JP2013072110A - High-tensile, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same - Google Patents
High-tensile, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same Download PDFInfo
- Publication number
- JP2013072110A JP2013072110A JP2011211382A JP2011211382A JP2013072110A JP 2013072110 A JP2013072110 A JP 2013072110A JP 2011211382 A JP2011211382 A JP 2011211382A JP 2011211382 A JP2011211382 A JP 2011211382A JP 2013072110 A JP2013072110 A JP 2013072110A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- cold
- tensile
- surface quality
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
本発明は、自動車の外板等に適用して好適な、成形後の表面品質に優れる高張力冷延鋼板及びその製造方法に関するものである。 The present invention relates to a high-tensile cold-rolled steel sheet excellent in surface quality after forming, which is suitable for application to an outer plate of an automobile and the like, and a method for producing the same.
近年、自動車の軽量化ニーズの高まりを受けて、骨格部品のみならず、外板に対しても高張力鋼板適用による薄肉軽量化が進みつつある。高張力化にともない鋼板の成形性は低下するため、従来、成形性を向上させる発明が多くなされてきたが、一方で、外板等に対しては、厳しい表面品質が要求される。この表面品質を左右する表面欠陥は、大きく分けて、鋼板の製造段階で表面に認められるものと、自動車のプレスライン等において成形後、発現するものとに分類される。 In recent years, in response to the growing needs for weight reduction of automobiles, not only skeletal parts but also outer plates have been made thinner and lighter by applying high-tensile steel plates. Since the formability of a steel sheet decreases with increasing tensile strength, many inventions have been made to improve the formability in the past. On the other hand, strict surface quality is required for outer plates and the like. The surface defects that influence the surface quality are roughly classified into those that are recognized on the surface in the manufacturing stage of the steel sheet and those that appear after being formed in the press line of an automobile.
前者の表面欠陥は、比較的容易に見つけられるため、自動車生産への影響は小さい。また、例えば特許文献1などに開示されているように、素材段階での対策も知られている。
一方、後者の表面欠陥は、部品に成形した後あるいはさらに車体に組み込んだ後の最終検査工程で、初めて発見される場合があるため、自動車生産に対する影響は極めて大きい。
しかも、後者の表面欠陥を抑制する手段については、これまで効果的な対策が明確になっていなかった。
The former surface defects are relatively easy to find, so the impact on automobile production is small. In addition, as disclosed in Patent Document 1, for example, measures at the material stage are also known.
On the other hand, since the latter surface defect may be found for the first time in the final inspection process after being molded into a part or further incorporated into a vehicle body, the influence on automobile production is extremely large.
Moreover, no effective countermeasure has been clarified so far for the means for suppressing the latter surface defects.
本発明は、上記の現状に鑑み開発されたもので、特に成形後の表面品質に優れる高張力冷延鋼板を、その有利な製造方法と共に提案することを目的とする。 The present invention has been developed in view of the above-mentioned present situation, and an object of the present invention is to propose a high-tensile cold-rolled steel sheet that is particularly excellent in surface quality after forming, together with its advantageous manufacturing method.
本発明者らは、上記の問題を解決すべく、成形後に表面欠陥として現出する欠陥の発生メカニズムとその抑制対策について鋭意検討を重ねた。
その結果、このような表面欠陥が発生する鋼板では、鋼板の焼鈍過程において、降伏点伸びに起因した局所的な不均一変形が生じており、これが成形後の表面欠陥の原因であることが解明された。
In order to solve the above-mentioned problems, the present inventors have intensively studied the generation mechanism of defects that appear as surface defects after molding and countermeasures for suppressing them.
As a result, in steel sheets where such surface defects occur, local uneven deformation due to yield point elongation occurs during the annealing process of the steel sheet, and it is clarified that this is the cause of surface defects after forming. It was done.
すなわち、焼鈍過程で鋼板に不均一変形が生じていると、この不均一変形部では硬さが未変形部に比較して大きく、変形量が小さくなるため、部品への成形時において、不均一変形部が凸部として浮き上がってきて外観不良となる。なお、外観上はシャープな線状の欠陥となり、鋼板の長手方向に対して、斜め45°方向に伸びた形態を呈する。
当初、固溶C、Nが固定されたいわゆるIF鋼においては、一般的に明瞭な降伏点伸びが発現しないため、上述のような欠陥は発生しないものと考えられていた。しかしながら、本発明者らの基礎検討の結果、焼鈍後に調質圧延を施さない状態では、微小ではあるがはっきりとした降伏点伸びを観察でき、IF鋼で発生する同様な形態の表面欠陥についても降伏点伸びを起因とするものであることが明確となった。
In other words, if non-uniform deformation occurs in the steel sheet during the annealing process, the hardness of the non-uniform deformation portion is larger than that of the non-deformation portion, and the amount of deformation is small. A deformation | transformation part floats up as a convex part, and becomes an external appearance defect. In addition, it becomes a sharp linear defect in appearance, and exhibits a form extending obliquely at 45 ° with respect to the longitudinal direction of the steel sheet.
At first, in so-called IF steel in which solute C and N were fixed, it was generally considered that the above-mentioned defects did not occur because a clear yield point elongation was not exhibited. However, as a result of the basic studies by the present inventors, in the state where temper rolling is not performed after annealing, it is possible to observe a small but distinct yield point elongation, and even for surface defects of the same form occurring in IF steel. It became clear that it was caused by the yield point elongation.
