[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013073047A - Broadband 1/4 wavelength plate - Google Patents

Broadband 1/4 wavelength plate Download PDF

Info

Publication number
JP2013073047A
JP2013073047A JP2011212329A JP2011212329A JP2013073047A JP 2013073047 A JP2013073047 A JP 2013073047A JP 2011212329 A JP2011212329 A JP 2011212329A JP 2011212329 A JP2011212329 A JP 2011212329A JP 2013073047 A JP2013073047 A JP 2013073047A
Authority
JP
Japan
Prior art keywords
periodic structure
polarized light
wavelength
phase difference
trapezoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011212329A
Other languages
Japanese (ja)
Inventor
Tadashi Matsuo
正 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011212329A priority Critical patent/JP2013073047A/en
Publication of JP2013073047A publication Critical patent/JP2013073047A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a broadband 1/4 wavelength plate having a periodic structure with a high aspect ratio, achieving a large dimensional margin.SOLUTION: A 1/4 wavelength plate comprises a transparent material having a patterned periodic structure. The TE polarized beams and the TM polarized beams after transmitted through the periodic structure have a phase difference of 75° to 105° therebetween, each having an average transmittance of 90% or higher, at the 780 nm wavelength. The TE polarized beams and the TM polarized beams have a phase difference of 84° to 96° therebetween, each having an average transmittance of 90% or higher, at the 650 nm wavelength. The TE polarized beams and the TM polarized beams have a phase difference of 87° to 93° therebetween, each having an average transmittance of 90% or higher, at the 405 nm wavelength. The periodic structure portion includes a periodic structure having a trapezoidal cross section. The bottom length of the trapezoid is equal to the periodic length of the periodic structure. The tapered portion on one side of the trapezoid has a width of 60 nm or less.

Description

本発明は、構造複屈折を用いた広帯域1/4波長板に関する。
特にCD、DVD、青色光(ブルーレイ)ディスクの3波長(例えば780nm、650nm、405nm)に共通して対応する光ディスク装置に用いる、広帯域対応の1/4波長板に関する。
The present invention relates to a broadband quarter-wave plate using structural birefringence.
In particular, the present invention relates to a quarter-wave plate compatible with a wide band, which is used in an optical disc apparatus commonly used for three wavelengths (for example, 780 nm, 650 nm, and 405 nm) of a CD, DVD, and blue light (Blu-ray) disc.

1/4波長板は、光ディスク装置などの光ピックアップ機能において、レーザの投光路と受光路を効率良く分離するための光学素子であり、波長板を透過した光のTE偏光とTM偏光の間に90°(=1/4波長)の位相差を生じさせ、円偏光を直線偏光に、直線偏光を円偏光に変換するものである。
特に近年、青色光を利用する光ディスクの登場により、DVD、CDと合わせ、3波長(例えば405nm、650nm、780nm)に共通して使える、広帯域対応の1/4波長板が求められている。
The quarter wave plate is an optical element for efficiently separating the light projecting path and the light receiving path of the laser in an optical pickup function such as an optical disk device, and between the TE polarized light and TM polarized light transmitted through the wave plate. A phase difference of 90 ° (= 1/4 wavelength) is generated to convert circularly polarized light into linearly polarized light and linearly polarized light into circularly polarized light.
In particular, with the advent of optical discs that use blue light in recent years, there is a demand for a quarter-wave plate for broadband that can be used in common with three wavelengths (for example, 405 nm, 650 nm, and 780 nm) together with DVD and CD.

1/4波長板は通常、構造複屈折を利用して作製される。
すなわち、透明材料の表面に微細な周期構造(例えば図7のような格子構造)を作り込み、周期構造を透過するTE偏光(電場ベクトルの方向が周期方向に直交)とTM偏光(電場ベクトルの方向が周期方向に一致)とに屈折率差を与えることで、両偏光間に位相差を生じさせている。構造複屈折による位相差は、周期構造の寸法(周期、線幅、高さなど)によって変化させることができる。
A quarter-wave plate is usually fabricated using structural birefringence.
That is, a fine periodic structure (for example, a lattice structure as shown in FIG. 7) is formed on the surface of the transparent material, and TE polarized light (the direction of the electric field vector is orthogonal to the periodic direction) and TM polarized light (of the electric field vector) transmitted through the periodic structure. A phase difference is generated between the two polarized lights by giving a difference in refractive index between the two directions. The phase difference due to structural birefringence can be changed depending on the dimensions (period, line width, height, etc.) of the periodic structure.

このような波長板としては、柱状部と溝部とが周期的に繰り返して構成される凹凸周期構造において、柱状部を台形状に形成することで、0次光透過率を向上させるようにしたものが提案されている(例えば、特許文献1参照)。
また、1/4波長板の作製法としては、コスト的に有利であることから、近年、モールドと呼ばれる雛型を用いた、インプリント法の適用が提案されている。インプリント法は、塗布した高分子樹脂(PMMAやポリカーボネイトなど)にモールドを押し当て、光や熱によって樹脂を硬化させ、その後モールドを分離して転写成形する方法である。(非特許文献1参照)。
As such a wave plate, in a concavo-convex periodic structure in which a columnar portion and a groove portion are periodically repeated, the columnar portion is formed in a trapezoidal shape, thereby improving the 0th-order light transmittance. Has been proposed (see, for example, Patent Document 1).
Further, as a method for producing a quarter wavelength plate, since it is advantageous in terms of cost, application of an imprint method using a template called a mold has been proposed in recent years. The imprint method is a method in which a mold is pressed against an applied polymer resin (PMMA, polycarbonate, or the like), the resin is cured by light or heat, and then the mold is separated and transferred. (Refer nonpatent literature 1).

