JP2013080827A - 発光素子 - Google Patents
発光素子 Download PDFInfo
- Publication number
- JP2013080827A JP2013080827A JP2011220137A JP2011220137A JP2013080827A JP 2013080827 A JP2013080827 A JP 2013080827A JP 2011220137 A JP2011220137 A JP 2011220137A JP 2011220137 A JP2011220137 A JP 2011220137A JP 2013080827 A JP2013080827 A JP 2013080827A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- light
- thickness
- flat layer
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/833—Transparent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/872—Periodic patterns for optical field-shaping, e.g. photonic bandgap structures
Landscapes
- Led Devices (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
【課題】光取出し効率を改善した発光素子を提供する。
【解決手段】発光素子501は、基板としてのサファイア基板1と、この基板の表面において、互いに異なる導電型を有する2つの半導体層としてのn型半導体層2およびp型半導体層4によって厚み方向に挟まれる状態で配置された発光層3と、前記2つの半導体層のうちの前記基板から遠い側の一方の半導体層であるp型半導体層4に重なるように配置された透明電極層5と、透明電極層5の上面の少なくとも一部を覆うように、透明電極層5よりも高い屈折率を有する透明材料で設けられた平坦層8と、平坦層8の上側に配置された凹凸層9とを備える。
【選択図】図1
【解決手段】発光素子501は、基板としてのサファイア基板1と、この基板の表面において、互いに異なる導電型を有する2つの半導体層としてのn型半導体層2およびp型半導体層4によって厚み方向に挟まれる状態で配置された発光層3と、前記2つの半導体層のうちの前記基板から遠い側の一方の半導体層であるp型半導体層4に重なるように配置された透明電極層5と、透明電極層5の上面の少なくとも一部を覆うように、透明電極層5よりも高い屈折率を有する透明材料で設けられた平坦層8と、平坦層8の上側に配置された凹凸層9とを備える。
【選択図】図1
Description
本発明は、発光素子に関するものである。
発光ダイオードは電気−光変換効率が高く、また、近年では青色の発光が可能となったため、環境負荷の少ない次世代の照明用光源として脚光を浴びている。発光ダイオードの高い電気−光変換効率を十分に活かすには、PN接合部で発生した光を損失なくチップ外に取り出すことが重要であるが、一般に発光ダイオードが作製可能な化合物半導体は屈折率が高いため、チップの内部で光が全反射を繰り返すうちに、金属からなる電極や半導体層で光が吸収されてしまい、チップ外に取り出される光は減少する。
現在主流となっている青色発光ダイオードはGaN半導体を利用して作製されるが、GaNは屈折率が2.5であるので、空気中に配置した場合、臨界角は23.6°となり、チップ外に取り出される光は約10%に留まる。
発生した光をチップ外に取り出す効率は一般に光取出し効率と呼ばれるが、この光取出し効率を改善する技術として、特許第3448441号公報(特許文献1)には、図9に示すようにチップの透明電極上に凹凸を設けた構成が提案されている。
図9では、サファイア基板101と、サファイア基板101上に形成されたn型GaN層102と、n型GaN層102上に形成されたp型GaN層103とを備えた構造が示されている。n型GaN層102が露出するようにp型GaN層103からn型GaN層102の層中の所定位置まで除去されたような形となっており、この低くなった部分はn型電極形成領域104となっている。この除去により同時にp型GaN層103の上面にp型電極形成領域105が形成されている。ここで、p型電極形成領域105からn型電極形成領域104に至る領域を光取出し面106と呼ぶ。
n型電極形成領域104上にn型電極107が形成され、p型電極形成領域105上に形成されたp型電極108が形成されている。p型電極形成領域105は通常、n型電極形成領域104より広いため、p型電極形成領域105上にはITOなどの透明導電膜で図示しない透明電極が形成され、その上にp型電極108が形成される。
光取出し面106のほぼ全域には二酸化珪素(SiO2)からなる光散乱層109が形成されている。光散乱層109は、幅及び段差がそれぞれ約0.3μmの凹凸表面を有している。光散乱層109の表面には凹凸が形成されているので、臨界角よりも大きな入射角で入射した光も回折によりチップ外に取り出され、その結果、光取出し効率が改善する。
また、透明電極そのものに凹凸構造を設けて光取出し効率を改善することも検討されている。たとえば特開2008−294306号公報(特許文献2)に示されるようなものである。
図10に示すように、III族窒化物系化合物半導体発光素子は、サファイア基板110の上に図示しない窒化アルミニウム(AlN)から成る膜厚約15nmのバッファ層が設けられ、その上にシリコン(Si)ドープのGaNから成る膜厚約4μmのnコンタクト層111が形成されている。このnコンタクト層111の上には、アンドープのIn0.1Ga0.9NとアンドープのGaNとシリコン(Si)ドープのGaNを1組として10組積層した多重層から成る膜厚約74nmのnクラッド層112が形成されている。そしてnクラッド層112の上には、膜厚約3nmのIn0.2Ga0.8Nから成る井戸層と、膜厚約2nmのGaNと膜厚3nmのAl0.06Ga0.94Nから成るバリア層とが交互に8組積層された多重量子井戸構造(MQW)の発光層113が形成されている。発光層13の上にはp型Al0.3Ga0.7Nとp型In0.08Ga0.92Nの多重層から成る膜厚約33nmのpクラッド層114が形成されている。さらに、pクラッド層114の上には、マグネシウム濃度の異なる2層のp型GaNの積層構造から成る膜厚約80nmのpコンタクト層115が形成されている。
pコンタクト層115の上には酸化ニオブチタン(ニオブ3%)から成る、凹凸120sを有する透光性電極120が形成されている。nコンタクト層111の露出面上には電極130が形成されている。電極130は、膜厚約20nmのバナジウム(V)膜と、膜厚約2μmのアルミニウム(Al)膜とで構成されている。透光性電極120上の一部には、金(Au)合金から成る電極パッド125が形成されている。
特許文献2に開示されるこの先行技術においては、凹凸120sを有しない場合と比較して光出力が30%向上した。
しかし、特許文献2に開示されている酸化ニオブチタンは、導電性を一般的なITO(Indium Tin Oxide)並みにするためにはその結晶方位(C軸)が膜面に対して垂直になるように制御する必要がある。しかし、一般的なスパッタ法では結晶軸はランダムな方向となるため、酸化ニオブチタンの抵抗値はITOの2倍以上の抵抗値となる。このことは素子上の電流密度分布に偏りを生じ、無効消費電力が増加する、あるいは動作電圧が上昇するという不具合を生じる。
特許文献2では、上述の欠点を補う発光素子の構造として、図11に示すものが記載されている。図11に示す構造では、p型GaNからなるpコンタクト層115と酸化ニオブチタン(ニオブ3%)から成る透光性電極120との間に、酸化インジウムスズ(ITO)から成る膜厚50nm(発光層113の発光波長470nmの1/(4n)未満、但しnはITOの屈折率)の透光性導電層121を形成してある。
この構造は、低抵抗率のITOから成る透光性導電層121により、酸化ニオブチタンの高い横方向拡散抵抗を補う構造である。低屈折率のITOからなる透光性導電層121と高屈折率のp型GaNからなるpコンタクト層115との界面での全反射を抑制するため、ITOからなる透光性導電層121の膜厚を発光波長の1/4未満とする必要がある。
上述したように、特許文献2に開示されている酸化ニオブチタンは導電性があり、且つ屈折率についてはGaNに近い2.4を実現できるが、膜面に平行な方向の導電性を一般的なITO並みにするためにはその結晶方位(C軸)が膜面に対して垂直になるように制御する必要がある。しかし、結晶方位が膜面に対して垂直になるように制御しつつ酸化ニオブチタン膜を形成する技術は、まだ量産化に応用できるものにはなっていない。一方、一般的なスパッタ法で酸化ニオブチタン膜を形成した場合、結晶軸はランダムな方向となるので、酸化ニオブチタンの抵抗値は同じ膜厚のITOの抵抗値の2倍以上となる。そこで、酸化ニオブチタンを採用しつつ抵抗値をITOの場合と同等とするためには膜厚を2倍以上としなければならない。そのためには一般的なスパッタ法では膜形成時間が2倍以上必要になってしまい、製造に要する時間が増加するという不具合が生じる。
これを補うためには、図11に示すように、p型GaN層と酸化ニオブチタンからなる透光性電極との間に、ITO膜を形成するという方法もあるが、低屈折率のITOからなる透光性導電層と高屈折率のp型GaNからなるpコンタクト層との界面での全反射を抑制するためには、ITOからなる透光性導電層の厚さを発光波長の1/(4n)未満(ただし、nはITOの屈折率)とする必要があり、結果として横方向拡散抵抗を大幅に改善することはできない。
以上の理由により、酸化ニオブチタンは工業的に利用することが難しく、その結果、低コストで生産する必要がある量産品においては透光性導電層の材料としてはITOを選択せざるを得ないのが実情である。
そこで、本発明は、光取出し効率を改善した発光素子を提供することを目的とする。
上記目的を達成するため、本発明に基づく発光素子は、基板と、上記基板の表面において、互いに異なる導電型を有する2つの半導体層によって厚み方向に挟まれる状態で配置された発光層と、上記2つの半導体層のうちの上記基板から遠い側の一方の半導体層に重なるように配置された透明電極層と、上記透明電極層の上面の少なくとも一部を覆うように、上記透明電極層よりも高い屈折率を有する透明材料で設けられた平坦層とを備える。上記平坦層の上側に凹凸層が設けられている。
本発明によれば、平坦層の厚さを光が導波しうる厚さ、すなわちカットオフ厚さ以上とすることで、発光層から透明電極層に臨界角以上の角度で入射した光により平坦層内を伝播する導波モードの励起が可能となり、発光層の光パワーが導波モードに移動する。この作用により透明電極層の厚さが波長の1/4以上であっても発光層内の光パワーを高屈折率の平坦層に取り出すことができる。さらに平坦層の上側にある凹凸層9の凹凸構造が導波モードと干渉し、当該導波モードは発光素子外部に放射する光に変換される。以上の動作原理により光取出し効率が改善する。
(実施の形態1)
(構成)
図1を参照して、本発明に基づく実施の形態1における発光素子について説明する。本実施の形態における発光素子501は、基板としてのサファイア基板1と、前記基板の表面において、互いに異なる導電型を有する2つの半導体層としてのn型半導体層2およびp型半導体層4によって厚み方向に挟まれる状態で配置された発光層3と、前記2つの半導体層のうちの前記基板から遠い側の一方の半導体層であるp型半導体層4に重なるように配置された透明電極層5と、透明電極層5の上面の少なくとも一部を覆うように、透明電極層5よりも高い屈折率を有する透明材料で設けられた平坦層8と、平坦層8の上側に配置された凹凸層9とを備える。
(構成)
図1を参照して、本発明に基づく実施の形態1における発光素子について説明する。本実施の形態における発光素子501は、基板としてのサファイア基板1と、前記基板の表面において、互いに異なる導電型を有する2つの半導体層としてのn型半導体層2およびp型半導体層4によって厚み方向に挟まれる状態で配置された発光層3と、前記2つの半導体層のうちの前記基板から遠い側の一方の半導体層であるp型半導体層4に重なるように配置された透明電極層5と、透明電極層5の上面の少なくとも一部を覆うように、透明電極層5よりも高い屈折率を有する透明材料で設けられた平坦層8と、平坦層8の上側に配置された凹凸層9とを備える。
n型半導体層2は、たとえばn型窒化ガリウム(n−GaN)層である。p型半導体層4は、たとえばp型窒化ガリウム(p−GaN)層である。透明電極層5は、たとえば酸化インジウム錫(ITO)膜)である。
発光素子501は、p側電極6と、n側電極7とを備えている。p側電極6は透明電極層5の上面に配置されており、n側電極7はn型半導体層2の上面を露出させた箇所に配置されている。
平坦層8の屈折率は、n型半導体層2またはp型半導体層4の屈折率に近いことが好ましい。n型半導体層2がn型窒化ガリウム層である場合、あるいは、p型半導体層4がp型窒化ガリウム層である場合は、平坦層8の屈折率は、2.2以上、できれば2.4以上とすることが好ましい。
平坦層8の厚みは、光が平坦層8の内部を伝播しうる厚みであることが好ましい。光が平坦層8の内部を伝播するようになれば、光取出し効率を向上させることができるからである。
(作用・効果)
本実施の形態における発光素子501は、透明電極層5の上に高屈折率の平坦層8を設けその上側に凹凸層9を形成している。平坦層8の厚さを光が導波しうる厚さ、すなわちカットオフ厚さ以上とすることで、発光層3から透明電極層5に臨界角以上の角度で入射した光により平坦層8内を伝播する導波モードの励起が可能となり、発光層3の光パワーが導波モードに移動する。この作用により透明電極層5の厚さが波長の1/4以上であっても発光層3内の光パワーを高屈折率の平坦層8に取り出すことができる。さらに平坦層8の上側にある凹凸層9の凹凸構造が導波モードと干渉し、光パワーは発光素子501外部に放射する光に変換される。以上の動作原理により光取出し効率が改善する。
本実施の形態における発光素子501は、透明電極層5の上に高屈折率の平坦層8を設けその上側に凹凸層9を形成している。平坦層8の厚さを光が導波しうる厚さ、すなわちカットオフ厚さ以上とすることで、発光層3から透明電極層5に臨界角以上の角度で入射した光により平坦層8内を伝播する導波モードの励起が可能となり、発光層3の光パワーが導波モードに移動する。この作用により透明電極層5の厚さが波長の1/4以上であっても発光層3内の光パワーを高屈折率の平坦層8に取り出すことができる。さらに平坦層8の上側にある凹凸層9の凹凸構造が導波モードと干渉し、光パワーは発光素子501外部に放射する光に変換される。以上の動作原理により光取出し効率が改善する。
なお、上述したように、平坦層8の材料は屈折率が2.2以上であることが好ましい。これを実現できる材料としては、TiO2(n=2.6〜2.9)、ZrO2(n=2.2)、Ta2O5(n=2.3)、ダイヤモンド(n=2.4)などがある。ただし、かっこ内の表示は各材料の屈折率nを表す。
平坦層8の材料としては、屈折率が最も高いこと、および、コストが安いことからTiO2が最適である。したがって、平坦層8はTiO2を主材料として形成されていることが好ましい。
平坦層8の厚みは、30nm以上150nm以下であることが好ましい。ここで「30nm以上」とするのは、平坦層8の内部を光が伝播できるためには、平坦層8の厚みが30nm以上であることが必要だからである。また、「150nm以下」とするのは、発明者らによる計算の結果、平坦層8の厚みが150nmより厚くなっていても効果が飽和する、または、逆に低下するからである。発明者らによる計算の結果、平坦層8の厚みを150nmとした場合、100nmの場合と同程度かやや低下することがわかった。これについて詳しくは後述する。
凹凸層9の凹凸構造は、ピッチが発光波長450nmと同程度かそれ以下の周期を有する、グレーティング、あるいはドットパターンである。凹凸構造のピッチは、たとえば200〜500nmであることが好ましい。
図1に示した例では、凹凸層9の凸部は、平坦層8と連続した一体的なものとして表示されている。凹凸層9は凸部と空隙部とを含む。空隙部は凹部に相当するものであるが、凹凸層9としては、凹部には部材が何もないので空隙部として把握することができる。凸部は、平坦層8と同じ材料で形成されていることが好ましい。この構成を採用する場合は、十分厚い膜を先に形成し、これをエッチングすることによって平坦層8および凹凸層9を得ることができ、平坦層8および凹凸層9に関する膜形成工程は1回で済ませることができる。
あるいは、凹凸層9は、平坦層8とは異なる材料で形成されていてもよい。たとえば、平坦層8をTiO2で形成し、その上にSiO2の膜によって凹凸層9を形成してもよい。このように別材料で形成すれば、平坦層8の材料に対しては直接形成しにくいパターンも形成しやすくなる。凹凸層9を平坦層8とは異なる材料によって形成する場合は、凹凸層9としては、凸部と空隙部とが交互に繰返す構造の代わりに、厚い部分と薄い部分とが交互に繰返す構造であってもよい。
(動作原理)
図2(a),(b)を参照して、本発明に基づく発光素子501の動作原理について説明する。図2(a)は、縦軸を厚み方向の位置、横軸を屈折率とすることによって、厚み方向の各位置における屈折率の大小関係を表現したグラフである。図2(b)は、縦軸を厚み方向の位置、横軸を光の電界強度とすることによって、厚み方向の各位置における電界強度の大小関係を表現したグラフである。p型半導体層4の屈折率は2.5、透明電極層の屈折率は1.9、TiO2からなる平坦層8の屈折率は2.4としている。平坦層8の上側には凹凸層9が設けられている。凹凸層9の凸部においては、平坦層8と同じ材料が詰まっているので屈折率は2.4である。凹部は凹凸層9の空隙部であり、空隙部においては空気層に置換されているものとみなせるので屈折率は1.0である。凹部と凸部とを平均すると中間の図2(a)に示すように中間的な屈折率となる。
図2(a),(b)を参照して、本発明に基づく発光素子501の動作原理について説明する。図2(a)は、縦軸を厚み方向の位置、横軸を屈折率とすることによって、厚み方向の各位置における屈折率の大小関係を表現したグラフである。図2(b)は、縦軸を厚み方向の位置、横軸を光の電界強度とすることによって、厚み方向の各位置における電界強度の大小関係を表現したグラフである。p型半導体層4の屈折率は2.5、透明電極層の屈折率は1.9、TiO2からなる平坦層8の屈折率は2.4としている。平坦層8の上側には凹凸層9が設けられている。凹凸層9の凸部においては、平坦層8と同じ材料が詰まっているので屈折率は2.4である。凹部は凹凸層9の空隙部であり、空隙部においては空気層に置換されているものとみなせるので屈折率は1.0である。凹部と凸部とを平均すると中間の図2(a)に示すように中間的な屈折率となる。
一般的に、屈折率が異なる第1、第2の媒質の界面において、全反射の条件を満たす光線が第1の媒質の側から進行してきて反射する際には、厳密には、光線の中心軸が幾何学的に予想される位置から平行にずれる。これは、第1の媒質の側から進行してきた光が第2の媒質の内部に波長オーダーの微小な深さだけ進入した後に、反射して第1の媒質の側に進行していくからである。この現象は、グース−ヘンヒェン効果(Goos-Haenchen effect)として知られている。このとき生じる光軸のずれを「グース−ヘンヒェンシフト」という(「グースヘンシェンシフト」という表記も見られる。)。この反射の際に光が第2の媒質の内部へわずかに進入する深さのことを「染み出し深さ」ともいう。
発光素子501においてグース−ヘンヒェン効果を考慮した場合、発光層3で発生した光が、p型半導体層4を通り、臨界角を超える角度で透明電極層5に入射すると、光は透明電極層5の内部に波長オーダーの微小な深さで染み出した後、反射してp型半導体層4の内部に戻る。
この際の光の電界強度を示したものが図2(b)の電界強度分布Bである。p型半導体層4内では一定の電界強度があるが、透明電極層5内ではp型半導体層4上面から離れるにつれて指数関数的に強度が低下する。透明電極層5内に電界強度分布Bが進入している部分は、染み出し深さを意味する。この染み出し深さは約50nmである。
透明導電層の材料としては、通常、ITOが用いられる。一般的に、ITOを用いた導電層において、抵抗値を実用的な値まで下げるためには厚みを150nm以上とすることが必要とされている。その考えに従って、ITOからなる透明導電層の厚みを150nm以上とした場合、透明導電層の上面に凹凸構造を設けてもこの透明導電層の下面に対して下方から臨界角以上の角度で入射した光は、何ら干渉しないので、外部に取り出されることはない。
しかし、本発明に基づき高屈折率材料で平坦層8を形成すると、図2(b)の電界強度分布Aを有する導波モードが励起される。この導波モードの電界強度分布Aと前述の電界強度分布Bは、透明電極層5の内部で重なっている。この重なりを通じてエネルギーがやり取りされる。このやり取りの結果、p型半導体層4から臨界角よりも大きな角度で透明電極層5へ入射した光のエネルギーは透明電極層5を越えて平坦層8内に移動する。そして、平坦層8内に移動した光は、凹凸層9の凹凸構造と干渉し、外部に効率良く放射される。以上の動作原理により、本発明に基づく発光素子は高い取出し効率を実現できる。
(平坦層最小厚さ)
次に、平坦層8の内部で光が伝播するために必要な最小限の厚さ(以下「平坦層最小厚さ」という。)と平坦層の屈折率との関係を図3、図4に示す。平坦層8の下部には透明電極層5があるものとした。図3では、凹凸層9に関しては、凸部は平坦層8と同じ屈折率を有するものとし、凹部は空気で満たされているとして計算した。
次に、平坦層8の内部で光が伝播するために必要な最小限の厚さ(以下「平坦層最小厚さ」という。)と平坦層の屈折率との関係を図3、図4に示す。平坦層8の下部には透明電極層5があるものとした。図3では、凹凸層9に関しては、凸部は平坦層8と同じ屈折率を有するものとし、凹部は空気で満たされているとして計算した。
凹凸層9は、平坦層8と同じ屈折率を有する円柱状の凸部がいわゆる三角配置をされているものと仮定し、円柱の直径はピッチの半分とした。ここでいう「三角配置」とは、円柱状の凸部が多数存在し、近接する3点ずつが全て正三角形をなすように平坦層8の上面の全域にわたって配列されていることを意味する。
実際の計算では、計算の簡略化のために、凹凸層9を、凸部の高さと同じ厚さで、後述する中間屈折率を有する均一な層があるものと仮定して、計算した。ここでいう「中間屈折率」とは、凸部が占める体積と凹部を満たす空気の体積との比を考慮して、凸部を満たす材料の屈折率および凹部を満たす空気の屈折率から計算した屈折率である。
また、図4では、平坦層8の上部には空気層(屈折率=1.0)があると仮定して計算した結果が示されている。計算方法としては、「光波電子工学」(小山次郎、西原浩著、コロナ社、1978年、第236〜239頁)に記載されている方法を用いた。
図3、図4に示した計算の前提となる構成においては、平坦層8は光が通る部分とみなすことができる。一般的に、光導波路において光が通る部分の屈折率が高ければ、光が通る部分が薄くても光が伝播することができるようになる。光が通る部分の屈折率が高くなればなるほど、光が通る部分の厚みはより薄くすることが可能となる。すなわち、平坦層最小厚さを小さくすることができる。しかし、屈折率が高い材料は多くの場合吸収も多くなるので、ただ単純に屈折率を上げればよいというものではなく、必要な範囲で屈折率の高い材料を選択することが実用上重要となる。
平坦層8の屈折率は、p型半導体層4またはn型半導体層2の屈折率と近いことが好ましいが、上述のような実用上の制限があるので、工業的に利用可能な平坦層の屈折率としては2.5が最高値と考えられる。図3で平坦層8の屈折率を2.5とした場合、平坦層最小厚さは、図3から30nmと読み取ることができる。同じく図4からは平坦層最小厚さは35nmと読み取ることができる。したがって、現実問題としては、実用的な平坦層8の厚さは30nm以上とすることが好ましい。
なお、表面に凹凸がある場合の導波路の振る舞いを計算する際には、どのような計算モデルを仮定するかという点でいくつかの手法が考えられる。計算モデルが不適切な場合は結果に大きな差が出るので、複数の手法で計算し、計算モデルが適切であることを確認すべきである。上述の図3、図4では、互いに異なる計算モデルを前提に計算したものとなっているのは、このためである。図3では、凸部はその体積割合で影響を与えるので平坦層の上には空気と凸部の屈折率を体積比(凸部を円柱とした場合は底面積の比)で加重平均した値の屈折率を有する層があるという仮定に基づく計算モデルを前提としている。図4では、凸部の体積が小さいために、凹凸構造の屈折率はほとんど影響しない、すなわち平坦層の上には空気層があるのと同じであるという仮定に基づく計算モデルを前提としている。発明者らは、図3、図4の2通りについて計算し、両者で互いに近い結果を得たので、この結果は妥当なものと考えている。
(取出し効率の計算結果)
図1に示した発光素子501において、取出し効率を計算した結果について、図5〜図8を参照して説明する。
図1に示した発光素子501において、取出し効率を計算した結果について、図5〜図8を参照して説明する。
表1に示すパラメータを用いて計算した結果を図5に示す。図5では、縦軸を取出し効率、横軸をグレーティング深さとして表示している。横軸に表示した「グレーティング深さ」とは、凹凸構造の凹部の深さのことである。
なお、サファイア基板1とn型半導体層2との界面にはピッチ2μm、高さ1μmのドットパターンの凹凸が設けられているものとしている。
図5から明らかなように、平坦層8の厚みが0の場合すなわち平坦層8がない場合に比べて、平坦層8の厚みを50〜150nmとした方が取出し効率が高くなる。この値は、30nm以上であるので、上述の図3、図4に関する議論と整合している。特に平坦層8の厚みを100〜150nmとした場合、平坦層がない場合に比べて取出し効率は2%程度高くなっている。
表2に示すパラメータを用いて計算した結果を図6に示す。表2では、表1と比較すると、透明電極層7の厚みが70nmから140nmへと増やされている。
図6から明らかなように、平坦層8の厚みが0の場合に比べて平坦層8の厚みを50〜150nmとした方が取出し効率が高く、特に平坦層8の厚みを100nmとした場合、平坦層8がない場合に比べて取出し効率は約3%高くなっている。また、表2および図6からは、たとえ透明電極層7が厚くても、平坦層8内を伝播する導波モードを利用することにより光を外部に取り出すことができていると読み取れる。
表3に示すパラメータを用いて計算した結果を図7に示す。表3では、表2と比較すると、平坦層8および凹凸層9の屈折率が2.2から2.4へと増やされている。
図7から明らかなように、平坦層8の厚みが0の場合すなわち平坦層8がない場合に比べて平坦層8の厚みを50〜150nmとした方が取出し効率が高くなる。特に平坦層8の厚みを100nmとした場合、平坦層8がない場合に比べて取出し効率は約4%高くなっている。
表4に示すパラメータを用いて計算した結果を図8に示す。表4では、表3と比較すると、平坦層8および凹凸層9の屈折率が2.4から2.5に増やされ、凹凸層9の周期が300nmから250nmに短縮されている。
図8から明らかなように、平坦層8の厚みが0の場合すなわち平坦層8がない場合に比べて平坦層8の厚みを50〜150nmとした方が取出し効率が高くなる。特に平坦層8の厚みを150nmとした場合、平坦層8がない場合に比べて取出し効率は約6%高くなっている。
図5〜図8に示した計算結果では、平坦層8の厚みを0nm、50nm、100nm、150nmの4通りで試しているが、いずれの場合も0nm、50nm、100nmと膜厚が増加すると取出し効率が改善している。しかし、150nmでは100nmと同程度かむしろやや低下する傾向が示されている。したがって、150nmを超える膜厚を採用しても効果はより低下すると思われる。したがって、平坦層8の厚みは150nm以下とすることが好ましいといえる。
透明電極層5の厚みは、発光層3から供給される光の波長の1/4以上であることが好ましい。透明電極層が厚ければその分抵抗値が下がり電力損失が低減されるので、通常は150nm以上に設定することが考えられるところであるが、従来技術では、透明電極層5による全反射を抑制するため、透明電極層5の厚みを光の波長の1/4以下、すなわち約50nm以下とする必要があった。したがって、従来技術で電力損失低減には逆行しており不利であった。透明電極層5の厚みを、発光層3から供給される光の波長の1/4以上とすることは、従来技術では対応できないとされた範囲であるが、本発明では、透明電極層5の厚みを光の波長の1/4以上としても有効であるので、透明電極層5の厚みをこの範囲に設定することによって、従来は得られなかった優れた特性を奏することができる。
特に、透明電極層5の厚みは、70nm以上であることが好ましい。透明電極層がこの程度に厚ければ抵抗値を低くすることができ、電力損失が低減されるからである。
なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
1,101 サファイア基板、2 n型半導体層、3 発光層、4 p型半導体層、5 透明電極層、6 p側電極、7 n側電極、8 平坦層、9 凹凸層、102 n型GaN層、103 p型GaN層、104 n型側電極形成領域、105 p型電極形成領域、106 光取出し面、107 n型電極、108 p型電極、109 光散乱層、110 サファイア基板、111 nコンタクト層、112 nクラッド層、113 発光層、114 pクラッド層、115 pコンタクト層、120 透光性電極、120s 凹凸、121 透光性導電層、125 電極パッド、130 電極、501 発光素子。
Claims (8)
- 基板と、
前記基板の表面において、互いに異なる導電型を有する2つの半導体層によって厚み方向に挟まれる状態で配置された発光層と、
前記2つの半導体層のうちの前記基板から遠い側の一方の半導体層に重なるように配置された透明電極層と、
前記透明電極層の上面の少なくとも一部を覆うように、前記透明電極層よりも高い屈折率を有する透明材料で設けられた平坦層と、
前記平坦層の上側に配置された凹凸層とを備える、発光素子。 - 前記凹凸層は凸部と空隙部とを含み、前記凸部は、前記平坦層と同じ材料で形成されている、請求項1に記載の発光素子。
- 前記平坦層の材料は屈折率が2.2以上である、請求項1または2に記載の発光素子。
- 前記平坦層はTiO2を主材料として形成されている、請求項1から3のいずれかに記載の発光素子。
- 前記平坦層の厚みは、30nm以上150nm以下である、請求項1から4のいずれかに記載の発光素子。
- 前記透明電極層の厚みは、70nm以上である、請求項1から5のいずれかに記載の発光素子。
- 前記平坦層の厚みは、光が前記平坦層の内部を伝播しうる厚みである、請求項1に記載の発光素子。
- 前記透明電極層の厚みは、前記発光層から供給される光の波長の1/4以上である、請求項1に記載の発光素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011220137A JP2013080827A (ja) | 2011-10-04 | 2011-10-04 | 発光素子 |
US13/618,795 US20130082295A1 (en) | 2011-10-04 | 2012-09-14 | Light-emitting element including light-emitting layer sandwiched between two semiconductor layers |
EP12006466.2A EP2579343A3 (en) | 2011-10-04 | 2012-09-14 | Light-emitting element including light-emitting layer sandwiched between two semiconductor layers |
CN2012105206660A CN103050589A (zh) | 2011-10-04 | 2012-10-08 | 包含夹在两个半导体层之间的发光层的发光元件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011220137A JP2013080827A (ja) | 2011-10-04 | 2011-10-04 | 発光素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013080827A true JP2013080827A (ja) | 2013-05-02 |
Family
ID=46980684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011220137A Pending JP2013080827A (ja) | 2011-10-04 | 2011-10-04 | 発光素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130082295A1 (ja) |
EP (1) | EP2579343A3 (ja) |
JP (1) | JP2013080827A (ja) |
CN (1) | CN103050589A (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5994420B2 (ja) * | 2012-06-21 | 2016-09-21 | 豊田合成株式会社 | Iii族窒化物半導体発光素子およびその製造方法 |
JP6328497B2 (ja) * | 2014-06-17 | 2018-05-23 | ソニーセミコンダクタソリューションズ株式会社 | 半導体発光素子、パッケージ素子、および発光パネル装置 |
CN104701442B (zh) * | 2015-03-13 | 2018-01-26 | 弗洛里光电材料(苏州)有限公司 | 一种半导体发光器件 |
TWI708350B (zh) | 2019-10-24 | 2020-10-21 | 錼創顯示科技股份有限公司 | 微型發光元件模組 |
CN111710766A (zh) * | 2020-06-19 | 2020-09-25 | 中国工程物理研究院电子工程研究所 | 一种具有折射率可调的复合增透膜的可见光led芯片 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000196152A (ja) * | 1998-12-24 | 2000-07-14 | Toshiba Corp | 半導体発光素子およびその製造方法 |
JP2008294306A (ja) * | 2007-05-25 | 2008-12-04 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体発光素子 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3448441B2 (ja) | 1996-11-29 | 2003-09-22 | 三洋電機株式会社 | 発光装置 |
TWI271883B (en) * | 2005-08-04 | 2007-01-21 | Jung-Chieh Su | Light-emitting devices with high extraction efficiency |
JP4310708B2 (ja) * | 2005-09-30 | 2009-08-12 | 日立電線株式会社 | 半導体発光素子 |
US20100006873A1 (en) * | 2008-06-25 | 2010-01-14 | Soraa, Inc. | HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN |
JP5187854B2 (ja) * | 2009-08-28 | 2013-04-24 | シャープ株式会社 | 窒化物半導体発光素子 |
US20110089446A1 (en) * | 2009-10-18 | 2011-04-21 | Shih-Liang Ku | Light-emitting diode having optical film structure thereon |
KR101091504B1 (ko) * | 2010-02-12 | 2011-12-08 | 엘지이노텍 주식회사 | 발광소자, 발광소자 패키지 및 발광소자 제조방법 |
JP5276040B2 (ja) | 2010-04-06 | 2013-08-28 | 日立オートモティブシステムズ株式会社 | 内燃機関のバルブタイミング制御装置 |
-
2011
- 2011-10-04 JP JP2011220137A patent/JP2013080827A/ja active Pending
-
2012
- 2012-09-14 US US13/618,795 patent/US20130082295A1/en not_active Abandoned
- 2012-09-14 EP EP12006466.2A patent/EP2579343A3/en not_active Withdrawn
- 2012-10-08 CN CN2012105206660A patent/CN103050589A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000196152A (ja) * | 1998-12-24 | 2000-07-14 | Toshiba Corp | 半導体発光素子およびその製造方法 |
JP2008294306A (ja) * | 2007-05-25 | 2008-12-04 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体発光素子 |
Also Published As
Publication number | Publication date |
---|---|
EP2579343A3 (en) | 2013-09-04 |
CN103050589A (zh) | 2013-04-17 |
US20130082295A1 (en) | 2013-04-04 |
EP2579343A2 (en) | 2013-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5388666B2 (ja) | 面発光レーザ | |
JP5553292B1 (ja) | Led素子 | |
JP4808599B2 (ja) | 垂直構造窒化ガリウム系発光ダイオード素子 | |
JP5082504B2 (ja) | 発光素子及び発光素子の製造方法 | |
US8174040B2 (en) | Light emitting device | |
KR20080087175A (ko) | 반도체 발광 소자 | |
JP6694650B2 (ja) | 半導体発光素子 | |
JP5606465B2 (ja) | 半導体発光素子及びその製造方法 | |
JP2006339656A (ja) | 発光ダイオード | |
JP2013080827A (ja) | 発光素子 | |
KR20150138977A (ko) | 발광 소자 및 그의 제조방법 | |
JP2012129234A (ja) | 半導体発光素子 | |
JP2011187658A (ja) | 半導体発光素子 | |
KR20090001903A (ko) | 전기적 특성을 향상한 광자결정 발광 소자 및 제조방법 | |
JP5227334B2 (ja) | 発光素子及び照明装置 | |
WO2017195507A1 (ja) | 深紫外発光素子 | |
JP5116291B2 (ja) | 発光素子及び照明装置 | |
JP2011192913A (ja) | 半導体レーザ構造 | |
JP5378131B2 (ja) | 窒化物半導体発光ダイオード素子 | |
JP4873930B2 (ja) | 反射電極及びそれを備える化合物半導体の発光素子 | |
JP2007250714A (ja) | 発光素子 | |
JP2008091664A (ja) | 発光素子及び照明装置並びに光ピックアップ | |
JP6197614B2 (ja) | 半導体レーザ素子 | |
KR101063597B1 (ko) | Led 소자의 구조 및 제조방법 | |
JP5556922B2 (ja) | 半導体レーザの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150929 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160329 |