上記のような表面欠陥の発生を抑制するには、焼鈍時に降伏点を超えるような歪量を与えなければ良い。一般的に、連続焼鈍炉内では、鋼板の降伏点を超える歪が発生しない条件で設備設計や通板条件が設定されている。ところが、実際には、加熱・冷却による熱歪のため、局所的に不均一な歪が発生して、特定条件では、鋼板の降伏点を超える場合が発生することが明らかとなった。 In order to suppress the occurrence of surface defects as described above, it is sufficient that a strain amount exceeding the yield point is not given during annealing. In general, in a continuous annealing furnace, facility design and sheet passing conditions are set under conditions that do not cause strain exceeding the yield point of the steel sheet. However, in practice, it has become clear that due to thermal strain due to heating / cooling, locally uneven strain occurs, and under certain conditions, the yield point of the steel sheet may be exceeded.
そこで、本発明者らは、上述した焼鈍時の不均一変形に起因した表面欠陥の発生因子についてさらに検討を加えた結果、再結晶完了後の冷却過程において、特定温度域で一定の冷却速度を超えると、鋼板内に発生する熱歪が大きくなって鋼板の降伏点を超える歪が発生し、成形後に表面欠陥が発現するとの知見を得た。
本発明は、上記の知見に立脚するものである。
Therefore, as a result of further study on the generation factors of surface defects caused by the above-described non-uniform deformation during annealing, the present inventors have obtained a constant cooling rate in a specific temperature range in the cooling process after completion of recrystallization. When it exceeded, the thermal strain which generate | occur | produces in a steel plate will become large, the distortion exceeding the yield point of a steel plate will generate | occur | produce, and the knowledge that the surface defect expressed after shaping | molding was acquired.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.0005〜0.0050%、Si:0.50%以下、Mn:2.00%以下、P:0.100%以下、S:0.020%以下、Ti:0.010〜0.100%、sol.Al:0.080%以下及びN:0.0070%以下を含有し、かつC、N、S、Tiが下記式(1)の関係を満足し、残部はFe及び不可避的不純物の組成からなり、圧延方向に採取した短冊状試験片に1〜5%の一方向の引張り歪を加えた後、表面を砥石がけした時に線状模様が発生しないことを特徴とする成形後の表面品質に優れる高張力冷延鋼板。
記
([%Ti]/48−[%N]/14−[%S]/32)/([%C]/12)≧1.00 ・・・(1)
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.0005 to 0.0050%, Si: 0.50% or less, Mn: 2.00% or less, P: 0.100% or less, S: 0.020% or less, Ti: 0.010 to 0.100%, sol.Al: 0.080% or less and N: A strip-shaped test piece containing 0.0070% or less, C, N, S, and Ti satisfying the relationship of the following formula (1), the balance being composed of Fe and inevitable impurities, and taken in the rolling direction A high-tensile cold-rolled steel sheet with excellent surface quality after forming, in which a linear pattern does not occur when the surface is ground with a 1-5% unidirectional tensile strain.
([% Ti] / 48 − [% N] / 14 − [% S] / 32) / ([% C] / 12) ≧ 1.00 (1)
Here, [% M] represents the content (mass%) of M element in steel.
2.さらに、質量%で、Nb:0.003〜0.100%及びB:0.0003〜0.0030%のうちから選択される少なくとも1種を含有し、かつNbを含有する場合には、前記式(1)に代えて下記式(2)の関係を満足することを特徴とする前記1に記載の成形後の表面品質に優れる高張力冷延鋼板。
記
{[%Nb]/93+([%Ti]/48−[%N]/14−[%S]/32)}/([%C]/12)≧1.00 ・・・(2)
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。
2. Furthermore, when it contains at least one selected from Nb: 0.003 to 0.100% and B: 0.0003 to 0.0030% and contains Nb in mass%, the following formula (1) is substituted instead. The high-tensile cold-rolled steel sheet having excellent surface quality after forming according to the above 1, characterized by satisfying the relationship of formula (2).
{[% Nb] / 93 + ([% Ti] / 48 − [% N] / 14 − [% S] / 32)} / ([% C] / 12) ≧ 1.00 (2)
Here, [% M] represents the content (mass%) of M element in steel.
3.鋼板の表面に、亜鉛系めっき皮膜をさらに有することを特徴とする前記1又は2に記載の成形後の表面品質に優れる高張力冷延鋼板。 3. 3. The high-tensile cold-rolled steel sheet having excellent surface quality after forming according to the above 1 or 2, further comprising a zinc-based plating film on the surface of the steel sheet.
4.前記1又は2に記載の成分組成からなる鋼片を、熱間圧延後、酸洗し、ついで冷間圧延後、連続焼鈍を施し、該連続焼鈍の冷却過程において400〜200℃の温度域を30℃/sを超えない冷却速度で冷却することを特徴とする成形後の表面品質に優れる高張力冷延鋼板の製造方法。 4). The steel slab comprising the component composition according to 1 or 2 is hot-rolled, pickled, then cold-rolled and then subjected to continuous annealing, and a temperature range of 400 to 200 ° C. is applied in the cooling process of the continuous annealing. A method for producing a high-tensile cold-rolled steel sheet having excellent surface quality after forming, characterized by cooling at a cooling rate not exceeding 30 ° C / s.
5.鋼板表面に、亜鉛系めっき皮膜を形成するめっき処理工程をさらに有することを特徴とする前記4に記載の成形後の表面品質に優れる高張力冷延鋼板の製造方法。 5). 5. The method for producing a high-tensile cold-rolled steel sheet having excellent surface quality after forming as described in 4 above, further comprising a plating treatment step of forming a zinc-based plating film on the steel sheet surface.
本発明によれば、成形後の表面品質に優れる高張力冷延鋼板を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the high tension cold-rolled steel plate which is excellent in the surface quality after shaping | molding.
以下、本発明を具体的に説明する。
まず、本発明において、鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
C:0.0005〜0.0050%
Cは、含有量が増えると、深絞り性や延性が劣化し自動車用外板としての成形性を付与することが困難となる。このためC量の上限は0.0050%、好ましくは0.0040%に規定する。一方、含有量が0.0005%未満では結晶粒が粗大化して、成形した際に鋼板表面に肌荒れが生じやすくなるため、C量の下限は0.0005%に規定する。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described. In addition,% showing the following component composition shall mean the mass% unless there is particular notice.
C: 0.0005-0.0050%
When the content of C increases, deep drawability and ductility deteriorate and it becomes difficult to impart formability as an automobile outer plate. For this reason, the upper limit of the C amount is specified to be 0.0050%, preferably 0.0040%. On the other hand, if the content is less than 0.0005%, the crystal grains become coarse and the surface of the steel sheet is liable to be roughened when formed, so the lower limit of the C content is specified to 0.0005%.
Si:0.50%以下、
Siは、固溶強化能の高い元素であるが、一方で含有量が増大すると鋼板が硬質化するだけでなく、スケールに起因した表面欠陥が発生しやすくなる。このためSi量の上限は0.50%に規定する。
Si: 0.50% or less,
Si is an element having a high solid solution strengthening ability. On the other hand, when the content is increased, not only the steel sheet is hardened but also surface defects due to scale are likely to occur. For this reason, the upper limit of Si content is specified as 0.50%.
Mn:2.00%以下、
Mnも、含有させることで鋼板を高強度化できる元素である。一方で、過剰に添加すると深絞り性が低下する。このため、Mn量の上限は2.00%に規定する。なお、Mn添加量が小さすぎると高強度化の効果が不十分となる可能性があるので、Mn量の下限は好ましくは0.50%、より好ましくは0.60%とする。
Mn: 2.00% or less,
Mn is an element that can increase the strength of the steel sheet by containing Mn. On the other hand, when it adds excessively, deep drawability will fall. For this reason, the upper limit of the amount of Mn is specified as 2.00%. If the amount of Mn added is too small, the effect of increasing the strength may be insufficient. Therefore, the lower limit of the amount of Mn is preferably 0.50%, more preferably 0.60%.
P:0.100%以下、
Pは、微量でも含有量が増えると鋼板を高強度化できる有効な元素であるが、一方で、過剰に含有すると延性、溶接性が劣化する。このためP量の上限は0.100%に規定する。
P: 0.100% or less,
P is an effective element that can increase the strength of the steel sheet when the content increases even in a small amount. On the other hand, if contained excessively, ductility and weldability deteriorate. For this reason, the upper limit of the amount of P is specified as 0.100%.
S:0.020%以下、
Sは、含有量が高いとPと同様に溶接部の靭性が劣化する。このためS量の上限は0.020%、好ましくは0.015%に抑制する。
S: 0.020% or less,
If the content of S is high, the toughness of the welded portion deteriorates as in the case of P. For this reason, the upper limit of the amount of S is suppressed to 0.020%, preferably 0.015%.
Ti:0.010〜0.100%
Tiは、本発明において特に重要な元素である。固溶Cを炭化物や炭窒化物として固着させることで、自動車の外板等に適した深絞り性を得ることが可能となる。Tiが0.010%未満では所望の効果が得られなくなり、一方、0.100%を超えて添加しても効果が飽和するだけでなく、鋼板が硬質化して成形性が劣化するため、含有量を0.010〜0.100%と規定する。
Ti: 0.010 to 0.100%
Ti is an especially important element in the present invention. By fixing solute C as carbide or carbonitride, it is possible to obtain deep drawability suitable for automobile outer plates and the like. If Ti is less than 0.010%, the desired effect cannot be obtained. On the other hand, the addition of more than 0.100% not only saturates the effect, but also hardens the steel sheet and deteriorates formability. It is specified as 0.100%.
sol.Al:0.080%以下、N:0.0070%以下
sol.AlとNは、通常の鋼に含有される量であれば本発明の効果を損なわないので、それぞれsol.Al:0.080%以下、N:0.0070%以下に規定する。
sol.Al: 0.080% or less, N: 0.0070% or less
Since sol.Al and N do not impair the effects of the present invention as long as they are contained in ordinary steel, they are defined as sol.Al: 0.080% or less and N: 0.0070% or less, respectively.
また、固溶C量を制御するためには、C、N、S、Ti量については、以下の関係式(1)を満足させることが必要である。
([%Ti]/48−[%N]/14−[%S]/32)/([%C]/12)≧1.00 ・・・(1)
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。
上記の関係式を満足することで、固溶Cを完全にTiC(TiCN)あるいはこれらの複合炭化物、炭窒化物として固着させて、自動車の外板等に適した深絞り性を得ることができる。当該関係式を満たさないと、深絞り性が劣化することになる。また、上記式(1)の左辺を1.20以上として、固溶Cを完全に固着させることが望ましい。一方で、式(1)の左辺が15.0を超えても、固溶Cの固着効果が飽和するので、15.0以下とすることが好ましい。
Moreover, in order to control the amount of solute C, it is necessary to satisfy the following relational expression (1) for the amounts of C, N, S, and Ti.
([% Ti] / 48 − [% N] / 14 − [% S] / 32) / ([% C] / 12) ≧ 1.00 (1)
Here, [% M] represents the content (mass%) of M element in steel.
By satisfying the above relational expression, solid solution C can be completely fixed as TiC (TiCN) or a composite carbide or carbonitride thereof, and deep drawability suitable for an automobile outer plate can be obtained. . If the relational expression is not satisfied, the deep drawability deteriorates. Further, it is desirable that the left side of the above formula (1) is 1.20 or more to completely fix the solid solution C. On the other hand, even if the left side of the formula (1) exceeds 15.0, the fixing effect of solute C is saturated.
以上、基本成分について説明したが、本発明では、その他にも、以下に述べる元素を必要に応じて適宜含有させることが好ましい。 The basic components have been described above. However, in the present invention, it is preferable that the following elements are appropriately contained as necessary.
Nb:0.003〜0.100%
Nbは、Tiと複合して添加することができる。Nbは、C量に対して添加量を適切に制御することにより、Cを炭窒化物、炭化物として固着させることができる。ここで、Nb量が0.003%未満では、固溶C量の制御が困難になり所望の効果を得ることができないおそれがあり、一方、0.100%を超えると粒径が極端に細かくなり、硬質化して成形性が劣化するため、Nb量は0.003〜0.100%の範囲に規定する。
Nb: 0.003 to 0.100%
Nb can be added in combination with Ti. Nb can be fixed as carbonitride and carbide by appropriately controlling the amount of Nb added relative to the amount of C. Here, if the amount of Nb is less than 0.003%, it is difficult to control the amount of dissolved C and the desired effect may not be obtained. On the other hand, if it exceeds 0.100%, the particle size becomes extremely fine and hardened. Therefore, the Nb content is specified in the range of 0.003 to 0.100%.
B:0.0003〜0.0030%
Bは、深絞り成形した部品の耐二次加工脆性を向上させるために添加する。しかしながら、B量が0.0003%に満たないと所望の効果が得られず、一方0.0030%を超えると硬質化して成形性が劣化する。そのためB量は0.0003〜0.0030%の範囲に規定する。
B: 0.0003 to 0.0030%
B is added in order to improve the secondary work embrittlement resistance of the deep-drawn parts. However, if the amount of B is less than 0.0003%, a desired effect cannot be obtained, while if it exceeds 0.0030%, it becomes hard and the formability deteriorates. Therefore, the amount of B is specified in the range of 0.0003 to 0.0030%.
そして、前記Nbを含有する場合には、前記式(1)に代えて、以下の関係式(2)を満足させることが好ましい。
{[%Nb]/93+([%Ti]/48−[%N]/14−[%S]/32)}/([%C]/12)≧1.00 ・・・(2)
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。
上記の関係式を満足することで、固溶Cを完全にTiC(TiCN)、NbC(NbCN)あるいはこれらの複合炭化物、炭窒化物として固着させて、自動車の外板等に適した深絞り性を得ることができる。当該関係式を満たさないと、深絞り性が劣化するおそれがある。また、上記式(2)の左辺を1.20以上として、固溶Cを完全に固着させることが望ましい。一方で、式(2)の左辺が15.0を超えても、固溶Cの固着効果が飽和するので、15.0以下とすることが好ましい。
And when it contains the said Nb, it replaces with the said Formula (1), and it is preferable to satisfy the following relational expressions (2).
{[% Nb] / 93 + ([% Ti] / 48 − [% N] / 14 − [% S] / 32)} / ([% C] / 12) ≧ 1.00 (2)
Here, [% M] represents the content (mass%) of M element in steel.
By satisfying the above relational expression, solid solution C is completely fixed as TiC (TiCN), NbC (NbCN) or their composite carbides, carbonitrides, and deep drawability suitable for automobile outer panels, etc. Can be obtained. If the relational expression is not satisfied, deep drawability may be deteriorated. Further, it is desirable that the left side of the above formula (2) is 1.20 or more and the solid solution C is completely fixed. On the other hand, even if the left side of the formula (2) exceeds 15.0, the fixing effect of the solute C is saturated.
また、深絞り性等の成形性や製造工程での表面元素濃化抑制による表面品質の向上を目的として、V、W、Cu、Ni,Sn、Cr、Mo及びSb等を添加することができる。これらの添加量については0.5%を超えるような多量添加でなければ、本発明の効果は損なわれない。その他、介在物の形態制御を目的としてCaを添加する場合や、精錬時の効率向上のため脱酸素レベルの許容範囲を広げる目的でO含有量の上限を高める場合においても、それぞれ30ppm、50ppmを超える添加でなければ、本発明の効果は損なわない。 Moreover, V, W, Cu, Ni, Sn, Cr, Mo, Sb, etc. can be added for the purpose of improving surface quality by suppressing moldability such as deep drawability and surface element concentration in the manufacturing process. . The effects of the present invention are not impaired unless these addition amounts are larger than 0.5%. In addition, when adding Ca for the purpose of controlling the form of inclusions, or when increasing the upper limit of O content for the purpose of widening the allowable range of deoxygenation level to improve the efficiency during refining, 30 ppm and 50 ppm respectively. If the addition is not excessive, the effect of the present invention is not impaired.
なお、上記した成分以外の残部は、Fe及び不可避的不純物である。 The balance other than the above-described components is Fe and inevitable impurities.
冷延鋼板の表面品質の評価
成形後の表面品質の評価法について述べる。前述したとおり、製造段階で現出する表面欠陥に比べて、成形後に現出する表面欠陥は、部品に成形した後あるいはさらに車体に組み込んだ後の最終検査工程で、初めて発見される場合があるため、自動車生産に対する影響は極めて大きい。本発明者らは、製造過程での局所的な塑性変形発生による筋状欠陥の検出方法について鋭意検討した結果、適切な歪量を鋼板に付与して、表面を砥石がけすることで、簡易かつ効果的に検出できることを明らかとした。
歪量については、少なすぎても多すぎても、塑性変形の発生した部分とそうでない部分の硬さの差による変形挙動の差が小さくなるため、1〜5%程度が最適である。試験片は圧延方向を長手方向として短冊状の試験片とすれば良い。製品の全幅で確認する必要があるので、引張り試験片の仕様範囲内で、できるだけ、面積を広くとることが効率的である。また、試験片長手方向を圧延方向とした試験片を用いることにより、線状模様(筋状欠陥)を適切に評価することができる。
なお、本発明で対象とする引張変形後に現出する筋状欠陥は、いわゆる降伏点伸びによるストレッチャー・ストレインではなく、あくまで、製造工程で鋼板に導入された局所的な塑性変形により、鋼板内部に微小ではあるが周囲に比べて硬度が高い部分が存在することに起因するものである。ストレッチャー・ストレインは、短冊状試験片で引張ると10mmあるいはそれ以上の幅を有する帯状の形態を呈するが、本発明で対象とする欠陥の幅は5mm以内で、シャープな直線状の形態を呈することが特徴である。
Evaluation of surface quality of cold-rolled steel sheet The following describes the evaluation method of surface quality after forming. As described above, surface defects that appear after molding may be found for the first time in the final inspection process after being molded into a part or after being incorporated into a vehicle body, compared to surface defects that appear at the manufacturing stage. Therefore, the impact on automobile production is extremely large. As a result of intensive investigations on the method of detecting streak defects due to local plastic deformation during the manufacturing process, the present inventors applied an appropriate amount of strain to the steel sheet, and by grinding the surface, It was clarified that it can be detected effectively.
As for the amount of strain, if it is too little or too much, the difference in deformation behavior due to the difference in hardness between the portion where plastic deformation has occurred and the portion where it does not become small, so about 1 to 5% is optimal. The test piece may be a strip-shaped test piece with the rolling direction as the longitudinal direction. Since it is necessary to check the entire width of the product, it is efficient to make the area as wide as possible within the specification range of the tensile test piece. Further, by using a test piece whose longitudinal direction is the test piece, a linear pattern (striped defect) can be appropriately evaluated.
In addition, the streak defect that appears after the tensile deformation that is the subject of the present invention is not a stretcher strain caused by so-called yield point elongation, but is only caused by local plastic deformation introduced into the steel sheet during the manufacturing process. This is due to the presence of a portion that is very small but harder than the surroundings. Stretcher strain has a strip shape with a width of 10 mm or more when pulled with a strip-shaped test piece, but the width of the defect targeted in the present invention is within 5 mm and exhibits a sharp linear shape. It is a feature.
次に、本発明の製造工程について述べる。
本発明では、上記したような成分組成に調整された鋼片を、鋳造後、熱間圧延した後、酸洗し、ついで冷間圧延後、連続焼鈍を施すことによって冷延鋼板とする。そして、本発明では、上記の連続焼鈍に際し、その冷却過程において特に400〜200℃の温度域を30℃/sを超えない冷却速度で冷却することが重要である。
Next, the manufacturing process of the present invention will be described.
In the present invention, the steel slab adjusted to the above component composition is cast, hot-rolled, pickled, then cold-rolled, and then subjected to continuous annealing to obtain a cold-rolled steel sheet. In the present invention, during the above-described continuous annealing, it is important to cool the temperature range of 400 to 200 ° C. particularly at a cooling rate not exceeding 30 ° C./s during the cooling process.
発明者らの検討によれば、400〜200℃の温度域は、降伏強度が比較的低く、かつ降伏点伸びが明瞭に発現するため、製造条件の変動や熱歪などにより、鋼板内に不均一変形が発生しやすい温度域である。この点、400℃を超える温度域では、降伏強度が十分に低く、かつ転位の増殖も容易であるため、不均一変形は生じにくい。一方、200℃を下回る温度域では、降伏強度が十分高くなり、歪が発生しても降伏強度を超えなくなる。
また、冷却速度を30℃/s以下とするのは、これを超えた冷却速度になると、収縮により発生する熱歪が大きくなり、局所的に鋼板の降伏強度を超えて不均一変形が生じるためである。一方、冷却速度は小さいほど冷却時の歪が小さくなるが、極端に小さく制限すると、ライン長が長くなりすぎるので、5℃/s以上とすることが好ましい。
According to the study by the inventors, in the temperature range of 400 to 200 ° C., the yield strength is relatively low and the yield point elongation is clearly expressed. This temperature range is likely to cause uniform deformation. In this respect, in a temperature range exceeding 400 ° C., the yield strength is sufficiently low and the growth of dislocations is easy, so that non-uniform deformation hardly occurs. On the other hand, in the temperature range below 200 ° C., the yield strength is sufficiently high, and even if distortion occurs, the yield strength is not exceeded.
In addition, the cooling rate is set to 30 ° C./s or less because when the cooling rate exceeds this, the thermal strain generated by the shrinkage increases, resulting in uneven deformation locally exceeding the yield strength of the steel sheet. It is. On the other hand, the smaller the cooling rate, the smaller the strain at the time of cooling. However, if the limit is extremely small, the line length becomes too long.
なお、上記した連続焼鈍の冷却過程における400〜200℃の温度域での冷却を上述した制御冷却とすること以外の製造工程は、常法に従って行えば良く、特に制限されることはない。例えば、造塊あるいは連続鋳造によるスラブ製造法や、熱延での粗熱延バー接続による連続熱延を適用することができる。また、熱延過程でのインダクションヒーターを利用した200℃以内の昇温などは、本発明の効果に対して悪影響を及ぼさない。
その他の好適製造条件について述べると、熱間圧延における鋼片加熱温度は1150〜1300℃、仕上げ圧延終了温度は800〜950℃、巻取り温度は500〜700℃、冷間圧延の圧下率は50〜90%、連続焼鈍(または連続溶融亜鉛めっき)における均熱温度は750〜900℃とすることが好ましい。
本発明では、鋼板表面に亜鉛系めっき皮膜を形成させるめっき処理工程を有する製造方法とすることもできる。電気めっき処理や溶融めっき処理にて、純亜鉛や亜鉛合金(亜鉛−鉄、亜鉛−Ni、亜鉛−アルミニウム等)の亜鉛系めっき皮膜を、鋼板表面に形成させることができる。亜鉛めっき処理の場合には、焼鈍、めっき処理を別個の工程とすることもできるし、また、焼鈍とめっき処理を連続した一連の工程(例えば、連続溶融亜鉛めっき)とすることも可能である。
In addition, the manufacturing process other than changing the cooling in the temperature range of 400 to 200 ° C. in the cooling process of the above-described continuous annealing to the above-described controlled cooling may be performed according to a conventional method and is not particularly limited. For example, it is possible to apply a slab manufacturing method by ingot forming or continuous casting, or continuous hot rolling by rough hot rolling bar connection in hot rolling. Further, a temperature rise within 200 ° C. using an induction heater in the hot rolling process does not adversely affect the effects of the present invention.
Regarding other suitable production conditions, the steel slab heating temperature in hot rolling is 1150 to 1300 ° C, the finish rolling finish temperature is 800 to 950 ° C, the coiling temperature is 500 to 700 ° C, and the rolling reduction in cold rolling is 50 The soaking temperature in continuous annealing (or continuous hot dip galvanizing) is preferably 750 to 900 ° C.
In this invention, it can also be set as the manufacturing method which has the plating process process which forms a zinc-type plating film on the steel plate surface. A zinc-based plating film of pure zinc or zinc alloy (zinc-iron, zinc-Ni, zinc-aluminum, etc.) can be formed on the steel plate surface by electroplating or hot dipping. In the case of galvanizing treatment, annealing and plating treatment can be made as separate steps, and annealing and plating treatment can be made into a series of steps (for example, continuous galvanizing). .
本発明は、冷延鋼板の表面に電気めっきが施されためっき鋼板や塗装されたプレコート鋼板であっても、さらに溶融亜鉛めっき鋼板の場合、表面に潤滑性を付与する処理や皮膜の塗布処理を施しても、本発明の効果が損なわれることはない。 In the case of a hot-dip galvanized steel sheet, even if the surface of the cold-rolled steel sheet is a plated steel sheet or a coated pre-coated steel sheet, the present invention is a process for imparting lubricity to the surface or a coating process. Even if it gives, the effect of this invention is not impaired.
以下、本発明の実施例について具体的に説明する。
表1に示す成分組成に調整した鋼を、溶製後、連続鋳造によりスラブとし、加熱温度:1200℃、仕上げ圧延終了温度:900℃、巻取り温度:600℃の条件で熱延板とした。ついで、酸洗後、圧下率:75%の冷間圧延により板厚:0.75mmの冷延板とした。引き続き、表2に示す条件で、連続焼鈍又は連続溶融亜鉛めっきを施して、冷延鋼板又は溶融亜鉛めっき鋼板とした。ついで、圧下率:0.3%の調質圧延を施した。溶融亜鉛めっきの条件は、めっき浴温度:460℃、めっき浴のAl濃度:(合金化処理を行う場合:0.13%、合金化処理を行わない場合:0.2%)、めっき付着量:片面あたり45g/m2(両面めっき)、合金化処理温度:480〜580℃、合金化度(Fe質量%):10%、とした。
Examples of the present invention will be specifically described below.
The steel adjusted to the component composition shown in Table 1 was made into a slab by continuous casting after melting, and it was made into a hot-rolled sheet under the conditions of heating temperature: 1200 ° C, finish rolling finishing temperature: 900 ° C, coiling temperature: 600 ° C. . Then, after pickling, cold rolling with a reduction ratio of 75% was made into a cold rolled sheet with a sheet thickness of 0.75 mm. Subsequently, continuous annealing or continuous hot dip galvanizing was performed under the conditions shown in Table 2 to obtain cold-rolled steel sheets or hot-dip galvanized steel sheets. Then, temper rolling with a rolling reduction of 0.3% was performed. The conditions of hot dip galvanizing are: plating bath temperature: 460 ° C, Al concentration of plating bath: (when alloying treatment is performed: 0.13%, when alloying treatment is not performed: 0.2%), plating coating amount: 45 g per side / m 2 (double-sided plating), alloying treatment temperature: 480 to 580 ° C., alloying degree (Fe mass%): 10%.
次に、これらのコイル(鋼帯)から、圧延方向を長手方向として長さ:150mm、幅:30mmの短冊状試験片を全幅で採取し、引張試験機(クロスヘッド速度:10mm/min)にて1%、3%、5%の歪を加えた(引張方向は長手方向)。その後、平坦な机の上に予歪を加えた試験片を載置して、表面を砥石がけし、線状模様(筋状欠陥)の有無について調査した(表2中、○:欠陥なし、×:欠陥有り)。欠陥の有無は目視にて行い、一箇所でも筋状欠陥が認められたら×とした。
また、機械的性質は、JIS5号試験片を用い引張試験(クロスヘッド速度:10mm/min)を行ない、引張強度TS、全伸びELを測定した。引張試験は圧延方向に沿って採取した試験片で評価した。
さらに、深絞り性は、JIS5号試験片を用いて、圧延方向に対して0°、45°、90°方向のr値(クロスヘッド速度:10mm/min、予歪15%を付与)r0、r45、r90を測定して、平均値(r0+2×r45+r90)/4を算出し、評価を行った。
得られた結果を表2に併せて示す。
Next, strip test pieces with a length of 150 mm and a width of 30 mm were collected from these coils (steel strips) with the rolling direction as the longitudinal direction, and taken to a tensile testing machine (crosshead speed: 10 mm / min). 1%, 3% and 5% strain was applied (the tensile direction is the longitudinal direction). Thereafter, a pre-strained test piece was placed on a flat desk, the surface was abraded, and the presence or absence of a linear pattern (streaky defect) was examined (in Table 2, ○: no defect, ×: Defect) The presence / absence of defects was visually observed, and x was indicated when streak defects were observed even at one location.
As for mechanical properties, a tensile test (crosshead speed: 10 mm / min) was performed using a JIS No. 5 test piece, and a tensile strength TS and a total elongation EL were measured. The tensile test was evaluated with test pieces taken along the rolling direction.
Furthermore, the deep drawability is determined by using JIS No. 5 test piece, r value of 0 °, 45 °, 90 ° direction with respect to the rolling direction (crosshead speed: 10mm / min, giving pre-strain 15%) r0, r45 and r90 were measured, and an average value (r0 + 2 × r45 + r90) / 4 was calculated and evaluated.
The obtained results are also shown in Table 2.
表2から、本発明に従って、連続焼鈍後の400〜200℃の温度域における冷却速度を30℃/s以下に制御することで、優れた深絞り性と共に、成形後でも筋状欠陥の発生しない高張力冷延鋼板及び溶融亜鉛めっき鋼板を得られることがわかった。
なお、鋼板温度が200℃を下回った場合には、鋼板の降伏強度が十分に大きくなるため、30℃/sを超える速度で冷却しても、筋状欠陥は発生しないことがわかる。
From Table 2, according to the present invention, by controlling the cooling rate in the temperature range of 400 to 200 ° C. after continuous annealing to 30 ° C./s or less, excellent deep drawability and no streak defects occur after molding. It was found that high-tensile cold-rolled steel sheets and hot-dip galvanized steel sheets can be obtained.
In addition, when the steel plate temperature is lower than 200 ° C., the yield strength of the steel plate is sufficiently increased, and it can be seen that no streak defect occurs even when the steel plate is cooled at a rate exceeding 30 ° C./s.
本発明によれば、自動車外板や内板用として極めて有用な、成形後の表面品質に優れる高張力冷延鋼板を安定して製造・供給することができ、工業的価値は極めて高い。
According to the present invention, it is possible to stably produce and supply a high-tensile cold-rolled steel sheet having excellent surface quality after forming, which is extremely useful for automobile outer plates and inner plates, and has an extremely high industrial value.
Claims (5)
記
([%Ti]/48−[%N]/14−[%S]/32)/([%C]/12)≧1.00 ・・・(1)
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。 In mass%, C: 0.0005 to 0.0050%, Si: 0.50% or less, Mn: 2.00% or less, P: 0.100% or less, S: 0.020% or less, Ti: 0.010 to 0.100%, sol.Al: 0.080% or less and N: A strip-shaped test piece containing 0.0070% or less, C, N, S, and Ti satisfying the relationship of the following formula (1), the balance being composed of Fe and inevitable impurities, and taken in the rolling direction A high-tensile cold-rolled steel sheet with excellent surface quality after forming, in which a linear pattern does not occur when the surface is ground with a 1-5% unidirectional tensile strain.
([% Ti] / 48 − [% N] / 14 − [% S] / 32) / ([% C] / 12) ≧ 1.00 (1)
Here, [% M] represents the content (mass%) of M element in steel.
記
{[%Nb]/93+([%Ti]/48−[%N]/14−[%S]/32)}/([%C]/12)≧1.00 ・・・(2)
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。 Furthermore, when it contains at least one selected from Nb: 0.003 to 0.100% and B: 0.0003 to 0.0030% and contains Nb in mass%, the following formula (1) is substituted instead. The high-tensile cold-rolled steel sheet having excellent surface quality after forming according to claim 1, wherein the relationship of formula (2) is satisfied.
{[% Nb] / 93 + ([% Ti] / 48 − [% N] / 14 − [% S] / 32)} / ([% C] / 12) ≧ 1.00 (2)
Here, [% M] represents the content (mass%) of M element in steel.
The method for producing a high-tensile cold-rolled steel sheet having excellent surface quality after forming according to claim 4, further comprising a plating treatment step for forming a zinc-based plating film on the steel sheet surface.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011211382A JP2013072110A (en) | 2011-09-27 | 2011-09-27 | High-tensile, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same |
ZA2012/05765A ZA201205765B (en) | 2011-09-27 | 2012-07-31 | High strenght cold rolled steel sheets having excellent surface quality after press forming and method for manufacturing the same |
MYPI2012003445A MY169974A (en) | 2011-09-27 | 2012-07-31 | High strength cold rolled steel sheets having excellent surface quality after press forming and method for manufacturing the same |
RU2012132849/02A RU2524031C2 (en) | 2011-09-27 | 2012-07-31 | High-strength cold-rolled steel sheets with perfect surface quality after forming and methods of their production |
BRBR102012019140-7A BR102012019140A2 (en) | 2011-09-27 | 2012-07-31 | High strength cold rolled steel sheet having excellent surface quality after pressing forming and method for producing it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011211382A JP2013072110A (en) | 2011-09-27 | 2011-09-27 | High-tensile, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013072110A true JP2013072110A (en) | 2013-04-22 |
Family
ID=48476860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011211382A Withdrawn JP2013072110A (en) | 2011-09-27 | 2011-09-27 | High-tensile, cold-rolled steel sheet excellent in surface quality after molding and method for manufacturing the same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2013072110A (en) |
BR (1) | BR102012019140A2 (en) |
MY (1) | MY169974A (en) |
RU (1) | RU2524031C2 (en) |
ZA (1) | ZA201205765B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019532172A (en) * | 2016-09-20 | 2019-11-07 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | Method for producing flat steel products and flat steel products |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6082451B2 (en) * | 2015-03-18 | 2017-02-15 | 株式会社神戸製鋼所 | Steel sheet for hot pressing and manufacturing method thereof |
RU2699480C1 (en) * | 2018-12-14 | 2019-09-05 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Method of producing cold-rolled products |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1145709C (en) * | 2000-02-29 | 2004-04-14 | 川崎制铁株式会社 | High tensile cold-rolled steel sheet having excellent strain aging hardening properties |
DE60121233T2 (en) * | 2000-05-26 | 2006-11-09 | Jfe Steel Corp. | High strength cold rolled steel sheet with high r-value, excellent strain aging properties and aging resistance, and process for its production |
JP3958921B2 (en) * | 2000-08-04 | 2007-08-15 | 新日本製鐵株式会社 | Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same |
KR100543956B1 (en) * | 2000-09-21 | 2006-01-23 | 신닛뽄세이테쯔 카부시키카이샤 | Steel plate excellent in shape freezing property and method for production thereof |
RU2313583C2 (en) * | 2006-01-24 | 2007-12-27 | Открытое акционерное общество "Северсталь" | Method for producing of cold-rolled steel for cold pressing |
RU2330887C1 (en) * | 2006-10-30 | 2008-08-10 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Method of producing cold-rolled steel for deep-drawing |
-
2011
- 2011-09-27 JP JP2011211382A patent/JP2013072110A/en not_active Withdrawn
-
2012
- 2012-07-31 RU RU2012132849/02A patent/RU2524031C2/en not_active IP Right Cessation
- 2012-07-31 ZA ZA2012/05765A patent/ZA201205765B/en unknown
- 2012-07-31 BR BRBR102012019140-7A patent/BR102012019140A2/en not_active IP Right Cessation
- 2012-07-31 MY MYPI2012003445A patent/MY169974A/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019532172A (en) * | 2016-09-20 | 2019-11-07 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | Method for producing flat steel products and flat steel products |
US11453923B2 (en) | 2016-09-20 | 2022-09-27 | Thyssenkrupp Steel Europe Ag | Method for manufacturing flat steel products and flat steel product |
JP7181182B2 (en) | 2016-09-20 | 2022-11-30 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト | Flat steel product manufacturing method and flat steel product |
Also Published As
Publication number | Publication date |
---|---|
MY169974A (en) | 2019-06-19 |
ZA201205765B (en) | 2013-05-29 |
BR102012019140A2 (en) | 2015-05-19 |
RU2524031C2 (en) | 2014-07-27 |
RU2012132849A (en) | 2014-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101949628B1 (en) | High-strength steel sheet and method for manufacturing same | |
KR101949627B1 (en) | High-strength steel sheet and method for manufacturing same | |
CN107709598B (en) | High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet | |
JP6179461B2 (en) | Manufacturing method of high-strength steel sheet | |
KR101464844B1 (en) | High-strength hot-dip galvanized steel sheet with excellent processability and impact resistance and process for producing same | |
JP5884714B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4555694B2 (en) | Bake-hardening hot-rolled steel sheet excellent in workability and method for producing the same | |
KR101539513B1 (en) | Hot-dip zinc-plated steel sheet and process for production thereof | |
JP5408314B2 (en) | High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same | |
US11332804B2 (en) | High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same | |
WO2015174530A1 (en) | Hot-rolled steel plate member | |
JP2015113504A (en) | High strength hot-dip galvanized steel sheet excellent in processability and method for manufacturing the same | |
KR20190073469A (en) | High strength steel sheet and manufacturing method thereof | |
KR20160003263A (en) | Heat-treated steel material and method for producing same | |
MX2014009571A (en) | Cold-rolled steel sheet, plated steel sheet, method for producing cold-rolled steel sheet, and method for producing plated steel sheet. | |
JP5332981B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in ductility and corrosion resistance and method for producing the same | |
TW201313915A (en) | High-strength galvanized steel sheet with excellent deep-drawability and method for manufacturing the same | |
JP6384623B2 (en) | High strength steel plate and manufacturing method thereof | |
WO2017033222A1 (en) | Steel sheet | |
JP5870861B2 (en) | High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and ductility and small in-plane anisotropy of ductility and method for producing the same | |
JP5272412B2 (en) | High strength steel plate and manufacturing method thereof | |
US10336037B2 (en) | Galvanized steel sheet and method for producing the same | |
WO2016157257A1 (en) | High-strength steel sheet and production method therefor | |
JP2016188395A (en) | High strength cold rolled steel sheet excellent in weldability and workability and production method therefor | |
JP2011080126A (en) | Hot-dip galvannealed steel sheet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141202 |