特開2006−323059号公報JP 2006-323059 A

森川雅弘、「ナノインプリント技術の光学デバイスへの応用」、表面技術、一般社団法人 表面技術協会、2008年、第59巻、第10号、p.18Masahiro Morikawa, “Application of Nanoimprint Technology to Optical Devices”, Surface Technology, Surface Technology Association, 2008, Vol. 59, No. 10, p. 18

とろこで、構造複屈折により、90°程度のTE−TM間位相差と高い透過率を、しかも広い波長領域(405nm、650nm、780nm)にわたって実現するには、数百nmの構造周期に対して、高いアスペクト比の周期構造を寸法精度良く作ることが必要である。特にインプリント法においては、モールドを樹脂から分離するときの変形や形状劣化、すなわち離型性の問題があり、微細な構造を必要とする広帯域1/4波長板の作製には困難が伴っていた。   In order to realize a TE-TM phase difference of about 90 ° and a high transmittance over a wide wavelength region (405 nm, 650 nm, 780 nm) by structural birefringence, a structural period of several hundred nm is required. Therefore, it is necessary to make a periodic structure with a high aspect ratio with high dimensional accuracy. In particular, in the imprint method, there is a problem of deformation or shape deterioration when separating the mold from the resin, that is, releasability, and it is difficult to produce a broadband quarter-wave plate that requires a fine structure. It was.

柱状部を、断面形状が台形形状となるように形成することで離型性よく波長板を作製することが可能である。しかしながら、広い波長領域にわたって、高い透過率を実現するためには、高いアスペクト比の周期構造を厳しい寸法精度で適切に設定する必要がある。
そこで、この発明は、上記従来の未解決の問題に着目してなされたものであり、高いアスペクト比の周期構造を有しつつ、寸法精度を緩和し寸法余裕度の大きい、広帯域な1/4波長板を提供することを目的としている。
By forming the columnar part so that the cross-sectional shape becomes a trapezoidal shape, it is possible to produce a wave plate with good releasability. However, in order to achieve high transmittance over a wide wavelength region, it is necessary to appropriately set a periodic structure having a high aspect ratio with strict dimensional accuracy.
Therefore, the present invention has been made by paying attention to the above-mentioned conventional unsolved problems, and has a periodic structure with a high aspect ratio, relaxes dimensional accuracy and has a large dimensional margin, and has a broadband 1/4. The object is to provide a wave plate.

上述の課題を解決するために、請求項1にかかる広帯域1/4波長板は、透明性材料が、柱状部が周期的に形成される周期構造にパターニングされ、該周期構造を透過した後のTE偏光とTM偏光との間に、波長780nmにおいて、75°乃至105°の位相差と90%以上のTE偏光およびTM偏光の平均透過率とを有し、且つ波長650nmにおいて、84°乃至96°の位相差と90%以上のTE偏光およびTM偏光の平均透過率とを有し、さらに波長405nmにおいて、87°乃至93°の位相差と90%以上のTE偏光とTM偏光の平均透過率とを有し、前記柱状部の断面形状が台形であり、前記台形の底辺の長さが前記周期構造の周期の長さに等しく、且つ前記台形の片側のテーパー部分の幅が60nm以下であることを特徴としている。   In order to solve the above-described problem, in the broadband quarter-wave plate according to claim 1, the transparent material is patterned into a periodic structure in which columnar portions are periodically formed, and is transmitted through the periodic structure. Between TE polarized light and TM polarized light, it has a phase difference of 75 ° to 105 ° at a wavelength of 780 nm, an average transmittance of TE polarization and TM polarized light of 90% or more, and 84 ° to 96 at a wavelength of 650 nm. Having a phase difference of 90 ° and an average transmittance of TE polarized light and TM polarized light of 90% or more, and further having a phase difference of 87 ° to 93 ° and an average transmittance of TE polarized light and TM polarized light of 90% or more at a wavelength of 405 nm The cross-sectional shape of the columnar part is trapezoidal, the length of the base of the trapezoid is equal to the period length of the periodic structure, and the width of the tapered portion on one side of the trapezoid is 60 nm or less. With features To have.

また、請求項2にかかる広帯域1/4波長板は、前記柱状部の断面形状は台形であり、前記台形の底辺の長さが前記周期構造の周期の長さに等しく、且つ前記台形の片側のテーパー部分の幅が60nm以下であって、さらに、前記柱状部の高さは2180nm以上2220nm以下であり、前記周期構造の周期の長さは330nm以上400nm以下であって、さらに前記柱状部の平均線幅は270nm以上350nm以下であることを特徴としている。   Further, in the broadband quarter-wave plate according to claim 2, the cross-sectional shape of the columnar portion is a trapezoid, the length of the base of the trapezoid is equal to the length of the period of the periodic structure, and one side of the trapezoid The width of the tapered portion is 60 nm or less, the height of the columnar portion is 2180 nm or more and 2220 nm or less, the period length of the periodic structure is 330 nm or more and 400 nm or less, and further, The average line width is 270 nm or more and 350 nm or less.

本発明は、周期構造部分の断面形状が台形の周期構造からなり、各台形の底辺の長さが構造周期の長さに等しい。そのため、周期構造の凹んだ部分の断面形状は、三角形状となり、その結果、インプリントで作製する場合のモールドの断面形状も三角形状となるので、モールドを樹脂から分離するときの変形や形状劣化が生じにくい。これにより、微細な、高いアスペクト比構造であっても、コスト的に有利なインプリント法によって、精度よく広帯域1/4波長板を作製することができ、また、位相差と透過率の目標を達成するための広帯域1/4波長板の周期精度、線幅精度を緩和できる効果もある。   In the present invention, the periodic structure portion has a trapezoidal periodic cross-sectional shape, and the length of the base of each trapezoid is equal to the length of the structural period. Therefore, the cross-sectional shape of the recessed portion of the periodic structure becomes a triangular shape, and as a result, the cross-sectional shape of the mold in the case of producing by imprinting also becomes a triangular shape, so deformation and shape deterioration when separating the mold from the resin Is unlikely to occur. As a result, even with a fine, high aspect ratio structure, it is possible to accurately produce a broadband quarter-wave plate by an imprint method that is advantageous in terms of cost, and to achieve the target of phase difference and transmittance. There is also an effect that the periodic accuracy and line width accuracy of the broadband quarter-wave plate for achieving can be relaxed.

さらに、周期構造を透過した後のTE偏光とTM偏光との間に、波長780nmにおいて、75°乃至105°の位相差と90%以上のTE偏光およびTM偏光の平均透過率とを有し、且つ波長650nmにおいて、84°乃至96°の位相差と90%以上のTE偏光およびTM偏光の平均透過率とを有し、さらに波長405nmにおいて、87°乃至93°の位相差と90%以上のTE偏光とTM偏光の平均透過率とを有し、前記周期構造部分の断面形状が台形の周期構造からなり前記台形の底辺の長さが前記周期構造の周期の長さに等しく、且つ前記台形の片側のテーパー部分の幅が60nm以下となるように、周期構造を作製するため、広帯域の1/4波長板を容易に実現することができる。   Furthermore, between the TE polarized light and TM polarized light after passing through the periodic structure, at a wavelength of 780 nm, it has a phase difference of 75 ° to 105 ° and an average transmittance of TE polarized light and TM polarized light of 90% or more, Further, at a wavelength of 650 nm, it has a phase difference of 84 ° to 96 ° and an average transmittance of TE polarization and TM polarization of 90% or more, and further, at a wavelength of 405 nm, a phase difference of 87 ° to 93 ° and 90% or more. The average transmittance of TE-polarized light and TM-polarized light, and the cross-sectional shape of the periodic structure portion is a trapezoidal periodic structure, and the length of the base of the trapezoid is equal to the period length of the periodic structure, and the trapezoid Since the periodic structure is produced so that the width of the taper portion on one side of this is 60 nm or less, a broadband quarter-wave plate can be easily realized.

本発明の広帯域1/4波長板の実施形態の構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of embodiment of the broadband 1/4 wavelength plate of this invention. 広帯域1/4波長板の目標性能を示す説明図である。It is explanatory drawing which shows the target performance of a broadband quarter wavelength plate. 典型的なポリカーボネイトの光学定数を示す説明図である。It is explanatory drawing which shows the optical constant of typical polycarbonate. 本発明の広帯域1/4波長板の位相差と透過率を計算するときのパラメータを示す断面模式図である。It is a cross-sectional schematic diagram which shows the parameter when calculating the phase difference and the transmittance | permeability of the broadband quarter wave plate of this invention. 本発明の広帯域1/4波長板を、ポリカーボネイト膜を透明膜材料として、位相差と透過率を計算した結果の一例を示す特性図である。It is a characteristic view which shows an example of the result of having calculated the phase difference and the transmittance | permeability by using the polycarbonate film | membrane as a transparent film | membrane material for the broadband quarter wavelength plate of this invention. 本発明の広帯域1/4波長板を、ポリカーボネイト膜を透明膜材料として、位相差と透過率を計算し、設計した結果をまとめた表である。It is the table | surface which put together the result of having calculated the phase difference and the transmittance | permeability and calculating the wideband quarter wavelength plate of this invention by using the polycarbonate film as a transparent film material. 従来構造の広帯域1/4波長板の構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the broadband 1/4 wavelength plate of a conventional structure. 従来構造の広帯域1/4波長板の位相差と透過率を計算するときのパラメータを示す断面模式図である。It is a cross-sectional schematic diagram which shows the parameter when calculating the phase difference and the transmittance | permeability of the broadband quarter wavelength plate of a conventional structure. 従来構造の広帯域1/4波長板を、ポリカーボネイト膜を透明膜材料として、位相差と透過率を計算し、設計した結果をまとめた表である。It is the table | surface which put together the result which calculated the phase difference and the transmittance | permeability, and calculated the wideband quarter wavelength plate of the conventional structure by using the polycarbonate film as a transparent film material.

以下に、本発明の実施の形態に係る広帯域1/4波長板について説明する。
図1は、本発明の実施の形態における1/4波長板1の概略構成を示す構成図である。
図1において、2は周期構造、3は透明性基板である。周期構造2は、同一形状を有する柱状部2aが複数隣接して配置されて構成される。柱状部2aは、断面形状が、上辺が細い台形形状を有し、台形の底辺部分で柱状部2aどうしが接するように形成される。そして、この周期構造2が透明性基板3上に形成されて1/4波長板1を構成している。
The broadband quarter-wave plate according to the embodiment of the present invention will be described below.
FIG. 1 is a configuration diagram showing a schematic configuration of a quarter-wave plate 1 in an embodiment of the present invention.
In FIG. 1, 2 is a periodic structure and 3 is a transparent substrate. The periodic structure 2 is configured by arranging a plurality of columnar portions 2a having the same shape adjacent to each other. The columnar portion 2a has a trapezoidal shape with a narrow upper side, and is formed so that the columnar portions 2a are in contact with each other at the bottom of the trapezoid. The periodic structure 2 is formed on the transparent substrate 3 to constitute the quarter wavelength plate 1.

この1/4波長板1は、入射光4が周期構造2と透明性基板3を透過した後のTE偏光5とTM偏光6との間に、波長780nmにおいて75°乃至105°の位相差があるともに、TE偏光5とTM偏光6の平均の透過率が90%以上となるように形成される。
また、波長650nmにおいて、入射光4が周期構造2と透明性基板3を透過した後のTE偏光5とTM偏光6との間に、84°乃至96°の位相差があるともに、平均の透過率が90%以上となっている。さらに波長405nmにおいて、入射光4が周期構造2と透明性基板3を透過した後のTE偏光5とTM偏光6との間に、87°乃至93°の位相差があるともに、平均の透過率が90%以上となっている。
This quarter-wave plate 1 has a phase difference of 75 ° to 105 ° at a wavelength of 780 nm between the TE polarized light 5 and the TM polarized light 6 after the incident light 4 has passed through the periodic structure 2 and the transparent substrate 3. In some cases, the average transmittance of the TE polarized light 5 and the TM polarized light 6 is 90% or more.
Further, at a wavelength of 650 nm, there is a phase difference of 84 ° to 96 ° between the TE-polarized light 5 and the TM-polarized light 6 after the incident light 4 has transmitted through the periodic structure 2 and the transparent substrate 3, and the average transmission. The rate is 90% or more. Further, at a wavelength of 405 nm, there is a phase difference of 87 ° to 93 ° between the TE polarized light 5 and the TM polarized light 6 after the incident light 4 has passed through the periodic structure 2 and the transparent substrate 3, and an average transmittance. Is over 90%.

また、周期構造2の、断面形状における台形形状において、各台形の底辺の長さは構造周期の長さに等しくなっている。同時に、周期構造2を決める周期Λ(底辺の線幅wbに等しい)、上辺の線幅wa、高さhは、波長780nm、650nm、405nmにおける位相差と透過率の条件を満たすように決定されている。   Further, in the trapezoidal shape in the cross-sectional shape of the periodic structure 2, the length of the base of each trapezoid is equal to the length of the structural period. At the same time, the period Λ (equal to the line width wb of the bottom side), the line width wa, and the height h of the upper side are determined so as to satisfy the phase difference and transmittance conditions at wavelengths of 780 nm, 650 nm, and 405 nm. ing.

以下、本発明の1/4波長板1を設計した実施例、すなわち周期構造2の形状(寸法)の選択について、図面を用いて詳細に説明する。
周期構造2となる透明性材料はポリカーボネイト(以下、PCと略記する)を例として説明する。透明性基板3としては、周期構造2と同じ材料の他に、合成ガラス、石英、アルミナなどがありうるが、波長400nmから780nmにわたって、光の吸収度をあらわす指標である消衰係数が実用上0(ゼロ)であるものであればよい。ここでは周期構造2と同じPCを透明性基板3とする設計例について説明する。
Hereinafter, an example in which the quarter-wave plate 1 of the present invention is designed, that is, selection of the shape (dimension) of the periodic structure 2 will be described in detail with reference to the drawings.
The transparent material which becomes the periodic structure 2 will be described by taking polycarbonate (hereinafter abbreviated as PC) as an example. In addition to the same material as the periodic structure 2, the transparent substrate 3 may be synthetic glass, quartz, alumina, or the like. However, an extinction coefficient that is an index representing light absorbance is practically used over a wavelength range of 400 to 780 nm. What is necessary is just 0 (zero). Here, a design example in which the same PC as the periodic structure 2 is used as the transparent substrate 3 will be described.

図2に、広帯域1/4波長板の一般的な目標性能を示す。図2のように、波長405nm、650nm、780nmの広い波長域において、高い透過率と90°前後の位相差が要求される。
TE偏光5とTM偏光6間の位相差は、入射光4が透明性基板3上に形成された周期構造2を透過することによって、TE成分に対する屈折率とTM成分に対する屈折率に差ができることによって生じる。ここで、TE成分に対する屈折率をnTE、TM成分に対する屈折率をnTMとすると、屈折率差Δnは、
Δn=|nTE−nTM| ……(1)
であり、周期構造2の高さをh、対象となる波長をλとすると、位相差PSは、
PS(°)≒360°・Δn・h/λ ……(2)
で表わされる。
FIG. 2 shows a general target performance of the broadband quarter-wave plate. As shown in FIG. 2, high transmittance and a phase difference of around 90 ° are required in a wide wavelength range of wavelengths 405 nm, 650 nm, and 780 nm.
The phase difference between the TE-polarized light 5 and the TM-polarized light 6 is such that the incident light 4 is transmitted through the periodic structure 2 formed on the transparent substrate 3, so that the refractive index for the TE component and the refractive index for the TM component can be different. Caused by. Here, when the refractive index for the TE component is nTE and the refractive index for the TM component is nTM, the refractive index difference Δn is
Δn = | nTE−nTM | (1)
When the height of the periodic structure 2 is h and the target wavelength is λ, the phase difference PS is
PS (°) ≒ 360 ° · Δn · h / λ (2)
It is represented by

屈折率差Δnは、周期構造2となる、もともとの透明性材料の光学定数(屈折率n、消衰係数k)、周期構造2の周期Λ、線幅w、及び入射光4の波長λに依存して決まる。
したがって、広帯域1/4波長板1においては、それぞれ必要とする波長(例えば405nm、650nm、780nm)において同時にPS=90°前後となるように、周期構造2の周期Λ、線幅w、及び高さhを選定する必要がある。
The refractive index difference Δn corresponds to the optical constant (refractive index n, extinction coefficient k) of the original transparent material that becomes the periodic structure 2, the period Λ, the line width w, and the wavelength λ of the incident light 4. It depends on you.
Therefore, in the broadband quarter-wave plate 1, the period Λ, the line width w, and the height of the periodic structure 2 are set so that simultaneously PS = 90 ° at the required wavelengths (for example, 405 nm, 650 nm, and 780 nm). It is necessary to select h.

ここで、周期構造2となる透明性材料の光学定数について考えると、周期構造2を透過後の屈折率差Δnは、もともとの透明性材料の屈折率が大きいほど屈折率差Δnも大きくなる。屈折率差Δnが大きくなると、前記(2)式より、90°の位相差を得るための周期構造の高さhが小さくてすむようになる。
つまり、周期構造2のアスペクト比を小さく抑えるには、なるべく屈折率の大きい透明性材料を使うことが望ましい。しかしあまりに屈折率が大きいと、空間の屈折率(=1)との差が大きくなって、反射率が大きくなり、透過率が低下するようになるので、適度に屈折率の大きい透明性材料を使うことが望ましい。
Here, considering the optical constants of the transparent material that becomes the periodic structure 2, the refractive index difference Δn after passing through the periodic structure 2 increases as the refractive index of the original transparent material increases. When the refractive index difference Δn increases, the height h of the periodic structure for obtaining a phase difference of 90 ° can be reduced from the equation (2).
That is, in order to keep the aspect ratio of the periodic structure 2 small, it is desirable to use a transparent material having as large a refractive index as possible. However, if the refractive index is too large, the difference from the refractive index of the space (= 1) becomes large, the reflectance increases, and the transmittance decreases. It is desirable to use it.

次に、透明性材料の消衰係数について考えると、周期構造2のアスペクト比を抑えても、少なくとも数百nm以上の高さhが必要であるので、透過率>90%を満たすには、透明性材料の消衰係数は、必要な波長領域において、実用上0(ゼロ)である必要がある。
PC膜は、透明性高分子樹脂の中で比較的に屈折率が大きく、インプリント用樹脂としても使えることから、本発明に用いる透明性材料として適している。
Next, considering the extinction coefficient of the transparent material, even if the aspect ratio of the periodic structure 2 is suppressed, a height h of at least several hundred nm is necessary. The extinction coefficient of the transparent material needs to be practically 0 (zero) in the necessary wavelength region.
The PC film is suitable as a transparent material used in the present invention because it has a relatively high refractive index among the transparent polymer resins and can be used as an imprinting resin.

図3に代表的なPC膜の、波長λが405nm、650nm、780nmの場合の光学定数を示す。
図3の特性を有するPC膜を透明性材料として、本発明の、断面の台形形状の底辺の長さが構造周期の長さに等しい周期構造2の、波長405nm、650nm、780nmにおける位相差、透過率を計算し、広帯域1/4波長板1の設計を行った。
FIG. 3 shows optical constants of typical PC films when the wavelength λ is 405 nm, 650 nm, and 780 nm.
The phase difference at wavelengths of 405 nm, 650 nm, and 780 nm of the periodic structure 2 in which the base of the trapezoidal shape of the cross section of the PC film having the characteristics of FIG. The transmittance was calculated and the broadband quarter-wave plate 1 was designed.

計算は、図4に示すように、周期Λ、断面の中間の高さにあたる平均線幅w、柱状部2aの高さhをパラメータとした。なお、図4から分かるように、平均線幅wと台形形状の上辺の幅(図1ではwa)との片側あたりの差、および平均線幅wと台形形状の底辺の幅(図1ではwb)との片側あたりの差をそれぞれaとすると、台形形状の片側あたりのテーパー幅は2aであり、
Λ=w+2a
という関係が成り立つ。また、透明性材料の屈折率nは図3の値、広帯域1/4波長板1の周囲の屈折率n0は1.0として計算した。
As shown in FIG. 4, the calculation was performed using parameters such as the period Λ, the average line width w corresponding to the middle height of the cross section, and the height h of the columnar portion 2a. As can be seen from FIG. 4, the difference per one side between the average line width w and the width of the upper side of the trapezoidal shape (wa in FIG. 1), and the average line width w and the width of the base of the trapezoidal shape (wb in FIG. 1). )), The taper width per side of the trapezoidal shape is 2a.
Λ = w + 2a
This relationship holds. The refractive index n of the transparent material was calculated as shown in FIG. 3, and the refractive index n 0 around the broadband quarter-wave plate 1 was calculated as 1.0.

良好な計算結果が得られた例を図5に示す。
図5は、構造の周期Λ=330nm、平均線幅w=270nm、したがって、片側あたりのテーパー幅60nmの場合の広帯域1/4波長板1において、高さhを横軸として、3つの波長での位相差を計算したものである。図5(a)は波長405nm、図5(b)は650nm、図5(c)は780nmの場合を表す。
An example in which a favorable calculation result is obtained is shown in FIG.
FIG. 5 shows a case where the structure period Λ = 330 nm, the average line width w = 270 nm, and therefore the wideband quarter-wave plate 1 in the case where the taper width per side is 60 nm. The phase difference is calculated. 5A shows the case of a wavelength of 405 nm, FIG. 5B shows the case of 650 nm, and FIG. 5C shows the case of 780 nm.

図5(a)〜(c)のそれぞれにおいて、上部および右端部に記載された帯状部分は、図2の一般的な目標性能における位相差の許容範囲とそれに伴う高さhの許容範囲を表わしている。
さらに、上記の構造のときの高さhに対する、波長405nmにおける透過率を計算すると図5(d)に示すように90%以上となる。
In each of FIGS. 5A to 5C, the belt-like portions described at the upper and right ends represent the allowable range of the phase difference and the allowable range of the height h associated therewith in the general target performance of FIG. ing.
Furthermore, when the transmittance at a wavelength of 405 nm with respect to the height h in the above structure is calculated, it becomes 90% or more as shown in FIG.

なお、波長405nmで透過率が90%以上であると、波長650nm、および780nmにおいては、波長が長くなることと、屈折率が小さくなることとによる効果で、波長405nmで可能な範囲を含む、広い高さ範囲で透過率が90%となるので、図を省略している。
このように図5の結果より、このときの本発明の構造においては、ほぼ高さhが2180nmから2220nmの範囲で、波長405nm、650nm、780nmに対する位相差と、透過率の目標を達成することができ、本発明の実施の形態に関わる1/4波長板1を作製できることが分かる。
In addition, when the transmittance is 90% or more at a wavelength of 405 nm, the wavelength 650 nm and 780 nm include a possible range at a wavelength of 405 nm due to the effects of a longer wavelength and a smaller refractive index. Since the transmittance is 90% in a wide height range, the drawing is omitted.
Thus, from the result of FIG. 5, in the structure of the present invention at this time, the target of the phase difference and the transmittance with respect to the wavelengths of 405 nm, 650 nm, and 780 nm is achieved in the range of the height h from 2180 nm to 2220 nm. It can be seen that the quarter-wave plate 1 according to the embodiment of the present invention can be manufactured.

図5と同様に、PC膜を透明性材料として用い、周期Λ、断面の中間の高さにあたる平均線幅w、柱状部2aの高さhをパラメータとして、本発明の構造の、波長405nm、650nm、780nmにおける位相差、透過率を計算した結果をまとめた表を図6に示す。
なお、図6中の「○」、「×」の判定は、位相差においては、それぞれ波長405nmと650nm、または405nmと780nmにおいて、図2の位相差の目標範囲を満たす高さhが重なる部分が存在すれば「○」としている。また、透過率は目標の90%以上を「○」としている。さらに、図6中の「最適高さ」とは、「位相差仕様を満たす高さ(h)範囲」の中央値を表す。
Similar to FIG. 5, using a PC film as a transparent material, with the period Λ, the average line width w corresponding to the intermediate height of the cross section, and the height h of the columnar part 2a as parameters, the wavelength of 405 nm, FIG. 6 shows a table summarizing the results of calculating the phase difference and transmittance at 650 nm and 780 nm.
In addition, in the determination of “◯” and “×” in FIG. 6, the phase difference is a portion where the height h that satisfies the target range of the phase difference in FIG. 2 overlaps at wavelengths of 405 nm and 650 nm, or 405 nm and 780 nm, respectively. If there is, “○” is indicated. Further, the transmittance of 90% or more of the target is “◯”. Furthermore, “optimum height” in FIG. 6 represents the median value of “height (h) range satisfying phase difference specifications”.

(比較例)
比較例として、図7に示す、柱状部が、垂直な断面を持つ周期構造についても、本発明の場合と同様の計算を行った。すなわち、PC膜を透明性材料として、図8のように、周期Λ、線幅w、周期部の高さhをパラメータとして、波長405nm、650nm、780nmにおける位相差、透過率を計算した。その結果をまとめた表を図9に示す。
(Comparative example)
As a comparative example, the same calculation as in the case of the present invention was performed for the periodic structure shown in FIG. That is, the phase difference and transmittance at wavelengths of 405 nm, 650 nm, and 780 nm were calculated using the PC film as a transparent material and using the period Λ, the line width w, and the height h of the periodic part as parameters as shown in FIG. A table summarizing the results is shown in FIG.

本発明の図6の結果と、従来構造の図9の結果とを比較すると、以下のことが分かる。
すなわち、従来の垂直な断面を持つ周期構造においては、スペース幅(Λ−w)が77nm程度以下であれば、広帯域1/4波長板の目標性能を満たすことができる。しかしながら、同じ周期(線幅)であっても、線幅(周期)が5nm違えば、位相差若しくは透過率の目標仕様を満たさなくなる。したがって、従来構造の周期または線幅の必要精度は厳しく、5nm程度である。
When the result of FIG. 6 of the present invention is compared with the result of FIG. 9 of the conventional structure, the following can be understood.
That is, in the conventional periodic structure having a vertical cross section, the target performance of the broadband quarter-wave plate can be satisfied if the space width (Λ-w) is about 77 nm or less. However, even if the cycle (line width) is the same, if the line width (cycle) is different by 5 nm, the target specification of phase difference or transmittance cannot be satisfied. Therefore, the required accuracy of the period or line width of the conventional structure is strict and is about 5 nm.

これに対し、本発明の底辺が周期長に等しい台形の周期構造2においては、ほぼテーパー幅(2a)60nm以下が必要なものの、周期で330nmから400nm、平均線幅では270nmから350nmの広い範囲で広帯域1/4波長板の目標をクリアすることができる。
これは微細な加工における最大の課題である寸法精度を緩和できること、すなわち寸法余裕度を大きくできることを意味している。これはひとつには、断面が台形形状になることで加工部分の垂直方向の屈折率変化がより緩やかになり、反射率が低下する効果が生まれることによる。また、アスペクト比については、従来構造も本発明の構造も大きな差はなく、本発明の方法が、アスペクト比において特に不利になるということはない。
On the other hand, in the trapezoidal periodic structure 2 in which the base of the present invention is equal to the periodic length, a taper width (2a) of approximately 60 nm or less is required, but a wide range of 330 nm to 400 nm in period and 270 to 350 nm in average line width. Can clear the target of a broadband quarter-wave plate.
This means that the dimensional accuracy, which is the biggest problem in fine processing, can be relaxed, that is, the dimensional margin can be increased. One reason for this is that the trapezoidal cross section makes the change in the refractive index in the vertical direction of the processed portion more gradual, and the effect of reducing the reflectivity is produced. Also, with respect to the aspect ratio, there is no significant difference between the conventional structure and the structure of the present invention, and the method of the present invention is not particularly disadvantageous in the aspect ratio.

本発明は、光ディスク装置などの光ピックアップ機能において、レーザの投光路と受光路を効率良く分離し、光利用効率を高める広帯域1/4位相板としての利用が期待される。特に近年、青色光を利用する次世代光ディスク、DVD、CDと合わせ、3波長(405nm、650nm、780nm)に共通して使える、広帯域対応の1/4波長板としての利用が期待される。   INDUSTRIAL APPLICABILITY The present invention is expected to be used as a wideband quarter phase plate that efficiently separates a light projecting path and a light receiving path of a laser in an optical pickup function such as an optical disk device and improves the light utilization efficiency. Particularly in recent years, it is expected to be used as a quarter-wave plate compatible with a wide band that can be used in common with three wavelengths (405 nm, 650 nm, and 780 nm) together with a next-generation optical disk, DVD, and CD that use blue light.

1 広帯域1/4波長板
2 周期構造
2a 柱状部
3 透明基板
4 入射光
5 TE偏光
6 TM偏光
DESCRIPTION OF SYMBOLS 1 Broadband quarter wave plate 2 Periodic structure 2a Columnar part 3 Transparent substrate 4 Incident light 5 TE polarized light 6 TM polarized light

Claims (2)

透明性材料が、柱状部が周期的に形成される周期構造にパターニングされ、該周期構造を透過した後のTE偏光とTM偏光との間に、波長780nmにおいて、75°乃至105°の位相差と90%以上のTE偏光およびTM偏光の平均透過率とを有し、且つ波長650nmにおいて、84°乃至96°の位相差と90%以上のTE偏光およびTM偏光の平均透過率とを有し、さらに波長405nmにおいて、87°乃至93°の位相差と90%以上のTE偏光とTM偏光の平均透過率とを有し、
前記柱状部の断面形状が台形であり、前記台形の底辺の長さが前記周期構造の周期の長さに等しく、且つ前記台形の片側のテーパー部分の幅が60nm以下であることを特徴とする広帯域1/4波長板。
A transparent material is patterned into a periodic structure in which columnar portions are periodically formed, and a phase difference of 75 ° to 105 ° is obtained at a wavelength of 780 nm between TE polarized light and TM polarized light after passing through the periodic structure. And 90% or more of TE-polarized light and TM-polarized light with an average transmittance of 84 ° to 96 ° at a wavelength of 650 nm and 90% or more of TE-polarized light and TM-polarized light with an average transmittance. Furthermore, at a wavelength of 405 nm, it has a phase difference of 87 ° to 93 °, an average transmittance of TE polarized light and TM polarized light of 90% or more,
A cross-sectional shape of the columnar part is a trapezoid, a length of a base of the trapezoid is equal to a period length of the periodic structure, and a width of a tapered portion on one side of the trapezoid is 60 nm or less. Broadband quarter wave plate.
前記柱状部の断面形状は台形であり、前記台形の底辺の長さが前記周期構造の周期の長さに等しく、且つ前記台形の片側のテーパー部分の幅が60nm以下であって、
さらに、前記柱状部の高さは2180nm以上2220nm以下であり、前記周期構造の周期の長さは330nm以上400nm以下であって、さらに前記柱状部の平均線幅は270nm以上350nm以下であることを特徴とする請求項1記載の広帯域1/4波長板。
The cross-sectional shape of the columnar part is a trapezoid, the length of the base of the trapezoid is equal to the length of the period of the periodic structure, and the width of the tapered portion on one side of the trapezoid is 60 nm or less,
Furthermore, the height of the columnar part is 2180 nm or more and 2220 nm or less, the period length of the periodic structure is 330 nm or more and 400 nm or less, and the average line width of the columnar part is 270 nm or more and 350 nm or less. 2. The broadband quarter wave plate according to claim 1, wherein
JP2011212329A 2011-09-28 2011-09-28 Broadband 1/4 wavelength plate Withdrawn JP2013073047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212329A JP2013073047A (en) 2011-09-28 2011-09-28 Broadband 1/4 wavelength plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212329A JP2013073047A (en) 2011-09-28 2011-09-28 Broadband 1/4 wavelength plate

Publications (1)

Publication Number Publication Date
JP2013073047A true JP2013073047A (en) 2013-04-22

Family

ID=48477590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212329A Withdrawn JP2013073047A (en) 2011-09-28 2011-09-28 Broadband 1/4 wavelength plate

Country Status (1)

Country Link
JP (1) JP2013073047A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166882A1 (en) * 2014-04-30 2015-11-05 住友電気工業株式会社 Polarization conversion element
JP2017026917A (en) * 2015-07-24 2017-02-02 大日本印刷株式会社 Diffraction glossy sheet, shaping sheet, and method for manufacturing diffraction glossy sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166882A1 (en) * 2014-04-30 2015-11-05 住友電気工業株式会社 Polarization conversion element
JP2015210838A (en) * 2014-04-30 2015-11-24 住友電気工業株式会社 Polarization state conversion element for laser processing apparatus
US10031270B2 (en) 2014-04-30 2018-07-24 Sumitomo Electric Industries, Ltd. Polarization state converting element
JP2017026917A (en) * 2015-07-24 2017-02-02 大日本印刷株式会社 Diffraction glossy sheet, shaping sheet, and method for manufacturing diffraction glossy sheet

Similar Documents

Publication Publication Date Title
JP4310080B2 (en) Diffractive optical element and optical system and optical apparatus provided with the same
JP5218079B2 (en) Optical element, optical pickup, optical information processing apparatus, optical attenuator, polarization conversion element, projector optical system, optical equipment
JP4999556B2 (en) Manufacturing method of optical element having fine irregularities on surface
US20090128908A1 (en) Polarization Split Element and Production Method Thereof, and Optical Pickup, Optical Device, Optical Isolator and Polarizing Hologram Provided with the Polarization Split Element
JP2008107720A (en) Polarizer and its manufacturing method
JP2010261999A (en) Optical element, polarizing filter, optical isolator, and optical device
JP2008216644A (en) Birefringent plate and optical head device
JPWO2017150568A1 (en) Optical element
WO2007077652A1 (en) Polarizing element and method for fabricating same
JP2013073047A (en) Broadband 1/4 wavelength plate
JP2012159802A (en) Optical element, optical pickup, optical information processor, optical attenuator, polarization conversion element, projector optical system, isolator and optical instrument
JP5767858B2 (en) Optical diffraction element, optical pickup, and method of manufacturing optical diffraction element
TWI389115B (en) Optical pickup device and optical information processing apparatus using the optical pickup device
JP5417815B2 (en) Diffraction element, optical head device, and projection display device
JP3913765B1 (en) Polarization phase difference plate
JP2005099099A (en) Wavelength plate
JP5928054B2 (en) Broadband quarter wave plate
JP2003315540A (en) Polarization diffraction element and method for manufacturing the same
JP2006330616A (en) Polarizer and method for manufacturing same, and liquid crystal display apparatus
JP2008046428A (en) Method for manufacturing optical element having fine rugged pattern on surface
JP2004205880A (en) Reflective diffraction grating
JP2012074111A (en) Wide band quarter-wave plate
JP2006106726A (en) Polarized light diffracting element
JP2004077806A (en) Phase plate optical element
JP2018146624A (en) Transmission type diffraction element and anti-reflection structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202