JP2013079763A - Supercooler heat-transfer tube and super cooler using the same - Google Patents
Supercooler heat-transfer tube and super cooler using the same Download PDFInfo
- Publication number
- JP2013079763A JP2013079763A JP2011220094A JP2011220094A JP2013079763A JP 2013079763 A JP2013079763 A JP 2013079763A JP 2011220094 A JP2011220094 A JP 2011220094A JP 2011220094 A JP2011220094 A JP 2011220094A JP 2013079763 A JP2013079763 A JP 2013079763A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- supercooler
- refrigerant
- pipe
- double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 70
- 230000000052 comparative effect Effects 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、空気調和機の冷凍サイクルに組み込まれる二重管式過冷却器に係り、特にその二重管式過冷却器の内管に用いられる過冷却器用伝熱管およびこれを用いた過冷却器に関するものである。 The present invention relates to a double-tube supercooler incorporated in a refrigeration cycle of an air conditioner, and more particularly to a supercooler heat transfer tube used for an inner tube of the double-tube supercooler and a supercooling using the same. It is about a vessel.
空気調和機、特にビル用マルチエアコンは、建物全体の空調を1台の室外ユニットで賄うため、各室内ユニットにつなぐ冷媒配管が100m以上と長くなる場合がある。冷媒配管が長いほど、その中を流れる冷媒液の圧力も下がる。その圧力での冷媒の飽和温度が冷媒液の温度以下になる圧力まで下がると、冷媒液は冷媒配管の途中にもかかわらず、自身の熱で気化してしまう。このような状態になってしまうと、エアコンが正常に運転できなくなってしまう。これを防ぐには、室外ユニットから出る冷媒液の温度を低くするのが有効である。このために、室外ユニットには、冷媒液を冷却するための二重管式過冷却器を設置するようにしている(特許文献1)。 In an air conditioner, particularly a building multi-air conditioner, air conditioning of the entire building is covered by a single outdoor unit, and therefore, the refrigerant pipe connected to each indoor unit may be as long as 100 m or longer. The longer the refrigerant pipe, the lower the pressure of the refrigerant liquid flowing through it. When the saturation temperature of the refrigerant at that pressure falls to a pressure at which the refrigerant liquid temperature is equal to or lower than the temperature of the refrigerant liquid, the refrigerant liquid is vaporized by its own heat in the middle of the refrigerant pipe. In such a state, the air conditioner cannot be operated normally. In order to prevent this, it is effective to lower the temperature of the refrigerant liquid coming out of the outdoor unit. For this reason, a double-tube supercooler for cooling the refrigerant liquid is installed in the outdoor unit (Patent Document 1).
図7は、特許文献1に示された室外ユニットに二重管式過冷却器を設置した空気調和機を示したものである。 FIG. 7 shows an air conditioner in which a double-pipe supercooler is installed in the outdoor unit shown in Patent Document 1.
この空気調和機の冷媒回路30は、圧縮機31の吐出側から圧縮機31の吸込側のアキュムレータ32にかけて、冷暖房を切り換える四方弁33を介して、凝縮器34、二重管式過冷却器35、主膨張機構36、蒸発器37が順に接続された主回路38と、凝縮器34と二重管式過冷却器35の間の分岐点39とアキュムレータ32の合流点40を結んで、凝縮器34の冷媒の一部をバイパス膨張機構41にて減圧して二重管式過冷却器35に流すバイパス回路42が接続されて構成される。 The refrigerant circuit 30 of this air conditioner is connected to an accumulator 32 on the suction side of the compressor 31 from the discharge side of the compressor 31 through a four-way valve 33 that switches between cooling and heating, and a condenser 34 and a double-pipe subcooler 35. A main circuit 38 in which a main expansion mechanism 36 and an evaporator 37 are connected in order, a branch point 39 between the condenser 34 and the double-tube supercooler 35 and a junction 40 of the accumulator 32 are connected to each other. A bypass circuit 42 is connected and configured to depressurize a part of the refrigerant 34 by the bypass expansion mechanism 41 and flow to the double-tube supercooler 35.
圧縮機31、アキュムレータ32、四方弁33、凝縮器34、二重管式過冷却器35、主膨張機構36、バイパス膨張機構41は、室外ユニット43に収容され、蒸発器37が室内ユニット44に収容され、室外ユニット43と室内ユニット44が冷媒配管45、46で接続される。 The compressor 31, the accumulator 32, the four-way valve 33, the condenser 34, the double pipe supercooler 35, the main expansion mechanism 36, and the bypass expansion mechanism 41 are accommodated in the outdoor unit 43, and the evaporator 37 is connected to the indoor unit 44. The outdoor unit 43 and the indoor unit 44 are connected by refrigerant pipes 45 and 46.
冷房時には、圧縮機31からの圧縮冷媒ガスが四方弁33から凝縮器34に流れて凝縮され、二重管式過冷却器35の外管35o内を通り、主膨張機構36で減圧され、蒸発器37で蒸発し、四方弁33からアキュムレータ32を介して圧縮機31に戻されて循環する。 During cooling, the compressed refrigerant gas from the compressor 31 flows from the four-way valve 33 to the condenser 34 to be condensed, passes through the outer pipe 35o of the double pipe type supercooler 35, is decompressed by the main expansion mechanism 36, and is evaporated. Vaporizer 37 evaporates and returns to compressor 31 from four-way valve 33 via accumulator 32 and circulates.
この際、凝縮器34で凝縮した冷媒の一部は、分岐点39からバイパス回路42に流れ、バイパス膨張機構41で減圧されて、二重管式過冷却器35の内管35iに流して圧縮機31の吸込側に戻す。これにより二重管式過冷却器35の内管35iを通る冷媒で、外側の外管35o内を通る凝縮冷媒が冷却されて過冷却状態となり、冷媒配管45を通る間の冷媒液の圧力低下を防止し、蒸発器37での冷凍能力の向上を図っている。 At this time, a part of the refrigerant condensed by the condenser 34 flows from the branch point 39 to the bypass circuit 42, is decompressed by the bypass expansion mechanism 41, flows to the inner pipe 35 i of the double-tube supercooler 35, and is compressed. Return to the suction side of the machine 31. As a result, the refrigerant passing through the inner pipe 35i of the double-pipe supercooler 35 cools the condensed refrigerant passing through the outer outer pipe 35o and enters a supercooled state, and the refrigerant liquid pressure drops while passing through the refrigerant pipe 45. The refrigeration capacity of the evaporator 37 is improved.
なお、暖房時は、四方弁33の切換にて、圧縮機31からの冷媒が、室内熱交換器(蒸発器37)から主膨張機構36、二重管式過冷却器35、室外熱交換器(凝縮器34)、四方弁33からアキュムレータ32を介して圧縮機31に戻るように循環される。 During heating, the four-way valve 33 is switched so that the refrigerant from the compressor 31 is changed from the indoor heat exchanger (evaporator 37) to the main expansion mechanism 36, the double-pipe subcooler 35, and the outdoor heat exchanger. (Condenser 34) is circulated from the four-way valve 33 to the compressor 31 via the accumulator 32.
二重管式過冷却器35は、図6に示したように、内管35iと、この内管35iを覆うように同心状に設けられた外管35oとから構成されており、冷房時は、内管35iを流れるバイパス流冷媒と、外管35oを流れる主流冷媒とが、伝熱性を持つ内管35iの管壁を挟んで反対向きに流れる対向流型熱交換器として構成されている。 As shown in FIG. 6, the double-tube supercooler 35 includes an inner tube 35i and an outer tube 35o provided concentrically so as to cover the inner tube 35i. The bypass-flow refrigerant flowing through the inner pipe 35i and the main-flow refrigerant flowing through the outer pipe 35o are configured as a counter-flow heat exchanger that flows in opposite directions across the pipe wall of the inner pipe 35i having heat conductivity.
ところで、この二重管式過冷却器における内管には、伝熱管として平滑管が使われている。内管の外面が平滑なので伝熱面積が小さく、また内管の外側を流れる主流冷媒の攪拌もしない。そのため、主流冷媒と内管の管壁外面との間の伝熱性能が低い問題がある。 By the way, a smooth tube is used as a heat transfer tube for the inner tube in the double tube type supercooler. Since the outer surface of the inner tube is smooth, the heat transfer area is small, and the mainstream refrigerant flowing outside the inner tube is not stirred. Therefore, there is a problem that the heat transfer performance between the mainstream refrigerant and the outer wall surface of the inner pipe is low.
よって、所定の熱交換を得るためには、二重管式過冷却器を大きくしなければならないという問題があった。 Therefore, in order to obtain a predetermined heat exchange, there is a problem that the double-tube supercooler must be enlarged.
そこで、本発明の目的は、上記課題を解決し、所定の熱交換が可能で、しかも小型化できる過冷却器用伝熱管およびこれを用いた過冷却器を提供することにある。 Accordingly, an object of the present invention is to solve the above-described problems, and to provide a heat exchanger tube for a subcooler that can perform predetermined heat exchange and can be downsized, and a supercooler using the same.
上記目的を達成するために請求項1の発明は、圧縮機、凝縮器、主膨張機構、蒸発器を順次接続した主回路を構成し、その凝縮器と主膨張機構間に二重管式過冷却器を接続し、凝縮器と二重管式過冷却器との間と、圧縮機の吸込側とを結んでバイパス膨張機構が接続されたバイパス回路を接続して冷媒回路を構成し、前記二重管式過冷却器が内管と外管で構成され、内管と外管間の環状の隙間に凝縮器から主膨張機構に至る主流冷媒を流し、内管の内側に、前記凝縮器からバイパス回路のバイパス膨張機構で減圧されたバイパス流冷媒を前記主流冷媒と対向流で流すようにした二重管式過冷却器において、前記内管の外面にらせん状のフィンを設け、前記内管の内面にらせん状の溝を設けたことを特徴とする過冷却器用伝熱管である。 In order to achieve the above object, the invention of claim 1 comprises a main circuit in which a compressor, a condenser, a main expansion mechanism, and an evaporator are sequentially connected, and a double-pipe type filter is connected between the condenser and the main expansion mechanism. Connecting a cooler, connecting a bypass circuit to which a bypass expansion mechanism is connected between the condenser and the double-tube supercooler, and connecting the suction side of the compressor to form a refrigerant circuit, The double pipe type supercooler is composed of an inner pipe and an outer pipe, and a main flow refrigerant from the condenser to the main expansion mechanism flows through an annular gap between the inner pipe and the outer pipe, and the condenser is placed inside the inner pipe. A double-tube supercooler in which a bypass-flow refrigerant decompressed by a bypass expansion mechanism of a bypass circuit is caused to flow in a counter-flow with the main-stream refrigerant, and a helical fin is provided on the outer surface of the inner pipe, A heat transfer tube for a supercooler, wherein a spiral groove is provided on the inner surface of the tube.
請求項2の発明は、前記二重管式過冷却器が縦型に配置され、バイパス流冷媒が内管の下から上に流れ、主流冷媒が内管と外管間の環状の隙間の上から下に流れるようにした請求項1記載の過冷却器用伝熱管である。 In the invention of claim 2, the double pipe type supercooler is arranged vertically, the bypass flow refrigerant flows from below the inner pipe, and the main flow refrigerant is above the annular gap between the inner pipe and the outer pipe. The heat transfer tube for a subcooler according to claim 1, wherein the heat transfer tube flows downward from the bottom.
請求項3の発明は、内管の外径が8〜12mm、内管の外面のらせん状のフィンの高さが0.5〜0.9mm、らせんピッチが0.4〜0.8mm、内面のらせん状の溝の深さが0.1〜0.2mm、ねじれ角が12〜20°に形成され、外管の外径が14〜18mmに形成される請求項1又は2記載の過冷却器用伝熱管である。 In the invention of claim 3, the outer diameter of the inner tube is 8 to 12 mm, the height of the helical fin on the outer surface of the inner tube is 0.5 to 0.9 mm, the helical pitch is 0.4 to 0.8 mm, the inner surface The supercooling according to claim 1 or 2, wherein the helical groove has a depth of 0.1 to 0.2 mm, a twist angle of 12 to 20 °, and an outer diameter of the outer tube of 14 to 18 mm. It is a heat transfer tube.
請求項4の発明は、請求項1〜3のいずれかに記載の過冷却器用伝熱管を用いたことを特徴とする過冷却器である。 A fourth aspect of the present invention is a supercooler using the subcooler heat transfer tube according to any one of the first to third aspects.
本発明は、内管の外面にらせん状のフィンを設け、内管の内面にらせん状の溝を設けることで、二重管式過冷却器の熱交換性能を向上できるという優れた効果を発揮する。 The present invention exhibits an excellent effect that the heat exchange performance of the double-tube supercooler can be improved by providing a spiral fin on the outer surface of the inner tube and providing a spiral groove on the inner surface of the inner tube. To do.
以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。 A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.
図1は、本発明の過冷却器用伝熱管の断面図を示したもので、図1(a)は拡大正断面図、図1(b)は要部の拡大横断面図を示し、図2は過冷却器用伝熱管を用いた二重管式過冷却器の断面図である。 FIG. 1 shows a cross-sectional view of a heat transfer tube for a supercooler according to the present invention, FIG. 1 (a) is an enlarged front cross-sectional view, FIG. 1 (b) is an enlarged cross-sectional view of the main part, and FIG. These are sectional drawings of the double pipe type supercooler using the heat exchanger tube for supercoolers.
図1、図2において、内管12の外周を覆うように、内管12とは同心円状に外管13が設けられて二重管式過冷却器10が構成される。 In FIG. 1 and FIG. 2, an outer tube 13 is provided concentrically with the inner tube 12 so as to cover the outer periphery of the inner tube 12, thereby forming a double-tube supercooler 10.
この内管12と外管13との間には環状の隙間14が形成されている。内管12の外面にはらせん状のフィン15が設けられている。内管12の内面にはらせん状の溝16が設けられている。 An annular gap 14 is formed between the inner tube 12 and the outer tube 13. Helical fins 15 are provided on the outer surface of the inner tube 12. A spiral groove 16 is provided on the inner surface of the inner tube 12.
内管12の外径は8〜12mm、内管12の外面のらせん状のフィンの高さは0.5〜0.9mm、らせんピッチは0.4〜0.8mm、内面のらせん状の溝16の深さは0.1〜0.2mm、ねじれ角は12〜20°に形成され、外管13の外径は14〜18mmに形成される。 The outer diameter of the inner tube 12 is 8 to 12 mm, the height of the helical fin on the outer surface of the inner tube 12 is 0.5 to 0.9 mm, the helical pitch is 0.4 to 0.8 mm, and the helical groove on the inner surface The depth of 16 is 0.1 to 0.2 mm, the twist angle is 12 to 20 °, and the outer diameter of the outer tube 13 is 14 to 18 mm.
この二重管式過冷却器10は、図7で説明した冷媒回路30の二重管式過冷却器35と同様の位置に接続されると共に室外ユニット43内に縦型に配置される。 The double-tube supercooler 10 is connected to the same position as the double-tube supercooler 35 of the refrigerant circuit 30 described with reference to FIG. 7 and is disposed vertically in the outdoor unit 43.
この二重管式過冷却器10において、バイパス流冷媒26は、凝縮器で凝縮され、主膨張機構に至る主流冷媒25から分岐してバイパス回路に流れ、バイパス膨張機構で減圧された後、内管12の内側を図示の矢印のように下から上に流れて蒸発し、その蒸発したバイパス流冷媒26が、蒸発器で蒸発された主流冷媒25と共にアキュムレータを介して圧縮機の吸込側に流れる。 In this double-tube supercooler 10, the bypass flow refrigerant 26 is condensed in the condenser, branches from the main flow refrigerant 25 reaching the main expansion mechanism, flows into the bypass circuit, and is depressurized by the bypass expansion mechanism. The inside of the pipe 12 flows from the bottom to the top as indicated by the arrow in the figure and evaporates, and the evaporated bypass flow refrigerant 26 flows to the suction side of the compressor via the accumulator together with the main flow refrigerant 25 evaporated by the evaporator. .
主流冷媒25は、凝縮器で凝縮され、上部の入口17から環状の隙間14に流入し、環状の隙間14の上から下に流れて、内管12の管壁を介してバイパス流冷媒26との熱交換によって過冷却冷媒とされ、出口18から主膨張機構に流れる。また上述のようにバイパス流冷媒26は、内管12の管壁を介して、主流冷媒25との熱交換によって蒸発される。 The main flow refrigerant 25 is condensed by the condenser, flows into the annular gap 14 from the upper inlet 17, flows from the upper part to the lower part of the annular gap 14, and bypasses the bypass flow refrigerant 26 via the tube wall of the inner pipe 12. The refrigerant is converted into a supercooled refrigerant by heat exchange, and flows from the outlet 18 to the main expansion mechanism. Further, as described above, the bypass flow refrigerant 26 is evaporated by heat exchange with the main flow refrigerant 25 through the tube wall of the inner tube 12.
この主流冷媒25とバイパス流冷媒26との熱交換は、内管12の外面のらせん状のフィン15により伝熱面積が大きくなり、主流冷媒25がフィン15を乗り越えて流れると攪拌され、主流冷媒25と内管12の管壁外面との間の伝熱性能を高くできる。また内管12内には溝16が形成されているため、バイパス流冷媒26と内管12の管壁内面との間の伝熱性能を高くできる。 The heat exchange between the main flow refrigerant 25 and the bypass flow refrigerant 26 increases the heat transfer area by the spiral fins 15 on the outer surface of the inner pipe 12, and is stirred when the main flow refrigerant 25 flows over the fins 15. The heat transfer performance between 25 and the outer wall surface of the inner tube 12 can be increased. Further, since the groove 16 is formed in the inner pipe 12, the heat transfer performance between the bypass refrigerant 26 and the inner wall surface of the inner pipe 12 can be improved.
従って、所定の熱交換をする二重管式過冷却器10を小型化できる。 Therefore, the double-tube supercooler 10 that performs predetermined heat exchange can be reduced in size.
次に、本発明の実施例と従来例と比較例の二重管式過冷却器の冷却性能を試験したときの、内管と外管の供試管の仕様を表1に示す。 Next, Table 1 shows the specifications of the test tubes of the inner tube and the outer tube when the cooling performance of the double tube supercoolers of the examples of the present invention, the conventional example, and the comparative example is tested.
なお、表1において、伝熱部の長さは、図3に示す主流冷媒の入口17と出口18の中心間の距離とした。 In Table 1, the length of the heat transfer section is the distance between the centers of the mainstream refrigerant inlet 17 and outlet 18 shown in FIG.
表1における従来例の伝熱管としての内管は平滑管とし、比較例の伝熱管としての内管は、図8に示したものを使用した。この伝熱管は、管の外周面にはらせん状の凹部を、対応する内周面には螺旋状の凸部が形成されている形状(すなわち、コルゲート形状)に加え、さらに、外周面に、本発明と同様のフィン形状が形成されている形状となっている。 The inner tube as the heat transfer tube of the conventional example in Table 1 was a smooth tube, and the inner tube as the heat transfer tube of the comparative example was the one shown in FIG. In addition to a shape in which a spiral concave portion is formed on the outer peripheral surface of the tube and a spiral convex portion is formed on the corresponding inner peripheral surface (that is, a corrugated shape), The fin shape similar to that of the present invention is formed.
このコルゲート形状にフィンを設けた比較例について、その断面構成を図9に示すと共に、図9で、表1に示した各種寸法を示した。この比較例の内管は外径が14mmであるため、本発明と従来例の内管より寸法が大のため、実施例と従来例の外管の外径15.88mmに対して、外管は19.05mmのものを用いた。 FIG. 9 shows a cross-sectional configuration of the comparative example in which fins are provided in the corrugated shape, and various dimensions shown in Table 1 are shown in FIG. Since the inner tube of this comparative example has an outer diameter of 14 mm, the outer tube is larger than the inner tube of the present invention and the conventional example. Used was 19.05 mm.
表1に示した供試管を用い、図3に示すように、内管12と外管13とを縦型に配置し、内管12の下部からバイパス流冷媒としてR410A冷媒の湿り蒸気を、内管12と外管13の環状の隙間14の上から下に主流冷媒としてR410A冷媒の冷媒液を流した。また従来例も同様の状態で流した。またそのときの各冷媒の温度、圧力、流量は、図4に示すように各配管に接続した温度計T、圧力計P、流量計Fで測定した。 Using the test tubes shown in Table 1, as shown in FIG. 3, the inner tube 12 and the outer tube 13 are arranged vertically, and the wet steam of the R410A refrigerant is used as a bypass flow refrigerant from the lower portion of the inner tube 12. The refrigerant liquid of R410A refrigerant was flowed as the main refrigerant from above to below the annular gap 14 between the pipe 12 and the outer pipe 13. The conventional example was also flowed in the same state. Further, the temperature, pressure, and flow rate of each refrigerant at that time were measured with a thermometer T, a pressure gauge P, and a flow meter F connected to each pipe as shown in FIG.
内管の内側には、所定の温度、圧力、およびクオリティに調節された低温低圧の冷媒湿り蒸気を流した。所定の出口過熱度(5K)になるように膨張弁27で流量を調節した。環状の隙間には、所定の温度(44.9℃)に調節された高温高圧の冷媒液を流した。 Inside the inner pipe, a low-temperature and low-pressure refrigerant wet steam adjusted to a predetermined temperature, pressure and quality was flowed. The flow rate was adjusted by the expansion valve 27 so as to achieve a predetermined outlet superheat degree (5K). A high-temperature and high-pressure refrigerant liquid adjusted to a predetermined temperature (44.9 ° C.) was passed through the annular gap.
表2に実験条件を示す。 Table 2 shows the experimental conditions.
ビル用マルチエアコンの過冷却器の試験条件に規格等は無いが、エアコンのサイクルから考えると一般的と考えられる。環状の隙間の流量363kg/hの条件は過冷却器の定格運転状態を想定している。 Although there are no standards for the test conditions of the subcooler for multi air conditioners for buildings, it is generally considered from the air conditioner cycle. The condition of the annular gap flow rate of 363 kg / h assumes the rated operation state of the subcooler.
図5は、冷媒の流量を変えて冷媒流量と熱交換量を測定したときの冷媒流量と熱交換量の関係を示したもので、図5において黒丸が実施例、黒四角が従来例、白四角が比較例である。 FIG. 5 shows the relationship between the refrigerant flow rate and the heat exchange amount when the refrigerant flow rate is changed and the refrigerant flow rate and the heat exchange amount are measured. In FIG. A square is a comparative example.
ただし、実施例の場合は、能力が実験装置の測定可能範囲を超えてしまうので、環状の隙間の流量を288kg/h以下とした。 However, in the case of the example, since the capability exceeds the measurable range of the experimental apparatus, the flow rate of the annular gap is set to 288 kg / h or less.
図5に示すように、従来例では、冷媒流量を変化させても熱交換量は0.5kW以下であるが、実施例においては冷媒流量が増加すると熱交換量も増大することが確かめられた。また、比較例は、コルゲート形状にフィンを設けたものであるが、実施例の方が熱交換量が高い結果が得られた。これは内管の内面にらせん状の溝を形成することで、コルゲート形状よりも熱交換性能が向上できたものと考えられる。 As shown in FIG. 5, in the conventional example, the heat exchange amount is 0.5 kW or less even if the refrigerant flow rate is changed, but in the example, it was confirmed that the heat exchange amount increases as the refrigerant flow rate increases. . Moreover, although the comparative example is what provided the fin in the corrugated shape, the result in which the heat exchange amount of the Example was higher was obtained. It is considered that this is because the heat exchange performance can be improved more than the corrugated shape by forming a spiral groove on the inner surface of the inner tube.
実施例の外管は、比較例の外径よりも小さいが、これは、本発明の性能に疑義を与えるものではない。なぜなら、軽量化して細くしようとした場合、まず同一流量では、耐圧要求は小さくなるので、肉厚を薄くすることが可能であるが、断面における単位面積あたりの性能が同じ場合、細径の伝熱管の方が総断面積が小さくなるので、性能が落ちるのが、通常であるからである。 Although the outer pipe | tube of an Example is smaller than the outer diameter of a comparative example, this does not give doubt to the performance of this invention. This is because, when attempting to reduce the weight and reduce the thickness, the pressure resistance requirement is reduced at the same flow rate, so the wall thickness can be reduced, but if the performance per unit area in the cross section is the same, the transmission of the small diameter is reduced. This is because the total cross-sectional area of the heat pipe is smaller, and the performance is usually lowered.
実施例は、細径にもかかわらず、流量を同一にした条件下で、性能が上がっており、本発明の効果は明らかである。 The performance of the examples is improved under the same flow rate despite the small diameter, and the effect of the present invention is clear.
10 二重管式過冷却器
12 内管
13 外管
14 環状の隙間
15 フィン
16 溝
10 Double tube type supercooler 12 Inner tube 13 Outer tube 14 Annular gap 15 Fin 16 Groove
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011220094A JP5916330B2 (en) | 2011-10-04 | 2011-10-04 | Heat exchanger tube for supercooler and supercooler using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011220094A JP5916330B2 (en) | 2011-10-04 | 2011-10-04 | Heat exchanger tube for supercooler and supercooler using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013079763A true JP2013079763A (en) | 2013-05-02 |
JP5916330B2 JP5916330B2 (en) | 2016-05-11 |
Family
ID=48526274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011220094A Active JP5916330B2 (en) | 2011-10-04 | 2011-10-04 | Heat exchanger tube for supercooler and supercooler using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5916330B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015232415A (en) * | 2014-06-09 | 2015-12-24 | 株式会社コベルコ マテリアル銅管 | Heat transfer pipe for overcooling double-pipe heat exchanger |
CN109990515A (en) * | 2019-04-30 | 2019-07-09 | 安徽美乐柯制冷空调设备有限公司 | A kind of heat exchange gas-liquid separator with economizer function |
JP2019163866A (en) * | 2018-03-19 | 2019-09-26 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device and hot water generating device including the same |
CN112629290A (en) * | 2021-01-05 | 2021-04-09 | 东南大学 | Be used for supercritical water screw thread fin double-pipe heat exchanger |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075026A (en) * | 2001-08-31 | 2003-03-12 | Daikin Ind Ltd | Refrigeration unit |
US20050160763A1 (en) * | 2004-01-27 | 2005-07-28 | Lg Electronics Inc. | Air conditioner |
JP2007055553A (en) * | 2005-08-26 | 2007-03-08 | Calsonic Kansei Corp | Vehicular air conditioner |
JP2009204166A (en) * | 2008-02-26 | 2009-09-10 | Showa Denko Kk | Double pipe heat exchanger |
US20110214847A1 (en) * | 2010-03-05 | 2011-09-08 | HS R & A Co., Ltd | Double pipe and heat exchanger having the same |
-
2011
- 2011-10-04 JP JP2011220094A patent/JP5916330B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075026A (en) * | 2001-08-31 | 2003-03-12 | Daikin Ind Ltd | Refrigeration unit |
US20050160763A1 (en) * | 2004-01-27 | 2005-07-28 | Lg Electronics Inc. | Air conditioner |
JP2005214613A (en) * | 2004-01-27 | 2005-08-11 | Lg Electronics Inc | Air conditioner |
JP2007055553A (en) * | 2005-08-26 | 2007-03-08 | Calsonic Kansei Corp | Vehicular air conditioner |
JP2009204166A (en) * | 2008-02-26 | 2009-09-10 | Showa Denko Kk | Double pipe heat exchanger |
US20110214847A1 (en) * | 2010-03-05 | 2011-09-08 | HS R & A Co., Ltd | Double pipe and heat exchanger having the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015232415A (en) * | 2014-06-09 | 2015-12-24 | 株式会社コベルコ マテリアル銅管 | Heat transfer pipe for overcooling double-pipe heat exchanger |
JP2019163866A (en) * | 2018-03-19 | 2019-09-26 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device and hot water generating device including the same |
CN109990515A (en) * | 2019-04-30 | 2019-07-09 | 安徽美乐柯制冷空调设备有限公司 | A kind of heat exchange gas-liquid separator with economizer function |
CN109990515B (en) * | 2019-04-30 | 2023-10-03 | 安徽美乐柯制冷空调设备有限公司 | Heat exchange gas-liquid separator with economizer function |
CN112629290A (en) * | 2021-01-05 | 2021-04-09 | 东南大学 | Be used for supercritical water screw thread fin double-pipe heat exchanger |
CN112629290B (en) * | 2021-01-05 | 2024-09-20 | 东南大学 | Be used for supercritical water screw thread fin double-pipe heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP5916330B2 (en) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8020405B2 (en) | Air conditioning apparatus | |
JP6045695B2 (en) | Air conditioner | |
JP5474483B2 (en) | Intermediate heat exchanger and air-conditioning hot water supply system using the same | |
CN104024782B (en) | Heat exchanger and refrigerating plant | |
WO2011105270A1 (en) | Refrigeration cycle device | |
CN108361884A (en) | Air-conditioning system | |
WO2018131309A1 (en) | Air conditioner | |
JP5916330B2 (en) | Heat exchanger tube for supercooler and supercooler using the same | |
JP5975971B2 (en) | Heat exchanger and refrigeration cycle apparatus | |
JPWO2019043768A1 (en) | Condenser and refrigeration device with condenser | |
JP5403039B2 (en) | Air conditioner | |
KR20120114576A (en) | An air conditioner | |
EP2578966B1 (en) | Refrigeration device and cooling and heating device | |
CN110177988A (en) | Heat source side unit and refrigerating circulatory device | |
JP6242289B2 (en) | Refrigeration cycle equipment | |
JP2012002418A (en) | Air conditioner and gas-liquid separator | |
JP5646257B2 (en) | Refrigeration cycle equipment | |
JP2016053473A (en) | Heat exchanger and refrigeration cycle device | |
WO2014203500A1 (en) | Air conditioner | |
CN108278801A (en) | A kind of condenser and air conditioner | |
JP5686753B2 (en) | Air conditioner | |
CN219414991U (en) | Air conditioner | |
JP2013002657A (en) | Supercooler and its heat conduction acceleration member, and method of manufacturing heat conduction acceleration member | |
JP7154427B2 (en) | heat exchangers and air conditioners | |
JP2012233638A (en) | Refrigerating air conditioning apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150624 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20150811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160309 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160405 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5916330 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |