JP2013064577A - Refrigerator - Google Patents
Refrigerator Download PDFInfo
- Publication number
- JP2013064577A JP2013064577A JP2011204856A JP2011204856A JP2013064577A JP 2013064577 A JP2013064577 A JP 2013064577A JP 2011204856 A JP2011204856 A JP 2011204856A JP 2011204856 A JP2011204856 A JP 2011204856A JP 2013064577 A JP2013064577 A JP 2013064577A
- Authority
- JP
- Japan
- Prior art keywords
- cold air
- temperature zone
- refrigerator
- damper
- cooler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001954 sterilising effect Effects 0.000 claims abstract description 42
- 238000004659 sterilization and disinfection Methods 0.000 claims description 46
- 238000004332 deodorization Methods 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000005057 refrigeration Methods 0.000 claims description 14
- 239000003507 refrigerant Substances 0.000 claims description 9
- 230000001877 deodorizing effect Effects 0.000 abstract description 23
- 238000007710 freezing Methods 0.000 abstract description 19
- 230000008014 freezing Effects 0.000 abstract description 19
- 241000894006 Bacteria Species 0.000 abstract description 14
- 239000000126 substance Substances 0.000 abstract description 7
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- 235000013311 vegetables Nutrition 0.000 description 45
- 238000001816 cooling Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 13
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 12
- 235000019645 odor Nutrition 0.000 description 11
- 239000011521 glass Substances 0.000 description 10
- 241000588724 Escherichia coli Species 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 235000013305 food Nutrition 0.000 description 6
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000003595 mist Substances 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Landscapes
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
Description
本発明は除菌脱臭装置を備えた冷蔵庫に関する。 The present invention relates to a refrigerator provided with a sterilization deodorization apparatus.
冷蔵庫は年々大容量化しており、冷蔵庫内に保存する食品量が増加しているため、臭いや菌が発生しやすくなっている。さらに、冷蔵庫を使用する年数が長くなるほど臭気や菌が蓄積し、除去が難しくなる。冷蔵庫内に臭いや菌が蓄積すると、新たに収納した食品の汚染が進行するといった問題が生じることとなる。そのため、この臭いや菌を除去する技術が数多く開発されている。 Since the capacity of refrigerators has been increasing year by year and the amount of food stored in the refrigerator has increased, odors and bacteria are likely to occur. Furthermore, the longer the years the refrigerator is used, the more odors and bacteria accumulate, making it difficult to remove. When odors and bacteria accumulate in the refrigerator, there arises a problem that contamination of newly stored food proceeds. For this reason, many techniques for removing such odors and bacteria have been developed.
特に、OHラジカルや酸素ラジカルなどのラジカルは反応性が高いため、ラジカルを発生させ、そのラジカルを臭気や菌と反応させることによって脱臭や除菌を行う技術が、数多く考案されている。中でもOHラジカルは、水の励起によって発生するラジカルなので、反応後は水に戻るという性質がある。そのため、OHラジカルは、安全性が高いという利点があり、除菌や脱臭を行う方法として注目されている。しかし、OHラジカルは非常に反応性が高いため、すぐに消滅してしまうという欠点がある。 In particular, since radicals such as OH radicals and oxygen radicals are highly reactive, many techniques have been devised for deodorization and sterilization by generating radicals and reacting the radicals with odors and bacteria. Among them, OH radical is a radical generated by excitation of water, and thus has a property of returning to water after the reaction. Therefore, OH radical has an advantage of high safety, and has attracted attention as a method for sterilization and deodorization. However, since the OH radical is very reactive, there is a drawback that it immediately disappears.
このOHラジカルを臭いや菌と効率よく反応させる方法としては、OHラジカルと臭気や菌との接触効率を向上させることや、OHラジカルの発生量を増加させる方法、OHラジカルを別の物質で保護することにより長寿命化させる方法などが挙げられる。この種の従来技術として、例えば特許文献1が知られている。 Methods for efficiently reacting OH radicals with odors and bacteria include improving contact efficiency between OH radicals and odors and bacteria, increasing the amount of OH radicals generated, and protecting OH radicals with other substances. For example, a method for extending the service life can be given. As this type of conventional technology, for example, Patent Document 1 is known.
特許文献1は、水に高電圧を印加してピコレベルの微細なミストとOHラジカルやイオンを放出することによって、微細なミストとともにOHラジカルが放出されるため、ミストがOHラジカルを保護し、OHラジカルが長寿命化するというものである。 Patent Document 1 discloses that by applying a high voltage to water and releasing fine pico-level mist and OH radicals and ions, OH radicals are released together with the fine mist, so that the mist protects OH radicals, and OH Radicals have a longer life.
OHラジカルを長寿命化することによって空間中に浮遊するOHラジカル量は多くなると考えられるが、OHラジカルを長寿命化したとしても、OHラジカルは数秒レベルで消失してしまうため、除菌や脱臭の効果をさらに向上させるためには、臭気物質や菌とOHラジカルが効率よく接触させることが必要となる。 It is thought that the amount of OH radicals floating in the space will increase by extending the lifetime of OH radicals, but even if the lifetime of OH radicals is extended, OH radicals disappear at a level of several seconds. In order to further improve the effect, it is necessary to efficiently contact odorous substances or bacteria with OH radicals.
この点、特許文献1においては、ミストの粒径や放出方法や構造については記載があるが、OHラジカルやイオンと臭気物質や菌、冷蔵庫内に収納する食材との接触効率を向上させるための記述がされておらず、改善の余地がある。 In this regard, Patent Document 1 describes the particle size, release method, and structure of the mist, but it is intended to improve the contact efficiency between OH radicals, ions, odorous substances, bacteria, and food stored in the refrigerator. There is no description and there is room for improvement.
そこで、本発明が解決しようとする課題は、除菌脱臭装置を備えた冷蔵庫において、冷蔵庫内で発生する臭気物質や菌とOHラジカルの接触効率を向上させることによって、脱臭や除菌性能を高めることにある。加えて、冷蔵庫内の生鮮食品の鮮度保持効果の高めることも、本発明が解決しようとする課題の1つである。 Therefore, the problem to be solved by the present invention is to improve deodorization and sterilization performance in a refrigerator equipped with a sterilization and deodorization device by improving the contact efficiency between odorous substances and bacteria generated in the refrigerator and OH radicals. There is. In addition, increasing the freshness retention effect of fresh food in the refrigerator is one of the problems to be solved by the present invention.
上記課題を解決するために、本発明は、冷蔵庫本体に区画形成された冷蔵温度帯室及び冷凍温度帯室と、前記冷蔵温度帯室の後方に設けられた機械室に設置された圧縮機と、前記冷凍温度帯室の後方に設けられた冷却器室に設置された冷却器と、前記冷却器室内における前記冷却器の上方に設けられ前記冷蔵温度帯室及び前記冷凍温度帯室に冷気を送風する送風機と、前記冷蔵温度帯室への冷気の供給量を制御する第1ダンパと、前記冷凍温度帯室への冷気の供給量を制御する第2ダンパと、運転の制御を行う制御装置と、を備えた冷蔵庫において、前記第1ダンパの出口に、前記第1ダンパから吹き出した冷気を前記冷蔵温度帯室へと導く冷気流路を設け、当該冷気流路内に紫外線照射手段を配置し、前記紫外線照射手段によって照射された紫外線が冷気に含まれる水分と反応することでOHラジカルを発生させ、当該OHラジカルにより前記冷蔵温度帯室の除菌脱臭を行う構成としたことを特徴としている。 In order to solve the above-described problems, the present invention provides a refrigeration temperature zone chamber and a freezing temperature zone chamber defined in a refrigerator body, and a compressor installed in a machine room provided behind the refrigeration temperature zone chamber. A cooler installed in a cooler chamber provided behind the freezing temperature zone chamber, and cool air in the refrigerating temperature zone chamber and the freezing temperature zone chamber provided above the cooler in the cooler chamber. A blower that blows air, a first damper that controls the amount of cold air supplied to the refrigeration temperature zone chamber, a second damper that controls the amount of cold air supplied to the refrigeration temperature zone chamber, and a control device that controls operation A cool air flow path for guiding the cool air blown from the first damper to the refrigerated temperature zone chamber is provided at the outlet of the first damper, and ultraviolet irradiation means is disposed in the cool air flow path Irradiated by the ultraviolet irradiation means. Ultraviolet light to generate OH radicals by reacting with the water contained in the cold air, is characterized in that it has a configuration in which the sterilization deodorization of the refrigeration temperature zone compartment by the OH radicals.
本発明によれば、第1ダンパの出口に設けられた冷気流路内に紫外線照射手段を設けているため、紫外線照射手段によって照射された紫外線と反応して発生したOHラジカルは、第1ダンパから吹き出された冷気によって速度が与えられ、勢いよく冷蔵温度帯室へと流れていくことができる。よって、OHラジカルが冷蔵温度帯室内の臭気物質や菌と接触する効率が向上し、除菌脱臭性能が向上することとなる。 According to the present invention, since the ultraviolet irradiation means is provided in the cool air flow path provided at the outlet of the first damper, OH radicals generated by reacting with the ultraviolet light irradiated by the ultraviolet irradiation means are generated by the first damper. Speed is given by the cold air blown out from, and it can flow into the refrigeration temperature zone vigorously. Therefore, the efficiency with which OH radicals come into contact with odorous substances and bacteria in the refrigerated temperature zone is improved, and the sterilization and deodorization performance is improved.
また、上記構成において、前記制御装置は、前記冷却器に霜が付着している状態であると判断した場合に、前記圧縮機を停止し、前記第1ダンパを開け、前記第2ダンパを閉じて前記送風機を駆動する特定の運転を行うよう制御すると共に、前記特定の運転中に前記紫外線照射手段を駆動して前記冷気流路内の冷気に対して紫外線を照射するようにするのが好ましい。 In the above configuration, when the control device determines that frost is attached to the cooler, the control device stops the compressor, opens the first damper, and closes the second damper. And controlling to perform a specific operation for driving the blower, and driving the ultraviolet irradiation means during the specific operation to irradiate the cold air in the cold air flow path with ultraviolet rays. .
このようにすると、冷却器の霜により冷気が熱交換され、湿度の高い冷気が冷気流路内を流れるようになるから、OHラジカルの発生量を増加させることができる。また、冷気の湿度が高いことから、冷蔵温度帯室内の乾燥を抑えることもできる。また、圧縮機を用いることなく霜のみで熱交換を行うため、省エネ効果も見込めることとなる。 If it does in this way, cold air will be heat-exchanged by the frost of a cooler, and since cold air with high humidity will flow in the inside of a cold air flow path, the generation amount of OH radicals can be increased. Further, since the humidity of the cold air is high, drying in the refrigerated temperature zone can be suppressed. Moreover, since heat exchange is performed only with frost without using a compressor, an energy saving effect can be expected.
なお、冷却器に霜が付着している状態を判断するには、例えば、一定時間におけるドアの開閉回数、圧縮機の積算運転時間、冷蔵庫外の温度等を測定して、それらの測定結果から推測すれば良い。 In order to determine the state of frost adhering to the cooler, for example, by measuring the number of times the door is opened and closed for a certain period of time, the cumulative operating time of the compressor, the temperature outside the refrigerator, etc. Just guess.
また、上記構成において、前記紫外線照射手段の近傍に湿度センサを設け、前記制御装置は、前記湿度センサが検出した湿度が25%未満の場合には、前記紫外線照射手段による紫外線の照射を停止するよう制御するのが好ましい。冷気の湿度が25%未満になると、除菌脱臭の効果が発揮され難くなるからである。 Further, in the above configuration, a humidity sensor is provided in the vicinity of the ultraviolet irradiation means, and the control device stops the ultraviolet irradiation by the ultraviolet irradiation means when the humidity detected by the humidity sensor is less than 25%. It is preferable to control this. This is because if the humidity of the cold air is less than 25%, the effect of sterilization and deodorization is hardly exhibited.
また、上記構成において、前記冷気流路内における前記紫外線照射手段の近傍の位置に保水材を設け、前記紫外線照射手段から照射される紫外線が前記保水材を向くように構成すると共に、冷媒が流れるヒートパイプを前記保水材に接触するように取り付ける構成とするのが好ましい。このようにすると、ヒートパイプ内を流れる低温冷媒によって、ヒートパイプ表面に結露が生じるから、外部から水を供給しなくても、保水材は水分を吸収することができる。そして、保水材に水分が保たれることによって、OHラジカルの発生量を増加させることができ、除菌脱臭性能を向上させることができる。 Further, in the above configuration, a water retention material is provided in the vicinity of the ultraviolet irradiation means in the cold air flow path so that the ultraviolet light irradiated from the ultraviolet irradiation means faces the water retention material, and the refrigerant flows. It is preferable that the heat pipe is attached so as to be in contact with the water retaining material. If it does in this way, dew condensation will arise on the heat pipe surface by the low-temperature refrigerant | coolant which flows in the inside of a heat pipe, Therefore Even if it does not supply water from the outside, a water retention material can absorb a water | moisture content. And by keeping water | moisture content in a water retention material, the generation amount of OH radical can be increased and disinfection deodorizing performance can be improved.
また、上記構成において、前記制御装置は、前記第1ダンパが開いている状態のときのみ前記紫外線照射手段を駆動して紫外線を照射するよう制御するのが好ましい。第1ダンパが開いているときは、第1ダンパから吹き出した冷気の流速を利用して冷蔵温度帯室へOHラジカルを効率良く運ぶことができるが、第1ダンパが閉じているときは、冷気の流れが停滞するため、その間に紫外線を照射しても除菌脱臭効果はそれほど高くない。そこで、上記したように、第1ダンパが開いている状態のときのみ紫外線を照射するように制御する構成にすれば、除菌脱臭効果が高きときだけ紫外線照射手段を駆動することができるため、省エネ効果が期待できることとなる。 In the above configuration, it is preferable that the control device controls the ultraviolet irradiation means to drive and irradiate ultraviolet rays only when the first damper is open. When the first damper is open, OH radicals can be efficiently transferred to the refrigeration temperature zone using the flow rate of the cold air blown from the first damper, but when the first damper is closed, Therefore, even if ultraviolet rays are irradiated during that time, the sterilization and deodorizing effect is not so high. Therefore, as described above, if it is configured to irradiate ultraviolet rays only when the first damper is open, the ultraviolet irradiation means can be driven only when the sterilization and deodorizing effect is high. An energy saving effect can be expected.
本発明は、上記の構成を備えているので、OHラジカルの拡散が促進され、野菜から発生するエチレンや臭い、菌との接触効率が増加する。よって、本発明によれば、除去効果を高めることができ、冷蔵庫内に保存している食品の劣化を抑制することができる。 Since this invention is equipped with said structure, the spreading | diffusion of OH radical is accelerated | stimulated and the contact efficiency with the ethylene which generate | occur | produces from vegetables, a smell, and a microbe increases. Therefore, according to this invention, a removal effect can be improved and deterioration of the foodstuff preserve | saved in the refrigerator can be suppressed.
本発明に係る冷蔵庫の実施形態を、図1から図2を参照しながら説明する。図1に示すように、本実施形態の冷蔵庫は、冷蔵庫本体1に、上から、冷蔵室(冷蔵温度帯室)2、製氷室(冷凍温度帯室)3、上段冷凍室(冷凍温度帯室)4、下段冷凍室(冷凍温度帯室)5、及び野菜室(冷蔵温度帯室)6を設けると共に、野菜室6の後方に機械室19を、下段冷凍室5の後方は冷却器収納室(冷却器室)8をそれぞれ設けて構成されている。図2に示すように、機械室19には圧縮機24が設置され、冷却器収納室8には冷却器7が設置されている。さらに、冷却器7の上方には送風機9が設けられており、この送風機9によって、冷気が各室2,3,4,5,6に導かれるようになっている。 An embodiment of a refrigerator according to the present invention will be described with reference to FIGS. As shown in FIG. 1, the refrigerator of the present embodiment includes a refrigerator main body 1, a refrigerator compartment (refrigerated temperature zone chamber) 2, an ice making chamber (freezer temperature zone chamber) 3, an upper freezer compartment (refrigeration temperature zone chamber). 4) A lower freezing room (freezing temperature zone room) 5 and a vegetable room (refrigerated temperature zone room) 6 are provided, a machine room 19 is located behind the vegetable room 6, and a cooler storage room is located behind the lower freezing room 5. (Cooler chamber) 8 is provided and configured. As shown in FIG. 2, a compressor 24 is installed in the machine room 19, and a cooler 7 is installed in the cooler storage room 8. Further, an air blower 9 is provided above the cooler 7, and the cool air is guided to the respective chambers 2, 3, 4, 5 and 6 by the air blower 9.
なお、本明細書中において、「冷気」とは、「冷却器7で冷やされた低温空気」という意味で用いるものとする。また、本明細書中において、製氷室3と上段冷凍室4と下段冷凍室5とをまとめて言う場合に、これらの総称として冷凍室60と言うことがある。 In this specification, “cold air” is used to mean “cold air cooled by the cooler 7”. In the present specification, when the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to, they may be collectively referred to as the freezing chamber 60.
また、冷蔵庫本体1内には、冷蔵室2への冷気の供給量を制御するための冷蔵室冷却ダンパ(第1ダンパ)20、野菜室6への冷気の供給量を制御するための野菜室冷却ダンパ(第1ダンパ)61、冷凍室60への冷気の供給量を制御するための冷凍室冷却ダンパ(第2ダンパ)50が設けられている。さらに、冷蔵庫本体1の天井壁上面側には、冷蔵庫の運転を制御するためのものであって、CPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板(制御装置)31が設けられている。 In the refrigerator main body 1, a refrigerator compartment cooling damper (first damper) 20 for controlling the amount of cold air supplied to the refrigerator compartment 2, and a vegetable compartment for controlling the amount of cold air supplied to the vegetable compartment 6. A cooling damper (first damper) 61 and a freezer compartment cooling damper (second damper) 50 for controlling the amount of cold air supplied to the freezer compartment 60 are provided. Further, on the upper surface side of the ceiling wall of the refrigerator main body 1, there is provided a control board (control device) 31 for controlling the operation of the refrigerator and equipped with a CPU, a memory such as a ROM and a RAM, an interface circuit and the like. It has been.
ちなみに、本実施形態では、イソブタンを冷媒として用い、冷媒封入量は約80gと少量にしている。 Incidentally, in this embodiment, isobutane is used as a refrigerant, and the amount of refrigerant enclosed is as small as about 80 g.
冷蔵室2は前方側に、左右に分割された観音開きの冷蔵室扉2a,2bを備え、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。以下では、冷蔵室扉2a,2b、製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを単に扉2a,2b,3a,4a,5a,6aと称することにする。 The refrigerating room 2 includes front and rear refrigerating room doors 2a and 2b which are divided into left and right sides, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are respectively drawer-type ice making room doors. 3a, an upper freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a. .
また、本実施形態の冷蔵庫は、扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する図示しない扉センサと、扉開放状態と判定された状態が所定時間、例えば、1分間以上継続された場合に、使用者に報知する図示しないアラーム、冷蔵室2や野菜室6の温度設定や冷凍室60の温度設定をする図示しない温度設定器等を備えている。 In the refrigerator of the present embodiment, a door sensor (not shown) that detects the open / closed state of each door of the doors 2a, 2b, 3a, 4a, 5a, 6a, and a state determined to be the door open state for a predetermined time, for example, An alarm (not shown) that informs the user when the operation is continued for one minute or more, a temperature setting device (not shown) that sets the temperature of the refrigerator compartment 2 and the vegetable compartment 6, and the temperature of the freezer compartment 60 are provided.
図2に示すように、冷蔵庫本体1の庫外と庫内は、発泡断熱材(発泡ポリウレタン)を充填することにより形成される断熱箱体10により隔てられている。冷蔵庫本体1の断熱箱体10は複数の真空断熱材25を実装している。庫内は、断熱仕切壁28により冷蔵室2と、上段冷凍室4及び製氷室3(図1参照、図2中で製氷室3は図示されていない)とが隔てられ、断熱仕切壁29により、下段冷凍室5と野菜室6とが隔てられている。 As shown in FIG. 2, the outside of the refrigerator body 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material (foamed polyurethane). The heat insulation box 10 of the refrigerator body 1 has a plurality of vacuum heat insulating materials 25 mounted thereon. The inside of the refrigerator is separated from the refrigerator compartment 2 by the heat insulating partition wall 28, the upper freezing chamber 4 and the ice making chamber 3 (see FIG. 1, the ice making chamber 3 is not shown in FIG. 2). The lower freezer compartment 5 and the vegetable compartment 6 are separated.
扉2a,2b(図1参照)の庫内側には複数の扉ポケット32が備えられている。また、冷蔵室2は、複数の棚36により縦方向に複数の貯蔵スペースが区画されている。また、上段冷凍室4、下段冷凍室5及び野菜室6は、それぞれの室の前方に備えられた扉3a,4a,5a,6aと一体に、収納容器3b,4b,5b,6bがそれぞれ設けられており、扉4a,5a,6aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器4b,5b,6bが引き出せるようになっている。図1に示す製氷室3にも同様に、扉3aと一体に、図示しない収納容器(図2中(3b)で表示)が設けられ、扉3aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器3bが引き出せるようになっている。 A plurality of door pockets 32 are provided on the inner side of the doors 2a and 2b (see FIG. 1). In the refrigerator compartment 2, a plurality of storage spaces are partitioned in the vertical direction by a plurality of shelves 36. The upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are provided with storage containers 3b, 4b, 5b, 6b, respectively, integrally with doors 3a, 4a, 5a, 6a provided in front of the respective compartments. The storage containers 4b, 5b, and 6b can be pulled out by placing a hand on a handle portion (not shown) of the doors 4a, 5a, and 6a and pulling it out to the front side. Similarly, the ice making chamber 3 shown in FIG. 1 is provided with an unillustrated storage container (indicated by (3b) in FIG. 2) integrally with the door 3a. The container 3b can be pulled out by pulling it out.
また、冷気は、冷蔵室送風ダクト11、上段冷凍室送風ダクト12、下段冷凍室送風ダクトである冷気ダクト13、及び図示しない製氷室送風ダクトを介して、冷蔵室2、上段冷凍室4、下段冷凍室5、製氷室3の各室へと送風機9によって送られる。各室へ供給する冷気の量(風量)は、冷蔵室冷却ダンパ20と野菜室冷却ダンパ61と冷凍室冷却ダンパ50の開閉により制御される。 In addition, the cold air passes through the refrigerator compartment air duct 11, the upper freezer compartment air duct 12, the cool air duct 13 which is the lower refrigerator compartment air duct, and the ice making chamber air duct (not shown), the refrigerator compartment 2, the upper freezer compartment 4, and the lower compartment. It is sent by a blower 9 to each of the freezing room 5 and the ice making room 3. The amount of cool air supplied to each room (air volume) is controlled by opening and closing the refrigerator compartment cooling damper 20, the vegetable compartment cooling damper 61, and the freezer compartment cooling damper 50.
冷却器7及びその周辺の冷却器収納室8の壁に付着した霜が除霜によって融解することで生じた除霜水は、冷却器収納室8の下部に備えられた樋23に流入した後に、排水管62を介して機械室19に配された蒸発皿21に達し、圧縮機24及び、機械室19内に配設される図示しない凝縮器の発熱により蒸発させられる。 The defrost water produced by the frost adhering to the wall of the cooler 7 and its surrounding cooler storage chamber 8 being melted by the defrosting flows into the trough 23 provided at the lower part of the cooler storage chamber 8. It reaches the evaporating dish 21 disposed in the machine room 19 through the drain pipe 62 and is evaporated by the heat generated by the compressor 24 and a condenser (not shown) disposed in the machine room 19.
また、冷却器7の正面から見て左上部には冷却器温度センサ35、冷蔵室2には冷蔵室温度センサ33、下段冷凍室5には冷凍室温度センサ34がそれぞれ備えられており、それぞれ冷却器7の温度(以下、冷却器温度と称する)、冷蔵室2の温度(以下、冷蔵室温度と称する)、下段冷凍室5の温度(以下、冷凍室温度と称する)を検知できるようになっている。さらに、冷蔵庫1は、庫外の温度を検知する図示しない外気温度センサを備えている。なお、野菜室6にも野菜室温度センサ33aが配置してある。 A cooler temperature sensor 35 is provided in the upper left portion of the cooler 7 as viewed from the front, the refrigerator compartment 2 is provided with a refrigerator temperature sensor 33, and the lower freezer compartment 5 is provided with a freezer compartment temperature sensor 34. The temperature of the cooler 7 (hereinafter referred to as “cooler temperature”), the temperature of the refrigerator compartment 2 (hereinafter referred to as “refrigerator compartment temperature”), and the temperature of the lower freezer compartment 5 (hereinafter referred to as “freezer compartment temperature”) can be detected. It has become. Furthermore, the refrigerator 1 includes an outside temperature sensor (not shown) that detects the temperature outside the refrigerator. The vegetable compartment 6 is also provided with a vegetable compartment temperature sensor 33a.
制御基板31は、前記した外気温度センサ、冷却器温度センサ35、冷蔵室温度センサ33、野菜室温度センサ33a、冷凍室温度センサ34、扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する前記した扉センサ、冷蔵室2内壁に設けられた図示しない温度設定器、下段冷凍室5内壁に設けられた図示しない温度設定器等と接続しており、前記ROMにあらかじめ搭載されたプログラムにより、圧縮機24のON/OFF等の制御、冷蔵室冷却ダンパ20及び冷凍室冷却ダンパ50を個別に駆動する図示省略のそれぞれのアクチュエータの制御、送風機9のON/OFF制御や回転速度制御、前記した扉開放状態を報知するアラームのON/OFF等の制御を行う。 The control board 31 includes the doors of the outside air temperature sensor, the cooler temperature sensor 35, the refrigerator temperature sensor 33, the vegetable room temperature sensor 33a, the freezer temperature sensor 34, and the doors 2a, 2b, 3a, 4a, 5a, and 6a. Connected to the above-described door sensor for detecting the open / closed state of each of the above, a temperature setter (not shown) provided on the inner wall of the refrigerator compartment 2, a temperature setter (not shown) provided on the inner wall of the lower freezer compartment 5, etc. Control of ON / OFF of the compressor 24, control of each actuator (not shown) that individually drives the refrigerator cooling fan 20 and the freezer cooling damper 50, and ON / OFF control of the blower 9 by a preinstalled program And control of rotation speed control, ON / OFF of an alarm for notifying the door open state described above, and the like.
ここで、本実施形態の冷蔵庫では、冷却器7に付着した霜を利用した省エネ運転モード(特定の運転)が搭載されている。この省エネ運転モードは、冷たい霜によって冷蔵室2及び野菜室6を冷却しようとするものであり、その運転方法は、圧縮機24を停止し、冷蔵室冷却ダンパ20及び野菜室冷却ダンパ61を開け、冷凍室冷却ダンパ50を閉じ、送風機9を駆動するというものである。具体的には、制御基板31が、扉2a,2b,3a,4a,5a,6aの開閉回数、圧縮機24の積算運転時間、外気温度センサにより検出された冷蔵庫外の温度等を測定する。そして、この測定値が予め定めた閾値に到達している場合に、制御基板31は、冷却器7に霜が付着している状態であると判断し、冷蔵庫の運転を省エネ運転モードに自動的に切り替えるように制御している。なお、この省エネ運転モードは、消費電力を抑えることができるだけでなく、霜の水分を含んだ高湿度の冷気が生成されるため、冷蔵室2及び野菜室6内に収納されている食品の乾燥を防ぐことができるといった利点もある。 Here, in the refrigerator of the present embodiment, an energy saving operation mode (specific operation) using frost attached to the cooler 7 is mounted. This energy saving operation mode is intended to cool the refrigerator compartment 2 and the vegetable compartment 6 with cold frost, and the operation method is to stop the compressor 24 and open the refrigerator compartment cooling damper 20 and the vegetable compartment cooling damper 61. The freezer compartment cooling damper 50 is closed and the blower 9 is driven. Specifically, the control board 31 measures the number of times the doors 2a, 2b, 3a, 4a, 5a, and 6a are opened and closed, the accumulated operation time of the compressor 24, the temperature outside the refrigerator detected by the outside air temperature sensor, and the like. When the measured value reaches a predetermined threshold value, the control board 31 determines that frost is attached to the cooler 7 and automatically sets the operation of the refrigerator to the energy saving operation mode. Control to switch to. This energy saving operation mode not only can reduce power consumption, but also generates high-humidity cold air containing frost moisture, so that the food stored in the refrigerator compartment 2 and the vegetable compartment 6 can be dried. There is also an advantage that can be prevented.
次に、野菜室6の除菌脱臭を行うための装置63について、図2及び図3を参照しながら説明する。除菌脱臭装置63は、野菜室6の野菜室冷却ダンパ61の出口の直下に配置されており、その構成は、一端に野菜室冷却ダンパ61の出口と接続される冷気取り入れ口68が形成され、他端に冷気取り出し口69が形成された冷気流路67と、この冷気流路67内で対向するように上下に隔てて配置された紫外線照射手段66及び保水材65と、この保水材65に接触するように取り付けられ、冷媒が流れるヒートパイプ64とから成る。 Next, an apparatus 63 for performing sterilization and deodorization of the vegetable compartment 6 will be described with reference to FIGS. 2 and 3. The sterilizing and deodorizing device 63 is disposed immediately below the outlet of the vegetable compartment cooling damper 61 in the vegetable compartment 6, and has a configuration in which a cold air inlet 68 connected to the outlet of the vegetable compartment cooling damper 61 is formed at one end. A cold air passage 67 having a cold air outlet 69 formed at the other end, an ultraviolet irradiation means 66 and a water retaining material 65 disposed so as to be opposed to each other in the cold air passage 67, and the water retaining material 65. The heat pipe 64 is attached so as to come into contact with the refrigerant and flows through the refrigerant.
冷気流路67は、冷気取り入れ口68から冷気取り出し口69へと略90度折り曲げて形成されたものであり、野菜室冷却ダンパ61の出口から下向きに吹き出された冷気は、冷気取り入れ口68から取り込まれ、冷気流路67内を流れながら略90度向きを変えて、冷気取り出し口69から水平方向に吹き出されて野菜室6内を循環する(図3の矢印参照)。なお、冷気が流れる際の抵抗とならないように、冷気取り入れ口68を野菜室冷却ダンパ61の開口部と同等の広さに形成し、冷気流路67もなるべく短くしている。 The cold air passage 67 is formed by being bent approximately 90 degrees from the cold air inlet 68 to the cold air outlet 69, and the cold air blown downward from the outlet of the vegetable room cooling damper 61 is from the cold air inlet 68. The air is taken in, changed in direction by approximately 90 degrees while flowing in the cold air passage 67, and blown out horizontally from the cold air outlet 69 to circulate in the vegetable compartment 6 (see arrows in FIG. 3). The cold air intake 68 is formed in the same size as the opening of the vegetable room cooling damper 61 so that the cold air does not flow, and the cold air passage 67 is made as short as possible.
紫外線照射手段66は、ガラス内に素子を封入して紫外線を発生させるLEDで構成されている。なお、紫外線照射手段66のことを、以下、ガラスUVLED66と言うことにする。また、保水材65として、本実施形態ではスポンジが用いられている。 The ultraviolet irradiation means 66 is comprised by LED which encloses an element in glass and generate | occur | produces an ultraviolet-ray. Hereinafter, the ultraviolet irradiation means 66 will be referred to as a glass UVLED 66. Further, as the water retaining material 65, a sponge is used in the present embodiment.
このように構成された除菌脱臭装置63では、ヒートパイプ64内を流れる冷媒が低温であるため、ヒートパイプ64の表面に結露が生成される。ヒートパイプ64と保水材65とは接触しているため、結露は保水材65によって吸収されることとなる。こうして、保水材65は、外部から水分を供給することなく、水分を保持することができることとなる。そして、水分が吸収された保水材65にガラスUVLED66から紫外線を照射すると、OHラジカルが発生する。そのOHラジカルは、冷気と共に野菜室6内へ吹き出され、野菜室6内の除菌や脱臭が行われる。このとき、保水材65はヒートパイプ64の表面に生成される結露を常に吸収しているので、安定的にOHラジカルを発生させることができる。よって、本実施形態の冷蔵庫によれば、野菜室6を常に除菌、脱臭することができる。 In the sterilization and deodorization apparatus 63 configured as described above, since the refrigerant flowing in the heat pipe 64 is at a low temperature, condensation is generated on the surface of the heat pipe 64. Since the heat pipe 64 and the water retention material 65 are in contact with each other, dew condensation is absorbed by the water retention material 65. Thus, the water retention material 65 can retain moisture without supplying moisture from the outside. When the water retaining material 65 in which moisture is absorbed is irradiated with ultraviolet rays from the glass UVLED 66, OH radicals are generated. The OH radical is blown into the vegetable compartment 6 together with the cold air, so that the sterilization and deodorization in the vegetable compartment 6 are performed. At this time, since the water retaining material 65 always absorbs the condensation generated on the surface of the heat pipe 64, OH radicals can be generated stably. Therefore, according to the refrigerator of this embodiment, the vegetable compartment 6 can always be sterilized and deodorized.
なお、保水材65の代わりに、紫外線を照射して脱臭や抗菌の作用が出るもの、例えば光触媒を塗布した部材やフィルタを備えても良い。また、臭いや菌などを担持させる部材、例えばハニカム形状の部材や布などをガラスUVLED66の直下に備えると、紫外線を効率的に作用させることができるため、除菌、脱臭の効果が向上する。 Instead of the water retaining material 65, a member that applies ultraviolet light to produce deodorization or antibacterial effects, such as a member coated with a photocatalyst or a filter, may be provided. In addition, when a member that carries odor, bacteria, or the like, for example, a honeycomb-shaped member or cloth, is provided directly below the glass UVLED 66, ultraviolet rays can be efficiently applied, so that the effects of sterilization and deodorization are improved.
ここで、上記した省エネ運転モードでは圧縮機24が停止しているため、ヒートパイプ64内を冷媒が循環しない。そうすると、保水材65に水分が供給されなくなる。ところが、省エネ運転モードでは、冷却器7に付着した霜によって冷気が高湿度になっているため、その冷気にガラスUVLED66から紫外線を照射すれば、十分にOHラジカルを発生させることが可能である。このことから、本実施形態では、省エネ運転モード中であっても、制御基板31がガラスUVLED66を駆動している。 Here, since the compressor 24 is stopped in the energy saving operation mode described above, the refrigerant does not circulate in the heat pipe 64. Then, moisture is not supplied to the water retaining material 65. However, in the energy saving operation mode, since the cold air is at a high humidity due to frost adhering to the cooler 7, it is possible to sufficiently generate OH radicals by irradiating the cold air with ultraviolet rays from the glass UVLED 66. From this, in this embodiment, the control board 31 drives the glass UVLED 66 even in the energy saving operation mode.
