[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013077498A - Negative electrode for lithium ion secondary battery and manufacturing method thereof - Google Patents

Negative electrode for lithium ion secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2013077498A
JP2013077498A JP2011217465A JP2011217465A JP2013077498A JP 2013077498 A JP2013077498 A JP 2013077498A JP 2011217465 A JP2011217465 A JP 2011217465A JP 2011217465 A JP2011217465 A JP 2011217465A JP 2013077498 A JP2013077498 A JP 2013077498A
Authority
JP
Japan
Prior art keywords
negative electrode
group
ion secondary
silicon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011217465A
Other languages
Japanese (ja)
Other versions
JP5776475B2 (en
Inventor
Yo Ehara
庸 江原
Akira Tanaka
明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2011217465A priority Critical patent/JP5776475B2/en
Publication of JP2013077498A publication Critical patent/JP2013077498A/en
Application granted granted Critical
Publication of JP5776475B2 publication Critical patent/JP5776475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for a Li ion secondary battery which does not have wrinkles or the like during negative electrode manufacture, suppresses exfoliation of an active material due to expansion and contraction during charge and discharge, and has excellent cycle characteristics, and to provide a method of manufacturing the negative electrode for a Li ion secondary battery.SOLUTION: In a negative electrode for a Li ion secondary battery in which an active material containing Si is arranged on a current collector, a binder includes a polyimide resin containing Si of formula (1) [X represents a tetravalent organic group, Y represents a divalent organic group, n represents an integer of 1-10,000, T represents a functional group (Rto Rrepresent a C1-8 hydrocarbon group or an oxygen-containing hydrocarbon group, and m represents an integer of 1-8)] indicated by formula (2).

Description

本発明は、ケイ素を含む負極活物質とバインダーとを含む活物質合材層を、負極集電体の表面上に配置したリチウムイオン二次電池用負極、及びその製造方法に関する。   The present invention relates to a negative electrode for a lithium ion secondary battery in which an active material mixture layer containing a negative electrode active material containing silicon and a binder is disposed on the surface of a negative electrode current collector, and a method for producing the same.

リチウムイオン二次電池は、リチウム(Li)を挿入及び脱離することができる活物質を正極及び負極にそれぞれ有する。そして、両極間に設けられた電解液内をLiイオンが移動することによって動作する。
かかるリチウムイオン二次電池は、小型で大容量であるため、携帯電話やノートパソコンといった幅広い分野で用いられている。
A lithium ion secondary battery has an active material capable of inserting and extracting lithium (Li) in a positive electrode and a negative electrode, respectively. And it operate | moves because Li ion moves in the electrolyte solution provided between both electrodes.
Such lithium ion secondary batteries are small and have a large capacity, and are therefore used in a wide range of fields such as mobile phones and notebook computers.

近年、リチウムイオン二次電池の高出力化のために、負極活物質にケイ素(Si)を含む活物質を用いたリチウムイオン二次電池が提案されている。
しかしながら、ケイ素を含む活物質は、従来から負極活物質として用いられてきた黒鉛よりも、充放電に伴う体積膨張収縮が数倍大きい。そのため、活物質同士、あるいは活物質と集電体とが剥離しやすく、また、活物質が微粉化しやすく、これら剥離や微粉化の影響により集電性が低下し、充放電サイクル特性が悪くなるといった問題があった。また、電池使用時の温度変化による、活物質や集電体の体積膨張収縮も問題となっていた。
In recent years, lithium ion secondary batteries using an active material containing silicon (Si) as a negative electrode active material have been proposed in order to increase the output of the lithium ion secondary battery.
However, the active material containing silicon has several times larger volume expansion / contraction due to charge / discharge than graphite conventionally used as the negative electrode active material. Therefore, the active materials are easily separated from each other, or the active material and the current collector are easily separated, and the active material is easily pulverized. Due to the influence of the detachment and pulverization, the current collecting property is lowered, and the charge / discharge cycle characteristics are deteriorated. There was a problem. In addition, volume expansion and contraction of the active material and the current collector due to temperature changes during battery use has also been a problem.

また、ケイ素を含む活物質を用いたリチウムイオン二次電池の負極バインダーには、高強度なポリイミドが好適に用いられる。バインダーをポリイミドとする場合、通常、ポリイミド前駆体を焼結処理(イミド化)することにより負極を作製する。
しかしながら、焼結処理温度は通常200℃以上と非常に高温であり、集電体と活物質合材層との線膨張率の差により、バインダーと集電体との接触界面において歪みが生じ、応力が発生し、得られる負極にしわやカールが生じ易いという問題があった。
Moreover, a high-strength polyimide is suitably used for the negative electrode binder of the lithium ion secondary battery using an active material containing silicon. When the binder is polyimide, the negative electrode is usually produced by sintering (imidizing) the polyimide precursor.
However, the sintering process temperature is usually as high as 200 ° C. or more, and due to the difference in the coefficient of linear expansion between the current collector and the active material mixture layer, distortion occurs at the contact interface between the binder and the current collector, There was a problem that stress was generated and wrinkles and curls were easily generated in the obtained negative electrode.

そこで、焼結処理等の際における、このような歪みや応力が発生するのを抑制するため、特許文献1では、1〜300ppm/℃の線膨張率を持つ熱可塑性ポリイミドを用いる技術が開示されている。しかしながら、その抑制力は、まだなお十分とはいえなかった。   Therefore, in order to suppress the occurrence of such strains and stresses during the sintering process, Patent Document 1 discloses a technique using a thermoplastic polyimide having a linear expansion coefficient of 1 to 300 ppm / ° C. ing. However, the suppressive power was still not sufficient.

また、集電体と活物質との接着性を向上させるために、バインダーとして、特許文献2では、シラン変性ポリアミック酸をゾル−ゲル硬化及び脱水閉環させたポリイミドシリカハイブリッド樹脂を用い、特許文献3では、シロキサン含有ポリイミドを用いる方法が提案されている。しかしながら、これらの文献記載のポリイミド樹脂は、線膨張率の制御が難しいといった問題があった。   Moreover, in order to improve the adhesiveness of an electrical power collector and an active material, patent document 2 uses the polyimide silica hybrid resin which made the silane-modified polyamic acid sol-gel hardening and spin-drying | dehydrating cyclization as a binder, and patent document 3 Then, a method using a siloxane-containing polyimide has been proposed. However, the polyimide resins described in these documents have a problem that it is difficult to control the linear expansion coefficient.

本発明に関連して、特許文献4では、燃料電池の電解質膜として、末端にアルコキシシリル基を有するポリイミドを用いた例が記載されている。
しかしながら、特許文献4には、末端のアルコキシシリル基の、他物質との付着力の重要性や、線膨張率の重要性、リチウムイオン二次電池負極用バインダーへの展開等については言及されていない。
In relation to the present invention, Patent Document 4 describes an example in which a polyimide having an alkoxysilyl group at the terminal is used as an electrolyte membrane of a fuel cell.
However, Patent Document 4 mentions the importance of the adhesion strength of the terminal alkoxysilyl group with other substances, the importance of the linear expansion coefficient, the development to the binder for lithium ion secondary battery negative electrodes, and the like. Absent.

国際公開第2004/004031号パンフレットInternational Publication No. 2004/004031 Pamphlet 特開2011−86427号公報JP 2011-86427 A 特開2010−238562号公報JP 2010-238562 A 国際公開第2008/123522号パンフレットInternational Publication No. 2008/123522 Pamphlet

本発明は、上記した従来技術に鑑みてなされたものであり、その目的は、負極活物質としてケイ素を含む材料を用いた場合においても、負極作製時のしわやカールの発生がなく、充放電時の物理的・温度的膨張収縮による、活物質同士、あるいは活物質と集電体の剥離を抑制でき、サイクル特性に優れたリチウムイオン二次電池を得ることができるリチウムイオン二次電池用負極、及びその製造方法を提供することにある。   The present invention has been made in view of the above-described prior art, and the purpose thereof is charge / discharge without generation of wrinkles or curls during the production of a negative electrode even when a material containing silicon is used as a negative electrode active material. Negative electrode for lithium ion secondary battery that can suppress peeling of active materials or active material and current collector due to physical and temperature expansion and contraction at the time, and can obtain a lithium ion secondary battery with excellent cycle characteristics And a method of manufacturing the same.

上記課題を解決するために、本発明者らは鋭意検討を重ねた。その結果、バインダーとして、後述する式(1)で表される、末端に、ケイ素含有基を有するポリイミド樹脂を用いると、負極作製時のしわやカールの発生がなく、充放電時の物理的・温度的膨張収縮による、活物質同士、あるいは活物質と集電体の剥離を抑制でき、サイクル特性に優れたリチウムイオン二次電池を得ることができることを見出し、この知見に基づいて本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have made extensive studies. As a result, when a polyimide resin having a silicon-containing group at the end, which is represented by the formula (1) described later, is used as a binder, there is no generation of wrinkles or curls during negative electrode preparation, It was found that a lithium ion secondary battery with excellent cycle characteristics can be obtained by suppressing separation of active materials or between active materials and current collectors due to thermal expansion and contraction, and the present invention was completed based on this finding. It came to do.

かくして本発明によれば、下記〔1〕〜〔3〕のリチウムイオン二次電池用負極、及び〔4〕のリチウムイオン二次電池用負極の製造方法が提供される。   Thus, according to the present invention, there are provided the following negative electrodes for lithium ion secondary batteries [1] to [3] and a method for producing a negative electrode for lithium ion secondary batteries [4].

〔1〕ケイ素を含む負極活物質とバインダーとを含む活物質合材層を、負極集電体の表面上に配置したリチウムイオン二次電池用負極であって、
前記バインダーが、下記式(1)で表されるケイ素含有ポリイミド樹脂を含んでなるものであることを特徴とするリチウムイオン二次電池用負極。
[1] A negative electrode for a lithium ion secondary battery in which an active material mixture layer containing a negative electrode active material containing silicon and a binder is disposed on the surface of a negative electrode current collector,
The negative electrode for a lithium ion secondary battery, wherein the binder comprises a silicon-containing polyimide resin represented by the following formula (1).

Figure 2013077498
Figure 2013077498

〔式中、Xは4価の有機基を表し、Yは2価の有機基を表し、nは、1〜10,000の整数を表す。Tは、式(2) [Wherein, X represents a tetravalent organic group, Y represents a divalent organic group, and n represents an integer of 1 to 10,000. T is the formula (2)

Figure 2013077498
Figure 2013077498

(式中、R〜Rはそれぞれ独立して、炭素数1〜8の炭化水素基又は炭素数1〜8の酸素含有炭化水素基を表し、mは1〜8の整数を表す。)で示されるケイ素含有基を表す。〕 (In the formula, R 1 to R 3 each independently represent a hydrocarbon group having 1 to 8 carbon atoms or an oxygen-containing hydrocarbon group having 1 to 8 carbon atoms, and m represents an integer of 1 to 8). Represents a silicon-containing group represented by ]

〔2〕前記ケイ素含有ポリイミド樹脂が、2〜30ppm/℃の線膨張率を有するものであることを特徴とする〔1〕に記載のリチウムイオン二次電池用負極。
〔3〕前記ケイ素含有ポリイミド樹脂が、下記式(3)で表されるケイ素含有ポリイミド前駆体樹脂をイミド化して得られたものであることを特徴とする〔1〕又は〔2〕に記載のリチウムイオン二次電池用負極。
[2] The negative electrode for a lithium ion secondary battery according to [1], wherein the silicon-containing polyimide resin has a linear expansion coefficient of 2 to 30 ppm / ° C.
[3] The silicon-containing polyimide resin is obtained by imidizing a silicon-containing polyimide precursor resin represented by the following formula (3): [1] or [2] Negative electrode for lithium ion secondary battery.

Figure 2013077498
Figure 2013077498

(式中、T、X、Y及びnは、前記と同じ意味を表す。Rは、水素原子または炭素数1〜8の炭化水素基を表す。)
〔4〕ケイ素を含む負極活物質と、下記式(3)で表されるケイ素含有ポリイミド前駆体樹脂とを含む負極合材スラリーを、負極集電体の表面上に塗布した後、30〜130℃で予備乾燥を行い、圧延した後、前記ケイ素含有ポリイミド前駆体樹脂をイミド化する工程を有することを特徴とする〔1〕又は〔2〕に記載のリチウムイオン二次電池用負極の製造方法。
(In the formula, T, X, Y and n represent the same meaning as described above. R represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.)
[4] After applying a negative electrode mixture slurry containing a negative electrode active material containing silicon and a silicon-containing polyimide precursor resin represented by the following formula (3) on the surface of the negative electrode current collector, 30 to 130 The method for producing a negative electrode for a lithium ion secondary battery according to [1] or [2], further comprising a step of imidizing the silicon-containing polyimide precursor resin after performing preliminary drying at 0 ° C. and rolling. .

Figure 2013077498
Figure 2013077498

(式中、T、X、Y、n及びRは、前記と同じ意味を表す。) (In the formula, T, X, Y, n and R represent the same meaning as described above.)

本発明のリチウムイオン二次電池用負極は、その作製時にしわやカールが発生せず、活物質と集電体、又は活物質同士が剥離したり、活物質が微粉化することがないものであるので、集電性が低下しない、充放電サイクル特性に優れるリチウムイオン二次電池を好適に作製することができる。
本発明のリチウムイオン二次電池用負極の製造方法によれば、本発明のリチウムイオン二次電池用負極を効率よく製造することができる。
The negative electrode for a lithium ion secondary battery of the present invention does not generate wrinkles or curls at the time of production, and the active material and the current collector, or the active materials are not separated or the active material is not pulverized. Therefore, a lithium ion secondary battery that is excellent in charge and discharge cycle characteristics and does not have a reduced current collecting property can be suitably produced.
According to the method for producing a negative electrode for a lithium ion secondary battery of the present invention, the negative electrode for a lithium ion secondary battery of the present invention can be efficiently produced.

以下、本発明を、1)リチウムイオン二次電池用負極、及び、2)リチウムイオン二次電池用負極の製造方法、に項分けして、詳細に説明する。   Hereinafter, the present invention will be described in detail by dividing it into 1) a negative electrode for a lithium ion secondary battery and 2) a method for producing a negative electrode for a lithium ion secondary battery.

1)リチウムイオン二次電池用負極
本発明のリチウムイオン二次電池用負極は、ケイ素(Si)を含む負極活物質とバインダーとを含む活物質合材層を、負極集電体の表面上に配置したリチウムイオン二次電池用負極であって、前記バインダーが、前記式(1)で表されるケイ素含有ポリイミド樹脂を含んでなるものであることを特徴とする。
1) Negative electrode for lithium ion secondary battery The negative electrode for lithium ion secondary battery of the present invention has an active material mixture layer containing a negative electrode active material containing silicon (Si) and a binder on the surface of the negative electrode current collector. It is the arrange | positioned negative electrode for lithium ion secondary batteries, Comprising: The said binder comprises the silicon containing polyimide resin represented by the said Formula (1), It is characterized by the above-mentioned.

〈ケイ素を含む負極活物質〉
本発明に用いるケイ素(Si)を含む負極活物質(以下、単に「負極活物質」ということがある。)は、Siを含む負極活物質であれば、特に制約はない。例えば、Siの単体;Siを含む酸化物(酸化ケイ素等)、Siを含む窒化物(窒化ケイ素等)等のSi化合物;、及びSiを含む合金(ケイ素と他の1種以上の元素との固溶体、ケイ素と他の1種以上の元素との金属間化合物、ケイ素と他の1種以上の元素との共晶合金等);等が挙げられる。
これらは、1種単独で、或いは2種以上を組み合わせて用いてもよい。
<Silicon-containing negative electrode active material>
The negative electrode active material containing silicon (Si) used in the present invention (hereinafter sometimes simply referred to as “negative electrode active material”) is not particularly limited as long as it is a negative electrode active material containing Si. For example, Si simple substance; Si compound such as Si-containing oxide (silicon oxide, etc.), Si-containing nitride (silicon nitride, etc.); and Si-containing alloy (silicon and one or more other elements) Solid solutions, intermetallic compounds of silicon and one or more other elements, eutectic alloys of silicon and one or more other elements, etc.).
You may use these individually by 1 type or in combination of 2 or more types.

また、負極活物質は、Siの単体、Siの化合物、Siを含む合金以外に、他の活物質を含んでいてもよい。他の活物質としては、黒鉛、Sn、Al、Ag、Zn、Ge、Cd、Pd等が挙げられる。他の活物質は、1種単独でも、或いは2種以上を組み合わせて用いてもよい。   The negative electrode active material may contain other active materials in addition to Si alone, Si compounds, and Si-containing alloys. Examples of other active materials include graphite, Sn, Al, Ag, Zn, Ge, Cd, and Pd. Other active materials may be used singly or in combination of two or more.

負極活物質の平均粒径は、通常、0.01〜100μm、好ましくは1〜10μmである。なお、負極活物質は、結晶質であってもよいし、非晶質であってもよい。   The average particle diameter of the negative electrode active material is usually 0.01 to 100 μm, preferably 1 to 10 μm. Note that the negative electrode active material may be crystalline or amorphous.

〈バインダー〉
本発明に用いるバインダーは、末端にケイ素含有基を有する、前記式(1)で表されるケイ素含有ポリイミド樹脂(以下、「ケイ素含有ポリイミド樹脂(1)」ということがある。)を含有するものである。バインダーは、負極活物質同士或いは負極活物質と集電体を結着させ、導電ネットワークを形成してその構造を維持する役割を有する。
<binder>
The binder used in the present invention contains a silicon-containing polyimide resin represented by the above formula (1) having a silicon-containing group at the terminal (hereinafter sometimes referred to as “silicon-containing polyimide resin (1)”). It is. The binder has a role of binding the negative electrode active materials or the negative electrode active material and the current collector to form a conductive network and maintaining the structure.

前記ケイ素含有ポリイミド樹脂(1)の含有量は、バインダー全体に対して、通常90重量%以上、好ましくは95重量%以上、より好ましくは98重量%以上である。   The content of the silicon-containing polyimide resin (1) is usually 90% by weight or more, preferably 95% by weight or more, more preferably 98% by weight or more with respect to the whole binder.

前記式(1)中、Tは前記式(2)で表されるケイ素含有基を表す。
前記式(2)中、R〜Rはそれぞれ独立して、炭素数1〜8の炭化水素基又は炭素数1〜8の酸素含有炭化水素基を表す。
In the formula (1), T represents a silicon-containing group represented by the formula (2).
In said formula (2), R < 1 > -R < 3 > represents a C1-C8 hydrocarbon group or a C1-C8 oxygen containing hydrocarbon group each independently.

〜Rの炭素数1〜8の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基、n−オクチル基等の、炭素数1〜8のアルキル基;シクロペンチル基、シクロヘキシル基等の、炭素数3〜8のシクロアルキル基;ビニル基、アリル基等の、炭素数2〜8のアルケニル基;シクロヘキセニル基等のシクロアルケニル基;エチニル基、1−プロピニル基等の、炭素数2〜8のアルキニル基;フェニル基、トリル基等の、炭素数6〜8のアリール基;ベンジル基、フェネチル基等の、炭素数7又は8のアラルキル基;等が挙げられる。 Examples of the hydrocarbon group having 1 to 8 carbon atoms of R 1 to R 3 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n- C1-C8 alkyl groups such as pentyl group, isopentyl group, n-hexyl group, n-octyl group; C3-C8 cycloalkyl groups such as cyclopentyl group, cyclohexyl group; vinyl group, allyl group An alkenyl group having 2 to 8 carbon atoms; a cycloalkenyl group such as cyclohexenyl group; an alkynyl group having 2 to 8 carbon atoms such as ethynyl group and 1-propynyl group; a carbon number such as phenyl group and tolyl group An aryl group having 6 to 8 carbon atoms; an aralkyl group having 7 or 8 carbon atoms such as a benzyl group and a phenethyl group;

炭素数1〜8の酸素含有炭化水素基としては、メトキシ基、エトキシ基、プロポキシ基等の、炭素数1〜8のアルコキシ基;メトキシメチル基、メトキシエチル基等の総炭素数2〜8のアルコキシアルキル基;アセチル基、ベンゾイル基等の。総炭素数2〜8のアシル基;メトキシカルボニル基等の総炭素数2〜8のアルコキシカルボニル基;アセトキシ基、ベンゾイルオキシ基等の、総炭素数2〜8のアシロキシ基;等が挙げられる。
これらの中でも、R〜Rの炭素数1〜8の炭化水素基としては、炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基が好ましく、メチル基、エチル基、メトキシ基、エトキシ基がより好ましく、メチル基、エチル基が特に好ましい。
mは、1〜8の整数であり、好ましくは1〜5の整数、より好ましくは1〜4の整数である。
Examples of the oxygen-containing hydrocarbon group having 1 to 8 carbon atoms include an alkoxy group having 1 to 8 carbon atoms such as a methoxy group, an ethoxy group, and a propoxy group; a total carbon number of 2 to 8 such as a methoxymethyl group and a methoxyethyl group Alkoxyalkyl group; acetyl group, benzoyl group and the like. And an acyl group having 2 to 8 carbon atoms; an alkoxycarbonyl group having 2 to 8 carbon atoms such as a methoxycarbonyl group; an acyloxy group having 2 to 8 carbon atoms such as an acetoxy group and a benzoyloxy group;
Of these, the hydrocarbon group having 1 to 8 carbon atoms of R 1 to R 3, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms is preferable, a methyl group, an ethyl group, a methoxy group An ethoxy group is more preferable, and a methyl group and an ethyl group are particularly preferable.
m is an integer of 1-8, preferably an integer of 1-5, more preferably an integer of 1-4.

Tの具体例としては、トリメトキシシリルメチル基、トリエトキシシリルメチル基、メチルジエトキシシリルメチル基、ジメチルエトキシシリルメチル基等のmが1である基;1−トリメトキシシリルエチル基、2−トリメトキシシリルエチル基、1−(トリエトキシシリル)エチル基、2−(トリエトキシシリル)エチル基、2−(ジメトキシメチルシリル)エチル基、2−(ジエトキシメチルシリル)エチル基等のmが2である基;3−(トリメトキシシリル)プロピル基、3−(ジメトキシメチルシリル)プロピル基、3−(ジメチルメトキシシリル)プロピル基、3−(トリエトキシシリル)プロピル基、3−(メチルジエトキシシリル)プロピル基、3−(ジメチルエトキシシリル)プロピル基等のmが3である基;4−(トリメトキシシリル)ブチル基、4−(ジメトキシメチルシリル)ブチル基、4−(メトキシジメチルシリル)ブチル基、4−(トリエトキシシリル)ブチル基、4−(ジエトキシメチルシリル)ブチル基、4−(エトキシジメチル)シリルブチル基等のmが4である基;等が挙げられる。   Specific examples of T include groups in which m is 1, such as trimethoxysilylmethyl group, triethoxysilylmethyl group, methyldiethoxysilylmethyl group, dimethylethoxysilylmethyl group; 1-trimethoxysilylethyl group, 2- M such as trimethoxysilylethyl group, 1- (triethoxysilyl) ethyl group, 2- (triethoxysilyl) ethyl group, 2- (dimethoxymethylsilyl) ethyl group, 2- (diethoxymethylsilyl) ethyl group, etc. 2 groups; 3- (trimethoxysilyl) propyl group, 3- (dimethoxymethylsilyl) propyl group, 3- (dimethylmethoxysilyl) propyl group, 3- (triethoxysilyl) propyl group, 3- (methyldi-) Groups in which m is 3, such as ethoxysilyl) propyl group and 3- (dimethylethoxysilyl) propyl group; 4- (trimethyl Xylyl) butyl group, 4- (dimethoxymethylsilyl) butyl group, 4- (methoxydimethylsilyl) butyl group, 4- (triethoxysilyl) butyl group, 4- (diethoxymethylsilyl) butyl group, 4- (ethoxy A group in which m is 4, such as a dimethyl) silylbutyl group;

式(1)中、Xは4価の有機基を表す。4価の有機基としては、環状構造を有するものが好ましい。ここで、環状構造の環としては、芳香環、脂肪族環等が挙げられるが、芳香環であるのが好ましい。
Xとしては、具体的には、後述する式(4)で表される化合物として例示される酸無水物由来の4価の有機基が挙げられる。そのうちの一例を以下に示す。
In formula (1), X represents a tetravalent organic group. As the tetravalent organic group, those having a cyclic structure are preferable. Here, examples of the ring having a cyclic structure include an aromatic ring and an aliphatic ring, and an aromatic ring is preferable.
Specific examples of X include a tetravalent organic group derived from an acid anhydride exemplified as a compound represented by the formula (4) described later. An example is shown below.

Figure 2013077498
Figure 2013077498

Figure 2013077498
Figure 2013077498

Yは2価の有機基を表す。2価の有機基としては、環状構造を有するものが好ましい。ここで、環状構造の環としては、芳香環、複素環等が挙げられるが、芳香環であるのが好ましい。具体的には、後述する式(5)で表される化合物として例示されるジアミン類由来の2価の有機基が挙げられる。そのうちの一例を以下に示す。   Y represents a divalent organic group. As the divalent organic group, those having a cyclic structure are preferable. Here, examples of the ring having a cyclic structure include an aromatic ring and a heterocyclic ring, but an aromatic ring is preferable. Specifically, a divalent organic group derived from diamines exemplified as a compound represented by the formula (5) described later can be given. An example is shown below.

Figure 2013077498
Figure 2013077498

なお、これらの基は、1種単独で、或いは2種以上を組み合わせて用いてもよい。
nは、1〜10,000の整数であり、10〜10,000が好ましく、10〜5,000であるのがより好ましい。
In addition, you may use these groups individually by 1 type or in combination of 2 or more types.
n is an integer of 1 to 10,000, preferably 10 to 10,000, and more preferably 10 to 5,000.

本発明に用いるケイ素含有ポリイミド樹脂(1)としては、前記式(3)で表される、末端にSi含有基を有するポリイミド前駆体樹脂(以下、「ポリイミド前駆体樹脂(3)」ということがある。)をイミド化して得られたものであるのが好ましい。
ポリイミド前駆体樹脂(3)を用いることにより、本発明のリチウムイオン二次電池用負極をより簡便に形成することができる。
As the silicon-containing polyimide resin (1) used in the present invention, the polyimide precursor resin represented by the formula (3) having a Si-containing group at the terminal (hereinafter referred to as “polyimide precursor resin (3)”). Is preferably obtained by imidization.
By using the polyimide precursor resin (3), the negative electrode for a lithium ion secondary battery of the present invention can be more easily formed.

前記式(3)中、T、X、Y及びnは、前記と同じ意味を表す。
Rは、水素原子又は炭素数1〜8の炭化水素基を表す。
Rの炭素数1〜8の炭化水素基としては、前記R〜Rの炭素数1〜8の炭化水素基として例示したのと同様のものが挙げられる。
In said Formula (3), T, X, Y, and n represent the same meaning as the above.
R represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
Examples of the hydrocarbon group having 1 to 8 carbon atoms of R include the same groups as those exemplified as the hydrocarbon group having 1 to 8 carbon atoms of R 1 to R 3 .

ポリイミド前駆体樹脂(3)をイミド化する方法としては、公知の熱イミド化方法、化学イミド化方法等が挙げられる。
熱イミド化方法は、ポリイミド前駆体樹脂(3)が脱水閉環反応を起こす温度、具体的には130〜450℃、好ましくは300〜400℃に加熱する方法である。加熱する方法としては、最高温度まで一段階で昇温する方法、多段階で昇温する方法のどちらでもよい。
加熱時間は、反応規模等にもよるが、通常数分から1日、好ましくは30分から数時間である。
加熱は、大気中で行ってもよいが、真空中、又は、窒素、ヘリウム等の不活性ガス雰囲気中で行うのが好ましい。
Examples of the method for imidizing the polyimide precursor resin (3) include known thermal imidization methods and chemical imidization methods.
The thermal imidization method is a method in which the polyimide precursor resin (3) is heated to a temperature causing a dehydration ring-closing reaction, specifically 130 to 450 ° C, preferably 300 to 400 ° C. As a method for heating, either a method of raising the temperature up to the maximum temperature in one step or a method of raising the temperature in multiple steps may be used.
The heating time is usually several minutes to 1 day, preferably 30 minutes to several hours, depending on the reaction scale and the like.
The heating may be performed in the air, but is preferably performed in a vacuum or in an inert gas atmosphere such as nitrogen or helium.

化学イミド化方法は、化学イミド化剤を含む溶液にポリイミド前駆体樹脂(3)を浸漬し、脱水閉環させ、その後乾燥させる方法である。
化学イミド化剤としては、従来公知のものを使用することができる。例えば、脂肪族酸無水物、芳香族酸無水物を脱水剤として用い、トリエチルアミン等の第三級アミンを触媒として用いてもよいし、特開平4−339835号公報に記載のように、イミダ−ル、ベンズイミダゾ−ル、もしくはそれらの置換誘導体を用いてもよい。
The chemical imidization method is a method in which the polyimide precursor resin (3) is immersed in a solution containing a chemical imidization agent, dehydrated and closed, and then dried.
A conventionally well-known thing can be used as a chemical imidating agent. For example, an aliphatic acid anhydride or an aromatic acid anhydride may be used as a dehydrating agent, and a tertiary amine such as triethylamine may be used as a catalyst. As described in JP-A-4-339835, an imida- Ru, benzimidazole, or substituted derivatives thereof may be used.

イミド化の進行は、IRスペクトル等で分析することにより確認することができる。具体的には、ポリイミド前駆体樹脂溶液(反応混合物)を、ガラス基板上に塗布し、予備乾燥後、IRスペクトルを確認すると、イミド結合特有の1780cm−1付近のスペクトルが見えないことから確認することができる。 The progress of imidization can be confirmed by analyzing the IR spectrum or the like. Specifically, when a polyimide precursor resin solution (reaction mixture) is applied on a glass substrate and pre-dried and then the IR spectrum is confirmed, it is confirmed that a spectrum around 1780 cm −1 peculiar to an imide bond cannot be seen. be able to.

得られるケイ素含有ポリイミド樹脂(1)の線膨張率は、2〜30ppm/℃であるのが好ましく、2〜25ppm/℃であるのがより好ましく、2〜20ppm/℃であるのが特に好ましい。
このようなケイ素含有ポリイミド樹脂(1)を用いることにより、集電性が低下しない、充放電サイクル特性に優れるリチウムイオン二次電池を得ることができる。
The linear expansion coefficient of the resulting silicon-containing polyimide resin (1) is preferably 2 to 30 ppm / ° C, more preferably 2 to 25 ppm / ° C, and particularly preferably 2 to 20 ppm / ° C.
By using such a silicon-containing polyimide resin (1), it is possible to obtain a lithium ion secondary battery excellent in charge / discharge cycle characteristics in which current collecting performance does not decrease.

なお、ポリイミド前駆体樹脂(3)は、例えば、下記式に示すように、式(2a)で表されるSi含有末端変性剤(Si含有末端変性剤(2a))、式(4)で表されるテトラカルボン酸二無水物(テトラカルボン酸二無水物(4))、及び、式(5)で表されるジアミン化合物(ジアミン化合物(5))を、溶媒中で混合、攪拌することにより得ることができる。   The polyimide precursor resin (3) is represented by, for example, the Si-containing terminal modifier (Si-containing terminal modifier (2a)) represented by the formula (2a) and the formula (4) as shown in the following formula. By mixing and stirring a tetracarboxylic dianhydride (tetracarboxylic dianhydride (4)) and a diamine compound (diamine compound (5)) represented by formula (5) in a solvent Can be obtained.

Figure 2013077498
Figure 2013077498

式中、R〜R、R、X、Y、m及びnは、前記と同じ意味を表す。 In the formula, R 1 to R 3 , R, X, Y, m, and n represent the same meaning as described above.

式(2a)で表されるSi含有末端変性剤としては、具体的には、アミノメチルトリメトキシシラン、アミノメチルトリエトキシシラン、アミノメチルメチルジエトキシシラン、アミノメチルジメチルエトキシシラン、アミノメチルメチルジメトキシシラン等のアミノメチルシラン類;1−(アミノエチル)トリエトキシシラン、2−(アミノエチル)トリエトキシシラン、2−(アミノエチル)ジメトキシメチルシラン等の2−アミノエチルシラン類;3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−アミノプロピルジメチルメトキシシラン、3−アミノプロピルジメチルエトキシシラン等の3−アミノプロピルシラン類;4−アミノブチルトリメトキシシラン、4−アミノブチルメチルジメトキシシラン、4−アミノブチルジメチルメトキシシラン、4−アミノブチルトリエトキシシラン、4−アミノブチルメチルジエトキシシラン、4−アミノブチルジメチルエトキシシラン等の4−アミノブチルシラン類;等が挙げられる。
これらの化合物は、1種単独で、或いは2種以上を組み合わせて用いることができる。
Specific examples of the Si-containing terminal modifier represented by the formula (2a) include aminomethyltrimethoxysilane, aminomethyltriethoxysilane, aminomethylmethyldiethoxysilane, aminomethyldimethylethoxysilane, aminomethylmethyldimethoxy. Aminomethylsilanes such as silane; 2-aminoethylsilanes such as 1- (aminoethyl) triethoxysilane, 2- (aminoethyl) triethoxysilane, 2- (aminoethyl) dimethoxymethylsilane; 3-aminopropyl 3-aminopropyl such as trimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylmethoxysilane, 3-aminopropyldimethylethoxysilane Pyrsilanes; 4-aminobutyltrimethoxysilane, 4-aminobutylmethyldimethoxysilane, 4-aminobutyldimethylmethoxysilane, 4-aminobutyltriethoxysilane, 4-aminobutylmethyldiethoxysilane, 4-aminobutyldimethylethoxy 4-aminobutylsilanes such as silane; and the like.
These compounds can be used alone or in combination of two or more.

テトラカルボン酸二無水物(4)としては、例えば、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸無水物、1,2,3,4−ベンゼンテトラカルボン酸無水物、1,4,5,8−ナフタレンテトラカルボン酸無水物、2,3,6,7−ナフタレンテトラカルボン酸無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物、2,3,3’,4’−ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス(3,3’,4,4’−テトラカルボキシフェニル)テトラフルオロプロパン二無水物、2,2’−ビス(3,4−ジカルボキシフェノキシフェニル)スルホン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、シクロペンタンテトラカルボン酸無水物、ブタン−1,2,3,4−テトラカルボン酸、2,3,5−トリカルボキシシクロペンチル酢酸無水物等が挙げられる。   Examples of the tetracarboxylic dianhydride (4) include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic anhydride, 1,2,3,4-benzenetetracarboxylic acid. Anhydride, 1,4,5,8-naphthalenetetracarboxylic acid anhydride, 2,3,6,7-naphthalenetetracarboxylic acid anhydride, 2,2 ', 3,3'-biphenyltetracarboxylic acid dianhydride 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4′-benzophenonetetracarboxylic Acid dianhydride, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4 ′ -Diphenyls Hongtetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,3 ′, 4,4′-tetracarboxyphenyl) tetrafluoropropane Dianhydride, 2,2′-bis (3,4-dicarboxyphenoxyphenyl) sulfone dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2-bis ( 3,4-dicarboxyphenyl) propane dianhydride, cyclopentanetetracarboxylic anhydride, butane-1,2,3,4-tetracarboxylic acid, 2,3,5-tricarboxycyclopentylacetic anhydride, etc. It is done.

これらの中でも、好ましい線膨張率や優れた耐熱性が得られる観点から、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸無水物を用いるのが好ましい。
なお、これらの化合物は、1種単独で、或いは2種以上を組み合わせて用いることができる。
Among these, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic acid is preferable from the viewpoint of obtaining a preferable linear expansion coefficient and excellent heat resistance. It is preferable to use acid dianhydride or pyromellitic acid anhydride.
In addition, these compounds can be used individually by 1 type or in combination of 2 or more types.

ジアミン化合物(5)としては、例えば、4,4’−ジアミノジフェニルエーテル、p−フェニレンジアミン、m−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2−ジ(3−アミノフェニル)プロパン、2,2−ジ(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2,2−ジ(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ジ(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、1,1−ジ(3−アミノフェニル)−1−フェニルエタン、1,1−ジ(4−アミノフェニル)−1−フェニルエタン、1−(3−アミノフェニル)−1−(4−アミノフェニル)−1−フェニルエタン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノベンゾイル)ベンゼン、1,3−ビス(4−アミノベンゾイル)ベンゼン、1,4−ビス(3−アミノベンゾイル)ベンゼン、1,4−ビス(4−アミノベンゾイル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(3− アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、2,6−ビス(3−アミノフェノキシ)ベンゾニトリル、2,6−ビス(3−アミノフェノキシ)ピリジン、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、4,4’−ビス[4−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’−ビス[4−(4−アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール、2,2’−ジ(p−アミノフェニル)−6,6’−ビスベンゾオキサゾール、2−(4−アミノフェニル)−6−アミノベンゾオキサゾール、N−(4−アミノフェニル)−4−アミノベンズアミド、N,N’−ビス(4−アミノフェニル)テレフタルアミド、4−アミノフェニル−4−アミノベンゾエート、2,2‘−ジメチルビフェニル−4,4’−ジアミン等が挙げられる。   Examples of the diamine compound (5) include 4,4′-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, and 3,3′-diamino. Diphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3, 3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2- Di (3-amino Enyl) propane, 2,2-di (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2,2-di (3-aminophenyl) -1, 1,1,3,3,3-hexafluoropropane, 2,2-di (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 1,1-di (3-aminophenyl) -1-phenylethane, 1,1-di (4 -Aminophenyl) -1-phenylethane, 1- (3-aminophenyl) -1- (4-aminophenyl) -1-phenylethane, 1,3-bis (3-aminophenoxy) benzene, 1,3- Bis (4-aminophenoxy) benze 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminobenzoyl) benzene, 1,3-bis (4-aminobenzoyl) ) Benzene, 1,4-bis (3-aminobenzoyl) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,3-bis (3-amino-α, α-dimethylbenzyl) benzene, 1, 3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (4-amino-α, α- Dimethylbenzyl) benzene, 1,3-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,3-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene 1,4-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 2,6-bis (3- Aminophenoxy) benzonitrile, 2,6-bis (3-aminophenoxy) pyridine, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4 -(3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl ] Sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone Bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2- Bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2 -Bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1, 3-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (4-aminopheno) B) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) -α, α-dimethyl Benzyl] benzene, 1,4-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] Benzene, 4,4′-bis [4- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4 ′ -Bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone, 4,4′-bis [4- (4-aminophenoxy) phenoxy] diphenylsulfone 3,3′-diamino-4,4′-diphenoxybenzophenone, 3,3′-diamino-4,4′-dibiphenoxybenzophenone, 3,3′-diamino-4-phenoxybenzophenone, 3,3 ′ -Diamino-4-biphenoxybenzophenone, 5-amino-2- (p-aminophenyl) benzoxazole, 2,2'-di (p-aminophenyl) -6,6'-bisbenzoxazole, 2- (4 -Aminophenyl) -6-aminobenzoxazole, N- (4-aminophenyl) -4-aminobenzamide, N, N'-bis (4-aminophenyl) terephthalamide, 4-aminophenyl-4-aminobenzoate, 2,2′-dimethylbiphenyl-4,4′-diamine and the like can be mentioned.

これらの中でも、コストの面からは、4,4’−ジアミノジフェニルエーテル、p−フェニレンジアミンが好ましく、活物質の分散性の観点からは、2,2’−ジ(p−アミノフェニル)−6,6’−ビスベンゾオキサゾール、2−(4−アミノフェニル)−6−アミノベンゾオキサゾールが好ましい。
なお、これらの化合物は、1種単独で、或いは2種以上を組み合わせて用いることができる。
Among these, 4,4′-diaminodiphenyl ether and p-phenylenediamine are preferable from the viewpoint of cost, and 2,2′-di (p-aminophenyl) -6,6 from the viewpoint of dispersibility of the active material. 6'-bisbenzoxazole and 2- (4-aminophenyl) -6-aminobenzoxazole are preferred.
In addition, these compounds can be used individually by 1 type or in combination of 2 or more types.

Si含有末端変性剤(2a)、テトラカルボン酸二無水物(4)及びジアミン化合物(5)の混合割合は、質量比で、通常、(Si含有末端変性剤(2a)):(テトラカルボン酸二無水物(4)):(ジアミン化合物(5))=100:80〜100:5〜15、好ましくは、100:90〜100:5〜12である。   The mixing ratio of the Si-containing terminal modifier (2a), the tetracarboxylic dianhydride (4), and the diamine compound (5) is a mass ratio and is usually (Si-containing terminal modifier (2a)): (tetracarboxylic acid) The dianhydride (4)) :( diamine compound (5)) = 100: 80-100: 5-15, preferably 100: 90-100: 5-12.

用いる溶媒としては、反応に不活性なものであれば特に制約はなく、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム等のアミド系溶媒;ジメチルスルホキシド、ヘキサメチルフォスホルムアミド、ジメチルスルホン、テトラメチレンスルホン、ジメチルテトラメチレンスルホン等の含硫黄系溶媒;クレゾール、フェノール、キシレノール等のフェノール系溶媒;ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラグライム等のジグライム系溶媒;γ−ブチロラクトン等のラクトン系溶媒;イソホロン、シクロヘキサノン、3,3,5−トリメチルシクロヘキサノン等のケトン系溶媒;ピリジン、エチレングリコール、ジオキサン、テトラメチル尿素等のその他の溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;等が挙げられる。これらの溶媒は1種単独で、或いは2種以上を混合して用いることができる。
溶媒の使用量は、得られる負極合材スラリーが、後の負極合材層形成において集電体に付与されるのに適した粘度、具体的には、室温における回転式粘度計による値で、0.5〜10Pa・sになるように選定することが望ましい。
The solvent used is not particularly limited as long as it is inert to the reaction, and examples thereof include amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam and the like. Solvents such as dimethyl sulfoxide, hexamethylphosphoroformamide, dimethyl sulfone, tetramethylene sulfone, dimethyltetramethylene sulfone; phenolic solvents such as cresol, phenol, xylenol; diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (Triglyme), diglyme solvents such as tetraglyme; lactone solvents such as γ-butyrolactone; ketone solvents such as isophorone, cyclohexanone and 3,3,5-trimethylcyclohexanone ; Pyridine, ethylene glycol, dioxane, and other solvents such as tetramethylurea; benzene, toluene, aromatic hydrocarbon solvents such as xylene; and the like. These solvents can be used alone or in combination of two or more.
The amount of the solvent used is a viscosity suitable for the negative electrode mixture slurry to be provided to the current collector in the subsequent negative electrode mixture layer formation, specifically, a value by a rotary viscometer at room temperature, It is desirable to select so as to be 0.5 to 10 Pa · s.

反応温度は、通常0〜100℃、好ましくは10〜50℃、より好ましくは15〜35℃である。
反応時間は、反応規模等にもよるが、通常数十分から数日、好ましくは数時間から48時間である。
得られるポリイミド前駆体樹脂(3)は、単離することなく、溶媒溶液のまま、次のイミド化工程に供することができる。
The reaction temperature is generally 0 to 100 ° C, preferably 10 to 50 ° C, more preferably 15 to 35 ° C.
Although depending on the reaction scale and the like, the reaction time is usually from several tens of minutes to several days, preferably from several hours to 48 hours.
The obtained polyimide precursor resin (3) can be subjected to the next imidization step as it is without being isolated.

〈活物質合材層〉
本発明において用いる活物質合材層は、前記Siを含む負極活物質と前記ケイ素含有ポリイミド樹脂(1)を含んでなるバインダーとを含有するが、その他に、導電補助材を含むことが好ましい。
導電補助材としては、特に制限されないが、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバー等の導電性炭素材料を用いるのが好ましい。
導電補助材の配合割合は、負極活物質、バインダー及び導電補助材の合計を100質量%としたとき、通常1〜20質量%、好ましくは4〜6質量%である。導電補助材が少なすぎると良好な導電ネットワークを形成できず、また、導電補助材が多すぎると電極の成形性が悪くなるとともに電極のエネルギー密度が低くなる。
<Active material mixture layer>
The active material mixture layer used in the present invention contains a negative electrode active material containing Si and a binder containing the silicon-containing polyimide resin (1), but preferably contains a conductive auxiliary material.
The conductive auxiliary material is not particularly limited, but it is preferable to use a conductive carbon material such as carbon black, acetylene black, ketjen black, carbon nanotube, or carbon nanofiber.
The blending ratio of the conductive auxiliary material is usually 1 to 20% by mass, preferably 4 to 6% by mass, when the total of the negative electrode active material, the binder and the conductive auxiliary material is 100% by mass. If the conductive auxiliary material is too small, a good conductive network cannot be formed. If the conductive auxiliary material is too large, the formability of the electrode is deteriorated and the energy density of the electrode is lowered.

〈負極集電体〉
本発明において、負極集電体としては、従来公知のものを使用することができる。具体的には、ステンレス鋼、チタン、ニッケル、アルミニウム、銅等の導電性の金属材料又は導電性樹脂からなる、多孔性又は無孔の導電性基板;メッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、不織布等の繊維群成形体等の多孔性導電性基板;箔、シート、フィルム等の無孔の導電性基板;等が挙げられる。
<Negative electrode current collector>
In the present invention, conventionally known negative electrode current collectors can be used. Specifically, a porous or non-porous conductive substrate made of a conductive metal material such as stainless steel, titanium, nickel, aluminum, copper, or a conductive resin; mesh body, net body, punching sheet, lath body Porous conductive substrates such as fiber group molded products such as porous bodies, foams, and nonwoven fabrics; non-porous conductive substrates such as foils, sheets, and films; and the like.

本発明のリチウムイオン二次電池用負極は、負極活物質と、ケイ素含有ポリイミド樹脂(1)を含有するバインダーとを含む活物質合材層が、負極集電体の表面上に配置されてなるものである。
本発明のリチウムイオン二次電池用負極の製造方法としては、特に制約はなく、従来公知の製造方法が挙げられる。なかでも、後述する本発明のリチウムイオン二次電池用負極の製造方法が好ましい。
本発明のリチウムイオン二次電池用負極によれば、Siを含む負極活物質を使用していても、負極作製時のしわやカールの発生がなく、充放電時の物理的・温度的膨張収縮による、活物質と集電体、又は活物質同士の剥離を抑制でき、サイクル特性に優れたリチウムイオン二次電池を得ることができる。
The negative electrode for a lithium ion secondary battery of the present invention has an active material mixture layer containing a negative electrode active material and a binder containing a silicon-containing polyimide resin (1) disposed on the surface of the negative electrode current collector. Is.
There is no restriction | limiting in particular as a manufacturing method of the negative electrode for lithium ion secondary batteries of this invention, A conventionally well-known manufacturing method is mentioned. Especially, the manufacturing method of the negative electrode for lithium ion secondary batteries of this invention mentioned later is preferable.
According to the negative electrode for a lithium ion secondary battery of the present invention, even when a negative electrode active material containing Si is used, there is no generation of wrinkles or curls during the production of the negative electrode, and physical and temperature expansion and contraction during charge and discharge. Therefore, peeling of the active material and the current collector or between the active materials can be suppressed, and a lithium ion secondary battery excellent in cycle characteristics can be obtained.

2)リチウムイオン二次電池用負極の製造方法
本発明のリチウムイオン二次電池用負極の製造方法は、前記Siを含む負極活物質と、前記ポリイミド前駆体樹脂(3)とを含む負極合材スラリーを、負極集電体の表面上に塗布した後、30〜130℃で予備乾燥を行い、圧延した後、前記ポリイミド前駆体樹脂をイミド化する工程を有することを特徴とする。
本発明の製造方法によれば、本発明のリチウムイオン二次電池用負極を効率よく製造することができる。
2) Method for Producing Negative Electrode for Lithium Ion Secondary Battery The method for producing a negative electrode for lithium ion secondary battery according to the present invention comprises a negative electrode active material comprising the Si-containing negative electrode active material and the polyimide precursor resin (3). After the slurry is applied on the surface of the negative electrode current collector, it is preliminarily dried at 30 to 130 ° C., rolled, and then imidized with the polyimide precursor resin.
According to the production method of the present invention, the negative electrode for a lithium ion secondary battery of the present invention can be efficiently produced.

用いる負極合材スラリーには、前記Siを含む負極活物質とポリイミド前駆体樹脂(3)に加えて、前記導電補助材を含むのが好ましい。
負極合材スラリーの調製方法としては、前記ポリイミド前駆体(3)に、負極活物質を添加して混合し、後に導電補助材を添加して混合する方法;ポリイミド前駆体樹脂(3)の製造重合時に、負極活物質及び導電補助剤を添加し混合する方法;等が挙げられ、操作が簡便であることから、前者の方法が好ましい。
The negative electrode mixture slurry to be used preferably contains the conductive auxiliary material in addition to the negative electrode active material containing Si and the polyimide precursor resin (3).
As a method for preparing the negative electrode mixture slurry, a method of adding and mixing the negative electrode active material to the polyimide precursor (3), and then adding and mixing a conductive auxiliary material; production of the polyimide precursor resin (3) A method of adding and mixing a negative electrode active material and a conductive auxiliary agent at the time of polymerization; and the like, and the former method is preferred because the operation is simple.

ポリイミド前駆体樹脂(3)、負極活物質、及び導電補助材の質量混合比は、ポリイミド前駆体樹脂(3):負極活物質:導電補助材=1〜30:50〜99:1〜20であるのが好ましく、1〜20:60〜95:1〜20であるのがより好ましく、1〜15:70〜95:1〜15であるのがさらに好ましく、1〜10:80〜95:1〜10であるのが特に好ましい。
なお、用いるポリイミド前駆体樹脂(3)、負極活物質、及び導電補助材としては、前記1)で例示したのと同様のものが挙げられる。
ポリイミド前駆体樹脂(3)は、前述の通り、反応終了後、溶媒を除去せずに反応混合物溶液のまま用いることができる。
The mass mixing ratio of the polyimide precursor resin (3), the negative electrode active material, and the conductive auxiliary material is polyimide precursor resin (3): negative electrode active material: conductive auxiliary material = 1-30: 50-99: 1-20. It is preferably 1-20: 60-95: 1-20, more preferably 1-15: 70-95: 1-15, and even more preferably 1-10: 80-95: 1. Is particularly preferred.
In addition, as the polyimide precursor resin (3), the negative electrode active material, and the conductive auxiliary material to be used, the same ones as exemplified in the above 1) can be mentioned.
As described above, the polyimide precursor resin (3) can be used as the reaction mixture solution without removing the solvent after completion of the reaction.

ポリイミド前駆体樹脂(3)、負極活物質、及び導電補助材を混合する際には、従来公知の、プラネタリーミキサー、脱泡ニーダー、ボールミル、ペイントシェーカー、振動ミル、ライカイ機、アジテーターミル等の一般的な混合装置を使用すればよい。   When mixing the polyimide precursor resin (3), the negative electrode active material, and the conductive auxiliary material, a conventionally known planetary mixer, defoaming kneader, ball mill, paint shaker, vibration mill, reika machine, agitator mill, etc. A general mixing device may be used.

負極合材スラリーの粘度は、次工程で集電体上に塗りやすい粘度であればよく、必要に応じて前記ポリイミド前駆体樹脂の製造時に使用した溶剤の増減により粘度調整することができる。具体的には、25℃における回転式(B型)粘度計による値で、1000〜9000mPa・sになるように選定するのが好ましい。   The viscosity of the negative electrode mixture slurry may be a viscosity that can be easily applied onto the current collector in the next step, and the viscosity can be adjusted as necessary by increasing or decreasing the solvent used during the production of the polyimide precursor resin. Specifically, it is preferable to select a value of 1000 to 9000 mPa · s as measured by a rotary (B-type) viscometer at 25 ° C.

得られた負極合材スラリーを負極集電体の表面上に塗布する方法としては、従来公知の、ドクターブレード、バーコーター等の装置を用いて塗布する方法が挙げられる。
形成される活物質合材層の厚みは、乾燥前厚みで、通常10〜500μm程度である。
Examples of a method of applying the obtained negative electrode mixture slurry onto the surface of the negative electrode current collector include a method of applying using a conventionally known apparatus such as a doctor blade or a bar coater.
The thickness of the active material mixture layer to be formed is the thickness before drying and is usually about 10 to 500 μm.

塗布後は予備乾燥を行う。予備乾燥とは、用いた溶媒がある程度蒸発し、スラリーが集電体上で液ダレせず、空気中の水分を吸って白化しない程度の乾燥を意味する。予備乾燥を行うことにより、負極活性物質と集電体との密着性が向上する。   After application, preliminary drying is performed. Pre-drying means drying to such an extent that the solvent used evaporates to some extent, the slurry does not sag on the current collector, and does not whiten due to moisture in the air. By performing the preliminary drying, the adhesion between the negative electrode active material and the current collector is improved.

予備乾燥温度は、熱イミド化を起こさない、30〜130℃の範囲である。予備乾燥温度が30℃より低いと乾燥が不十分となり、130℃より高温であると、熱イミド化が進行し、目的とする線膨張率が得られないおそれがある。
乾燥時間は、通常1〜60分である。乾燥時間が1分より短いと乾燥が不十分となり、60分より長く加熱しても残留溶媒量はほとんど変わらない。
The predrying temperature is in the range of 30 to 130 ° C. without causing thermal imidization. If the preliminary drying temperature is lower than 30 ° C., the drying becomes insufficient, and if it is higher than 130 ° C., thermal imidization proceeds and the intended linear expansion coefficient may not be obtained.
The drying time is usually 1 to 60 minutes. When the drying time is shorter than 1 minute, the drying becomes insufficient, and the residual solvent amount hardly changes even when heated for longer than 60 minutes.

次に圧延を行う。圧延することにより、所望の厚み、密度になるように負極を成形することができる。圧延する方法としては、特に制約はなく、ロールプレス、加圧プレスによる公知の方法が挙げられる。   Next, rolling is performed. By rolling, the negative electrode can be formed to have a desired thickness and density. There is no restriction | limiting in particular as a method of rolling, The well-known method by a roll press and a press is mentioned.

次に行うイミド化は、前述の、熱イミド化方法又は化学イミド化方法によって行うことができる。
イミド化を行った後には、さらに、ロールプレス、加圧プレス等の公知の方法により、所望の厚み、密度になるように負極を成形してもよい。得られるシート状のリチウムイオン二次電池用負極は、作製するリチウムイオン二次電池の仕様に応じた寸法に裁断して用いられる。
The imidization performed next can be performed by the thermal imidization method or the chemical imidization method described above.
After imidization, the negative electrode may be further shaped to have a desired thickness and density by a known method such as a roll press or a pressure press. The obtained sheet-like negative electrode for a lithium ion secondary battery is used after being cut into dimensions according to the specifications of the lithium ion secondary battery to be produced.

以下、実施例を挙げて、本発明をより詳細に説明する。なお、本発明は以下の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.

(実施例1)
(1)負極バインダー前駆体の作製
3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物と、2,2’−ジ(p−アミノフェニル)−6,6’−ビスベンゾオキサゾールと、3−アミノプロピルジエトキシメチルシランとを、モル比(3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物:2,2’−ジ(p−アミノフェニル)−6,6’−ビスベンゾオキサゾール:3−アミノプロピルジエトキシメチルシラン)が100:96:8となるように、N−メチル−2−ピロリドン(NMP)120mlに溶解し、室温で24時間攪拌・重合し、負極バインダー前駆体溶液α1を得た。
Example 1
(1) Production of negative electrode binder precursor 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2′-di (p-aminophenyl) -6,6′-bisbenzoxazole , 3-aminopropyldiethoxymethylsilane and a molar ratio (3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride: 2,2′-di (p-aminophenyl) -6,6 ′ -Bisbenzoxazole: 3-aminopropyldiethoxymethylsilane) is dissolved in 120 ml of N-methyl-2-pyrrolidone (NMP) so as to be 100: 96: 8, and stirred and polymerized at room temperature for 24 hours. A binder precursor solution α1 was obtained.

(2)負極合材スラリーの作製
負極活物質として粒径10μm以下のSi粉末(純度99.9%)と、導電補助材として平均粒径3μmの黒鉛粉末と、上記作製の負極バインダー前駆体溶液α1とを重量比(Si粉末:黒鉛粉末:負極バインダー前駆体溶液α1)が80:10:10となるように混合し、負極合材スラリーとした。
(2) Preparation of negative electrode mixture slurry Si powder (purity 99.9%) having a particle size of 10 μm or less as a negative electrode active material, graphite powder having an average particle size of 3 μm as a conductive auxiliary material, and the above prepared negative electrode binder precursor solution α1 was mixed so that the weight ratio (Si powder: graphite powder: negative electrode binder precursor solution α1) was 80:10:10 to obtain a negative electrode mixture slurry.

(3)負極の作製
(2)で作製した負極合材スラリーを、集電体である圧延銅箔(厚さ30μm)の片面に塗布し、130℃で10分間予備乾燥を行い、溶剤を除去し、これを圧延した。得られたものを窒素雰囲気下、350℃で60分間加熱し、熱イミド化を完結したものを負極とした。この際、得られた負極はカールせず、活物質層の剥離も起こってはいなかった。
上記負極の熱処理によって、バインダー前駆体溶液α1からポリイミド化合物が生成したことを確認するために以下の試験1を行った。
(3) Preparation of negative electrode The negative electrode mixture slurry prepared in (2) was applied to one side of a rolled copper foil (thickness 30 μm), which is a current collector, and pre-dried at 130 ° C. for 10 minutes to remove the solvent. And this was rolled. The obtained product was heated at 350 ° C. for 60 minutes in a nitrogen atmosphere, and the one obtained by completing the thermal imidization was used as the negative electrode. At this time, the obtained negative electrode was not curled and the active material layer was not peeled off.
In order to confirm that the polyimide compound was produced from the binder precursor solution α1 by the heat treatment of the negative electrode, the following test 1 was performed.

(試験1)
バインダー前駆体溶液α1を、130℃で10分間予備乾燥を行い、溶剤を除去し、窒素雰囲気下350℃で60分間加熱し、赤外線吸収スペクトルを測定した。その結果、1780cm−1付近にイミド結合由来のピークが検出された。これにより、バインダー前駆体溶液α1の熱処理により、イミド化反応が進行してポリイミド化合物が生成したことが確認された。
(Test 1)
The binder precursor solution α1 was pre-dried at 130 ° C. for 10 minutes to remove the solvent, heated at 350 ° C. for 60 minutes in a nitrogen atmosphere, and an infrared absorption spectrum was measured. As a result, a peak derived from an imide bond was detected in the vicinity of 1780 cm −1 . Thereby, it was confirmed by the heat treatment of the binder precursor solution α1 that the imidization reaction progressed and a polyimide compound was generated.

また、上記負極の熱処理によって、生成したポリイミド樹脂が有する線膨張率を測定するために以下の試験2を行った。   Moreover, the following test 2 was performed in order to measure the linear expansion coefficient which the polyimide resin produced | generated by the heat processing of the said negative electrode had.

(試験2)
バインダー前駆体溶液α1を、130℃で10分間予備乾燥を行い溶剤を除去し、窒素雰囲気下350℃で60分間加熱し、ポリイミド膜を得た。この膜について、熱機械的分析装置(TMA)を用いて線膨張率の測定を行ったところ、5ppm/℃を示しており、負極活物質(Si)と同程度の線膨張率を有していた。
(Test 2)
The binder precursor solution α1 was pre-dried at 130 ° C. for 10 minutes to remove the solvent, and heated at 350 ° C. for 60 minutes in a nitrogen atmosphere to obtain a polyimide film. The film was measured for linear expansion coefficient using a thermomechanical analyzer (TMA). As a result, it showed 5 ppm / ° C. and had a linear expansion coefficient comparable to that of the negative electrode active material (Si). It was.

〈接着力・結着力評価〉
実施例1で作製した負極中のバインダーと集電体であるCuとの接着力、又は負極活物質であるSi粉末との結着力を評価するために以下の試験を行った。
<Evaluation of adhesion and binding strength>
In order to evaluate the adhesive force between the binder in the negative electrode produced in Example 1 and Cu as the current collector, or the binding force between Si powder as the negative electrode active material, the following tests were performed.

実施例1で作製した負極を10mm角に切り抜き、上面(負極合材層側)にエポキシ接着剤付きアルミ製ピン(直径2.7mm)を、下面(銅箔側)にエポキシ接着剤付きセラミック板(11mm角)を設置し、アルミ製クリップで3つを挟み込んで固定した。これを窒素雰囲気下150℃で60分間加熱し、アルミ製ピン、活物質合材層付き負極、及びセラミック板を接着した。これを、付着力試験機(品名:ロミュラス薄膜密着強度測定機、Quad Group社製)を用いて、接着力(バインダーを介した活物質と集電体との付着力)又は結着力(バインダーを介した活物質同士の付着力)を、下記の基準で判定した。この値が大きいほど接着力又は結着力が強いことを表す。   The negative electrode produced in Example 1 was cut into a 10 mm square, an aluminum pin with an epoxy adhesive (diameter 2.7 mm) on the upper surface (negative electrode composite layer side), and a ceramic plate with an epoxy adhesive on the lower surface (copper foil side) (11 mm square) was installed, and three were clamped and fixed with aluminum clips. This was heated at 150 ° C. for 60 minutes in a nitrogen atmosphere to bond the aluminum pin, the negative electrode with the active material mixture layer, and the ceramic plate. Using an adhesion force tester (product name: Romulus thin film adhesion strength measuring device, manufactured by Quad Group), the adhesion force (adhesion force between the active material and the current collector through the binder) or binding force (binder The adhesion between the active materials was determined according to the following criteria. The larger this value, the stronger the adhesive force or binding force.

A : 20MPa以上
B : 15MPa以上20MPa未満
C : 10MPa以上15MPa未満
D : 5MPa以上10MPa未満
E : 5MPa未満
試験の結果、評価は、Aであった。
A: 20 MPa or more B: 15 MPa or more and less than 20 MPa C: 10 MPa or more and less than 15 MPa D: 5 MPa or more and less than 10 MPa E: Less than 5 MPa As a result of the test, the evaluation was A.

〈サイクル特性評価〉
実施例1で得られた負極を用いて、下記のようにしてリチウムイオン二次電池を作製し、サイクル特性を評価した。
(i)正極の作製
LiCoO(品名:セルシードC−10N、日本化学工業社製)100部に対し、ポリ二フッ化ビニリデン(PVDF)2部(固形分相当)及び導電剤としてアセチレンブラック2部を混合し、更にN−メチルピロリドンを固形分濃度が80%になるように混合してプラネタリーミキサーで混合して正極用スラリーを調製した。この正極用スラリーをコンマコーターで厚さ20μmのアルミ箔上に、乾燥後の膜厚が120μm程度になるように塗布し、60℃で20分間乾燥後、150℃で2時間加熱処理して電極原反を得た。この電極原反をロールプレスで圧延し、密度が3.7g/cm、銅箔及び正極活物質層の合計厚みが100μmに制御された正極を作製した。
<Cycle characteristic evaluation>
Using the negative electrode obtained in Example 1, a lithium ion secondary battery was produced as follows, and the cycle characteristics were evaluated.
(I) Production of positive electrode LiCoO 2 (product name: cell seed C-10N, manufactured by Nippon Chemical Industry Co., Ltd.) 100 parts, polyvinylidene difluoride (PVDF) 2 parts (corresponding to solid content) and acetylene black 2 parts as a conductive agent Then, N-methylpyrrolidone was further mixed to a solid content of 80% and mixed with a planetary mixer to prepare a positive electrode slurry. This positive electrode slurry was applied on a 20 μm thick aluminum foil with a comma coater so that the film thickness after drying was about 120 μm, dried at 60 ° C. for 20 minutes, and then heat treated at 150 ° C. for 2 hours to form an electrode. I got the original fabric. This electrode original fabric was rolled by a roll press to produce a positive electrode in which the density was 3.7 g / cm 3 and the total thickness of the copper foil and the positive electrode active material layer was controlled to 100 μm.

(ii)電池の作製
実施例1で得られた負極を14mmの円形に、(i)で作製した正極を13mmの円形に打ち抜き、直径16mm、乾式法により製造された厚さ25μmの単層のポリプロピレン製セパレーター(気孔率55%)を介在させて、互いに活物質層を対向させて、ポリプロピレン製パッキンを配置したステンレス鋼製の外装容器中(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.2mm)に収納した。容器中に、LiPFを1mol/Lの濃度でエチレンカーボネート/ジエチルカーボネート=1/2(容積比)の混合溶媒に溶解させた電解液(キシダ化学社製)を、空気が残らないように、注入して、厚さ0.2mmのステンレス鋼のキャップをかぶせて、ポリプロピレン製パッキンを介して外装容器とキャップを固定し、それぞれキャップに銅箔が、容器低面にアルミ箔が接触するように内容物を封止して、直径20mm、厚さ2.0mmのコイン型電池β1を製造した。
(Ii) Production of Battery The negative electrode obtained in Example 1 was punched into a circle of 14 mm, the positive electrode produced in (i) was punched into a circle of 13 mm, a diameter of 16 mm, and a single layer of 25 μm thickness produced by a dry method. In a stainless steel outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness) in which a polypropylene separator (porosity 55%) is interposed and the active material layers face each other and a polypropylene packing is arranged. 0.2 mm). In the container, an electrolytic solution (manufactured by Kishida Chemical Co., Ltd.) in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate / diethyl carbonate = 1/2 (volume ratio) at a concentration of 1 mol / L was used so that no air remained. Inject and cover with a stainless steel cap with a thickness of 0.2 mm, and fix the outer container and cap through polypropylene packing so that the copper foil is in contact with the cap and the aluminum foil is in contact with the lower surface of the container. The contents were sealed to manufacture a coin-type battery β1 having a diameter of 20 mm and a thickness of 2.0 mm.

(iii)サイクル特性評価
得られたリチウムイオン二次電池を用いて、それぞれ20℃で0.1Cの定電流で4.2Vまで充電し、0.1Cの定電流で3.0Vまで放電する充放電サイクルを行った。充放電サイクルは100サイクルまで行い、初期放電容量に対する100サイクル目の放電容量の比を容量維持率とし、下記の基準で判定した。この値が大きいほど繰り返し充放電による容量減が少ないことを示す。
(Iii) Evaluation of cycle characteristics Using the obtained lithium ion secondary battery, charging was performed at 20 ° C. with a constant current of 0.1 C up to 4.2 V and discharged with a constant current of 0.1 C up to 3.0 V. A discharge cycle was performed. The charge / discharge cycle was performed up to 100 cycles, and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity was defined as the capacity retention rate, and the following criteria were used. Larger values indicate less capacity loss due to repeated charge and discharge.

A : 80%以上
B : 75%以上80%未満
C : 70%以上75%未満
D : 50%以上70%未満
E : 50%未満
評価の結果は、Aであった。
A: 80% or more B: 75% or more and less than 80% C: 70% or more and less than 75% D: 50% or more and less than 70% E: less than 50% The evaluation result was A.

(実施例2)
負極バインダー前駆体作製時に、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物と、2,2’−ジ(p−アミノフェニル)−6,6’−ビスベンゾオキサゾールと、3−アミノプロピルジエトキシメチルシランとを、モル比が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物:2,2’−ジ(p−アミノフェニル)−6,6’−ビスベンゾオキサゾール:3−アミノプロピルジエトキシメチルシラン=100:96:8となるように、NMP150mlに溶解し、室温で24時間攪拌・重合した以外は、実施例1と同様にして、負極バインダー前駆体溶液α2を調製し、実施例1と同様にして負極を作製した。作製した負極はしわやカールを起こさず、接着力・結着力評価はAであった。
(Example 2)
During the preparation of the negative electrode binder precursor, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2′-di (p-aminophenyl) -6,6′-bisbenzoxazole, 3 -Aminopropyldiethoxymethylsilane with a molar ratio of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride: 2,2'-di (p-aminophenyl) -6,6'-bis Benzoxazole: 3-aminopropyldiethoxymethylsilane = negative electrode binder precursor in the same manner as in Example 1 except that it was dissolved in 150 ml of NMP and stirred and polymerized at room temperature for 24 hours so as to be 100: 96: 8. Solution α2 was prepared, and a negative electrode was produced in the same manner as in Example 1. The produced negative electrode did not cause wrinkles or curls, and the evaluation of adhesive strength and binding strength was A.

得られた負極バインダー前駆体溶液α2を用いて、実施例1の試験1と同様にしてポリイミド膜を得た。得られたポリイミド膜の赤外線吸収スペクトルを測定した結果、1780cm−1付近にイミド結合由来のピークが検出され、ポリイミド化合物が生成したことが確認された。また、実施例1の試験2と同様にして、得られたポリイミド膜の線膨張率を測定した。測定結果を表1に示す。
さらに実施例1と同様にしてコイン型電池β2を作製したところ、サイクル特性評価はBであった。
A polyimide film was obtained in the same manner as in Test 1 of Example 1 using the obtained negative electrode binder precursor solution α2. As a result of measuring the infrared absorption spectrum of the obtained polyimide film, a peak derived from an imide bond was detected in the vicinity of 1780 cm −1 , and it was confirmed that a polyimide compound was produced. Moreover, it carried out similarly to the test 2 of Example 1, and measured the linear expansion coefficient of the obtained polyimide film. The measurement results are shown in Table 1.
Furthermore, when a coin-type battery β2 was produced in the same manner as in Example 1, the cycle characteristic evaluation was B.

(実施例3)
負極バインダー前駆体作製時に、ピロメリット酸無水物と、4,4’−ジアミノジフェニルエーテルと、3−アミノプロピルエトキシジメチルシランとを、モル比がピロメリット酸無水物:4,4’−ジアミノジフェニルエーテル:3−アミノプロピルエトキシジメチルシラン=100:92:10となるように、NMP115mlに溶解し、室温で24時間攪拌・重合した以外は、実施例1と同様にして、負極バインダー前駆体溶液α3を調製し、実施例1と同様にして負極を作製した。作製した負極はしわやカールを起こさず、接着力・結着力評価はAであった。
(Example 3)
At the time of preparing the negative electrode binder precursor, pyromellitic anhydride, 4,4′-diaminodiphenyl ether, and 3-aminopropylethoxydimethylsilane are in a molar ratio of pyromellitic anhydride: 4,4′-diaminodiphenyl ether: A negative electrode binder precursor solution α3 was prepared in the same manner as in Example 1 except that it was dissolved in 115 ml of NMP so that 3-aminopropylethoxydimethylsilane = 100: 92: 10, and stirred and polymerized at room temperature for 24 hours. In the same manner as in Example 1, a negative electrode was produced. The produced negative electrode did not cause wrinkles or curls, and the evaluation of adhesive strength and binding strength was A.

得られた負極バインダー前駆体溶液α3を用いて、実施例1の試験1と同様にしてポリイミド膜を得た。得られたポリイミド膜の赤外線吸収スペクトルを測定した結果、1780cm−1付近にイミド結合由来のピークが検出され、ポリイミド化合物が生成したことが確認された。また、実施例1の試験2と同様にして、得られたポリイミド膜の線膨張率を測定した。測定結果を表1に示す。
さらに実施例1と同様にしてコイン型電池β3を作製したところ、サイクル特性評価はBであった。
A polyimide film was obtained in the same manner as in Test 1 of Example 1 using the obtained negative electrode binder precursor solution α3. As a result of measuring the infrared absorption spectrum of the obtained polyimide film, a peak derived from an imide bond was detected in the vicinity of 1780 cm −1 , and it was confirmed that a polyimide compound was produced. Moreover, it carried out similarly to the test 2 of Example 1, and measured the linear expansion coefficient of the obtained polyimide film. The measurement results are shown in Table 1.
Furthermore, when a coin-type battery β3 was produced in the same manner as in Example 1, the cycle characteristic evaluation was B.

(実施例4)
負極バインダー前駆体作製時に、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物と、p−フェニレンジアミンと、3−アミノプロピルトリエトキシシランとを、モル比が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物:p−フェニレンジアミン:3−アミノプロピルトリエトキシシラン=100:98:6となるように、NMP125mlに溶解し、室温で24時間攪拌・重合した以外は、実施例1と同様にして、負極バインダー前駆体溶液α4を調製し、実施例1と同様にして負極を作製した。作製した負極はしわやカールを起こさず、接着力・結着力評価はBであった。
Example 4
At the time of preparing the negative electrode binder precursor, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, p-phenylenediamine, and 3-aminopropyltriethoxysilane were mixed at a molar ratio of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride: p-phenylenediamine: 3-aminopropyltriethoxysilane = 100: 98: 6, dissolved in 125 ml of NMP, stirred and polymerized at room temperature for 24 hours Prepared a negative electrode binder precursor solution α4 in the same manner as in Example 1, and produced a negative electrode in the same manner as in Example 1. The produced negative electrode did not cause wrinkles or curls, and the adhesive strength / binding strength evaluation was B.

得られた負極バインダー前駆体溶液α4を用いて、実施例1の試験1と同様にしてポリイミド膜を得た。得られたポリイミド膜の赤外線吸収スペクトルを測定した結果、1780cm−1付近にイミド結合由来のピークが検出され、ポリイミド化合物が生成したことが確認された。また、実施例1の試験2と同様にして、得られたポリイミド膜の線膨張率を測定した。測定結果を表1に示す。
さらに実施例1と同様にしてコイン型電池β4を作製したところ、サイクル特性評価はBであった。
A polyimide film was obtained in the same manner as in Test 1 of Example 1 using the obtained negative electrode binder precursor solution α4. As a result of measuring the infrared absorption spectrum of the obtained polyimide film, a peak derived from an imide bond was detected in the vicinity of 1780 cm −1 , and it was confirmed that a polyimide compound was produced. Moreover, it carried out similarly to the test 2 of Example 1, and measured the linear expansion coefficient of the obtained polyimide film. The measurement results are shown in Table 1.
Furthermore, when a coin-type battery β4 was produced in the same manner as in Example 1, the cycle characteristic evaluation was B.

(実施例5)
負極バインダー前駆体作製時に、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物と、2,2‘−ジメチルビフェニル−4,4’−ジアミンと、3−アミノプロピルジエトキシメチルシランとを、モル比が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物:2,2‘−ジメチルビフェニル−4,4’−ジアミン:3−アミノプロピルジエトキシメチルシラン=100:95:7となるように、NMP155mlに溶解し、室温で24時間攪拌・重合した以外は、実施例1と同様にして、負極バインダー前駆体溶液α5を調製し、実施例1と同様にして負極を作製した。作製した負極はしわやカールを起こさず、接着力・結着力評価はCであった。
(Example 5)
During the preparation of the negative electrode binder precursor, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2′-dimethylbiphenyl-4,4′-diamine, and 3-aminopropyldiethoxymethylsilane And a molar ratio of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride: 2,2′-dimethylbiphenyl-4,4′-diamine: 3-aminopropyldiethoxymethylsilane = 100: A negative electrode binder precursor solution α5 was prepared in the same manner as in Example 1 except that it was dissolved in 155 ml of NMP so as to be 95: 7 and stirred and polymerized at room temperature for 24 hours. Was made. The produced negative electrode did not cause wrinkles or curls, and the adhesive strength / binding strength evaluation was C.

得られた負極バインダー前駆体溶液α5を用いて、実施例1の試験1と同様にしてポリイミド膜を得た。得られたポリイミド膜の赤外線吸収スペクトルを測定した結果、1780cm−1付近にイミド結合由来のピークが検出され、ポリイミド化合物が生成したことが確認された。また、実施例1の試験2と同様にして、得られたポリイミド膜の線膨張率を測定した。測定結果を表1に示す。
さらに実施例1と同様にしてコイン型電池β5を作製したところ、サイクル特性評価はBであった。
Using the obtained negative electrode binder precursor solution α5, a polyimide film was obtained in the same manner as in Test 1 of Example 1. As a result of measuring the infrared absorption spectrum of the obtained polyimide film, a peak derived from an imide bond was detected in the vicinity of 1780 cm −1 , and it was confirmed that a polyimide compound was produced. Moreover, it carried out similarly to the test 2 of Example 1, and measured the linear expansion coefficient of the obtained polyimide film. The measurement results are shown in Table 1.
Furthermore, when a coin-type battery β5 was produced in the same manner as in Example 1, the cycle characteristic evaluation was B.

(実施例6)
負極バインダー前駆体作製時に、ピロメリット酸無水物と、N−(4−アミノフェニル)−4−アミノベンズアミドと、3−アミノプロピルジエトキシメチルシランとを、モル比がピロメリット酸無水物:N−(4−アミノフェニル)−4−アミノベンズアミド:3−アミノプロピルジエトキシメチルシラン=100:85:6となるように、NMP120mlに溶解し、室温で24時間攪拌・重合した以外は、実施例1と同様にして、負極バインダー前駆体溶液α6を調製し、実施例1と同様にして負極を作製した。作製した負極はしわやカールを起こさず、接着力・結着力評価はBであった。
(Example 6)
At the time of preparing the negative electrode binder precursor, pyromellitic anhydride, N- (4-aminophenyl) -4-aminobenzamide, and 3-aminopropyldiethoxymethylsilane have a molar ratio of pyromellitic anhydride: N Example except that-(4-aminophenyl) -4-aminobenzamide: 3-aminopropyldiethoxymethylsilane = 100: 85: 6 was dissolved in 120 ml of NMP and stirred and polymerized at room temperature for 24 hours. In the same manner as in Example 1, a negative electrode binder precursor solution α6 was prepared, and in the same manner as in Example 1, a negative electrode was produced. The produced negative electrode did not cause wrinkles or curls, and the adhesive strength / binding strength evaluation was B.

得られた負極バインダー前駆体溶液α6を用いて、実施例1の試験1と同様にしてポリイミド膜を得た。得られたポリイミド膜の赤外線吸収スペクトルを測定した結果、1780cm−1付近にイミド結合由来のピークが検出され、ポリイミド化合物が生成したことが確認された。また、実施例1の試験2と同様にして、得られたポリイミド膜の線膨張率を測定した。測定結果を表1に示す。
さらに実施例1と同様にしてコイン型電池β6を作製したところ、サイクル特性評価はAであった。
Using the obtained negative electrode binder precursor solution α6, a polyimide film was obtained in the same manner as in Test 1 of Example 1. As a result of measuring the infrared absorption spectrum of the obtained polyimide film, a peak derived from an imide bond was detected in the vicinity of 1780 cm −1 , and it was confirmed that a polyimide compound was produced. Moreover, it carried out similarly to the test 2 of Example 1, and measured the linear expansion coefficient of the obtained polyimide film. The measurement results are shown in Table 1.
Furthermore, when a coin-type battery β6 was produced in the same manner as in Example 1, the cycle characteristic evaluation was A.

(実施例7)
負極バインダー前駆体作製時に、ピロメリット酸無水物と、4−アミノフェニル−4−アミノベンゾエートと、3−アミノプロピルジエトキシメチルシランとを、モル比がピロメリット酸無水物:4−アミノフェニル−4−アミノベンゾエート:3−アミノプロピルジエトキシメチルシラン=100:90:7となるように、NMP140mlに溶解し、室温で24時間攪拌・重合した以外は、実施例1と同様にして、負極バインダー前駆体溶液α7を調製し、実施例1と同様にして負極を作製した。作製した負極はしわやカールを起こさず、接着力・結着力評価はAであった。
(Example 7)
In preparing the negative electrode binder precursor, pyromellitic anhydride, 4-aminophenyl-4-aminobenzoate, and 3-aminopropyldiethoxymethylsilane were mixed in a molar ratio of pyromellitic anhydride: 4-aminophenyl- 4-aminobenzoate: 3-aminopropyldiethoxymethylsilane = Negative binder as in Example 1 except that it was dissolved in 140 ml of NMP and stirred and polymerized at room temperature for 24 hours so as to be 100: 90: 7. A precursor solution α7 was prepared, and a negative electrode was produced in the same manner as in Example 1. The produced negative electrode did not cause wrinkles or curls, and the evaluation of adhesive strength and binding strength was A.

得られた負極バインダー前駆体溶液α7を用いて、実施例1の試験1と同様にしてポリイミド膜を得た。得られたポリイミド膜の赤外線吸収スペクトルを測定した結果、1780cm−1付近にイミド結合由来のピークが検出され、ポリイミド化合物が生成したことが確認された。また、実施例1の試験2と同様にして、得られたポリイミド膜の線膨張率を測定した。測定結果を表1に示す。
さらに実施例1と同様にしてコイン型電池β7を作製したところ、サイクル特性評価はBであった。
Using the resulting negative electrode binder precursor solution α7, a polyimide film was obtained in the same manner as in Test 1 of Example 1. As a result of measuring the infrared absorption spectrum of the obtained polyimide film, a peak derived from an imide bond was detected in the vicinity of 1780 cm −1 , and it was confirmed that a polyimide compound was produced. Moreover, it carried out similarly to the test 2 of Example 1, and measured the linear expansion coefficient of the obtained polyimide film. The measurement results are shown in Table 1.
Furthermore, when a coin-type battery β7 was produced in the same manner as in Example 1, the cycle characteristic evaluation was B.

(比較例1)
負極バインダー前駆体作製時に、3−アミノプロピルジエトキシメチルシランを使用しなかったこと以外は、実施例1と同様にして負極バインダー前駆体溶液γ1を作製し、実施例1と同様にして負極を作製した。作製した負極はしわやカールを起こさなかったが、接着力・結着力評価はEであった。
(Comparative Example 1)
A negative electrode binder precursor solution γ1 was prepared in the same manner as in Example 1 except that 3-aminopropyldiethoxymethylsilane was not used at the time of preparing the negative electrode binder precursor. Produced. The produced negative electrode did not cause wrinkles or curls, but the evaluation of adhesive strength and binding strength was E.

得られた負極バインダー前駆体溶液γ1を用いて、実施例1の試験1と同様にしてポリイミド膜を得た。得られたポリイミド膜の赤外線吸収スペクトルを測定した結果、1780cm−1付近にイミド結合由来のピークが検出され、ポリイミド化合物が生成したことが確認された。また、実施例1の試験2と同様にして、得られたポリイミド膜の線膨張率を測定した。測定結果を表1に示す。
さらに実施例1と同様にしてコイン型電池δ1を作製したが、サイクル特性評価はEであった。
Using the resulting negative electrode binder precursor solution γ1, a polyimide film was obtained in the same manner as in Test 1 of Example 1. As a result of measuring the infrared absorption spectrum of the obtained polyimide film, a peak derived from an imide bond was detected in the vicinity of 1780 cm −1 , and it was confirmed that a polyimide compound was produced. Moreover, it carried out similarly to the test 2 of Example 1, and measured the linear expansion coefficient of the obtained polyimide film. The measurement results are shown in Table 1.
Further, a coin-type battery δ1 was produced in the same manner as in Example 1, but the cycle characteristic evaluation was E.

(比較例2)
負極バインダー前駆体作製時に、3−アミノプロピルジエトキシメチルシランを使用しなかったこと以外は、実施例2と同様にして負極バインダー前駆体溶液γ2を作製し、実施例1と同様にして負極を作製した。作製した負極はしわやカールを起こさなかったが、接着力・結着力評価はEであった。
(Comparative Example 2)
A negative electrode binder precursor solution γ2 was prepared in the same manner as in Example 2 except that 3-aminopropyldiethoxymethylsilane was not used at the time of preparing the negative electrode binder precursor. Produced. The produced negative electrode did not cause wrinkles or curls, but the evaluation of adhesive strength and binding strength was E.

得られた負極バインダー前駆体溶液γ2を用いて、実施例1の試験1と同様にしてポリイミド膜を得た。得られたポリイミド膜の赤外線吸収スペクトルを測定した結果、1780cm−1付近にイミド結合由来のピークが検出され、ポリイミド化合物が生成したことが確認された。また、実施例1の試験2と同様にして、得られたポリイミド膜の線膨張率を測定した。測定結果を表1に示す。
さらに実施例1と同様にしてコイン型電池δ2を作製したが、サイクル特性評価はEであった。
A polyimide film was obtained in the same manner as in Test 1 of Example 1 using the obtained negative electrode binder precursor solution γ2. As a result of measuring the infrared absorption spectrum of the obtained polyimide film, a peak derived from an imide bond was detected in the vicinity of 1780 cm −1 , and it was confirmed that a polyimide compound was produced. Moreover, it carried out similarly to the test 2 of Example 1, and measured the linear expansion coefficient of the obtained polyimide film. The measurement results are shown in Table 1.
Further, a coin-type battery δ2 was produced in the same manner as in Example 1, but the cycle characteristic evaluation was E.

(比較例3)
負極バインダー前駆体作製時に、ピロメリット酸無水物と、p−フェニレンジアミンとを、モル比がピロメリット酸無水物:p−フェニレンジアミン=100:96となるように、NMP125mlに溶解し、室温で24時間攪拌・重合した以外は、実施例1と同様にして負極バインダー前駆体溶液γ3を作製し、実施例1と同様にして負極を作製した。作製した負極はしわやカールを起こさなかったが、接着力・結着力評価はEであった。
(Comparative Example 3)
At the time of preparing the negative electrode binder precursor, pyromellitic anhydride and p-phenylenediamine were dissolved in 125 ml of NMP so that the molar ratio was pyromellitic anhydride: p-phenylenediamine = 100: 96, and at room temperature. A negative electrode binder precursor solution γ3 was prepared in the same manner as in Example 1 except that the mixture was stirred and polymerized for 24 hours, and a negative electrode was prepared in the same manner as in Example 1. The produced negative electrode did not cause wrinkles or curls, but the evaluation of adhesive strength and binding strength was E.

得られた負極バインダー前駆体溶液γ3を用いて、実施例1の試験1と同様にしてポリイミド膜を得ようとしたが、非常に硬く脆い膜であったため、自己支持性がとれず、線膨張率は測定できなかった。
さらに実施例1と同様にしてコイン型電池δ3を作製したが、サイクル特性評価はEであった。
Using the obtained negative electrode binder precursor solution γ3, an attempt was made to obtain a polyimide film in the same manner as in Test 1 of Example 1. However, since it was a very hard and brittle film, self-supportability could not be obtained and linear expansion was observed. The rate could not be measured.
Further, a coin-type battery δ3 was produced in the same manner as in Example 1, but the cycle characteristic evaluation was E.

(比較例4)
負極バインダー前駆体作製時に、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物と、4,4’−ジアミノジフェニルエーテルとを、モル比が3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物:4,4’−ジアミノジフェニルエーテル=100:94となるように、NMP130mlに溶解し、室温で24時間攪拌・重合した以外は、実施例1と同様にして、負極バインダー前駆体溶液γ4を調製し、実施例1と同様にして負極を作製した。作製した負極はしわやカールが発生し、接着力・結着力評価はEであった。
(Comparative Example 4)
At the time of preparing the negative electrode binder precursor, the molar ratio of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether is 3,3 ′, 4,4′-benzophenone. Tetracarboxylic acid dianhydride: 4,4′-diaminodiphenyl ether = 100: 94 In the same manner as in Example 1 except that it was dissolved in 130 ml of NMP and stirred and polymerized at room temperature for 24 hours. A body solution γ4 was prepared, and a negative electrode was produced in the same manner as in Example 1. The produced negative electrode was wrinkled and curled, and the evaluation of adhesive strength and binding strength was E.

得られた負極バインダー前駆体溶液γ4を用いて、実施例1の試験1と同様にしてポリイミド膜を得た。得られたポリイミド膜の赤外線吸収スペクトルを測定した結果、1780cm−1付近にイミド結合由来のピークが検出され、ポリイミド化合物ガ生成したことが確認された。また、実施例1の試験2と同様にして、得られたポリイミド膜の線膨張率を測定した。測定結果を表1に示す。
さらに実施例1と同様にしてコイン型電池δ4を作製したが、サイクル特性評価はEであった。
A polyimide film was obtained in the same manner as in Test 1 of Example 1 using the obtained negative electrode binder precursor solution γ4. As a result of measuring the infrared absorption spectrum of the obtained polyimide film, a peak derived from an imide bond was detected in the vicinity of 1780 cm −1 , and it was confirmed that a polyimide compound was generated. Moreover, it carried out similarly to the test 2 of Example 1, and measured the linear expansion coefficient of the obtained polyimide film. The measurement results are shown in Table 1.
Further, a coin-type battery δ4 was produced in the same manner as in Example 1, but the cycle characteristic evaluation was E.

Figure 2013077498
Figure 2013077498

表1から、末端に、ケイ素含有基を有し、線膨張率が2〜30ppm/℃であるポリイミド樹脂を用いたリチウムイオン二次電池用負極は、負極作製時のしわやカールの発生がなく、接着力・結着力、あるいはサイクル特性の観点から、優れているといえる。   From Table 1, the negative electrode for a lithium ion secondary battery using a polyimide resin having a silicon-containing group at the end and having a linear expansion coefficient of 2 to 30 ppm / ° C. has no occurrence of wrinkles or curls during the production of the negative electrode. It can be said that it is excellent in terms of adhesive strength / binding strength or cycle characteristics.

Claims (4)

ケイ素を含む負極活物質とバインダーとを含む活物質合材層を、負極集電体の表面上に配置したリチウムイオン二次電池用負極であって、
前記バインダーが、下記式(1)で表されるケイ素含有ポリイミド樹脂を含んでなるものであることを特徴とするリチウムイオン二次電池用負極。
Figure 2013077498
〔式中、Xは4価の有機基を表し、Yは2価の有機基を表し、nは、1〜10,000の整数を表す。Tは、式(2)
Figure 2013077498
(式中、R〜Rはそれぞれ独立して、炭素数1〜8の炭化水素基又は炭素数1〜8の酸素含有炭化水素基を表し、mは1〜8の整数を表す。)で示されるケイ素含有基を表す。〕
A negative electrode for a lithium ion secondary battery in which an active material mixture layer containing a negative electrode active material containing silicon and a binder is disposed on the surface of a negative electrode current collector,
The negative electrode for a lithium ion secondary battery, wherein the binder comprises a silicon-containing polyimide resin represented by the following formula (1).
Figure 2013077498
[Wherein, X represents a tetravalent organic group, Y represents a divalent organic group, and n represents an integer of 1 to 10,000. T is the formula (2)
Figure 2013077498
(In the formula, R 1 to R 3 each independently represent a hydrocarbon group having 1 to 8 carbon atoms or an oxygen-containing hydrocarbon group having 1 to 8 carbon atoms, and m represents an integer of 1 to 8). Represents a silicon-containing group represented by ]
前記ケイ素含有ポリイミド樹脂が、2〜30ppm/℃の線膨張率を有するものであることを特徴とする請求項1に記載のリチウムイオン二次電池用負極。   2. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the silicon-containing polyimide resin has a linear expansion coefficient of 2 to 30 ppm / ° C. 3. 前記ケイ素含有ポリイミド樹脂が、下記式(3)で表されるケイ素含有ポリイミド前駆体樹脂をイミド化して得られたものであることを特徴とする請求項1又は2に記載のリチウムイオン二次電池用負極。
Figure 2013077498
(式中、T、X、Y及びnは、前記と同じ意味を表す。Rは、水素原子または炭素数1〜8の炭化水素基を表す。)
The lithium ion secondary battery according to claim 1 or 2, wherein the silicon-containing polyimide resin is obtained by imidizing a silicon-containing polyimide precursor resin represented by the following formula (3). Negative electrode.
Figure 2013077498
(In the formula, T, X, Y and n represent the same meaning as described above. R represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.)
ケイ素を含む負極活物質と、下記式(3)で表されるケイ素含有ポリイミド前駆樹脂とを含む負極合材スラリーを、負極集電体の表面上に塗布した後、30〜130℃で予備乾燥を行い、圧延した後、前記ケイ素含有ポリイミド前駆体樹脂をイミド化する工程を有することを特徴とする請求項1又は2に記載のリチウムイオン二次電池用負極の製造方法。
Figure 2013077498
〔式中、Xは4価の有機基を表し、Yは2価の有機基を表し、nは、1〜10,000の整数を表す。Tは、式(2)
Figure 2013077498
(式中、R〜Rはそれぞれ独立して、炭素数1〜8の炭化水素基又は炭素数1〜8の酸素含有炭化水素基を表し、mは1〜8の整数を表す。)で示されるケイ素含有基を表し、Rは、水素原子または炭素数1〜8の炭化水素基を表す。〕
After apply | coating the negative mix slurry containing the negative electrode active material containing silicon, and the silicon containing polyimide precursor resin represented by following formula (3) on the surface of a negative electrode electrical power collector, it pre-drys at 30-130 degreeC. 3. The method for producing a negative electrode for a lithium ion secondary battery according to claim 1, further comprising: imidizing the silicon-containing polyimide precursor resin after performing and rolling.
Figure 2013077498
[Wherein, X represents a tetravalent organic group, Y represents a divalent organic group, and n represents an integer of 1 to 10,000. T is the formula (2)
Figure 2013077498
(In the formula, R 1 to R 3 each independently represent a hydrocarbon group having 1 to 8 carbon atoms or an oxygen-containing hydrocarbon group having 1 to 8 carbon atoms, and m represents an integer of 1 to 8). And R represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. ]
JP2011217465A 2011-09-30 2011-09-30 Negative electrode for lithium ion secondary battery and method for producing the same Active JP5776475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217465A JP5776475B2 (en) 2011-09-30 2011-09-30 Negative electrode for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011217465A JP5776475B2 (en) 2011-09-30 2011-09-30 Negative electrode for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013077498A true JP2013077498A (en) 2013-04-25
JP5776475B2 JP5776475B2 (en) 2015-09-09

Family

ID=48480816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011217465A Active JP5776475B2 (en) 2011-09-30 2011-09-30 Negative electrode for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5776475B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032908A (en) * 2012-08-06 2014-02-20 Jsr Corp Binder composition for negative electrode of power storage device
JP2016028382A (en) * 2014-07-09 2016-02-25 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5995033B1 (en) * 2016-05-30 2016-09-21 Jsr株式会社 Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
JP2016219414A (en) * 2015-05-19 2016-12-22 株式会社半導体エネルギー研究所 Electrode, power storage device, and electronic device
KR102314898B1 (en) * 2020-03-30 2021-10-20 피아이첨단소재 주식회사 Aqueous polyamic acid composition
CN113555552A (en) * 2021-06-03 2021-10-26 浙江中科玖源新材料有限公司 Polyimide binder and negative plate
WO2022202701A1 (en) * 2021-03-22 2022-09-29 ウィンゴーテクノロジー株式会社 Polyimide compound, negative electrode material for lithium ion secondary batteries that uses said polyimide compound, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2022225381A1 (en) * 2021-04-22 2022-10-27 피아이첨단소재 주식회사 Polyamic acid composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123522A1 (en) * 2007-04-02 2008-10-16 Shin-Etsu Chemical Co., Ltd. Electrolyte for fuel cell, electrolyte membrane for fuel cell, binder for fuel cell, membrane electrode assembly for fuel cell, and fuel cell
JP2010238562A (en) * 2009-03-31 2010-10-21 Shin-Etsu Chemical Co Ltd Lithium secondary battery, manufacturing method for the same, and binder precursor solution for lithium secondary battery used for its manufacturing method
JP2011086427A (en) * 2009-10-14 2011-04-28 Toyota Industries Corp Negative electrode for nonaqueous secondary battery, and process for production thereof
JP2012109142A (en) * 2010-11-18 2012-06-07 Sanyo Electric Co Ltd Binder for lithium secondary battery, negative electrode for lithium secondary battery, lithium secondary battery, binder precursor solution for lithium secondary battery, and method for manufacturing negative electrode for lithium secondary battery
JP2013058361A (en) * 2011-09-07 2013-03-28 Mitsui Chemicals Inc Binder resin composition for lithium secondary battery, electrode paste including the same, and lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123522A1 (en) * 2007-04-02 2008-10-16 Shin-Etsu Chemical Co., Ltd. Electrolyte for fuel cell, electrolyte membrane for fuel cell, binder for fuel cell, membrane electrode assembly for fuel cell, and fuel cell
JP2010238562A (en) * 2009-03-31 2010-10-21 Shin-Etsu Chemical Co Ltd Lithium secondary battery, manufacturing method for the same, and binder precursor solution for lithium secondary battery used for its manufacturing method
JP2011086427A (en) * 2009-10-14 2011-04-28 Toyota Industries Corp Negative electrode for nonaqueous secondary battery, and process for production thereof
JP2012109142A (en) * 2010-11-18 2012-06-07 Sanyo Electric Co Ltd Binder for lithium secondary battery, negative electrode for lithium secondary battery, lithium secondary battery, binder precursor solution for lithium secondary battery, and method for manufacturing negative electrode for lithium secondary battery
JP2013058361A (en) * 2011-09-07 2013-03-28 Mitsui Chemicals Inc Binder resin composition for lithium secondary battery, electrode paste including the same, and lithium ion secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032908A (en) * 2012-08-06 2014-02-20 Jsr Corp Binder composition for negative electrode of power storage device
JP2016028382A (en) * 2014-07-09 2016-02-25 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016219414A (en) * 2015-05-19 2016-12-22 株式会社半導体エネルギー研究所 Electrode, power storage device, and electronic device
JP5995033B1 (en) * 2016-05-30 2016-09-21 Jsr株式会社 Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
KR102314898B1 (en) * 2020-03-30 2021-10-20 피아이첨단소재 주식회사 Aqueous polyamic acid composition
WO2022202701A1 (en) * 2021-03-22 2022-09-29 ウィンゴーテクノロジー株式会社 Polyimide compound, negative electrode material for lithium ion secondary batteries that uses said polyimide compound, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2022225381A1 (en) * 2021-04-22 2022-10-27 피아이첨단소재 주식회사 Polyamic acid composition
CN113555552A (en) * 2021-06-03 2021-10-26 浙江中科玖源新材料有限公司 Polyimide binder and negative plate
CN113555552B (en) * 2021-06-03 2023-04-07 浙江中科玖源新材料有限公司 Polyimide binder and negative plate

Also Published As

Publication number Publication date
JP5776475B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5776475B2 (en) Negative electrode for lithium ion secondary battery and method for producing the same
TWI616505B (en) Electrode for lithium secondary battery, lithium secondary battery, and manufacturing methods thereof
EP2690123B1 (en) Polyimide precursor solution, polyimide precursor, polyimide resin, mixture slurry, electrode, mixture slurry production method, and electrode formation method
JP5130273B2 (en) Non-aqueous secondary battery negative electrode and method for producing the same
JP5338924B2 (en) Binder for lithium ion battery electrode, paste for lithium ion battery negative electrode, and method for producing lithium ion battery negative electrode
EP2594609B1 (en) Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
JP5984325B2 (en) Binder for lithium ion battery electrode, paste for lithium ion battery electrode using the same, and method for producing lithium ion battery electrode
JP5946444B2 (en) Composite film of polyimide resin fine particles and use thereof
JP2013067769A (en) Composition of aqueous polyimide precursor solution, and method of producing the same
JP7158088B2 (en) Binder solution and coating liquid
JP5129066B2 (en) Negative electrode for lithium ion secondary battery and method for producing the same
CN113555552A (en) Polyimide binder and negative plate
WO2018105338A1 (en) Binder composition for electricity storage elements, slurry composition for electricity storage elements, electrode, method for producing electrode, secondary battery and electric double layer capacitor
JP5995033B1 (en) Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
JP2013175316A (en) Lithium-ion secondary battery and vehicle mounted with the same
JP7042765B2 (en) Binder resin composition for electrodes, electrode mixture paste, and method for manufacturing electrodes
TWI496816B (en) Polyimide precursor aqueous composition and method for preparing the same
JP2022116646A (en) Composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device
CN113555554B (en) Binder, silicon-carbon negative plate and preparation method thereof
TWI859710B (en) Polyimide adhesive precursor composition and power storage device using the same
JP2022151684A (en) Slurry composition, electrode, and secondary battery and electric double layer capacitor including the electrode
JP2014175167A (en) Composition for forming active material mixture layer, negative electrode for lithium ion secondary battery, and method of manufacturing negative electrode for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250