor mounted on a
10 リチウムイオン二次電池(非水電解質二次電池)
15 電池ケース
20 開口部
25 蓋体
30 ケース本体
40 安全弁
50 捲回電極体
60 正極端子
62 正極集電体
64 正極シート(正極)
66 正極合材層
80 負極端子
82 負極集電体
84 負極シート(負極)
90 負極合材層
95 セパレータシート
100 車両(自動車)
10 Lithium ion secondary battery (non-aqueous electrolyte secondary battery)
15
66 Positive
90 Negative electrode composite material layer 95
Claims (13)
前記正極は、正極集電体と、該正極集電体上に形成された少なくとも正極活物質及び導電材及び分散剤を含む正極合材層と、を有しており、
前記正極活物質は、JIS K6217−4に基づくDBP吸収量[mL/100g]が30mL/100g以上であり、
ここで、前記正極活物質のDBP吸収量[mL/100g]をAとし、前記正極合材層中の全固形分に占める該正極活物質の質量割合をx[質量%]とし、且つ、
前記導電材のDBP吸収量[mL/100g]をBとし、前記正極合材層中の全固形分に占める該導電材の質量割合をy[質量%]としたときの以下の式(1)により求められる計算値a:
a=yB/xA (1);
が0.28〜0.47であることを特徴とする、非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode,
The positive electrode includes a positive electrode current collector, and a positive electrode mixture layer including at least a positive electrode active material, a conductive material, and a dispersant formed on the positive electrode current collector,
The positive electrode active material has a DBP absorption amount [mL / 100 g] based on JIS K6217-4 of 30 mL / 100 g or more,
Here, the DBP absorption amount [mL / 100 g] of the positive electrode active material is A, the mass ratio of the positive electrode active material in the total solid content in the positive electrode mixture layer is x [mass%], and
When the DBP absorption amount [mL / 100 g] of the conductive material is B and the mass ratio of the conductive material to the total solid content in the positive electrode mixture layer is y [mass%], the following formula (1) Calculated value a obtained by:
a = yB / xA (1);
Is a nonaqueous electrolyte secondary battery.
前記導電材と、分散剤と、結着材とを所定の溶媒に分散させてなる導電材分散液を用意すること、
前記用意した導電材分散液と、前記正極活物質としてJIS K6217−4に基づくDBP吸収量[mL/100g]が30mL/100g以上の正極活物質と、を混合してなるペースト状の正極合材層形成用組成物を用意すること、
前記用意した正極合材層形成用組成物を前記正極集電体の表面に塗布して乾燥させることによって正極合材層を形成すること、
を包含し、
ここで、前記正極活物質のDBP吸収量[mL/100g]をAとし、前記正極合材層形成用組成物中の全固形分に占める該正極活物質の質量割合をx[質量%]とし、且つ、
前記導電材のDBP吸収量[mL/100g]をBとし、前記正極合材層形成用組成物中の全固形分に占める該導電材の質量割合をy[質量%]としたときの以下の式(1)により求められる計算値a:
a=yB/xA (1);
が0.28〜0.47となるように、前記DBP吸収量Aと前記質量割合xと前記DBP吸収量Bと前記質量割合yとを決定することを特徴とする、非水電解質二次電池の製造方法。 A positive electrode in which a positive electrode mixture layer containing at least a positive electrode active material and a conductive material is formed on the positive electrode current collector; and a negative electrode in which a negative electrode mixture layer containing at least a negative electrode active material is formed on the negative electrode current collector. A non-aqueous electrolyte secondary battery manufacturing method comprising:
Preparing a conductive material dispersion obtained by dispersing the conductive material, a dispersant, and a binder in a predetermined solvent;
Paste positive electrode mixture formed by mixing the prepared conductive material dispersion and a positive electrode active material having a DBP absorption amount [mL / 100 g] based on JIS K6217-4 of 30 mL / 100 g or more as the positive electrode active material. Preparing a composition for layer formation;
Forming the positive electrode mixture layer by applying the prepared composition for forming a positive electrode mixture layer on the surface of the positive electrode current collector and drying the composition;
Including
Here, the DBP absorption amount [mL / 100 g] of the positive electrode active material is A, and the mass ratio of the positive electrode active material in the total solid content in the composition for forming a positive electrode mixture layer is x [mass%]. ,and,
When the DBP absorption amount [mL / 100 g] of the conductive material is B, and the mass ratio of the conductive material to the total solid content in the composition for forming a positive electrode mixture layer is y [mass%] Calculated value a obtained by equation (1):
a = yB / xA (1);
The nonaqueous electrolyte secondary battery is characterized in that the DBP absorption amount A, the mass ratio x, the DBP absorption amount B, and the mass ratio y are determined so as to be 0.28 to 0.47. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011226562A JP2013089346A (en) | 2011-10-14 | 2011-10-14 | Nonaqueous electrolyte secondary battery and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011226562A JP2013089346A (en) | 2011-10-14 | 2011-10-14 | Nonaqueous electrolyte secondary battery and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013089346A true JP2013089346A (en) | 2013-05-13 |
Family
ID=48533078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011226562A Pending JP2013089346A (en) | 2011-10-14 | 2011-10-14 | Nonaqueous electrolyte secondary battery and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013089346A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015076278A (en) * | 2013-10-09 | 2015-04-20 | 株式会社豊田自動織機 | Device for producing slurry for electrode |
JP2015219964A (en) * | 2014-05-14 | 2015-12-07 | トヨタ自動車株式会社 | Positive electrode paste and manufacturing method thereof |
JP2015225792A (en) * | 2014-05-29 | 2015-12-14 | 日立マクセル株式会社 | Negative electrode and lithium secondary battery using the negative electrode |
WO2016114589A1 (en) * | 2015-01-13 | 2016-07-21 | 주식회사 엘지화학 | Method for manufacturing composition for forming cathode of lithium secondary battery, cathode manufactured by using composition, and lithium secondary battery |
KR20170084453A (en) * | 2016-01-12 | 2017-07-20 | 주식회사 엘지화학 | Non-Aqueous Slurry Composition, Cathode Thereof, And Lithium Sulfur Batteries Comprising The Same |
JP2017135062A (en) * | 2016-01-29 | 2017-08-03 | 東洋インキScホールディングス株式会社 | Method for manufacturing carbon black dispersion for lithium ion secondary battery |
CN107112524A (en) * | 2015-01-13 | 2017-08-29 | 株式会社Lg 化学 | The positive pole and lithium secondary battery for preparing the method for the composition for forming cathode plate for lithium secondary battery and being manufactured using the composition |
JP2018521450A (en) * | 2015-05-27 | 2018-08-02 | エルジー・ケム・リミテッド | Electrode mixture, method for producing the same, and secondary battery including the same |
JP2019050153A (en) * | 2017-09-11 | 2019-03-28 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
EP3683250A1 (en) | 2012-12-26 | 2020-07-22 | Mitsubishi Chemical Corporation | Polycarbonate diol and polyurethane using same |
US10741829B2 (en) | 2016-03-24 | 2020-08-11 | Lg Chem, Ltd. | Composition for forming positive electrode of secondary battery, positive electrode for secondary battery and secondary battery manufactured using the same |
-
2011
- 2011-10-14 JP JP2011226562A patent/JP2013089346A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3683250A1 (en) | 2012-12-26 | 2020-07-22 | Mitsubishi Chemical Corporation | Polycarbonate diol and polyurethane using same |
JP2015076278A (en) * | 2013-10-09 | 2015-04-20 | 株式会社豊田自動織機 | Device for producing slurry for electrode |
JP2015219964A (en) * | 2014-05-14 | 2015-12-07 | トヨタ自動車株式会社 | Positive electrode paste and manufacturing method thereof |
JP2015225792A (en) * | 2014-05-29 | 2015-12-14 | 日立マクセル株式会社 | Negative electrode and lithium secondary battery using the negative electrode |
US10290859B2 (en) | 2015-01-13 | 2019-05-14 | Lg Chem, Ltd. | Method of preparing composition for forming positive electrode of lithium secondary battery, and positive electrode and lithium secondary battery manufactured by using the composition |
WO2016114589A1 (en) * | 2015-01-13 | 2016-07-21 | 주식회사 엘지화학 | Method for manufacturing composition for forming cathode of lithium secondary battery, cathode manufactured by using composition, and lithium secondary battery |
CN107112524B (en) * | 2015-01-13 | 2020-04-28 | 株式会社Lg 化学 | Method for preparing a composition for forming a positive electrode for a lithium secondary battery, and a positive electrode and a lithium secondary battery manufactured using the composition |
CN107112524A (en) * | 2015-01-13 | 2017-08-29 | 株式会社Lg 化学 | The positive pole and lithium secondary battery for preparing the method for the composition for forming cathode plate for lithium secondary battery and being manufactured using the composition |
KR101773698B1 (en) * | 2015-01-13 | 2017-08-31 | 주식회사 엘지화학 | Method for preparing positive electrode composition of lithium secondary battery, and positive electrode and lithium secondary battery prepared by using the same |
JP2018521450A (en) * | 2015-05-27 | 2018-08-02 | エルジー・ケム・リミテッド | Electrode mixture, method for producing the same, and secondary battery including the same |
US10680276B2 (en) | 2015-05-27 | 2020-06-09 | Lg Chem, Ltd. | Electrode mixture, preparation method thereof, and secondary battery including the same |
US11258093B2 (en) | 2015-05-27 | 2022-02-22 | Lg Energy Solution, Ltd. | Electrode mixture, preparation method thereof, and secondary battery including the same |
KR102003302B1 (en) * | 2016-01-12 | 2019-10-17 | 주식회사 엘지화학 | Non-Aqueous Slurry Composition, Cathode Thereof, And Lithium Sulfur Batteries Comprising The Same |
KR20170084453A (en) * | 2016-01-12 | 2017-07-20 | 주식회사 엘지화학 | Non-Aqueous Slurry Composition, Cathode Thereof, And Lithium Sulfur Batteries Comprising The Same |
JP2017135062A (en) * | 2016-01-29 | 2017-08-03 | 東洋インキScホールディングス株式会社 | Method for manufacturing carbon black dispersion for lithium ion secondary battery |
US10741829B2 (en) | 2016-03-24 | 2020-08-11 | Lg Chem, Ltd. | Composition for forming positive electrode of secondary battery, positive electrode for secondary battery and secondary battery manufactured using the same |
JP2019050153A (en) * | 2017-09-11 | 2019-03-28 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5650247B2 (en) | Lithium ion secondary battery | |
JP6015591B2 (en) | Non-aqueous electrolyte secondary battery | |
CN103107338B (en) | Manufacture the method for lithium secondary battery | |
JP2013089346A (en) | Nonaqueous electrolyte secondary battery and manufacturing method therefor | |
US9525171B2 (en) | Lithium secondary battery including tungsten-containing lithium complex oxide | |
JP5984026B2 (en) | Bimodal type negative electrode active material composition, and negative electrode active material, negative electrode active material composition, negative electrode, lithium secondary battery, battery module, and battery pack manufacturing method | |
JP5854279B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP5709010B2 (en) | Non-aqueous electrolyte secondary battery | |
JP7541979B2 (en) | Negative electrode active material, its manufacturing method, and lithium secondary battery including the same | |
JP2011090876A (en) | Lithium secondary battery and method of manufacturing the same | |
JP2013084395A (en) | Lithium ion secondary battery manufacturing method | |
JP7068238B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5614591B2 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
JP2011146158A (en) | Lithium secondary battery | |
JP6448462B2 (en) | Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery | |
US20150050552A1 (en) | Lithium ion secondary battery and method for manufacturing same | |
JP2014026932A (en) | Nonaqueous electrolyte secondary battery and manufacturing method therefor | |
JP7125238B2 (en) | Non-aqueous electrolyte secondary battery | |
CN109494356A (en) | Nonaqueous electrolytic solution secondary battery | |
JP5633747B2 (en) | Lithium ion secondary battery | |
JP7235405B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5862928B2 (en) | Method for producing positive electrode for lithium ion secondary battery | |
JP2021018896A (en) | Non-aqueous electrolyte secondary battery | |
JP2009283276A (en) | Lithium secondary battery manufacturing method | |
JP6493766B2 (en) | Lithium ion secondary battery |