さて、本件発明者らは、除菌脱臭装置63を設置する最適な場所を選定するため、除菌脱臭装置63を野菜室6の冷気吹き出し口近傍(即ち、野菜室冷却ダンパ61の出口近傍)に設置した場合と、冷蔵室2の冷気戻り口(図示しないが、冷蔵室2の背面側の下端部に設けられている)に設置した場合とにおける脱臭性能を比較する実験を行った。この実験は、冷蔵室2内で臭気が発生したことを想定し、冷蔵室2からメチルメルカプタン標準ガスを投入し、10時間経過後の除菌脱臭装置63の設置位置近傍のメチルメルカプタン残存量を測定するという手法で行っている。なお、実験中の冷蔵庫の運転は、省エネ運転モードである。図4に示すグラフは、その測定結果を比較したものである。図4の(A)は冷蔵室2の冷気戻り口に除菌脱臭装置63を備えた場合のメチルメルカプタン残存率、(B)は野菜室6の冷気吹き出し口近傍に除菌脱臭装置63を備えた場合のメチルメルカプタン残存率をそれぞれ示している。 Now, in order to select the optimal place where the sterilization deodorizing apparatus 63 is installed, the present inventors set the sterilization deodorizing apparatus 63 in the vicinity of the cold air outlet of the vegetable room 6 (that is, in the vicinity of the outlet of the vegetable room cooling damper 61). An experiment was conducted to compare the deodorizing performance between the case where the deodorizing performance is installed and the case where it is installed at the cold air return port of the refrigerating chamber 2 (not shown, but provided at the lower end on the back side of the refrigerating chamber 2). This experiment is based on the assumption that odor is generated in the refrigerating chamber 2, and the methyl mercaptan standard gas is introduced from the refrigerating chamber 2, and the remaining amount of methyl mercaptan in the vicinity of the installation position of the sterilization deodorizing device 63 after 10 hours has elapsed. This is done by measuring. The operation of the refrigerator during the experiment is an energy saving operation mode. The graph shown in FIG. 4 is a comparison of the measurement results. 4A shows the methyl mercaptan remaining rate when the sterilization deodorizing device 63 is provided at the cold air return port of the refrigerator compartment 2, and FIG. 4B shows the sterilization deodorizing device 63 near the cold air outlet of the vegetable chamber 6. In this case, the residual ratio of methyl mercaptan is shown.
図4から分かるように、省エネ運転モードでは、冷蔵室2から臭気を投入している場合においても、臭気投入場所に近い冷蔵室2の冷気戻り口よりも野菜室6の冷気吹き出し口近傍に除菌脱臭装置63を設置した方が、メチルメルカプタン残存率が低いという結果となった。即ち、野菜室冷却ダンパ61の出口近傍に除菌脱臭装置63を設けた方が、除菌脱臭効果が高いことが、この実験から明らかになったのである。これは、本実施形態の冷蔵庫には冷気吐出を制御するダンパ20,50,61が設けられていることに起因していると考えることができる。 As can be seen from FIG. 4, in the energy-saving operation mode, even when odor is introduced from the refrigerator compartment 2, it is removed near the cold air outlet of the vegetable compartment 6 rather than the cold return outlet of the refrigerator compartment 2 near the odor introduction place. The result that the methyl mercaptan residual rate was low when the bacteria deodorizing device 63 was installed. That is, this experiment revealed that the disinfection and deodorization device 63 provided near the outlet of the vegetable room cooling damper 61 has a higher disinfection and deodorization effect. This can be attributed to the fact that the refrigerator according to the present embodiment is provided with the dampers 20, 50, 61 for controlling the cool air discharge.
そこで、野菜室冷却ダンパ61の出口の冷気の流速と、冷蔵室2の冷気戻り口の冷気の流速とをそれぞれ測定したところ、野菜室冷却ダンパ61近傍の方が冷気の流速が速いということが分かった。このことから、冷気の流速が速くなったことで、発生したOHラジカルが臭気物質と接触する効率が向上し、脱臭性能が向上したと考えられる。この事実を逆に捉えれば、冷気の流速が十分でない場合には、除菌脱臭性能が劣るということになる。このことから、効率良く除菌脱臭を行うためには、野菜室冷却ダンパ61が開いている状態のときにのみ、ガラスUVLED66から紫外線を照射するのが良いということが明らかとなったのである。そこで、本実施形態では、制御基板31が、野菜室冷却ダンパ61が開状態のときのみ、ガラスUVLED66を駆動するようにしている。これにより、省エネ効果が見込めることとなる。 Therefore, when the flow rate of the cold air at the outlet of the vegetable room cooling damper 61 and the flow rate of the cold air at the cold air return port of the refrigerator compartment 2 were measured, the flow rate of the cold air in the vicinity of the vegetable room cooling damper 61 was faster. I understood. From this, it is considered that the efficiency at which the generated OH radicals come into contact with the odorous substance is improved and the deodorization performance is improved by increasing the flow rate of the cold air. If this fact is grasped conversely, when the flow rate of the cold air is not sufficient, the sterilization and deodorization performance is inferior. From this, in order to perform sterilization and deodorization efficiently, it became clear that ultraviolet rays should be irradiated from the glass UVLED 66 only when the vegetable room cooling damper 61 is open. Therefore, in the present embodiment, the control substrate 31 drives the glass UVLED 66 only when the vegetable compartment cooling damper 61 is in the open state. As a result, an energy saving effect can be expected.
さらに、本件発明者らは、空間の湿度と除菌効果との関係を調べるために、野菜室6の湿度を所定の条件に保ち、野菜室冷却ダンパ61の出口に除菌脱臭装置63を配置し、その除菌脱臭装置63を24時間運転した時の大腸菌残存量を測定した。その測定結果を、図5に示す。図5の(A)は湿度78%の野菜室6における大腸菌残存率、(B)は湿度25%の野菜室6における大腸菌残存率、(C)は湿度13%の野菜室6における大腸菌残存率をそれぞれ示している。なお、図5の(D)は、湿度78%の条件で除菌脱臭装置63を運転せずに大腸菌を24時間暴露したときの大腸菌残存率である。 Furthermore, in order to investigate the relationship between the humidity of the space and the sterilization effect, the inventors of the present invention keep the humidity of the vegetable room 6 at a predetermined condition, and dispose the sterilization deodorizing device 63 at the outlet of the vegetable room cooling damper 61. The remaining amount of Escherichia coli was measured when the sterilization and deodorization device 63 was operated for 24 hours. The measurement results are shown in FIG. 5 (A) shows the E. coli survival rate in the vegetable room 6 at a humidity of 78%, (B) shows the E. coli survival rate in the vegetable room 6 at a humidity of 25%, and (C) shows the E. coli survival rate in the vegetable room 6 at a humidity of 13%. Respectively. 5D shows the E. coli residual rate when E. coli is exposed for 24 hours without operating the sterilization deodorizing apparatus 63 under the condition of a humidity of 78%.
図5から分かるように、湿度78%の条件で除菌脱臭装置63を運転した時の大腸菌残存量は3.0×102個と最も少なく、次に残存率が少ないのは湿度25%の条件で、4.3×103個、湿度13%の条件では7.6×105個、除菌脱臭装置63を運転していない条件では8.5×105個となり、湿度が高い空間において除菌脱臭装置63を運転した方が除菌効果は高くなり、湿度13%の条件では除菌脱臭装置63を運転していない条件と大腸菌残存量に差が無い結果となった。この結果より、湿度が高い条件で除菌脱臭装置63を運転することが望ましく、また、湿度25%未満の条件では除菌脱臭装置63を運転しても除菌効果が発揮されないことが分かった。 As can be seen from FIG. 5, the remaining amount of Escherichia coli is as small as 3.0 × 10 2 when the sterilization and deodorizing apparatus 63 is operated under the condition of 78% humidity, and the remaining rate is the second lowest with 25% humidity. The condition is 4.3 × 10 3 , 7.6 × 10 5 when the humidity is 13%, and 8.5 × 10 5 when the sterilization / deodorizing device 63 is not operated. When the sterilization / deodorization device 63 was operated, the sterilization effect was higher. Under the condition of humidity of 13%, the condition where the sterilization / deodorization device 63 was not operated and the remaining amount of E. coli were not different. From this result, it was found that it is desirable to operate the sterilization and deodorization device 63 under high humidity conditions, and it was found that the sterilization effect was not exhibited even when the sterilization and deodorization device 63 was operated under the conditions of less than 25% humidity. .
そこで、本実施形態では、湿度が低い場合には除菌脱臭装置66を運転しないように制御するため、除菌脱臭装置63に湿度センサ70を設けておき、当該湿度センサが検出した湿度が25%未満の場合には、制御基板31がガラスUVLED66を運転しないように制御している。 Therefore, in the present embodiment, when the humidity is low, the sterilization deodorizing apparatus 66 is controlled not to operate. Therefore, a humidity sensor 70 is provided in the sterilization deodorizing apparatus 63, and the humidity detected by the humidity sensor is 25. If it is less than%, the control substrate 31 is controlled not to operate the glass UVLED 66.
以上、説明したように、本実施形態に係る冷蔵庫は、高いエネルギーを作用させること無く無給水で多くの結露水を生成し、水分と紫外線の接触効率を向上させることによって、OHラジカルをより多く発生させて、高い脱臭や除菌の効果を得ることが可能となるのである。さらに、省エネ運転モードでは、湿度の高い冷気を冷蔵庫内で循環させることができるから、食品の乾燥を防いで鮮度を保つこともできる。 As described above, the refrigerator according to the present embodiment generates a large amount of condensed water with no water supply without causing high energy to act, and improves the contact efficiency between moisture and ultraviolet rays, thereby increasing the amount of OH radicals. It is possible to generate high deodorization and sterilization effects. Further, in the energy saving operation mode, since cold air with high humidity can be circulated in the refrigerator, the food can be prevented from drying and the freshness can be maintained.
なお、上記した実施形態では、野菜室冷却ダンパ61の出口に除菌脱臭装置63を設ける構成としたが、この構成に代えて、あるいは加えて、冷蔵室冷却ダンパ20の出口に除菌脱臭装置63を設けても同様の除菌脱臭効果を発揮することができる。 In the above-described embodiment, the sterilization and deodorization device 63 is provided at the outlet of the vegetable room cooling damper 61. However, instead of or in addition to this configuration, the sterilization and deodorization device is provided at the outlet of the refrigerator compartment cooling damper 20. Even if 63 is provided, the same sterilization deodorizing effect can be exhibited.
1 冷蔵庫本体
2 冷蔵室(冷蔵温度帯室)
3 製氷室(冷凍温度帯室)
4 上段冷凍室(冷凍温度帯室)
5 下段冷凍室(冷凍温度帯室)
6 野菜室(冷蔵温度帯室)
7 冷却器
8 冷却器収納室(冷却器室)
9 送風機
19 機械室
20 冷蔵室冷却ダンパ(第1ダンパ)
24 圧縮機
31 制御基板(制御装置)
50 冷凍室冷却ダンパ(第2ダンパ)
61 野菜室冷却ダンパ(第1ダンパ)
63 除菌脱臭装置
64 ヒートパイプ
65 保水材
66 ガラスUVLED(紫外線照射手段)
67 冷気流路
68 冷気取り入れ口
69 冷気取り出し口
70 湿度センサ
1 Refrigerator body 2 Refrigerated room (refrigerated temperature zone)
3 Ice making room (freezing temperature zone)
4 Upper freezer room (freezing temperature room)
5 Lower freezer compartment (freezing temperature zone)
6 Vegetable room (refrigerated temperature room)
7 Cooler 8 Cooler storage room (cooler room)
9 Blower 19 Machine room 20 Refrigerating room cooling damper (first damper)
24 Compressor 31 Control board (control device)
50 Freezer compartment cooling damper (second damper)
61 Vegetable room cooling damper (first damper)
63 Decontamination device 64 Heat pipe 65 Water retention material 66 Glass UVLED (ultraviolet irradiation means)
67 Cold air flow path 68 Cold air intake port 69 Cold air outlet port 70 Humidity sensor
Claims (5)
前記第1ダンパの出口に、前記第1ダンパから吹き出した冷気を前記冷蔵温度帯室へと導く冷気流路を設け、当該冷気流路内に紫外線照射手段を配置し、
前記紫外線照射手段によって照射された紫外線が冷気に含まれる水分と反応することでOHラジカルを発生させ、当該OHラジカルにより前記冷蔵温度帯室の除菌脱臭を行う構成としたことを特徴とする冷蔵庫。 Refrigerated temperature zone chamber and refrigeration temperature zone chamber defined in the refrigerator body, a compressor installed in a machine room provided behind the refrigerated temperature zone chamber, and provided behind the refrigeration temperature zone chamber A cooler installed in a cooler chamber, a blower that is provided above the cooler in the cooler chamber and blows cool air to the refrigeration temperature zone chamber and the refrigeration temperature zone chamber, and to the refrigeration temperature zone chamber In a refrigerator comprising: a first damper that controls a supply amount of cold air; a second damper that controls a supply amount of cold air to the refrigeration temperature zone; and a control device that controls operation.
A cold air flow path is provided at the outlet of the first damper to guide the cold air blown out from the first damper to the refrigerated temperature zone, and ultraviolet irradiation means is disposed in the cold air flow path,
A refrigerator characterized in that ultraviolet rays irradiated by the ultraviolet irradiation means react with moisture contained in cold air to generate OH radicals, and the sterilization deodorization of the refrigerated temperature zone is performed by the OH radicals. .
前記制御装置は、前記冷却器に霜が付着している状態であると判断した場合に、前記圧縮機を停止し、前記第1ダンパを開け、前記第2ダンパを閉じて前記送風機を駆動する特定の運転を行うよう制御すると共に、前記特定の運転中に前記紫外線照射手段を駆動して前記冷気流路内の冷気に対して紫外線を照射するようにしたことを特徴とする冷蔵庫。 In claim 1,
When it is determined that frost is attached to the cooler, the control device stops the compressor, opens the first damper, closes the second damper, and drives the blower. A refrigerator that is controlled to perform a specific operation and that irradiates ultraviolet light to the cold air in the cold air flow path by driving the ultraviolet irradiation means during the specific operation.
前記紫外線照射手段の近傍に湿度センサを設け、前記制御装置は、前記湿度センサが検出した湿度が25%未満の場合には、前記紫外線照射手段による紫外線の照射を停止するよう制御することを特徴とする冷蔵庫。 In claim 2,
A humidity sensor is provided in the vicinity of the ultraviolet irradiation means, and the control device controls to stop the ultraviolet irradiation by the ultraviolet irradiation means when the humidity detected by the humidity sensor is less than 25%. Refrigerator.
前記冷気流路内における前記紫外線照射手段の近傍の位置に保水材を設け、
前記紫外線照射手段から照射される紫外線が前記保水材を向くように構成すると共に、
冷媒が流れるヒートパイプを前記保水材に接触するように取り付けたことを特徴とする冷蔵庫。 In claim 1 or 2,
A water retention material is provided at a position near the ultraviolet irradiation means in the cold air flow path
The ultraviolet rays emitted from the ultraviolet irradiation means are configured to face the water retaining material,
A refrigerator, wherein a heat pipe through which a refrigerant flows is attached so as to contact the water retention material.
前記制御装置は、前記第1ダンパが開いている状態のときのみ前記紫外線照射手段を駆動して紫外線を照射するよう制御することを特徴とする冷蔵庫。 In claim 1 or 2,
The refrigerator, wherein the control device controls the ultraviolet irradiation means to drive and irradiate ultraviolet rays only when the first damper is open.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011204856A JP5615784B2 (en) | 2011-09-20 | 2011-09-20 | refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011204856A JP5615784B2 (en) | 2011-09-20 | 2011-09-20 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013064577A true JP2013064577A (en) | 2013-04-11 |
JP5615784B2 JP5615784B2 (en) | 2014-10-29 |
Family
ID=48188232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011204856A Expired - Fee Related JP5615784B2 (en) | 2011-09-20 | 2011-09-20 | refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5615784B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104792103A (en) * | 2015-04-03 | 2015-07-22 | 青岛海尔股份有限公司 | Drying device, refrigerator and drying agent recovering method |
CN109654596A (en) * | 2018-12-17 | 2019-04-19 | 宁波奥克斯电气股份有限公司 | A kind of air conditioner |
JP2021092356A (en) * | 2019-12-11 | 2021-06-17 | 三菱電機株式会社 | refrigerator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107270626A (en) * | 2017-07-25 | 2017-10-20 | 青岛海尔股份有限公司 | Single system wind cooling refrigerator |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002253400A (en) * | 2001-03-05 | 2002-09-10 | Matsushita Refrig Co Ltd | Storage to preserve freshness |
JP2003042644A (en) * | 2001-07-26 | 2003-02-13 | Mitsubishi Electric Corp | Deep freezer refrigerator |
JP2005042989A (en) * | 2003-07-23 | 2005-02-17 | Sharp Corp | Refrigerator |
JP2005331199A (en) * | 2004-05-21 | 2005-12-02 | Matsushita Electric Ind Co Ltd | Refrigerator |
JP2008101840A (en) * | 2006-10-19 | 2008-05-01 | Matsushita Electric Ind Co Ltd | Refrigerator |
JP2009243782A (en) * | 2008-03-31 | 2009-10-22 | Panasonic Corp | Refrigerator |
JP2011038771A (en) * | 2007-04-27 | 2011-02-24 | Panasonic Corp | Refrigerator |
JP2011058704A (en) * | 2009-09-09 | 2011-03-24 | Hitachi Appliances Inc | Refrigerator |
-
2011
- 2011-09-20 JP JP2011204856A patent/JP5615784B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002253400A (en) * | 2001-03-05 | 2002-09-10 | Matsushita Refrig Co Ltd | Storage to preserve freshness |
JP2003042644A (en) * | 2001-07-26 | 2003-02-13 | Mitsubishi Electric Corp | Deep freezer refrigerator |
JP2005042989A (en) * | 2003-07-23 | 2005-02-17 | Sharp Corp | Refrigerator |
JP2005331199A (en) * | 2004-05-21 | 2005-12-02 | Matsushita Electric Ind Co Ltd | Refrigerator |
JP2008101840A (en) * | 2006-10-19 | 2008-05-01 | Matsushita Electric Ind Co Ltd | Refrigerator |
JP2011038771A (en) * | 2007-04-27 | 2011-02-24 | Panasonic Corp | Refrigerator |
JP2009243782A (en) * | 2008-03-31 | 2009-10-22 | Panasonic Corp | Refrigerator |
JP2011058704A (en) * | 2009-09-09 | 2011-03-24 | Hitachi Appliances Inc | Refrigerator |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104792103A (en) * | 2015-04-03 | 2015-07-22 | 青岛海尔股份有限公司 | Drying device, refrigerator and drying agent recovering method |
CN109654596A (en) * | 2018-12-17 | 2019-04-19 | 宁波奥克斯电气股份有限公司 | A kind of air conditioner |
JP2021092356A (en) * | 2019-12-11 | 2021-06-17 | 三菱電機株式会社 | refrigerator |
JP7419782B2 (en) | 2019-12-11 | 2024-01-23 | 三菱電機株式会社 | refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP5615784B2 (en) | 2014-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007278569A (en) | Refrigerator | |
KR20120092442A (en) | Refrigerator | |
JP4752975B2 (en) | refrigerator | |
JP5615784B2 (en) | refrigerator | |
JP2011064454A (en) | Refrigerator | |
JP5127418B2 (en) | refrigerator | |
JP2003279232A (en) | Humidifier of refrigerator | |
JP2005201542A (en) | Refrigerator | |
JP4526476B2 (en) | refrigerator | |
JP2008076019A (en) | Dryer | |
JP2012078054A (en) | Refrigerator | |
JP5211574B2 (en) | refrigerator | |
JP2009063280A (en) | Refrigerator | |
JP2009030922A (en) | Direct cooling-type refrigerator | |
JP2012078053A (en) | Refrigerator | |
JP5390089B2 (en) | refrigerator | |
JP2005207639A (en) | Refrigerator | |
JP2022189580A (en) | refrigerator | |
JP4549272B2 (en) | refrigerator | |
JP5145761B2 (en) | refrigerator | |
JP7572880B2 (en) | refrigerator | |
JP5261970B2 (en) | refrigerator | |
JP2005076981A (en) | Refrigerator | |
JP2008292152A (en) | Refrigerator | |
WO2014109153A1 (en) | Refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130522 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140902 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5615784 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |