JP2013067840A - Chlorine leaching method for metal sulfide - Google Patents
Chlorine leaching method for metal sulfide Download PDFInfo
- Publication number
- JP2013067840A JP2013067840A JP2011207757A JP2011207757A JP2013067840A JP 2013067840 A JP2013067840 A JP 2013067840A JP 2011207757 A JP2011207757 A JP 2011207757A JP 2011207757 A JP2011207757 A JP 2011207757A JP 2013067840 A JP2013067840 A JP 2013067840A
- Authority
- JP
- Japan
- Prior art keywords
- leaching
- nickel
- chlorine
- metal
- sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、例えばニッケルやコバルトなどを含む金属硫化物から塩素ガスによりニッケルやコバルトなどの金属成分を浸出させる金属硫化物の塩素浸出方法に関する。 The present invention relates to a metal sulfide chlorine leaching method in which a metal component such as nickel or cobalt is leached from a metal sulfide containing, for example, nickel or cobalt by chlorine gas.
ニッケル、コバルトなどを含む金属硫化物からニッケル、コバルトなどの金属を回収する湿式製錬方法としては、ニッケル、コバルト、銅及び硫黄を含む金属硫化物から、金属を浸出させ、得られた浸出液から不純物を除去した後、電解採取により金属を回収する方法が実用化されている。 As a hydrometallurgical method for recovering metals such as nickel and cobalt from metal sulfides including nickel and cobalt, metal is leached from metal sulfides including nickel, cobalt, copper and sulfur, and the obtained leachate is used. After removing impurities, a method of recovering metal by electrowinning has been put into practical use.
金属硫化物から金属を浸出させる方法としては、例えば特許文献1に記載の技術のように、1価銅イオンを含む塩化物浴中にて、金属硫化物を含むスラリーに塩素ガスを吹き込んで金属を酸化浸出させる塩素浸出方法がある。
As a method of leaching a metal from a metal sulfide, for example, as in the technique described in
しかしながら、従来の塩素浸出方法では、発生する塩素浸出残渣中のニッケル品位は10%前後もあり、この分が金属の湿式製錬における回収ロスになっており、またその浸出残渣に含まれるニッケル品位の変動も激しいことが問題であった。 However, in the conventional chlorine leaching method, the nickel quality in the generated chlorine leaching residue is about 10%, and this amount is a recovery loss in the metal hydrometallurgy, and the nickel quality contained in the leaching residue. It was a problem that the fluctuations of
その要因としては、塩素浸出反応の反応時間、単粒時間、原料の反応性などが挙げられる。そのため、反応槽の増設による滞留時間の延長や、粉砕処理などを行うことにより金属硫化物原料を細粒化するなどの粉体特性を調整する方法(例えば特許文献2参照)によって、塩素浸出反応を改善する提案がなされている。しかしながら、設備投資や作業負荷などの観点からすると、現状設備のまま、設備コストや作業負荷をかけることなく効率的に浸出反応を促進させて塩素浸出反応を改善することが期待されている。 The factors include the reaction time of the chlorine leaching reaction, the single grain time, and the reactivity of the raw materials. For this reason, the chlorine leaching reaction is performed by a method of adjusting powder characteristics such as extending the residence time by adding a reaction vessel or by pulverizing the metal sulfide raw material to refine the metal sulfide raw material. There are proposals to improve this. However, from the viewpoint of capital investment and work load, it is expected that the leaching reaction can be efficiently promoted and the chlorine leaching reaction can be improved without applying equipment cost and work load with the current equipment.
そこで、本発明は、このような実情に鑑みて提案されたものであり、設備コストや作業負荷をかけることなく効率的に塩素浸出反応を促進させて、高い浸出率で金属硫化物から金属成分を浸出させることができる金属硫化物の塩素浸出方法を提供することを目的とする。 Therefore, the present invention has been proposed in view of such circumstances, and promotes the chlorine leaching reaction efficiently without incurring equipment costs and work load, and the metal component from the metal sulfide with a high leaching rate. It is an object of the present invention to provide a chlorine leaching method for metal sulfides that can be leached.
本発明者らは、上述した目的を達成するために鋭意検討を重ねた結果、塩化物溶液中における金属硫化物の塩素浸出反応において、塩化物溶液中の塩濃度を所定の範囲に調整し、沸点を上昇させて反応温度を高めることによって、高い浸出率で金属成分を浸出できることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above-described object, the present inventors have adjusted the salt concentration in the chloride solution to a predetermined range in the chlorine leaching reaction of the metal sulfide in the chloride solution, The inventors have found that the metal component can be leached at a high leaching rate by raising the boiling point to increase the reaction temperature, and the present invention has been completed.
すなわち、本発明に係る金属硫化物の塩素浸出方法は、金属硫化物を原料として、銅イオンを含む塩化物溶液中で塩素浸出する金属硫化物の塩素浸出方法であって、上記塩化物溶液中の塩濃度を270g/L以上350g/L以下に調整して塩素浸出することを特徴とする。 That is, the method for leaching a metal sulfide according to the present invention is a method for leaching a metal sulfide using metal sulfide as a raw material in a chloride solution containing copper ions. It is characterized by adjusting the salt concentration of 270 g / L to 350 g / L and leaching chlorine.
本発明によれば、塩化物溶液中の塩濃度を所定の範囲に調整することにより、反応槽の増設や原料の粒径調節ための粉砕処理などを行うことなく、塩素浸出反応を効果的に促進させることができ、ニッケル混合硫化物などの金属硫化物からニッケルやコバルトなどの金属成分を高い浸出率でかつ効率的に浸出させることができる。 According to the present invention, by adjusting the salt concentration in the chloride solution to a predetermined range, the chlorine leaching reaction can be effectively performed without additional reaction tanks or pulverization for adjusting the particle size of the raw material. The metal component such as nickel or cobalt can be efficiently leached with a high leaching rate from the metal sulfide such as nickel mixed sulfide.
以下、本発明に係る金属硫化物の塩素浸出方法の具体的な実施形態(以下、本実施の形態という)について、図面を参考にして詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、要旨を変更しない範囲において適宜変更することができる。 Hereinafter, a specific embodiment of the metal sulfide chlorine leaching method according to the present invention (hereinafter referred to as the present embodiment) will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, In the range which does not change a summary, it can change suitably.
本実施の形態に係る金属硫化物の塩素浸出方法は、銅イオンを含む塩化物溶液中で金属硫化物を塩素浸出する方法であって、その塩化物溶液中の塩濃度を270g/L以上350g/L以下に調整して塩素浸出することを特徴とする。 The method for leaching metal sulfide according to the present embodiment is a method for leaching metal sulfide in a chloride solution containing copper ions, and the salt concentration in the chloride solution is 270 g / L or more and 350 g. / L or less, and leaching chlorine.
金属硫化物とは、ニッケルやコバルト、銅などの金属混合物を含有する硫化物であり、例えば、低品位ラテライト鉱石などのニッケル酸化鉱から、高温高圧下で硫酸浸出することによって産出されたニッケル混合硫化物などが挙げられる。このニッケル混合硫化物など金属硫化物は、例えば硫酸浸出などによって産出された後、塩化物溶液中にてレパルプ処理されてスラリーとなる。塩素浸出処理においては、このスラリーとなった金属硫化物を原料として浸出処理が行われる。なお、以下では、主として、金属硫化物としてニッケル混合硫化物を用いる場合を例示して説明する。 Metal sulfide is a sulfide containing a metal mixture such as nickel, cobalt and copper. For example, nickel sulfide produced by leaching sulfuric acid under high temperature and high pressure from nickel oxide ore such as low grade laterite ore. Examples thereof include sulfides. The metal sulfide such as nickel mixed sulfide is produced by, for example, sulfuric acid leaching, and then repulped in a chloride solution to become a slurry. In the chlorine leaching treatment, the leaching treatment is performed using the metal sulfide that has become the slurry as a raw material. In the following, a case where nickel mixed sulfide is mainly used as the metal sulfide will be described as an example.
ここで、例えばニッケルやコバルトなどの非鉄金属の湿式精錬法では、ニッケル混合硫化物を原料として、ニッケル、コバルト、銅などの金属の大部分を塩素浸出し、浸出して得られた溶液から金属不純物を除去した後に、電解採取によって電気ニッケルや電気コバルトを製造する。具体的に、これらの金属の湿式精錬プロセスは、原料であるニッケル混合硫化物から金属成分を塩素で浸出する塩素浸出工程と、浸出液に含まれる銅を固定除去するセメンテーション工程と、銅が除去された溶液から不純物成分を除去する浄液工程と、不純物を除去した溶液を用いてニッケルやコバルトなどの金属を電解採取する電解工程とを有している。 Here, for example, in the refining method of non-ferrous metals such as nickel and cobalt, most of metals such as nickel, cobalt and copper are chlorine leached using nickel mixed sulfide as a raw material, and metal is obtained from the solution obtained by leaching. After removing impurities, electrolytic nickel or electrolytic cobalt is produced by electrowinning. Specifically, these metal refining processes include a chlorine leaching process in which metal components are leached with chlorine from nickel mixed sulfide as a raw material, a cementation process in which copper contained in the leachate is fixed and removed, and copper is removed. A liquid purification process for removing impurity components from the solution, and an electrolysis process for electrolytically collecting a metal such as nickel or cobalt using the solution from which the impurities have been removed.
この金属を電解採取する製錬プロセスにおいて、ニッケル混合硫化物を塩素浸出する塩素浸出工程では、上述したように、ニッケル混合硫化物を原料として、その原料を含有する塩化物溶液(スラリー)中に塩素ガスを吹き込み、ニッケルや銅などの金属成分を銅イオンを含む塩化物溶液中で酸化浸出する。そして、塩素浸出工程では、塩素浸出液としての銅を含有する塩化ニッケル溶液(以下、含銅塩化ニッケル溶液ともいう)を生成する。 In the smelting process for electrolytically collecting this metal, in the chlorine leaching step of leaching the nickel mixed sulfide, the nickel mixed sulfide is used as a raw material in the chloride solution (slurry) containing the raw material as described above. Inject chlorine gas to oxidize and leach metal components such as nickel and copper in a chloride solution containing copper ions. In the chlorine leaching step, a nickel chloride solution containing copper as a chlorine leaching solution (hereinafter also referred to as a copper-containing nickel chloride solution) is generated.
具体的には、この塩素浸出工程におけるニッケル混合硫化物の浸出処理では、例えば下記の(1)〜(3)式に示す反応が生じる。
Cl2+2Cu+→2Cl−+2Cu2+ ・・・(1)
NiS+2Cu2+→Ni2++S0+2Cu+ ・・・(2)
Cu2S+2Cu2+→4Cu++S0 ・・・(3)
Specifically, in the leaching treatment of nickel mixed sulfide in this chlorine leaching step, for example, reactions shown in the following formulas (1) to (3) occur.
Cl 2 + 2Cu + → 2Cl − + 2Cu 2+ (1)
NiS + 2Cu 2+ → Ni 2+ + S 0 + 2Cu + (2)
Cu 2 S + 2Cu 2+ → 4Cu + + S 0 (3)
すなわち、上記式に示されるように、塩素浸出処理においては、原料としてのニッケル混合硫化物のスラリーが送液されると、ニッケル混合硫化物中に含まれる硫化ニッケル及び硫化銅などの金属成分を、塩素ガスにより酸化された2価銅イオンによって酸化浸出し、塩素浸出液としての含銅塩化ニッケル溶液を生成する。なお、このようにして塩素浸出処理によって生成した塩素浸出液は、セメンテーション工程において浸出液中の銅が固定除去される。一方で、この塩素浸出処理では、硫黄を主成分とした塩素浸出残渣が固相に残存する。 That is, as shown in the above formula, in the chlorine leaching process, when a nickel mixed sulfide slurry as a raw material is fed, metal components such as nickel sulfide and copper sulfide contained in the nickel mixed sulfide are removed. Then, oxidative leaching is performed with divalent copper ions oxidized by chlorine gas to produce a copper-containing nickel chloride solution as a chlorine leaching solution. Note that, in the chlorine leaching solution generated by the chlorine leaching process in this manner, copper in the leaching solution is fixedly removed in the cementation step. On the other hand, in this chlorine leaching treatment, a chlorine leaching residue mainly containing sulfur remains in the solid phase.
ここで、浸出反応に供される塩化物溶液中において、ニッケルなどの電解採取される金属の濃度(塩濃度)が上昇すると、モル沸点上昇により沸点が上昇することとなる。すると、浸出反応は、塩化物溶液の沸点付近の反応温度で管理するため、沸点上昇に伴って浸出反応の反応温度が上昇する。 Here, in the chloride solution subjected to the leaching reaction, when the concentration (salt concentration) of a metal such as nickel is increased, the boiling point increases due to the rise in molar boiling point. Then, since the leaching reaction is managed at a reaction temperature near the boiling point of the chloride solution, the reaction temperature of the leaching reaction increases as the boiling point increases.
図1に、ニッケル混合硫化物(ニッケル:48%、硫黄:32%、コバルト:3%、銅:8%)の塩素浸出反応における反応温度に対する浸出残渣中のニッケル品位の関係を示す。この図1に示すグラフから分かるように、反応温度が109℃付近では浸出残渣中のニッケル品位のばらつきが非常に大きく、浸出残渣中に最大20%を超えるニッケルが残存する。これに対し、反応温度が110℃以上、より好ましくは112℃以上では浸出残渣中のニッケル品位が10%より小さい範囲となっており高い浸出率で浸出できることが分かる。つまり、沸点を上昇させて反応温度を上昇させることによって、高い浸出率でニッケルを浸出できることが分かる。 FIG. 1 shows the relationship of nickel quality in the leaching residue to the reaction temperature in the chlorine leaching reaction of nickel mixed sulfide (nickel: 48%, sulfur: 32%, cobalt: 3%, copper: 8%). As can be seen from the graph shown in FIG. 1, when the reaction temperature is around 109 ° C., the variation in nickel quality in the leaching residue is very large, and nickel exceeding 20% at the maximum remains in the leaching residue. On the other hand, it can be seen that when the reaction temperature is 110 ° C. or higher, more preferably 112 ° C. or higher, the nickel quality in the leaching residue is in a range smaller than 10%, and leaching can be performed at a high leaching rate. That is, it can be seen that nickel can be leached at a high leaching rate by raising the boiling point to increase the reaction temperature.
また、図2に、ニッケル混合硫化物塩素浸出反応における塩濃度と塩素浸出反応の反応温度との関係を示す。なお、ニッケル混合硫化物を原料とした場合において、この塩濃度とは、塩素浸出処理により主に浸出される金属成分であるニッケルの濃度と銅の濃度の合計濃度とすることができる。この図2に示すグラフから分かるように、上述した高い浸出率で金属成分の浸出を可能とする110℃以上、より好ましく112℃以上の反応温度で浸出反応を生じさせるためには、塩濃度を約270g/L以上とすることが必要であることが分かる。 FIG. 2 shows the relationship between the salt concentration in the nickel mixed sulfide chlorine leaching reaction and the reaction temperature of the chlorine leaching reaction. In the case where nickel mixed sulfide is used as a raw material, the salt concentration can be the total concentration of nickel and copper, which are metal components mainly leached by chlorine leaching treatment. As can be seen from the graph shown in FIG. 2, in order to cause the leaching reaction at a reaction temperature of 110 ° C. or higher, more preferably 112 ° C. or higher, which enables leaching of the metal component with the high leaching rate described above, It turns out that it is necessary to set it as about 270 g / L or more.
そこで、本実施の形態においては、金属硫化物の塩素浸出処理において、上述のようにその塩化物溶液中の塩濃度を270g/L以上350g/L以下に調整して塩素浸出する。金属硫化物としてニッケル混合硫化物を原料とした場合には、塩化物溶液中の塩濃度とはニッケル及び銅の合計濃度とすることができる。このようにして塩化物溶液中の塩濃度を270g/L以上350g/L以下に調整して塩素浸出することによって、モル沸点上昇により沸点が上昇することとなり、その沸点上昇に伴って浸出反応の反応温度が上昇し、浸出反応が促進されて、高い浸出率で金属成分を浸出させることができる。 Therefore, in the present embodiment, in the chlorine leaching treatment of metal sulfide, chlorine leaching is performed by adjusting the salt concentration in the chloride solution to 270 g / L or more and 350 g / L or less as described above. When nickel mixed sulfide is used as the metal sulfide, the salt concentration in the chloride solution can be the total concentration of nickel and copper. In this way, by adjusting the salt concentration in the chloride solution to 270 g / L or more and 350 g / L or less and leaching chlorine, the boiling point rises due to the rise in molar boiling point. The reaction temperature rises and the leaching reaction is promoted, so that the metal component can be leached at a high leaching rate.
塩濃度が270g/Lより低い場合には、図1及び図2に示したように、浸出反応の反応温度が十分に上昇せず浸出反応が維持されなくなり、高い浸出率で浸出できない。一方で、塩濃度の上限については、約350g/L以下とすることが好ましく、320g/L以下とすることがより好ましい。塩濃度を350g/Lより高い場合には、塩化物溶液が過飽和状態となり、反応槽内に金属塩化物が析出し、還元ガス吹き込み管などの配管に詰まりが発生し、安定した操業が行えなくなる可能性がある。また、浸出液中に銅などの不純物が相対的に多くなり、電気ニッケル製造プロセスにおいて不純物除去処理の負荷が大きくなる可能性がある。したがって、塩化物溶液中の塩濃度は、270g/L以上350g/L以下に調整する。また、より好ましくは270g/L以上320g/L以下に調整することにより、より効率的にかつ効果的に高い浸出率で金属成分を浸出させることができる。 When the salt concentration is lower than 270 g / L, as shown in FIG. 1 and FIG. 2, the reaction temperature of the leaching reaction is not sufficiently increased and the leaching reaction is not maintained, and leaching cannot be performed at a high leaching rate. On the other hand, the upper limit of the salt concentration is preferably about 350 g / L or less, and more preferably 320 g / L or less. When the salt concentration is higher than 350 g / L, the chloride solution becomes supersaturated, metal chloride is deposited in the reaction tank, clogging occurs in piping such as a reducing gas blowing tube, and stable operation cannot be performed. there is a possibility. In addition, impurities such as copper are relatively increased in the leachate, which may increase the load of the impurity removal process in the electrolytic nickel manufacturing process. Therefore, the salt concentration in the chloride solution is adjusted to 270 g / L or more and 350 g / L or less. More preferably, by adjusting to 270 g / L or more and 320 g / L or less, the metal component can be leached more efficiently and effectively at a high leaching rate.
塩化物溶液中の塩濃度の調整方法としては、特に限定されないが、以下の方法により調整することができる。 Although it does not specifically limit as a adjustment method of the salt concentration in a chloride solution, It can adjust with the following method.
例えば、塩素浸出に供されるニッケル混合硫化物を含有するスラリー濃度を濃縮することによって調整することができる。塩素浸出処理の原料となるニッケル混合硫化物は、上述のように、例えば、ニッケル酸化鉱を硫酸浸出することにより得られ、その原料を電気ニッケル製造プロセスの電解工程を経て得られる塩化ニッケル溶液によってレパルプ処理されてスラリー化される。塩素浸出処理においては、このスラリー化したニッケル混合硫化物を含む塩化物溶液に塩素ガスを吹き込むことによって行われる。したがって、このニッケル混合硫化物をスラリー化するに際して、塩化ニッケル溶液の量を低減させ、ニッケル混合硫化物の濃度を濃縮することによって、塩濃度を270g/L以上350g/L以下に調整することができる。 For example, it can be adjusted by concentrating slurry concentration containing nickel mixed sulfide subjected to chlorine leaching. As described above, the nickel mixed sulfide used as a raw material for the chlorine leaching treatment is obtained by, for example, leaching nickel oxide ore with sulfuric acid, and the raw material is obtained by a nickel chloride solution obtained through an electrolysis step of an electric nickel production process. Repulped and slurried. In the chlorine leaching process, chlorine gas is blown into the slurry solution containing the mixed nickel sulfide. Therefore, when this nickel mixed sulfide is slurried, the salt concentration can be adjusted to 270 g / L or more and 350 g / L or less by reducing the amount of nickel chloride solution and concentrating the concentration of nickel mixed sulfide. it can.
また、塩濃度の調整方法として、塩化物溶液を濃縮させて溶液中の塩濃度を調整するようにしてもよい。具体的には、高圧蒸気などによって外熱を供給するようにし、塩化物溶液中の水分を蒸発させて溶液を濃縮することによって塩濃度を調整することもできる。または、塩化物溶液をオートクレーブなどの高温加圧反応容器に投入し、高圧又は高温高圧にすることよって溶液を濃縮し塩濃度を調整することもできる。 Further, as a method for adjusting the salt concentration, the chloride concentration may be concentrated to adjust the salt concentration in the solution. Specifically, the salt concentration can be adjusted by supplying external heat by high-pressure steam or the like, and evaporating the water in the chloride solution to concentrate the solution. Alternatively, the salt concentration can be adjusted by charging the chloride solution into a high-temperature pressurized reaction vessel such as an autoclave and concentrating the solution at high pressure or high temperature and pressure.
以上詳細に説明したように、本実施の形態に係る金属硫化物の塩素浸出方法は、塩化物溶液中の塩濃度を270g/L以上350g/L以下に調整し、この塩化物溶液中で金属硫化物の塩素浸出を行う。 As described above in detail, in the metal sulfide chlorine leaching method according to the present embodiment, the salt concentration in the chloride solution is adjusted to 270 g / L or more and 350 g / L or less. Chlorine leaching of sulfides.
このような塩素浸出方法によれば、塩素浸出反応を効果的に促進させることができ、ニッケル混合硫化物などの金属硫化物からニッケルやコバルトなどの金属成分の浸出ロスを低減させて高い浸出率で金属成分を浸出させることができる。また、金属成分の浸出ロスが低減できることにより、塩素浸出残渣を繰り返し処理する量も低減させることができ、より効率的な操業を行うことができる。 According to such a chlorine leaching method, the chlorine leaching reaction can be effectively promoted, and the leaching loss of metal components such as nickel and cobalt is reduced from metal sulfides such as nickel mixed sulfides, resulting in a high leaching rate. The metal component can be leached. Moreover, since the leaching loss of the metal component can be reduced, the amount of repeated treatment of the chlorine leaching residue can be reduced, and more efficient operation can be performed.
また、従来のように、反槽槽を増設させることやニッケル混合硫化物などの金属硫化物を粉砕機などで粉砕して粒径調整するなどの処理を行う必要がなく、簡便にかつ効率的に、金属硫化物から高い浸出率で金属成分を浸出させることができる In addition, there is no need to increase the number of anti-tank tanks and to adjust the particle size by pulverizing metal sulfides such as nickel-mixed sulfides with a pulverizer, etc. In addition, metal components can be leached from metal sulfide at a high leaching rate.
以下に、本発明の実施例を説明するが、本発明は下記の実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
[実施例1]
先ず、ニッケル混合硫化物(ニッケル:48%、硫黄:32%、コバルト:3%、銅:8%)と塩化ニッケル水溶液(ニッケルイオン:80g/L、塩化物イオン:110g/L)とを混合してスラリーを作った。
[Example 1]
First, nickel mixed sulfide (nickel: 48%, sulfur: 32%, cobalt: 3%, copper: 8%) and nickel chloride aqueous solution (nickel ion: 80 g / L, chloride ion: 110 g / L) are mixed. To make a slurry.
次に、容量120Lの反応槽3槽を直列につなげた装置を用い、作成したスラリーを装置内の銅濃度が40g/Lであり、ニッケルイオン濃度が230g/L、したがって塩(ニッケル及び銅)濃度として270g/Lとなるように、装置の第1槽目に供給して塩素浸出処理を行った。なお、各反応槽への塩素ガスの供給は、各反応槽内の溶液の酸化還元電位が450〜610mVになるように調節した。 Next, using a device in which three tanks of a capacity of 120 L were connected in series, the prepared slurry had a copper concentration of 40 g / L and a nickel ion concentration of 230 g / L, and therefore salt (nickel and copper). Chlorine leaching was performed by supplying the first tank of the apparatus so that the concentration was 270 g / L. The supply of chlorine gas to each reaction tank was adjusted so that the oxidation-reduction potential of the solution in each reaction tank was 450 to 610 mV.
その結果、反応槽内の反応温度は110℃となっており、浸出残渣のニッケル品位は10%、浸出率は99.8%とニッケルが十分浸出していることが確認された。 As a result, the reaction temperature in the reaction vessel was 110 ° C., the nickel quality of the leaching residue was 10%, and the leaching rate was 99.8%, confirming that nickel was sufficiently leached.
Claims (4)
上記塩化物溶液中の塩濃度を270g/L以上350g/L以下に調整して塩素浸出することを特徴とするニッケル混合硫化物の塩素浸出方法。 A method for leaching a metal sulfide using metal sulfide as a raw material and leaching chlorine in a chloride solution containing copper ions,
A method for leaching nickel-mixed sulfides comprising leaching chlorine by adjusting the salt concentration in the chloride solution to 270 g / L or more and 350 g / L or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011207757A JP5803492B2 (en) | 2011-09-22 | 2011-09-22 | Chlorine leaching method for metal sulfides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011207757A JP5803492B2 (en) | 2011-09-22 | 2011-09-22 | Chlorine leaching method for metal sulfides |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013067840A true JP2013067840A (en) | 2013-04-18 |
JP5803492B2 JP5803492B2 (en) | 2015-11-04 |
Family
ID=48473867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011207757A Active JP5803492B2 (en) | 2011-09-22 | 2011-09-22 | Chlorine leaching method for metal sulfides |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5803492B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016050319A (en) * | 2014-08-28 | 2016-04-11 | 住友金属鉱山株式会社 | Calculation method, calculation device and program of metal grade |
CN113166845A (en) * | 2018-11-14 | 2021-07-23 | 新矿股份有限公司 | Solid-liquid-solid hydrometallurgical process for dissolving metals from copper sulphide minerals and/or concentrates |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63259033A (en) * | 1986-04-24 | 1988-10-26 | フアルコンブリツジ・リミテツド | Separation of nickel from copper in autoclave |
US4828809A (en) * | 1983-10-18 | 1989-05-09 | Falconbridge, Limited | Separation of nickel from copper in autoclave |
JPH04301043A (en) * | 1991-03-28 | 1992-10-23 | Sumitomo Metal Mining Co Ltd | Separation of valuable metal |
JP2008240009A (en) * | 2007-03-26 | 2008-10-09 | Sumitomo Metal Mining Co Ltd | Method for chlorine-leaching nickel sulfide |
JP2010100938A (en) * | 2008-09-29 | 2010-05-06 | Sumitomo Metal Mining Co Ltd | Method for leaching nickel from mixed sulfides |
-
2011
- 2011-09-22 JP JP2011207757A patent/JP5803492B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4828809A (en) * | 1983-10-18 | 1989-05-09 | Falconbridge, Limited | Separation of nickel from copper in autoclave |
JPS63259033A (en) * | 1986-04-24 | 1988-10-26 | フアルコンブリツジ・リミテツド | Separation of nickel from copper in autoclave |
JPH04301043A (en) * | 1991-03-28 | 1992-10-23 | Sumitomo Metal Mining Co Ltd | Separation of valuable metal |
JP2008240009A (en) * | 2007-03-26 | 2008-10-09 | Sumitomo Metal Mining Co Ltd | Method for chlorine-leaching nickel sulfide |
JP2010100938A (en) * | 2008-09-29 | 2010-05-06 | Sumitomo Metal Mining Co Ltd | Method for leaching nickel from mixed sulfides |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016050319A (en) * | 2014-08-28 | 2016-04-11 | 住友金属鉱山株式会社 | Calculation method, calculation device and program of metal grade |
CN113166845A (en) * | 2018-11-14 | 2021-07-23 | 新矿股份有限公司 | Solid-liquid-solid hydrometallurgical process for dissolving metals from copper sulphide minerals and/or concentrates |
CN113166845B (en) * | 2018-11-14 | 2022-10-21 | 新矿股份有限公司 | Solid-liquid-solid hydrometallurgical process for dissolving metals from copper sulphide minerals and/or concentrates |
Also Published As
Publication number | Publication date |
---|---|
JP5803492B2 (en) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102427533B1 (en) | How to Dispose of Lithium Ion Waste Batteries | |
JP2009235525A (en) | Method for leaching out gold | |
CN102994747A (en) | Technology for recovering metallic copper from high-lead copper matte | |
CN111373062B (en) | Method for treating waste lithium ion battery | |
CN103773958A (en) | Cadmium removal method | |
JP5405768B2 (en) | Valuables recovery from precious metal-containing metal sulfides | |
JP2016003360A (en) | Production method of nickel sulfate solution | |
JP4962078B2 (en) | Nickel sulfide chlorine leaching method | |
JPH02197533A (en) | Separation of valuable metal | |
JP5803492B2 (en) | Chlorine leaching method for metal sulfides | |
JP6233478B2 (en) | Purification method of bismuth | |
JP6610368B2 (en) | Method for removing impurities from aqueous nickel chloride solution | |
JP6613962B2 (en) | Method for removing copper ion from copper-containing nickel chloride aqueous solution and method for producing electrolytic nickel | |
JP5803491B2 (en) | Chlorine leaching method for metal sulfide and metal smelting method | |
JP6489378B2 (en) | Method for producing low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate | |
JP6172526B2 (en) | Adjustment method of copper concentration of chlorine leachate in nickel chlorine leaching process | |
WO2018138917A1 (en) | Bismuth purification method | |
JP6943141B2 (en) | Leaching method of mixed sulfide containing nickel and cobalt | |
JP6362029B2 (en) | Nickel sulfide raw material processing method | |
JP2013067841A (en) | Method for removing copper ion in nickel chloride aqueous solution and method for producing electrolytic nickel | |
JP6127902B2 (en) | Method for leaching nickel and cobalt from mixed sulfides | |
JP6127938B2 (en) | Removal of tellurium from sulfuric acid leachate of copper electrolytic slime | |
JP6634870B2 (en) | Deironing method of nickel chloride aqueous solution | |
JPS6338538A (en) | Recovering method for nickel from nickel sulfide | |
JP6957984B2 (en) | Copper removal method, electronickel manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150414 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150624 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150817 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5803492 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |