JP2013073867A - Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery - Google Patents
Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2013073867A JP2013073867A JP2011213899A JP2011213899A JP2013073867A JP 2013073867 A JP2013073867 A JP 2013073867A JP 2011213899 A JP2011213899 A JP 2011213899A JP 2011213899 A JP2011213899 A JP 2011213899A JP 2013073867 A JP2013073867 A JP 2013073867A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- electrolyte secondary
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水電解液二次電池用正極活物質及びその製造方法、並びに非水電解液二次電池に関する。 The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery.
デジタルカメラやノートパソコン等の携帯型電子機器の目覚ましい普及により、その電源として、非水電解液二次電池の一種であるリチウムイオン二次電池の需要が高まっている。リチウムイオン二次電池は、ニッカド電池等の二次電池と比較してメモリー効果が小さいことから、特に携帯電話等の継ぎ足し充電を行う携帯型電子機器に適している。
また、リチウムイオン二次電池は、リチウムイオンが小さいことからエネルギー密度が高く、さらに非水電解液を用いるために高い電圧が得られる利点がある。そのため、ノートパソコン等の携帯型電子機器に加え、電気自転車、電気自動車等の次世代電気産業製品への応用に向けた研究・開発も進められている。
With the remarkable spread of portable electronic devices such as digital cameras and laptop computers, demand for lithium ion secondary batteries, which are a type of non-aqueous electrolyte secondary battery, is increasing as a power source. A lithium ion secondary battery has a smaller memory effect than a secondary battery such as a nickel cadmium battery, and thus is particularly suitable for a portable electronic device that performs additional charging such as a mobile phone.
In addition, the lithium ion secondary battery has an advantage that a high voltage is obtained because the lithium ion is small and the energy density is high and a non-aqueous electrolyte is used. Therefore, in addition to portable electronic devices such as notebook computers, research and development for application to next-generation electric industry products such as electric bicycles and electric vehicles are being promoted.
リチウムイオン二次電池の外装体としては、角型や円筒型の金属缶内に電池内容物が収納される缶型と、柔軟性を有するフィルムによって形成した外装体内に電池内容物が収納されるラミネート型(積層型)が知られている。缶型のリチウムイオン二次電池では、正極電極層、セパレータ層及び負極電極層が順次積層された積層体が、扁平形状、又は巻回して円筒状にされた状態で金属缶内に収納される。また、ラミネート型のリチウムイオン二次電池では、正極電極層、セパレータ層及び負極電極層が順次積層された積層体が扁平形状で外装体内に収納される。正極電極層及び負極電極層には、それぞれの活物質における電位差を電流として取り出すための端子が接続され、また外装体内は非水電解液で満たされる。
いずれのタイプのリチウムイオン二次電池においても、正極電極層及び負極電極層としては、シート状の集電基材(集電体)上に、リチウムイオンを吸蔵及び放出できる、いわゆる活物質と呼ばれる粒子を含む活物質層が積層された積層体が用いられる。
As an outer package of a lithium ion secondary battery, the battery contents are stored in a can type in which the battery contents are stored in a rectangular or cylindrical metal can, and an outer package formed by a flexible film. A laminate type (laminate type) is known. In a can-type lithium ion secondary battery, a laminate in which a positive electrode layer, a separator layer, and a negative electrode layer are sequentially laminated is accommodated in a metal can in a flat shape or in a wound and cylindrical shape. . In a laminate-type lithium ion secondary battery, a stacked body in which a positive electrode layer, a separator layer, and a negative electrode layer are sequentially stacked is stored in an outer package in a flat shape. The positive electrode layer and the negative electrode layer are connected to terminals for taking out a potential difference in each active material as a current, and the exterior body is filled with a non-aqueous electrolyte.
In any type of lithium ion secondary battery, the positive electrode layer and the negative electrode layer are called so-called active materials that can occlude and release lithium ions on a sheet-like current collecting base material (current collector). A laminate in which active material layers containing particles are laminated is used.
リチウムイオン二次電池の正極電極層を形成する正極活物質としては、リチウム含有遷移金属酸化物が知られている。例えば、LiCoO2(理論容量274mAh/g)、LiMn2O4(理論容量148mAh/g)、LiNiO2(理論容量274mAh/g)、及びそれらに2〜3個の遷移金属元素が混在する化合物が挙げられる。実用的な放電容量は、LiCoO2が120〜140mAh/g、LiMn2O4が110mAh/g、LiNiO2が160〜200mAh/g程度である。 As a positive electrode active material for forming a positive electrode layer of a lithium ion secondary battery, a lithium-containing transition metal oxide is known. For example, there are LiCoO 2 (theoretical capacity 274 mAh / g), LiMn 2 O 4 (theoretical capacity 148 mAh / g), LiNiO 2 (theoretical capacity 274 mAh / g), and a compound in which 2 to 3 transition metal elements are mixed. Can be mentioned. Practical discharge capacities are about 120 to 140 mAh / g for LiCoO 2 , 110 mAh / g for LiMn 2 O 4 , and about 160 to 200 mAh / g for LiNiO 2 .
正極活物質は、電気伝導度があまり高くないため、カーボンブラック、炭素繊維材料等の導電補助材と混合され、結着材で結着されることで導通が確保される。そして、それら正極活物質と導電補助材の間に非水電解液が浸透し、リチウムイオンの脱挿入反応が起こることで、電池反応が生じる。
リチウムイオンの脱挿入反応は、正極活物質と非水電解液の間で起こる反応であり、導電補助材は寄与しない。そのため、該反応の効率を高め、充放電特性を向上させるには、導電補助材の添加量は導通が確保される範囲内でできるだけ少ないことが好ましい。しかし、特にハイブリッド自動車や電気自動車等の大型用途では、大電流を取り出す必要があることから、正極電極の導電性を高めるために導電補助材の添加量が非常に多くなっている。また、導電補助材の添加量が増大すると、該導電補助材と正極活物質とを結着させる結着材の添加量も必然的に増大する。
このように、導電補助材及び結着材の添加量が増加すると、それだけ正極活物質層中の正極活物質の割合が減少するので、大きな電力量を取り出すためには正極電極を厚くしなければならず、電池が大きくなる問題がある。
Since the positive electrode active material is not very high in electrical conductivity, it is mixed with a conductive auxiliary material such as carbon black or carbon fiber material, and the positive electrode active material is secured by binding with a binder. And a nonaqueous electrolyte solution osmose | permeates between these positive electrode active materials and a conductive support material, and a battery reaction arises because the de-insertion reaction of lithium ion occurs.
The lithium ion deinsertion reaction is a reaction that occurs between the positive electrode active material and the non-aqueous electrolyte, and the conductive auxiliary material does not contribute. Therefore, in order to increase the efficiency of the reaction and improve the charge / discharge characteristics, it is preferable that the addition amount of the conductive auxiliary material is as small as possible within a range in which conduction is ensured. However, particularly in large applications such as hybrid vehicles and electric vehicles, it is necessary to extract a large current, so that the amount of conductive auxiliary material added is very large in order to increase the conductivity of the positive electrode. Further, when the amount of the conductive auxiliary material added increases, the amount of the binder added to bind the conductive auxiliary material and the positive electrode active material inevitably increases.
Thus, since the proportion of the positive electrode active material in the positive electrode active material layer decreases as the addition amount of the conductive auxiliary material and the binder increases, the positive electrode must be made thick in order to extract a large amount of power. In other words, there is a problem that the battery becomes large.
ところで、負極電極においては、電池の容量特性及びサイクル特性を向上させるために、負極活物質に電子線を照射し、該負極活物質を活性化する方法が知られている(特許文献1)。
しかし、前記方法によれば負極電極の性能は向上するものの、正極電極については前記した問題は解決されない。
By the way, in the negative electrode, in order to improve the capacity | capacitance characteristic and cycling characteristic of a battery, the method of irradiating an electron beam to a negative electrode active material and activating this negative electrode active material is known (patent document 1).
However, according to the above method, although the performance of the negative electrode is improved, the above-mentioned problem cannot be solved for the positive electrode.
本発明は、正極活物質層に添加する導電補助材及び結着材の添加量を抑制しつつ、非水電解液二次電池の充放電特性を高め、大電流を取り出すことを可能とする非水電解液二次電池用正極活物質及びその製造方法、並びに前記非水電解液二次電池用正極活物質を用いた非水電解液二次電池の提供を目的とする。 The present invention improves the charge / discharge characteristics of a non-aqueous electrolyte secondary battery and can extract a large current while suppressing the amount of conductive auxiliary material and binder added to the positive electrode active material layer. It aims at providing the positive electrode active material for water electrolyte secondary batteries, its manufacturing method, and the nonaqueous electrolyte secondary battery using the said positive electrode active material for non-aqueous electrolyte secondary batteries.
本発明の非水電解液二次電池用正極活物質の製造方法は、気体雰囲気下で、正極活物質に、電子線を5kGy以上3000kGy以下の照射線量で照射することを特徴とする方法である。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is a method characterized by irradiating a positive electrode active material with an electron beam at an irradiation dose of 5 kGy to 3000 kGy in a gas atmosphere. .
前記正極活物質は、軽金属含有遷移金属酸化物からなる正極活物質であることが好ましい。
前記軽金属含有遷移金属酸化物は、LiM1 2O4、LiM2PO4、LiM3VO4及びLiM4O2(ただし、M1〜M4はそれぞれ金属元素の1種以上である。)からなる群から選ばれる1種以上を含むことが好ましい。
前記LiM1 2O4におけるM1は、Mn、Al及びMgからなる群から選ばれる1種以上を含むことが好ましい。
前記LiM2PO4におけるM2は、Mn及びFeの少なくとも一方を含むことが好ましい。
前記LiM3VO4におけるM3は、Mn、Ni、Co及びFeからなる群から選ばれる1種以上を含むことが好ましい。
前記LiM4O2におけるM4は、Mn、Ni、Co及びAlからなる群から選ばれる1種以上を含むことが好ましい。
The positive electrode active material is preferably a positive electrode active material made of a light metal-containing transition metal oxide.
The light metal-containing transition metal oxide is from LiM 1 2 O 4 , LiM 2 PO 4 , LiM 3 VO 4 and LiM 4 O 2 (wherein M 1 to M 4 are each one or more metal elements). It is preferable to include at least one selected from the group consisting of:
M 1 in the LiM 1 2 O 4 preferably contains one or more selected from the group consisting of Mn, Al and Mg.
M 2 in the LiM 2 PO 4 preferably contains at least one of Mn and Fe.
M 3 in LiM 3 VO 4 preferably contains one or more selected from the group consisting of Mn, Ni, Co, and Fe.
M 4 in LiM 4 O 2 preferably contains one or more selected from the group consisting of Mn, Ni, Co, and Al.
本発明の非水電解液二次電池用正極活物質は、本発明の非水電解液二次電池用正極材料の製造方法により得られる正極活物質である。 The positive electrode active material for nonaqueous electrolyte secondary batteries of the present invention is a positive electrode active material obtained by the method for producing a positive electrode material for nonaqueous electrolyte secondary batteries of the present invention.
本発明の非水電解液二次電池は、軽金属イオンを吸蔵及び放出できる正極電極並びに負極電極と、非水電解液とを備えた非水電解液二次電池において、前記正極電極を形成する正極活物質が、本発明の非水電解液二次電池用正極活物質であることを特徴とする。
前記軽金属イオンは、リチウムイオンであることが好ましい。
The non-aqueous electrolyte secondary battery of the present invention is a positive electrode that forms the positive electrode in a non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting light metal ions, and a non-aqueous electrolyte. The active material is a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention.
The light metal ion is preferably a lithium ion.
本発明の非水電解液二次電池用正極活物質の製造方法によれば、正極活物質層に添加する導電補助材及び結着材の添加量を抑制しつつ、非水電解液二次電池の充放電特性を高め、大電流を取り出すことを可能する非水電解液二次電池用正極活物質が得られる。
また、本発明の非水電解液二次電池用正極活物質を用いれば、正極活物質層に添加する導電補助材及び結着材の添加量を抑制しつつ、非水電解液二次電池の充放電特性を高めることができ、大電流を取り出すことができる。
また、本発明の非水電解液二次電池は、本発明の非水電解液二次電池用正極活物質を用いているため、大電流を取り出すことができる優れた充放電特性を有している。
According to the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte secondary battery is controlled while suppressing the amount of conductive auxiliary material and binder added to the positive electrode active material layer. Thus, a positive electrode active material for a non-aqueous electrolyte secondary battery capable of improving the charge / discharge characteristics of the battery and taking out a large current can be obtained.
In addition, if the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is used, the amount of the conductive auxiliary material and binder added to the positive electrode active material layer is suppressed, and the non-aqueous electrolyte secondary battery Charge / discharge characteristics can be improved, and a large current can be taken out.
Moreover, since the non-aqueous electrolyte secondary battery of the present invention uses the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, it has excellent charge / discharge characteristics capable of extracting a large current. Yes.
[非水電解液二次電池用正極活物質及びその製造方法]
本発明の非水電解液二次電池用正極活物質の製造方法は、気体雰囲気下で、正極活物質に、電子線を5kGy以上3000kGy以下の照射線量で照射することを特徴とする方法である。前記範囲の照射線量で電子線が照射されることによって正極活物質が活性化し、正極電極の充放電特性が向上し、正極活物質層に添加する導電補助材及び結着材の添加量を抑制しつつ、大電流が取り出せるようになる。
[Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same]
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is a method characterized by irradiating a positive electrode active material with an electron beam at an irradiation dose of 5 kGy to 3000 kGy in a gas atmosphere. . The positive electrode active material is activated by irradiating the electron beam with the irradiation dose in the above range, the charge / discharge characteristics of the positive electrode are improved, and the addition amount of the conductive auxiliary material and the binder added to the positive electrode active material layer is suppressed. However, a large current can be taken out.
正極活物質への電子線の照射は、例えば、スキャン方式、エリアビーム方式、自己シールド方式等の電子線照射装置を使用することで実施できる。なかでも、エネルギー照射量等の汎用性の点からスキャン方式の電子線照射装置が好ましい。
具体的には、例えば、図1に例示した電子線照射装置100が挙げられる。電子線照射装置100は、真空チャンバ101と、真空チャンバ101内に設置されたターミナル102とを有している。ターミナル102内には、フィラメント103と、リペラー104と、グリッド105が備えられている。
真空チャンバ101におけるフィラメント103から電子線110が照射される側の外壁の一部には、電子線110を通過させることが可能な材料からなる電子線通過部106が設けられている。また、真空チャンバ101の電子線通過部106側の外部にはビームコレクタ107が設けられており、電子線通過部106とビームコレクタ107の間に、内部を所定の温度及び圧力の気体雰囲気に調整できるシールド管108が設けられ、シールド管108内に、正極活物質111を搬送するベルトコンベア109が設けられている。
電子線照射装置100を使用する電子線の照射では、シールド管108内を所定の温度及び圧力の気体雰囲気に調整する。そして、シールド管108内のベルトコンベア109上に正極活物質111を配置して搬送しつつ、フィラメント103からビームコレクタ107に向けて高真空下で加速した電子線110を照射する。これにより、ベルトコンベア109上の正極活物質111に電子線110が照射される。
The positive electrode active material can be irradiated with an electron beam by using, for example, an electron beam irradiation apparatus such as a scan method, an area beam method, or a self-shielding method. Of these, a scanning electron beam irradiation apparatus is preferable from the viewpoint of versatility such as the amount of energy irradiation.
Specifically, for example, the electron
An electron
In electron beam irradiation using the electron
正極活物質に照射する電子線は、高真空下で加速することが好ましい。
真空チャンバ101内の真空度、すなわち電子線を加速する際の真空度は、10−3Pa以上10−5Pa以下が好ましく、10−4Pa以上10−6Pa以下がより好ましい。前記真空度が下限値以上であれば、電子線の加速が増進される。前記真空度が上限値以下であれば、電子線がより均一にターゲットに衝突し、ターゲットから遷移金属含有酸化物が放出される。
正極活物質に照射する電子線は、50kV以上300kV以下で加速することが好ましく、100kV以上300kV以下で加速することがより好ましい。加速電圧が下限値以上であれば、電子線が充分に加速されやすい。また、加速電圧が上限値以下であれば、電子線がより均一にターゲットに衝突し、ターゲットから遷移金属含有酸化物が放出される。
The electron beam applied to the positive electrode active material is preferably accelerated under high vacuum.
The degree of vacuum in the
The electron beam applied to the positive electrode active material is preferably accelerated at 50 kV to 300 kV, and more preferably at 100 kV to 300 kV. If the acceleration voltage is equal to or higher than the lower limit, the electron beam is easily accelerated. If the acceleration voltage is equal to or lower than the upper limit value, the electron beam collides more uniformly with the target, and the transition metal-containing oxide is released from the target.
シールド管108内の雰囲気、すなわち本発明における気体雰囲気は、不活性ガス雰囲気で蒸着する点から、窒素ガス雰囲気、又はアルゴンガス雰囲気が好ましい。
また、シールド管108内の温度及び圧力は、特に限定されず、常温常圧の条件を採用できる。
The atmosphere in the
The temperature and pressure in the
電子線の照射線量は、正極活物質が活性化され、優れた充放電特性を有する二次電池が得られることから、5kGy以上である。また、電子線の照射線量は、正極活物質が破壊されることが抑制されることから、3000kGy以下である。
なお、電子線照射装置100を使用する場合、電子線の照射線量(E)は、下記式(i)で表される。
E=nk(I/v) ・・・(i)
ただし、前記式(i)中、nは電子線110の照射回数であり、kは電子線照射装置100の固有定数であり、Iはフィラメント103とビームコレクタ107との間に流れる電流値であり、vはベルトコンベア109の搬送速度である。
The irradiation dose of the electron beam is 5 kGy or more because the positive electrode active material is activated and a secondary battery having excellent charge / discharge characteristics is obtained. Further, the irradiation dose of the electron beam is 3000 kGy or less because the destruction of the positive electrode active material is suppressed.
In addition, when using the electron
E = nk (I / v) (i)
However, in said Formula (i), n is the frequency | count of irradiation of the
<正極活物質>
正極活物質としては、リチウムイオンを吸蔵及び放出可能なものが使用できる。例えば、軽金属を含有する軽金属含有遷移金属酸化物、軽金属を含有しない遷移金属酸化物、遷移金属硫化物等が挙げられる。なかでも、二次電池作製の点から、軽金属含有遷移金属酸化物が好ましい。
正極活物質は、1種を単独で使用してもよく、2種以上を併用してもよい。
<Positive electrode active material>
As the positive electrode active material, a material capable of inserting and extracting lithium ions can be used. Examples thereof include light metal-containing transition metal oxides containing light metals, transition metal oxides not containing light metals, and transition metal sulfides. Among these, light metal-containing transition metal oxides are preferable from the viewpoint of producing a secondary battery.
A positive electrode active material may be used individually by 1 type, and may use 2 or more types together.
軽金属含有遷移金属酸化物としては、LiM1 2O4、LiM2PO4、LiM3VO4及びLiM4O2(ただし、M1〜M4はそれぞれ金属元素の1種以上である。)からなる群から選ばれる1種以上のリチウム含有遷移金属酸化物が好ましい。M1〜M4の金属元素としては、Mn、Al、Mg、Fe、Ni、Co等が挙げられる。 As the light metal-containing transition metal oxide, LiM 1 2 O 4 , LiM 2 PO 4 , LiM 3 VO 4 and LiM 4 O 2 (wherein M 1 to M 4 are each one or more of metal elements). One or more lithium-containing transition metal oxides selected from the group consisting of Examples of the metal elements M 1 to M 4 include Mn, Al, Mg, Fe, Ni, and Co.
LiM1 2O4におけるM1は、Mn、Al及びMgからなる群から選ばれる1種以上を含むことが好ましい。具体的には、LiMn2O4、LiMn2−xMgxO4、LiMn2−xAlxO4(ただし、0<x≦0.3)等が挙げられる。
LiM2PO4におけるM2は、Mn及びFeの少なくとも一方を含むことが好ましい。具体的には、LiMnPO4、LiFePO4等が挙げられる。
LiM3VO4におけるM3は、Mn、Ni、Co及びFeからなる群から選ばれる1種以上を含むことが好ましい。具体的には、LiMnVO4、LiNiVO4、LiCoVO4、LiFeVO4等が挙げられる。
LiM4O2におけるM4は、Mn、Ni、Co及びAlからなる群から選ばれる1種以上を含むことが好ましい。具体的には、LiMnO2、LiNiO2、LiCoO2、LiNi5/9Co1/3Mn2/9O2、LiNi0.85Al0.15O2等が挙げられる。
また、前記以外のリチウム含有遷移金属酸化物としては、Li2MnO3、Li2FeSiO4等が挙げられる。
遷移金属酸化物としては、V2O5、MoO3等が挙げられる。
遷移金属硫化物としては、TiS2、非晶質MoS3等が挙げられる。
M 1 in LiM 1 2 O 4 preferably contains one or more selected from the group consisting of Mn, Al and Mg. Specifically, LiMn 2 O 4, LiMn 2 -x Mg x O 4, LiMn 2-x Al x O 4 ( provided that, 0 <x ≦ 0.3), and the like.
M 2 in LiM 2 PO 4 preferably contains at least one of Mn and Fe. Specific examples include LiMnPO 4 and LiFePO 4 .
M 3 in LiM 3 VO 4 preferably contains one or more selected from the group consisting of Mn, Ni, Co and Fe. Specific examples include LiMnVO 4 , LiNiVO 4 , LiCoVO 4 , LiFeVO 4, and the like.
M 4 in LiM 4 O 2 preferably contains one or more selected from the group consisting of Mn, Ni, Co, and Al. Specifically, LiMnO 2, LiNiO 2, LiCoO 2,
As the lithium-containing transition metal oxide other than the, Li 2 MnO 3, Li 2 FeSiO 4 , and the like.
Examples of the transition metal oxide include V 2 O 5 and MoO 3 .
Examples of the transition metal sulfide include TiS 2 and amorphous MoS 3 .
正極活物質としては、電池反応しやすい点から、LiMn2O4、LiFePO4、LiMnPO4、LiCoO2、LiNiO2、LiNi5/9Co1/3Mn2/9O2及びLiMnVO4からなる群から選ばれる1種以上が特に好ましい。 As the positive electrode active material, a group consisting of LiMn 2 O 4 , LiFePO 4 , LiMnPO 4 , LiCoO 2 , LiNiO 2 , LiNi 5/9 Co 1/3 Mn 2/9 O 2 and LiMnVO 4 from the viewpoint of battery reaction. One or more selected from are particularly preferred.
正極活物質に電子線を照射する際は、正極活物質全体に充分に電子線を照射することが容易になることから、正極活物質同士を互いに密な状態にすることが好ましく、正極活物質を円形のペレット状に成型することがより好ましい。このように正極活物質をペレットにする場合は、正極活物質全体に満遍なく電子線を照射するために、該ペレットの表裏両側から電子線を照射することが好ましい。
正極活物質のペレットの直径は、5mm以上300mm以下が好ましく、10mm以上150mm以下がより好ましい。
正極活物質のペレットの厚みは、電子線が満遍なく照射されやすくなることから、0.1mm以下が好ましく、0.05mm以下がより好ましい。
When irradiating the positive electrode active material with an electron beam, it is easy to sufficiently irradiate the entire positive electrode active material with an electron beam. Therefore, it is preferable to make the positive electrode active materials close to each other. It is more preferable to mold the material into a circular pellet. Thus, when making a positive electrode active material into a pellet, in order to irradiate an electron beam uniformly to the whole positive electrode active material, it is preferable to irradiate an electron beam from the front and back both sides of this pellet.
The diameter of the positive electrode active material pellet is preferably 5 mm to 300 mm, more preferably 10 mm to 150 mm.
The thickness of the positive electrode active material pellet is preferably 0.1 mm or less, more preferably 0.05 mm or less, because the electron beam is easily irradiated uniformly.
以上の方法によって正極活物質に所定の電子線を照射することで、本発明の非水電解液二次電池用正極活物質が得られる。
以上説明した本発明の非水電解液二次電池用正極活物質は、照射線量5kGy以上3000kGy以下の電子線の照射によって正極活物質自体が活性化されている。そのため、本発明の非水電解液二次電池用正極活物質を使用すれば、正極活物質層への導電補助材及び結着材の添加量を抑制しつつ、大電流を取り出せる優れた充放電特性を有する非水電解液二次電池を製造できる。
By irradiating the positive electrode active material with a predetermined electron beam by the above method, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is obtained.
In the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention described above, the positive electrode active material itself is activated by irradiation with an electron beam having an irradiation dose of 5 kGy to 3000 kGy. Therefore, if the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is used, excellent charge / discharge that can extract a large current while suppressing the amount of conductive auxiliary material and binder added to the positive electrode active material layer A non-aqueous electrolyte secondary battery having characteristics can be manufactured.
[非水電解液二次電池]
本発明の非水電解液二次電池は、軽金属イオンを吸蔵及び放出できる正極電極と、軽金属イオンを吸蔵及び放出できる負極電極と、非水電解液とを備えており、前記正極電極を形成する正極活物質が、前述した本発明の非水電解液二次電池用正極活物質であることを特徴とする。つまり、本発明の非水電解液二次電池は、正極活物質として本発明の非水電解液二次電池用正極活物質を使用する以外は、公知の態様を採用できる。
[Nonaqueous electrolyte secondary battery]
The non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode capable of inserting and extracting light metal ions, a negative electrode capable of inserting and extracting light metal ions, and a non-aqueous electrolyte, and forms the positive electrode. The positive electrode active material is the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention described above. That is, the nonaqueous electrolyte secondary battery of the present invention can employ a known mode except that the positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention is used as the positive electrode active material.
本発明の非水電解液二次電池は、リチウムイオン二次電池であることが好ましい。つまり、正極電極及び負極電極で吸蔵及び放出する軽金属イオンがリチウムイオンであることが好ましい。
本発明の非水電解液二次電池の構造としては、例えば、リチウムイオン二次電池の場合、金属缶に電池内容物が封入される缶型、又はフレキシブルなフィルムを成型した外装体内に電池内容物が封入されるラミネート型(積層型)が挙げられる。
缶型のリチウムイオン二次電池では、例えば、正極電極層、セパレータ層及び負極電極層が順次積層された積層体が、扁平形状、又は巻回されて円筒状にされた状態で金属缶内に収納される。ラミネート型のリチウムイオン二次電池では、例えば、正極電極層、セパレータ層及び負極電極層が順次積層された積層体が扁平形状で外装体内に収納される。前記正極活物質層、セパレータ層及び負極活物質層は、全体的に非水電解液で満たされる。
また、正極電極層及び負極電極層には、それぞれの活物質における電位差を電流として取り出すための端子が設けられる。
The nonaqueous electrolyte secondary battery of the present invention is preferably a lithium ion secondary battery. That is, it is preferable that the light metal ions occluded and released by the positive electrode and the negative electrode are lithium ions.
As the structure of the non-aqueous electrolyte secondary battery of the present invention, for example, in the case of a lithium ion secondary battery, the battery contents can be encapsulated in a can type in which the battery contents are enclosed in a metal can or a flexible film is molded. Examples include a laminate type (laminated type) in which an object is enclosed.
In a can-type lithium ion secondary battery, for example, a laminate in which a positive electrode layer, a separator layer, and a negative electrode layer are sequentially laminated is flattened or wound into a cylindrical shape in a metal can. Stored. In a laminate-type lithium ion secondary battery, for example, a stacked body in which a positive electrode layer, a separator layer, and a negative electrode layer are sequentially stacked is housed in an outer package in a flat shape. The positive electrode active material layer, the separator layer, and the negative electrode active material layer are entirely filled with a non-aqueous electrolyte.
Further, the positive electrode layer and the negative electrode layer are provided with terminals for taking out a potential difference in each active material as a current.
<正極電極>
正極電極としては、例えば、集電基材と、集電基材上に形成され、本発明の非水電解液二次電池用正極活物質、導電補助材及び結着材を含む正極活物質層とを有する積層体が挙げられる。
<Positive electrode>
As the positive electrode, for example, a current collecting base material and a positive electrode active material layer formed on the current collecting base material and including the positive electrode active material for the non-aqueous electrolyte secondary battery of the present invention, the conductive auxiliary material, and the binder And a laminate having the following.
正極電極の集電基材を形成する材料としては、高電流を流すのが容易になる点から、導電性の物質が好ましい。具体的には、銅、ニッケル、ステンレス、鉄、アルミニウム等が挙げられる。なかでも、比較的安価であること、及び金属のイオン化傾向の観点から、アルミニウムが好ましい。
正極電極の集電基材としては、圧延アルミニウム箔が好ましい。圧延アルミニウム箔は、アルミ結晶が圧延方向に並んでいるため、応力が加わっても集電基材が割れ難くなり、成型性が向上する。
As a material for forming the current collecting base material of the positive electrode, a conductive substance is preferable because it is easy to flow a high current. Specific examples include copper, nickel, stainless steel, iron, and aluminum. Among these, aluminum is preferable from the viewpoint of relatively low cost and metal ionization tendency.
As the current collecting base material of the positive electrode, rolled aluminum foil is preferable. In the rolled aluminum foil, since the aluminum crystals are arranged in the rolling direction, even if stress is applied, the current collecting base material is hardly broken, and the moldability is improved.
正極活物質層は、本発明の非水電解液二次電池用正極活物質、導電補助材及び結着材を含む層である。
導電補助材としては、集電基材の導電性を確保でき、かつ、充放電時に化学反応を起こさない物質が好ましい。例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック等の炭素系材料、金属繊維、導電性ポリマー、フッ化カーボン、金属粉末等が挙げられる。なかでも、アセチレンブラック、ケッチェンブラックが特に好ましい。
導電補助材は、1種を単独で使用してもよく、2種以上を併用してもよい。
A positive electrode active material layer is a layer containing the positive electrode active material for nonaqueous electrolyte secondary batteries of this invention, a conductive support material, and a binder.
As the conductive auxiliary material, a substance that can ensure the conductivity of the current collecting base material and does not cause a chemical reaction during charge and discharge is preferable. Examples thereof include carbon-based materials such as acetylene black, ketjen black, channel black, and furnace black, metal fibers, conductive polymers, carbon fluoride, and metal powder. Of these, acetylene black and ketjen black are particularly preferable.
A conductive auxiliary material may be used individually by 1 type, and may use 2 or more types together.
結着材としては、後述する分散溶媒に対して化学的に安定な高分子が好ましい。例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、芳香族ポリアミド等の樹脂系高分子、スチレン・ブタジエンラバー(SBR)、エチレン・プロピレンラバー等のゴム系高分子、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン等のフッ素系高分子等が挙げられる。なかでも、集電基材と正極活物質の密着性、及び正極活物質間の密着性の向上という観点から、PVDF、ポリテトラフルオロエチレン等のフッ素系高分子が好ましい。
結着材は、1種を単独で使用してもよく、2種以上を併用してもよい。
As the binder, a polymer that is chemically stable with respect to the dispersion solvent described later is preferable. For example, resin polymers such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), aromatic polyamide, rubber polymers such as styrene / butadiene rubber (SBR) and ethylene / propylene rubber, polyvinylidene fluoride ( PVDF) and fluorine-based polymers such as polytetrafluoroethylene. Of these, fluorine-based polymers such as PVDF and polytetrafluoroethylene are preferred from the viewpoint of improving the adhesion between the current collecting base material and the positive electrode active material and the adhesion between the positive electrode active material.
A binder may be used individually by 1 type and may use 2 or more types together.
正極活物質層(100質量%)中の本発明の非水電解液二次電池用正極活物質の含有量は、1質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。本発明の非水電解液二次電池用正極活物質の含有量が下限値以上であれば、優れた充放電特性が得られやすい。本発明の非水電解液二次電池用正極活物質の含有量が上限値以下であれば、エネルギー密度の高い電極が得られやすい。
正極活物質層(100質量%)中の導電補助材の含有量は、0質量%以上8質量%以下が好ましく、1質量%以上2質量%以下がより好ましい。導電補助材の含有量が多いほど、エネルギー密度の高い電極が得られやすい。導電補助材の含有量が上限値以下であれば、低抵抗の電極が得られやすい。
正極活物質層(100質量%)中の結着材の含有量は、1質量%以上10質量%以下が好ましく、1質量%以上2質量%以下がより好ましい。結着材の含有量が下限値以上であれば、エネルギー密度の高い電極が得られやすい。結着材の含有量が上限値以下であれば、正極活物質層の機械強度が良好で、ロングライフに優れた電極が得られやすい。
The content of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention in the positive electrode active material layer (100% by mass) is preferably 1% by mass to 99% by mass, and more preferably 90% by mass to 98% by mass. More preferred. If the content of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is equal to or higher than the lower limit value, excellent charge / discharge characteristics are easily obtained. When the content of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is not more than the upper limit value, an electrode having a high energy density is easily obtained.
The content of the conductive auxiliary material in the positive electrode active material layer (100% by mass) is preferably 0% by mass to 8% by mass, and more preferably 1% by mass to 2% by mass. The higher the content of the conductive auxiliary material, the easier it is to obtain an electrode with a higher energy density. If the content of the conductive auxiliary material is not more than the upper limit value, a low-resistance electrode is easily obtained.
1 mass% or more and 10 mass% or less are preferable, and, as for content of the binder in a positive electrode active material layer (100 mass%), 1 mass% or more and 2 mass% or less are more preferable. If the content of the binder is not less than the lower limit value, an electrode having a high energy density is easily obtained. If the content of the binder is not more than the upper limit value, it is easy to obtain an electrode having good mechanical strength of the positive electrode active material layer and excellent long life.
(正極電極の製造方法)
正極電極は、例えば、下記の塗工工程、乾燥工程及びプレス工程を有する方法で製造できる。
塗工工程:集電基材上に、本発明の非水電解液二次電池用正極活物質、導電補助材及び結着材を含む正極インクを塗工する工程。
乾燥工程:集電基材上に塗工した正極インクを乾燥する工程。
プレス工程:乾燥した正極インクの塗膜をプレスして正極活物質層を形成する工程。
(Production method of positive electrode)
The positive electrode can be manufactured, for example, by a method having the following coating process, drying process, and pressing process.
Coating step: A step of applying a positive electrode ink containing the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, a conductive auxiliary material, and a binder on the current collecting base material.
Drying step: a step of drying the positive electrode ink coated on the current collecting base material.
Pressing step: a step of pressing the dried positive electrode ink film to form a positive electrode active material layer.
塗工工程:
本発明の非水電解液二次電池用正極活物質、導電補助材及び結着材を溶媒に分散させ、混練し、スラリー状の正極インクを調製し、該正極インクを集電基材上に塗工する。
正極インクの調製においては、材料の混合方法及び混合順序は特に限定されない。
各材料を混錬する混錬機としては、高せん断を付与できる混練機が好ましい。具体的には、プラネタリーミキサー、ニーダー、ホモホジナイザー、超音波ホモジナイザー、ディスパージャー等のブレード型撹拌機が好ましく、特に固練りをするという面からプラネタリーミキサーが特に好ましい。
Coating process:
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, a conductive auxiliary material, and a binder are dispersed in a solvent, kneaded to prepare a slurry-like positive electrode ink, and the positive ink is placed on a current collecting substrate. Apply.
In preparing the positive electrode ink, the mixing method and mixing order of the materials are not particularly limited.
As a kneader for kneading each material, a kneader capable of imparting high shear is preferable. Specifically, a blade type stirrer such as a planetary mixer, a kneader, a homogenizer, an ultrasonic homogenizer, or a disperser is preferable, and a planetary mixer is particularly preferable from the viewpoint of kneading.
正極インクは、混錬後、脱泡することが好ましい。特に、正極インク内の気体成分を均一に除去するという観点から、真空引きしつつ遊星脱泡することが特に好ましい。
正極インクを脱泡する脱泡装置としては、真空脱泡装置、遠心脱泡装置、遊星脱泡装置等が挙げられる。
The positive electrode ink is preferably defoamed after kneading. In particular, from the viewpoint of uniformly removing the gas component in the positive electrode ink, it is particularly preferable to perform deaeration of the planet while evacuating.
Examples of the defoaming device for defoaming the positive ink include a vacuum defoaming device, a centrifugal defoaming device, and a planetary defoaming device.
正極インクに使用する溶媒としては、水や、水にエタノール、N−メチルピロリドン(NMP)等を混合した水系溶媒、NMP等の環状アミド系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド系溶媒、トルエン、キシレン等の芳香族炭化水素等が挙げられる。
これら溶媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
As a solvent used for the positive electrode ink, water, an aqueous solvent obtained by mixing ethanol, N-methylpyrrolidone (NMP) or the like with water, a cyclic amide solvent such as NMP, N, N-dimethylformamide, or N, N-dimethyl is used. Examples thereof include linear amide solvents such as acetamide and aromatic hydrocarbons such as toluene and xylene.
These solvents may be used alone or in combination of two or more.
正極インク(100質量%)中の本発明の非水電解液二次電池用正極活物質の含有量は、30質量%以上70質量%以下が好ましく、40質量%以上55質量%以下がより好ましい。非水電解液二次電池用正極活物質の含有量が下限値以上であれば、正極活物質の沈降が起こることを抑制しやすい。非水電解液二次電池用正極活物質の含有量が上限値以下であれば、正極活物質の凝集が起こることを抑制しやすい。
正極インク中の導電補助材の含有量は、正極活物質100質量部に対し、0.5質量部以上20質量部以下が好ましく、1質量部以上10質量部以下がより好ましい。導電補助材の含有量が下限値以上であれば、エネルギー密度の高い電極が得られやすい。導電補助材の含有量が上限値以下であれば、低抵抗の電極が得られやすい。
正極インク中の結着材の含有量は、正極活物質100質量部に対し、1質量部以上20質量部以下が好ましく、5質量部以上10質量部以下がより好ましい。結着材の含有量が下限値以上であれば、正極活物質同士や、正極活物質と集電基材の密着性が向上する。結着材の含有量が上限値以下であれば、充分な量の正極活物質を含有させやすく、電池容量が向上する。
The content of the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention in the positive electrode ink (100% by mass) is preferably 30% by mass to 70% by mass, and more preferably 40% by mass to 55% by mass. . If content of the positive electrode active material for nonaqueous electrolyte secondary batteries is more than a lower limit, it will be easy to suppress sedimentation of a positive electrode active material. If content of the positive electrode active material for nonaqueous electrolyte secondary batteries is below an upper limit, it will be easy to suppress aggregation of a positive electrode active material.
The content of the conductive auxiliary material in the positive electrode ink is preferably 0.5 parts by mass or more and 20 parts by mass or less, more preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. If content of a conductive auxiliary material is more than a lower limit, an electrode with a high energy density will be easy to be obtained. If the content of the conductive auxiliary material is not more than the upper limit value, a low-resistance electrode is easily obtained.
The content of the binder in the positive electrode ink is preferably 1 part by mass or more and 20 parts by mass or less, and more preferably 5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. When the content of the binder is equal to or higher than the lower limit value, the adhesion between the positive electrode active materials or between the positive electrode active material and the current collecting base material is improved. If the content of the binder is not more than the upper limit value, it is easy to contain a sufficient amount of the positive electrode active material, and the battery capacity is improved.
また、正極インクには、必要な粘度に応じて、増粘剤を添加してもよい。
増粘剤としては、カルボキシメチルセルロース(CMC)、ポリエチレングリコール等の高分子材料が好ましい。
増粘剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
Moreover, you may add a thickener to positive electrode ink according to a required viscosity.
As the thickener, polymer materials such as carboxymethyl cellulose (CMC) and polyethylene glycol are preferable.
A thickener may be used individually by 1 type and may use 2 or more types together.
正極インクの塗工方法としては、一般的なウェット材料の塗工方法が採用でき、スラリー状の正極インクの粘度等の物性に合わせて塗工が可能である。例えば、グラビアコート、マイクログラビアコート、ダイコート、ディップコート、スリットコート、コンマコート、リップコート、ダイレクトコート等が挙げられる。
正極インクの塗膜の厚みは、0.01mm以上1mm以下が好ましく、0.03mm以上0.2mm以下がより好ましい。
As a coating method of the positive electrode ink, a general wet material coating method can be adopted, and the coating can be performed in accordance with physical properties such as the viscosity of the slurry-like positive electrode ink. Examples thereof include gravure coating, micro gravure coating, die coating, dip coating, slit coating, comma coating, lip coating, and direct coating.
The thickness of the coating film of the positive ink is preferably 0.01 mm or more and 1 mm or less, and more preferably 0.03 mm or more and 0.2 mm or less.
乾燥工程:
正極インクの塗膜を乾燥する方法は、正極活物質層に溶媒が残留しない状態にできる方法であればよく、小型乾燥オーブン等での温風乾燥、熱風乾燥、真空乾燥、遠赤外乾燥、恒温高湿乾燥が好ましい。これら乾燥方法は、1種を単独で行ってもよく、2種以上を組み合わせて行ってもよい。
熱風乾燥においては、風量、風当たり角度、吹き出し口からの距離等が乾燥効率に影響するため、これらの条件を適宜選択する。
さらに、ロール・トゥ・ロール方式により塗工と乾燥を連続して行う場合、ロールサポート、フローティング等により乾燥を行ってもよく、これらを組み合わせてもよい。
乾燥後の塗膜に占める残留溶媒量は、できるだけ少ないほうが好ましく、1質量%以下が好ましく、0.5質量%以下がより好ましい。
Drying process:
The method of drying the coating film of the positive electrode ink may be any method that can keep the solvent in the positive electrode active material layer, such as warm air drying in a small drying oven, hot air drying, vacuum drying, far infrared drying, Constant temperature and high humidity drying is preferred. These drying methods may be performed singly or in combination of two or more.
In hot air drying, the air volume, the wind contact angle, the distance from the outlet, and the like affect the drying efficiency, so these conditions are selected as appropriate.
Furthermore, when coating and drying are continuously performed by a roll-to-roll method, drying may be performed by a roll support, floating, or the like, or a combination of these may be performed.
The amount of residual solvent in the coated film after drying is preferably as small as possible, preferably 1% by mass or less, and more preferably 0.5% by mass or less.
プレス工程:
単位面積当たりのエネルギー密度を向上させるために、再加熱後、あるいは再加熱しながら、前記塗膜のプレスを行い、正極活物質層を得る。プレス方法としては、金属ロールプレス法、ゴムロールプレス法、平板プレス法等が挙げられる。
Pressing process:
In order to improve the energy density per unit area, the coating film is pressed after reheating or while reheating to obtain a positive electrode active material layer. Examples of the pressing method include a metal roll pressing method, a rubber roll pressing method, and a flat plate pressing method.
プレス後の正極活物質層の嵩密度は、1.0g/cm2以上5.0g/cm2以下が好ましい。正極活物質層の嵩密度が1.0g/cm2以上であれば、結着材が集電基材付近に充分に存在でき、正極活物質層と集電基材との密着性が向上する。正極活物質層の嵩密度が5.0g/cm2以下であれば、正極活物質層に充分な空隙が得られ、非水電解液が正極活物質層に浸透しやすく、電池性能が向上する。 The bulk density of the positive electrode active material layer after pressing is preferably 1.0 g / cm 2 or more and 5.0 g / cm 2 or less. If the bulk density of the positive electrode active material layer is 1.0 g / cm 2 or more, the binder can be sufficiently present in the vicinity of the current collecting substrate, and the adhesion between the positive electrode active material layer and the current collecting substrate is improved. . When the bulk density of the positive electrode active material layer is 5.0 g / cm 2 or less, sufficient voids are obtained in the positive electrode active material layer, and the non-aqueous electrolyte easily penetrates into the positive electrode active material layer, thereby improving battery performance. .
<負極電極>
負極電極としては、例えば、集電基材と、集電基材上に形成され、負極活物質、導電補助材及び結着材を含む負極活物質層とを有する積層体が挙げられる。
負極電極の集電基材の材料としては、例えば、正極電極の集電基材の材料として挙げたものが挙げられる。なかでも、比較的安価であること、及び金属のイオン化傾向の観点から、銅が好ましい。
負極電極の集電基材としては、銅の中でも圧延銅箔が好ましい。圧延銅箔は、銅結晶が圧延方向に並んでいるため、応力が加わっても集電基材が割れ難く、成型性が向上する。一方、圧延銅箔はその製造方法から長さの制約があるので、製造工程による長さの制約が無い点からは、電解銅箔が好ましい。
<Negative electrode>
As a negative electrode, the laminated body which has a current collection base material and a negative electrode active material layer formed on a current collection base material and containing a negative electrode active material, a conductive support material, and a binder is mentioned, for example.
Examples of the material for the current collecting base material of the negative electrode include those listed as the materials for the current collecting base material of the positive electrode. Among these, copper is preferable from the viewpoint of being relatively inexpensive and the tendency of metal ionization.
As the current collecting base material for the negative electrode, rolled copper foil is preferable among copper. In the rolled copper foil, since the copper crystals are arranged in the rolling direction, the current collecting base material is not easily broken even when stress is applied, and the moldability is improved. On the other hand, the rolled copper foil has a length restriction due to its production method, and therefore, an electrolytic copper foil is preferred from the viewpoint of no length restriction due to the production process.
負極活物質層は、負極活物質、導電補助材及び結着材を含む層である。
負極活物質としては、アモルファスカーボン、天然黒鉛、人造黒鉛、メゾカーボンマイクロビーズ(MCMB)、ハードカーボン等の炭素系材料、Li4Ti5O4、SiO2等の酸化物系材料、リチウム金属合金、リチウム金属等が挙げられる。なかでも、工業的に広く用いられ、安価で扱いやすい点から、人造黒鉛、天然黒鉛が好ましい。
The negative electrode active material layer is a layer including a negative electrode active material, a conductive auxiliary material, and a binder.
As the negative electrode active material, amorphous carbon, natural graphite, artificial graphite, mesocarbon micro beads (MCMB), carbon materials such as hard carbon, oxide materials such as Li 4 Ti 5 O 4 , SiO 2 , lithium metal alloy And lithium metal. Of these, artificial graphite and natural graphite are preferred because they are widely used industrially, are inexpensive and easy to handle.
負極活物質層の導電補助材としては、正極活物質層で挙げた導電補助材と同じものが挙げられ、好ましい態様も同じである。
負極活物質層の結着材としては、正極活物質層で挙げた結着材と同じものが挙げられる。なかでも、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン等のフッ素系高分子、スチレン・ブタジエンラバー(SBR)、エチレン・プロピレンラバー等のゴム系高分子が好ましい。
Examples of the conductive auxiliary material for the negative electrode active material layer include the same conductive auxiliary materials as those described for the positive electrode active material layer, and preferred embodiments are also the same.
Examples of the binder for the negative electrode active material layer include the same materials as those described for the positive electrode active material layer. Of these, fluorine polymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene, and rubber polymers such as styrene / butadiene rubber (SBR) and ethylene / propylene rubber are preferable.
負極活物質層(100質量%)中の負極活物質の含有量は、1質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量が下限値以上であれば、優れた充放電特性が得られやすい。負極活物質の含有量が上限値以下であれば、エネルギー密度の高い電極が得られやすい。
負極活物質層(100質量%)中の導電補助材の含有量は、0質量%以上8質量%以下が好ましく、1質量%以上2質量%以下がより好ましい。導電補助材の含有量が多いほど、エネルギー密度の高い電極が得られやすい。導電補助材の含有量が上限値以下であれば、低抵抗の電極が得られやすい。
負極活物質層(100質量%)中の結着材の含有量は、1質量%以上10質量%以下が好ましく、1質量%以上2質量%以下がより好ましい。結着材の含有量が下限値以上であれば、エネルギー密度の高い電極が得られやすい。結着材の含有量が上限値以下であれば、低抵抗の電極が得られやすい。
1 mass% or more and 99 mass% or less are preferable, and, as for content of the negative electrode active material in a negative electrode active material layer (100 mass%), 90 mass% or more and 98 mass% or less are more preferable. When the content of the negative electrode active material is at least the lower limit value, excellent charge / discharge characteristics are easily obtained. If content of a negative electrode active material is below an upper limit, an electrode with a high energy density will be easy to be obtained.
The content of the conductive auxiliary material in the negative electrode active material layer (100% by mass) is preferably 0% by mass to 8% by mass, and more preferably 1% by mass to 2% by mass. The higher the content of the conductive auxiliary material, the easier it is to obtain an electrode with a higher energy density. If the content of the conductive auxiliary material is not more than the upper limit value, a low-resistance electrode is easily obtained.
The content of the binder in the negative electrode active material layer (100% by mass) is preferably 1% by mass to 10% by mass, and more preferably 1% by mass to 2% by mass. If the content of the binder is not less than the lower limit value, an electrode having a high energy density is easily obtained. If the content of the binder is not more than the upper limit value, it is easy to obtain a low resistance electrode.
負極活物質層の製造方法は特に限定されず、例えば、正極活物質の代わりに負極活物質を使用する以外は、前述の正極活物質層と同様の方法で製造できる。
プレス後の負極活物質層の嵩密度は、1.0g/cm2以上3.0g/cm2以下が好ましい。負極活物質層の嵩密度が1.0g/cm2以上であれば、結着材が集電基材付近に充分に存在でき、負極活物質層と集電基材との密着性が向上する。負極活物質層の嵩密度が3.0g/cm2以下であれば、負極活物質層に充分な空隙が得られ、非水電解液が負極活物質層に浸透しやすく、電池性能が向上する。
The manufacturing method of a negative electrode active material layer is not specifically limited, For example, it can manufacture by the method similar to the above-mentioned positive electrode active material layer except using a negative electrode active material instead of a positive electrode active material.
The bulk density of the negative electrode active material layer after pressing is preferably 1.0 g / cm 2 or more and 3.0 g / cm 2 or less. If the bulk density of the negative electrode active material layer is 1.0 g / cm 2 or more, the binder can be sufficiently present in the vicinity of the current collecting substrate, and the adhesion between the negative electrode active material layer and the current collecting substrate is improved. . When the bulk density of the negative electrode active material layer is 3.0 g / cm 2 or less, sufficient voids are obtained in the negative electrode active material layer, and the nonaqueous electrolyte easily penetrates into the negative electrode active material layer, thereby improving battery performance. .
<セパレータ>
セパレータを形成する材料としては、軽金属イオンを透過し、非水電解液によって変質しない多孔性のシート状ポリマーが好ましい。具体的には、ポリエチレン(PE)、ポリプロピレン(PP)等のオレフィン系のシート状ポリマー、ポリイミド、ポリアラミド等のシート状ポリマーが挙げられる。
<Separator>
As a material for forming the separator, a porous sheet-like polymer that transmits light metal ions and does not change in quality by the nonaqueous electrolytic solution is preferable. Specific examples include olefin-based sheet polymers such as polyethylene (PE) and polypropylene (PP), and sheet polymers such as polyimide and polyaramid.
セパレータがシート状ポリマーで形成される場合、その厚みは、非水電解液二次電池の用途によっても異なるが、自動車等の大型産業用途では、40〜60μmが好ましい。また、細孔径は1μm以下が好ましく、空隙率は20〜80%が好ましい。 When the separator is formed of a sheet-like polymer, the thickness varies depending on the application of the non-aqueous electrolyte secondary battery, but is preferably 40 to 60 μm for large industrial applications such as automobiles. The pore diameter is preferably 1 μm or less, and the porosity is preferably 20 to 80%.
セパレータを形成する材料としては、不織布も使用できる。
不織布としては、綿、レーヨン、アセテート、ナイロン、ポリエステル、ポリオレフィン系樹脂、ポリイミド、アラミド等が挙げられる。これら不織布は、1種を単独で使用してもよく、2種以上を併用してもよい。
不織布の嵩密度は特に限定されない。不織布の空隙率は30〜90%が好ましい。また、不織布の厚みは、5〜200μmが好ましい。不織布の厚みが5μm以上であれば、非水電解液の保持がより良好になる。不織布の厚みが200μm以下であれば、内部抵抗がより小さくなる。
Nonwoven fabric can also be used as a material for forming the separator.
Nonwoven fabrics include cotton, rayon, acetate, nylon, polyester, polyolefin resin, polyimide, aramid, and the like. These nonwoven fabrics may be used alone or in combination of two or more.
The bulk density of the nonwoven fabric is not particularly limited. The porosity of the nonwoven fabric is preferably 30 to 90%. The thickness of the nonwoven fabric is preferably 5 to 200 μm. If the thickness of the non-woven fabric is 5 μm or more, the non-aqueous electrolyte can be better retained. If the thickness of the nonwoven fabric is 200 μm or less, the internal resistance becomes smaller.
<非水電解液>
非水電解液としては、公知の非水電解液が使用できる。
非水電解液の溶媒としては、ジエチルエーテル、エチレングリコールフェニルエーテル等のエーテル系溶媒、ホルムアミド、N−エチルホルムアミド等のアミド系溶媒、ジメチルスルホキシド、スルホラン等の含有硫化物系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、γ−ブチロラクトン、NMP等の有機溶媒が挙げられる。なかでも、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒が好ましい。これらの溶媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
<Non-aqueous electrolyte>
As the non-aqueous electrolyte, a known non-aqueous electrolyte can be used.
Non-aqueous electrolyte solvents include ether solvents such as diethyl ether and ethylene glycol phenyl ether, amide solvents such as formamide and N-ethylformamide, sulfide solvents such as dimethyl sulfoxide and sulfolane, ethylene carbonate, propylene Examples thereof include carbonate solvents such as carbonate, and organic solvents such as γ-butyrolactone and NMP. Of these, carbonate solvents such as ethylene carbonate and propylene carbonate are preferred. These solvents may be used alone or in combination of two or more.
非水電解液に含まれる電解質としては、リチウム塩が好ましい。つまり、本発明の非水電解液二次電池は、正極電極及び負極電極において吸蔵及び放出される軽金属イオンがリチウムイオンであることが好ましい。
リチウム塩としては、LiClO4、LiPF6、LiCl、LiBF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2等が挙げられる。なかでも、耐電圧特性が良好な点から、LiPF6が好ましい。
As an electrolyte contained in the nonaqueous electrolytic solution, a lithium salt is preferable. That is, in the nonaqueous electrolyte secondary battery of the present invention, it is preferable that the light metal ions occluded and released in the positive electrode and the negative electrode are lithium ions.
Examples of the lithium salt include LiClO 4 , LiPF 6 , LiCl, LiBF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 and the like. Among these, LiPF 6 is preferable from the viewpoint of good withstand voltage characteristics.
<非水電解液二次電池の製造方法>
本発明の非水電解液二次電池は、本発明の非水電解液二次電池用正極活物質を用いた正極電極を使用する以外は、公知の方法で製造できる。
例えば、前述の方法で製造した正極電極層及び負極電極層を、正極電極層と負極電極層が触れないようにセパレータを介して積層し、必要に応じて巻回して、コイン型、角型、円筒型、ラミネート型等の外装体中に非水電解液とともに封入することで、非水電解液二次電池が得られる。
非水電解液二次電池の製造時は、低露点(−50℃以下)の雰囲気であるドライルームや、アルゴンガスが容積の95体積%以上100体積%以下のグローブボックス等で作業を行い、水分が非水電解液二次電池内に混入しないようにすることが必須である。
<Method for producing non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present invention can be produced by a known method except that the positive electrode using the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is used.
For example, the positive electrode layer and the negative electrode layer manufactured by the above-described method are laminated via a separator so that the positive electrode layer and the negative electrode layer are not touched, and wound as necessary to form a coin shape, a square shape, A non-aqueous electrolyte secondary battery can be obtained by enclosing it together with a non-aqueous electrolyte in a cylindrical or laminated outer package.
When manufacturing a non-aqueous electrolyte secondary battery, work in a dry room that has an atmosphere with a low dew point (-50 ° C. or lower), a glove box with argon gas in a volume of 95 volume% to 100 volume%, It is essential to prevent moisture from entering the non-aqueous electrolyte secondary battery.
以上説明した本発明の非水電解液二次電池は、照射線量5kGy以上3000kGy以下の電子線の照射によって活性化された本発明の非水電解液二次電池用正極活物質を使用しているため、大電流を取り出せる優れた充放電特性を有している。
なお、本発明の非水電解液二次電池は、前記したリチウムイオン二次電池には限定されない。例えば、正極電極及び負極電極で吸蔵及び放出される軽金属イオンが、ナトリウムイオン、カルシウムイオン、マグネシウムイオンである非水電解液二次電池であってもよい。
The non-aqueous electrolyte secondary battery of the present invention described above uses the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention activated by irradiation with an electron beam with an irradiation dose of 5 kGy to 3000 kGy. Therefore, it has an excellent charge / discharge characteristic that can extract a large current.
The nonaqueous electrolyte secondary battery of the present invention is not limited to the above-described lithium ion secondary battery. For example, a non-aqueous electrolyte secondary battery in which light metal ions occluded and released by the positive electrode and the negative electrode are sodium ions, calcium ions, and magnesium ions may be used.
以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[実施例1]
<正極活物質の表面処理>
正極活物質としてLiMn2O4(比重4.2、三井金属社製、Type−F)を使用し、LiMn2O4の35mgを、面積2cm2のステンレス製の集電体表面に4t/cm2の圧力で圧着させ、厚さ約0.1mmのペレットを作製した。次に、得られたペレットの両面に、図1に例示した電子線照射装置100を用いて、照射線量5kGy(加速電圧50kV)で電子線を照射した。
また、照射線量を1000kGy(加速電圧250kV)、3000kGy(加速電圧300kV)に変更した以外は前記と同様の方法で、電子線を照射したペレットを得た。
なお、比重が3〜5の正極活物質では、電子線の侵入深さは材料表面から0.05mmである。したがって、厚さ0.1mmのペレットの両面に電子線を照射すれば、該ペレットのほぼ全域の正極活物質に電子線が照射されたと見なせる。
以下は、電子線の照射線量の異なる3種類のペレットを使用して、それぞれ同様に行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
[Example 1]
<Surface treatment of positive electrode active material>
LiMn 2 O 4 (specific gravity 4.2, made by Mitsui Kinzoku, Type-F) was used as the positive electrode active material, and 35 mg of LiMn 2 O 4 was applied to the surface of a stainless steel current collector having an area of 2 cm 2 at 4 t / cm. The resultant was pressure-bonded at a pressure of 2 to produce a pellet having a thickness of about 0.1 mm. Next, both sides of the obtained pellet were irradiated with an electron beam with an irradiation dose of 5 kGy (acceleration voltage 50 kV) using the electron
Moreover, the pellet which irradiated the electron beam was obtained by the method similar to the above except having changed the irradiation dose into 1000 kGy (acceleration voltage 250 kV) and 3000 kGy (acceleration voltage 300 kV).
In the positive electrode active material having a specific gravity of 3 to 5, the penetration depth of the electron beam is 0.05 mm from the material surface. Therefore, if an electron beam is irradiated on both sides of a 0.1 mm thick pellet, it can be considered that the positive electrode active material in almost the entire area of the pellet is irradiated with an electron beam.
The following was performed in the same manner using three types of pellets with different electron beam irradiation doses.
<正極インクの調製>
プライミクス社製の混練機ハイビスミックスの釜に、前記正極活物質のペレット、導電補助材であるデンカブラック(電気化学工業社製、HS100)、及び結着材であるポリフッ化ビニリデン(PVDF)(#7200、クレハ社製)を、正極活物質:導電補助材:結着材(質量比)=100:2:3の割合で投入し、120分混錬した後、N−メチル−2−ピロリドン(NMP)(三菱化学社製)を固形分が80質量%になるように添加し、回転数102rpmでブレードにより撹拌し、ファニキュラー状態の粉体−液体の塊を作製した。次いで、該塊をハイビスミックス中にて回転数102rpmで30分混練した後、固形分が65質量%になるように、NMPを5回ほど小分けして投入し、500gの正極インクを調製した。
<Preparation of positive electrode ink>
In a kneading machine Hibismix kettle manufactured by Primics, the positive electrode active material pellets, Denka black (HS100, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary material, and polyvinylidene fluoride (PVDF) (#) as a binder (# 7200, manufactured by Kureha Co., Ltd.) at a ratio of positive electrode active material: conductive auxiliary material: binder (mass ratio) = 100: 2: 3, kneaded for 120 minutes, and then N-methyl-2-pyrrolidone ( NMP) (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content was 80% by mass, and the mixture was stirred with a blade at a rotation speed of 102 rpm to prepare a powder-liquid lump in a funicular state. Next, the mass was kneaded in the Hibismix at a rotation speed of 102 rpm for 30 minutes, and then NMP was added in small portions about 5 times so that the solid content was 65% by mass to prepare 500 g of positive electrode ink.
<正極電極の製造>
集電基材としてアルミニウム箔(日本製箔社製、厚さ15μm)を使用し、該集電基材上に、スリットクリアランス100μmのYA−Cアプリケーターによって前記正極インクを幅10cm、長さ40cmにわたって塗工し、オーブンにより80℃で45分間乾燥した後、その四隅をセロテープ(登録商標)(ニチバン社製)によって油圧式の金属ロールに貼り付け、線圧98000N/cmで加圧成型を行い、正極電極を得た。
<Manufacture of positive electrode>
Aluminum foil (Nippon Foil Co., Ltd.,
<負極インクの調製>
プライミクス社製の混練機ハイビスミックスの釜に、負極活物質である天然黒鉛(日立化成工業社製、SMG)及び導電補助材である人造黒鉛(TIMCAL社製、SFG−6)を、負極活物質:導電補助材(質量比)=91:7の割合で投入し、120分混錬した後、固形分が65質量%になるようにNMP(三菱化学社製)を添加し、回転数40rpmでブレードにて撹拌した。その後、さらに結着材であるPVDF(#7200、クレハ社製)を、負極活物質及び導電補助材の合計量と結着材の質量比が98:2となるように投入し、固形分が50質量%になるようにNMPを投入し、回転数30rpmで30分撹拌して、500gの負極インクを調製した。
<Preparation of negative electrode ink>
A natural graphite (manufactured by Hitachi Chemical Co., Ltd., SMG), which is a negative electrode active material, and artificial graphite (manufactured by TIMCAL, SFG-6), which is a conductive auxiliary material, are added to a kneader Hibismix kettle manufactured by Primix. : Conductive auxiliary material (mass ratio) = 91: 7, and after kneading for 120 minutes, NMP (manufactured by Mitsubishi Chemical Corporation) is added so that the solid content is 65% by mass, and the rotational speed is 40 rpm. Stir with a blade. Thereafter, PVDF (# 7200, manufactured by Kureha Co.), which is a binder, was further added so that the total amount of the negative electrode active material and the conductive auxiliary material and the mass ratio of the binder was 98: 2, and the solid content was NMP was added so that it might become 50 mass%, and it stirred at 30 rpm for 30 minutes, and prepared 500 g of negative electrode inks.
<負極電極の製造>
集電基材として銅箔(三井金属社製、厚さ12μm)を使用し、該集電基材上に、スリットクリアランス100μmのYA−Cアプリケーターによって、前記負極インクを幅11cm、長さ40cmにわたって塗工し、オーブンにより80℃で45分間乾燥した後、その四隅をセロテープ(登録商標)(ニチバン社製)によって油圧式の金属ロールに貼り付け、線圧300N/cmで加圧成型を行い、負極電極を得た。
<Manufacture of negative electrode>
A copper foil (made by Mitsui Kinzoku Co., Ltd., thickness 12 μm) is used as a current collecting base material, and the negative ink is spread over the current collecting base material by a YA-C applicator having a slit clearance of 100 μm over a width of 11 cm and a length of 40 cm. After coating and drying in an oven at 80 ° C. for 45 minutes, the four corners are attached to a hydraulic metal roll with cello tape (registered trademark) (manufactured by Nichiban Co., Ltd.) and subjected to pressure molding at a linear pressure of 300 N / cm, A negative electrode was obtained.
[実施例2〜11]
使用する正極活物質を表1に示す通りに変更した以外は、実施例1と同様にして正極電極及び負極電極を得た。
なお、使用したLiFePO4、LiMnPO4、LiMnVO4、LiNiVO4、LiCoVO4、LiFeVO4、LiCoO2、LiNiO2、LiNi0.85Al0.15O2及びLiNi5/9Co1/3Mn2/9O2の比重は、いずれも3〜5の範囲内である。
[Examples 2 to 11]
A positive electrode and a negative electrode were obtained in the same manner as in Example 1 except that the positive electrode active material used was changed as shown in Table 1.
Incidentally, LiFePO 4 was used, LiMnPO 4, LiMnVO 4, LiNiVO 4, LiCoVO 4, LiFeVO 4,
[比較例1〜11]
使用する正極活物質を表1に示す通りに変更し、正極活物質への電子線の照射を行わない以外は、実施例1と同様にして正極電極及び負極電極を得た。
[Comparative Examples 1 to 11]
The positive electrode active material to be used was changed as shown in Table 1, and a positive electrode and a negative electrode were obtained in the same manner as in Example 1 except that the positive electrode active material was not irradiated with an electron beam.
[比較例12]
正極材料への電子線の照射において、照射線量を3kGy(加速電圧30kV)とした以外は、実施例1と同様にして正極電極及び負極電極を得た。
[Comparative Example 12]
A positive electrode and a negative electrode were obtained in the same manner as in Example 1 except that the irradiation dose was 3 kGy (
[比較例13]
正極材料への電子線の照射において、照射線量を3500kGy(加速電圧320kV)とした以外は、実施例1と同様にして正極電極及び負極電極を得た。
[Comparative Example 13]
A positive electrode and a negative electrode were obtained in the same manner as in Example 1 except that the irradiation dose was 3500 kGy (acceleration voltage 320 kV) in the electron beam irradiation of the positive electrode material.
各例では、調製した正極インクについてそれぞれ粒度分布を測定し、また製造した正極電極についてそれぞれ細孔分布を測定した。また、製造した正極電極及び負極電極を用いてコインセルを製造し、充放電特性を評価した。それぞれの測定方法及び評価方法を以下に示す。
[粒度分布の測定]
調製した正極インクについて、Multisizer4(ベックマン・コールター社製)を使用し、一定の微小電流を流して、粒子が直径50μmのアパチャー内を流れるときの電極の抵抗値から粒子の体積を求め、粒度分布を測定した。
粒度分布は、測定を繰り返し3回行い、その精度が95%以上であることを確認し、それら測定値の平均値とした。
In each example, the particle size distribution was measured for each of the prepared positive electrode inks, and the pore distribution was measured for each of the manufactured positive electrode electrodes. Moreover, the coin cell was manufactured using the manufactured positive electrode and negative electrode, and the charge / discharge characteristic was evaluated. Each measuring method and evaluation method are shown below.
[Measurement of particle size distribution]
About the prepared positive electrode ink, using a Multisizer 4 (manufactured by Beckman Coulter, Inc.), a constant minute current is passed, and the volume of the particle is obtained from the resistance value of the electrode when the particle flows in an aperture having a diameter of 50 μm. Was measured.
For the particle size distribution, the measurement was repeated three times, the accuracy was confirmed to be 95% or more, and the average value of the measured values was taken.
[細孔分布の測定]
作製した正極電極から、5cm×5cmの正方形のサンプルを切り出し、該サンプルについて、水銀圧入式ポロシメータを用いて、正極活物質層における30nm〜10μmの範囲にある空孔の空隙率を測定した。
[Measurement of pore distribution]
A 5 cm × 5 cm square sample was cut out from the produced positive electrode, and the porosity of pores in the positive electrode active material layer in the range of 30 nm to 10 μm was measured using a mercury intrusion porosimeter.
[充放電特性の評価]
各例で得られた正極電極を直径15mmの円板状に打ち抜き、さらに負極電極を直径16.5mmの円板状に打ち抜いたものを対極としてコインセルを作製し、充放電特性を評価した。
前記コインセルのセパレータとしては、厚さ25μmのポリプロピレン多孔膜を使用し、非水電解液としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)及び6フッ化リン酸リチウム(LiPF6)を、質量比1:1:1:1で混合した液(キシダ化学社製)を使用した。
作製したコインセルを使用し、定電流(0.2C)で4.5Vまで充電した後、3.0Vまで定電流(2C)で放電して放電容量を測定するサイクルを2000サイクル実施し、放電容量維持率を測定した。なお、前記放電容量維持率(%)は、1サイクル後の放電容量に対する、各サイクル後の放電容量の割合と規定した。放電容量維持率は、各々の正極電極について5個ずつコインセルを作製して測定を行い、それらの平均値とした。
[Evaluation of charge / discharge characteristics]
A positive electrode obtained in each example was punched into a disk shape having a diameter of 15 mm, and a negative electrode was punched into a disk shape having a diameter of 16.5 mm to prepare a coin cell, and charge / discharge characteristics were evaluated.
As a separator of the coin cell, a polypropylene porous film having a thickness of 25 μm is used, and as a non-aqueous electrolyte, ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and lithium hexafluorophosphate ( A liquid (manufactured by Kishida Chemical Co., Ltd.) in which LiPF 6 ) was mixed at a mass ratio of 1: 1: 1: 1 was used.
Using the produced coin cell, after charging to 4.5V at a constant current (0.2C), discharging to 3.0V at a constant current (2C) and measuring the discharge capacity was performed 2000 cycles. The maintenance rate was measured. The discharge capacity retention rate (%) was defined as the ratio of the discharge capacity after each cycle to the discharge capacity after one cycle. The discharge capacity retention rate was measured by preparing five coin cells for each positive electrode and measuring the average value thereof.
実施例1〜11及び比較例1〜13における、正極インクの粒度分布及び正極活物質層の細孔分布の測定結果、並びに充放電特性の評価結果を表1、2及び図2〜6に示す。図3及び図6の実施例の放電容量維持率の結果は、正極活物質への電子線の照射線量を1000kGy(加速電圧250kV)としたときの結果である。なお、図2〜6の結果は、平均する前の1個のコインセルでのデータである。 The measurement results of the particle size distribution of the positive electrode ink and the pore distribution of the positive electrode active material layer and the evaluation results of the charge / discharge characteristics in Examples 1 to 11 and Comparative Examples 1 to 13 are shown in Tables 1 and 2 and FIGS. . The results of the discharge capacity retention rates in the examples of FIGS. 3 and 6 are the results when the irradiation dose of the electron beam to the positive electrode active material is 1000 kGy (acceleration voltage 250 kV). The results of FIGS. 2 to 6 are data in one coin cell before averaging.
表1、表2及び図2に示すように、実施例1〜11及び比較例1〜13においては、同じ種類の正極活物質を使用したときの正極インクの粒度分布は、電子線の照射の有無、照射線量の違いに関わらずほぼ同等であり、正極インク中に固形分が同程度に分散されたと考えられる。また、正極活物質層の細孔分布も、電子線の照射の有無、照射線量の違いに関わらずほぼ同等であり、正極電極の正極活物質層内への非水電解液の含侵は同程度と考えられる。 As shown in Table 1, Table 2 and FIG. 2, in Examples 1 to 11 and Comparative Examples 1 to 13, the particle size distribution of the positive ink when the same type of positive electrode active material is used is that of electron beam irradiation. It is almost the same regardless of the presence or absence and the irradiation dose, and it is considered that the solid content was dispersed to the same extent in the positive electrode ink. In addition, the pore distribution in the positive electrode active material layer is almost the same regardless of the presence or absence of electron beam irradiation and the difference in irradiation dose, and the impregnation of the non-aqueous electrolyte into the positive electrode active material layer of the positive electrode is the same. It is thought to be about.
また、表1及び図3,4,6に示すように、照射線量5kGy以上3000kGy以下の条件で電子線を照射した正極活物質を使用した実施例1〜11では、2000サイクル後も放電容量維持率が90%を超えており、優れた充放電特性が得られた。つまり、これらの例の正極電極は、大電流が容易に取り出せるものであった。これは、電子線の照射によって正極活物質が活性化され、正極活物質と非水電解液、及び正極活物質と導電補助材の界面の反応がより速やかに進行するようになっためであると考えられる。
一方、表2及び図5,6に示すように、電子線を照射していない正極活物質を使用した比較例1〜11では、2000サイクル後の放電容量維持率が80%未満であり、同じ種類の正極活物質を使用した実施例1〜11に比べて充放電特性が劣っていた。
また、正極活物質として照射線量3kGyの条件で電子線を照射したLiMn2O4を使用した比較例12では、2000サイクル後の放電容量維持率が、電子線を照射していないLiMn2O4を使用した比較例1と同程度であり、電子線の照射効果が無かった。
また、正極活物質として照射線量3500kGyの条件で電子線を照射したLiMn2O4を使用した比較例13では、2000サイクル後の放電容量維持率は若干向上しているものの、照射線量5kGy以上3000kGy以下の条件で電子線を照射したLiMn2O4を使用した実施例1よりも低く、充放電特性が劣っていた。これは、過剰な電子線の照射によって正極活物質の一部が失活したためと考えられる。
Moreover, as shown in Table 1 and FIGS. 3, 4, and 6, in Examples 1 to 11 using the positive electrode active material irradiated with the electron beam under the irradiation dose of 5 kGy or more and 3000 kGy or less, the discharge capacity was maintained even after 2000 cycles. The rate exceeded 90%, and excellent charge / discharge characteristics were obtained. In other words, the positive electrodes in these examples can easily take out a large current. This is because the positive electrode active material is activated by electron beam irradiation, and the reaction at the interface between the positive electrode active material and the non-aqueous electrolyte and between the positive electrode active material and the conductive auxiliary material proceeds more rapidly. Conceivable.
On the other hand, as shown in Table 2 and FIGS. 5 and 6, in Comparative Examples 1 to 11 using the positive electrode active material not irradiated with the electron beam, the discharge capacity retention rate after 2000 cycles is less than 80%, which is the same. Charge / discharge characteristics were inferior to Examples 1 to 11 using various types of positive electrode active materials.
Moreover, in Comparative Example 12 using LiMn 2 O 4 irradiated with an electron beam under the condition of an irradiation dose of 3 kGy as a positive electrode active material, the discharge capacity retention rate after 2000 cycles is LiMn 2 O 4 not irradiated with an electron beam. And comparable to that of Comparative Example 1 in which no electron beam irradiation effect was observed.
Moreover, in Comparative Example 13 using LiMn 2 O 4 irradiated with an electron beam under the condition of an irradiation dose of 3500 kGy as the positive electrode active material, although the discharge capacity maintenance rate after 2000 cycles is slightly improved, the irradiation dose is 5 kGy or more and 3000 kGy. the following LiMn 2 O 4 lower than that of example 1 using irradiated with electron beam under conditions, charge and discharge characteristics was poor. This is presumably because a part of the positive electrode active material was deactivated by the excessive electron beam irradiation.
本発明の製造方法により得られる正極活物質を用いれば、正極活物質層への導電補助材、結着材の添加量を低減しつつ、大電流が容易に取り出せる優れた充放電特性を有する正極電極を製造できる。そのため、材料費が低減でき、また正極電極の製造工程が簡便になり、非水電解液二次電池のコストダウンに大きく寄与しうる。 By using the positive electrode active material obtained by the production method of the present invention, a positive electrode having excellent charge / discharge characteristics that can easily take out a large current while reducing the amount of conductive auxiliary material and binder added to the positive electrode active material layer An electrode can be manufactured. Therefore, the material cost can be reduced, the manufacturing process of the positive electrode can be simplified, and it can greatly contribute to the cost reduction of the non-aqueous electrolyte secondary battery.
100 電子線照射装置
101 真空チャンバ
102 ターミナル
103 フィラメント
104 リペラー
105 グリッド
106 電子線通過部
107 ビームコレクタ
108 シールド管
109 ベルトコンベア
110 電子線
111 正極活物質
DESCRIPTION OF
Claims (10)
前記正極電極を形成する正極活物質が、請求項8に記載の非水電解液二次電池用正極活物質であることを特徴とする非水電解液二次電池。 In a non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing light metal ions, and a non-aqueous electrolyte,
The positive electrode active material which forms the said positive electrode is the positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 8, The nonaqueous electrolyte secondary battery characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011213899A JP2013073867A (en) | 2011-09-29 | 2011-09-29 | Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011213899A JP2013073867A (en) | 2011-09-29 | 2011-09-29 | Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013073867A true JP2013073867A (en) | 2013-04-22 |
Family
ID=48478197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011213899A Withdrawn JP2013073867A (en) | 2011-09-29 | 2011-09-29 | Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013073867A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014096330A (en) * | 2012-11-12 | 2014-05-22 | Kyushu Univ | Positive electrode active material, lithium battery, and process of manufacturing positive electrode active material |
CN106165144A (en) * | 2014-04-11 | 2016-11-23 | 日产自动车株式会社 | Platypelloid type secondary cell |
WO2024000336A1 (en) * | 2022-06-30 | 2024-01-04 | 宁德新能源科技有限公司 | Electrochemical device and electronic device |
-
2011
- 2011-09-29 JP JP2011213899A patent/JP2013073867A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014096330A (en) * | 2012-11-12 | 2014-05-22 | Kyushu Univ | Positive electrode active material, lithium battery, and process of manufacturing positive electrode active material |
CN106165144A (en) * | 2014-04-11 | 2016-11-23 | 日产自动车株式会社 | Platypelloid type secondary cell |
JPWO2015156167A1 (en) * | 2014-04-11 | 2017-04-13 | 日産自動車株式会社 | Flat secondary battery |
US10431852B2 (en) | 2014-04-11 | 2019-10-01 | Envision Aesc Japan Ltd. | Flat secondary battery |
WO2024000336A1 (en) * | 2022-06-30 | 2024-01-04 | 宁德新能源科技有限公司 | Electrochemical device and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5882516B2 (en) | Lithium secondary battery | |
US10700341B2 (en) | Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same | |
JP7175968B2 (en) | Binder for lithium-sulfur battery, positive electrode containing the same and lithium-sulfur battery | |
JP2008262768A (en) | Lithium ion secondary battery | |
JP2013073906A (en) | Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP4852824B2 (en) | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
JP6163613B2 (en) | Lithium secondary battery | |
WO2017149927A1 (en) | Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JP2015037008A (en) | Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same | |
JP6808948B2 (en) | Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery | |
JP5365668B2 (en) | Lithium secondary battery and method for producing negative electrode thereof | |
JP2019175657A (en) | Lithium ion secondary battery | |
JP5213011B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery using the same | |
KR102244905B1 (en) | Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same | |
JP2022541837A (en) | High nickel electrode sheet and manufacturing method thereof | |
JP2013073867A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery | |
JP2015056311A (en) | Method for manufacturing nonaqueous electrolyte secondary battery | |
JP2013201062A (en) | Manufacturing method of all-solid lithium ion secondary battery | |
JP2018160379A (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2017152122A (en) | Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
CN108028361B (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2014115322A1 (en) | Negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell obtained using same | |
JP2018097935A (en) | Carbonaceous material, lithium secondary battery, and method of producing carbonaceous material | |
JP5998428B2 (en) | Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery positive electrode manufacturing method, non-aqueous electrolyte secondary battery positive ink, non-aqueous electrolyte secondary battery For manufacturing positive electrode for automobile | |
JP7214705B2 (en) | Negative electrode and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141202 |