JP2013056809A - Alumina ceramic toughened with black zirconia and method for manufacturing the same - Google Patents
Alumina ceramic toughened with black zirconia and method for manufacturing the same Download PDFInfo
- Publication number
- JP2013056809A JP2013056809A JP2011196917A JP2011196917A JP2013056809A JP 2013056809 A JP2013056809 A JP 2013056809A JP 2011196917 A JP2011196917 A JP 2011196917A JP 2011196917 A JP2011196917 A JP 2011196917A JP 2013056809 A JP2013056809 A JP 2013056809A
- Authority
- JP
- Japan
- Prior art keywords
- zirconia
- less
- volume
- alumina
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims abstract description 240
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 title description 16
- 239000013078 crystal Substances 0.000 claims abstract description 125
- 239000002245 particle Substances 0.000 claims abstract description 70
- 239000000203 mixture Substances 0.000 claims abstract description 61
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000000843 powder Substances 0.000 claims abstract description 38
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 28
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000010936 titanium Substances 0.000 claims abstract description 22
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 22
- 239000002994 raw material Substances 0.000 claims abstract description 10
- 238000005245 sintering Methods 0.000 claims abstract description 10
- 239000000919 ceramic Substances 0.000 claims description 19
- 230000032683 aging Effects 0.000 claims description 16
- 238000005452 bending Methods 0.000 claims description 15
- 239000012298 atmosphere Substances 0.000 claims description 14
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 13
- 239000012300 argon atmosphere Substances 0.000 claims description 8
- 239000000395 magnesium oxide Substances 0.000 claims description 8
- 238000011156 evaluation Methods 0.000 claims description 7
- 230000000052 comparative effect Effects 0.000 description 18
- 239000000463 material Substances 0.000 description 12
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 8
- 238000010304 firing Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000010987 cubic zirconia Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 238000003980 solgel method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000003679 aging effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000007569 slipcasting Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Supply And Installment Of Electrical Components (AREA)
- Die Bonding (AREA)
Abstract
Description
本発明は、帯電防止可能な電気導電性を有するとともに、機械的特性に優れ、かつ低温領域における熱劣化のない黒色ジルコニア強化アルミナセラミックス(BZTA)に関する。 The present invention relates to black zirconia reinforced alumina ceramics (BZTA) having electrical conductivity capable of preventing charging, excellent mechanical properties, and no thermal deterioration in a low temperature region.
高度情報化社会およびグローバルネットワーク社会を支える携帯情報端末やコンピュータ等マイクロエレクトロニクス関連デバイスは、半導体素子等電子部品を搭載した微小高集積化電子回路で制御されており、多機能化およびインテリジェント化が急速に進む中、更なる複合化、微小化、集積化等が求められている。電子部品を微小電子回路基板上に搭載する手法としては表面実装機によるマウンティングが一般的であり、これは微小なノズルによって電子部品を吸着し、基板上の任意箇所まで搬送・搭載するというものである。
表面実装機の多くは、電子部品の吸着検査を画像認識システムで処理しており、吸着ノズルの特性として、光を反射しない黒色性が要求される。従来、吸着用ノズルは、黒色に表面塗装した金属製や超硬金属製材料が使用されていたが、近年では、材料自身が黒色性を有し、かつ、高強度、耐摩耗性、耐磁性、耐薬品性、絶縁保護性能、熱的安定性、熱伝導性、軽量性等を高次元で実現するファインセラミックス製品が求められている。また最近の傾向として、吸着用ノズルは、電子回路の高集積化が進む中、電子部品の吸着〜搬送〜基盤への搭載を1秒間に10回以上の高速でマウンティングする必要があり、静電気による電子部品の静電破壊の恐れがあるため、これを防止する帯電防止可能な電気導電性を有することも必須の条件となっている。
Microelectronics-related devices such as personal digital assistants and computers that support an advanced information society and global network society are controlled by minute and highly integrated electronic circuits equipped with electronic components such as semiconductor elements, and multifunctional and intelligent are rapidly becoming more sophisticated. While proceeding to the above, further compounding, miniaturization, integration, etc. are required. As a method of mounting electronic components on a microelectronic circuit board, mounting by a surface mounter is common, and this is a method in which electronic components are attracted by a micro nozzle and transported and mounted to an arbitrary location on the substrate. is there.
Many surface mounters process electronic component suction inspection using an image recognition system, and the suction nozzle characteristics require blackness that does not reflect light. Conventionally, metal or cemented carbide materials with a black surface coating have been used for the suction nozzle. However, in recent years, the material itself has blackness and has high strength, wear resistance, and magnetic resistance. There is a demand for fine ceramic products that realize chemical resistance, insulation protection performance, thermal stability, thermal conductivity, light weight, etc. at a high level. Also, as a recent trend, suction nozzles need to mount electronic components at a high speed of 10 times or more per second due to static electricity as electronic circuits are highly integrated. Since there is a risk of electrostatic breakdown of electronic parts, it is also an essential condition to have antistatic electric conductivity that prevents this.
このように、黒色性、高強度、耐摩耗性、耐磁性、耐薬品性、絶縁保護性能および帯電防止可能な電気導電性を具現化するセラミックスのひとつとして、ジルコニアセラミックスが挙げられ、例えば、ジルコニアに導電性付与剤のチタニアを添加し、アルゴン雰囲気等で焼成することにより作製した黒色ジルコニアが提案されている(特許文献1〜3)。ジルコニアは酸化物系セラミックスの中では最も曲げ強さが高いセラミックスのひとつであるが、低温エージング(熱劣化現象)により結晶構造が変態し、膨張、亀裂、極度の強度低下等の問題がある。
一方、アルミナを主成分としてジルコニアにより強化するとともに、導電性付与剤を適量添加した材料が提案されている。例えば、特許文献4では、TiO2を2〜10重量%含有し、ZrO2を5〜30重量%含有し、TiO2/ZrO2モル比が0.20〜0.65、焼結体の平均結晶粒径が3μm以下とすることを基本とした体積固有抵抗106〜1010Ω・cm、曲げ強さ500MPa以上のアルミナ質導電性焼結体としている。特許文献5では、Al2O3の一次成分と、正方晶Zr2O2を二次成分としたジルコニア強化アルミナ基材に導電性付与剤を添加した静電気放電(ESD)保護セラミックスを提案している。
As described above, zirconia ceramics can be cited as one of the ceramics that embody blackness, high strength, wear resistance, magnetic resistance, chemical resistance, insulation protection performance and antistatic electric conductivity. For example, zirconia There has been proposed black zirconia produced by adding titania as a conductivity-imparting agent and firing in an argon atmosphere or the like (Patent Documents 1 to 3). Zirconia is one of the ceramics with the highest bending strength among oxide-based ceramics, but there are problems such as expansion, cracking, and extreme strength reduction due to transformation of the crystal structure due to low-temperature aging (thermal degradation phenomenon).
On the other hand, a material has been proposed in which alumina is the main component and is reinforced with zirconia and an appropriate amount of a conductivity imparting agent is added. For example, Patent Document 4, the TiO 2 containing 2-10 wt%, the ZrO 2 contained 5 to 30 wt%, TiO 2 / ZrO 2 molar ratio of 0.20 to 0.65, the average of the sintered body An alumina-based conductive sintered body having a volume resistivity of 10 6 to 10 10 Ω · cm and a bending strength of 500 MPa or more based on a crystal grain size of 3 μm or less. Patent Document 5 proposes an electrostatic discharge (ESD) protective ceramic in which a conductivity imparting agent is added to a zirconia reinforced alumina base material having a primary component of Al 2 O 3 and a tetragonal Zr 2 O 2 as a secondary component. Yes.
低温エージング(熱劣化現象)の問題に対して、特許文献3では、部分安定化ジルコニアのY2O3/ZrO2モル比や添加剤であるAl2O3やTiO2のモル比を制御し、正方晶ジルコニアを安定化させることで、熱的安定性に優れるジルコニアを提案している。しかしながら、吸着ノズルは微細かつ複雑形状を有しており、射出成形やプレス成形等でニアネットシェイピングしても最終的には機械加工により製品化する必要がある。その場合、材料自身に負荷がかかることで、加工後あるいは使用中に熱エージング問題が生じる恐れがあり、材料としての信頼性が欠けるものとなる。また、最近では、マウンティングの高速化により、静電気を帯びやすくなり、帯電防止可能な電気導電性を高めることが市場で求められており、その際、導電性付与剤であるチタニアの添加量を増やすことで対応すると、更に熱的安定性を欠く材料となっている。
また、特許文献4では、強度の点において、ジルコニア含有量が少ないため、曲げ強さが低く、ジルコニア含有量を30重量%以上にすると焼結性が悪くなるとともに、単斜晶ジルコニアが多く発生し、逆に強度低下することを指摘しており、したがって、30重量%以上ジルコニアを添加することができないため、結果的に十分な強度を得ることが困難である。特許文献5では、ZrO2中の正方晶ZrO2の割合を75vol%以上としており、それにより強度向上を図っているが、主にはHIP処理により高強度としており、また、体積固有抵抗の調整もHIP処理後のアニーリング処理により行っていることからコストアップとなるとともに、非磁性化および黒色性とのバランスも困難となる。
さらに、特許文献4および5は、アルミナの含有量が多いため、ジルコニア単体と比較して低温エージング問題に対して抵抗力があると推察されるが、基本的にZrO2は正方晶ZrO2が主成分であり、特に導電性付与剤を添加した系では、正方晶ZrO2は不安定となりやすいため、低温エージング対策が必ずしも十分であるとは言えない。
With respect to the problem of low temperature aging (thermal degradation phenomenon), Patent Document 3 controls the Y 2 O 3 / ZrO 2 molar ratio of partially stabilized zirconia and the molar ratio of Al 2 O 3 and TiO 2 as additives. They have proposed zirconia with excellent thermal stability by stabilizing tetragonal zirconia. However, the suction nozzle has a fine and complex shape, and even if it is near net shaping by injection molding, press molding, or the like, it is necessary to finally make a product by machining. In that case, a load is applied to the material itself, which may cause a heat aging problem after processing or during use, resulting in a lack of reliability as the material. In recent years, the speed of mounting has made it easier to be charged with static electricity, and there has been a demand in the market to increase the electrical conductivity that can be prevented from being charged. At that time, the amount of titania that is a conductivity-imparting agent is increased. This makes it a material that lacks thermal stability.
Further, in Patent Document 4, since the zirconia content is low in terms of strength, the bending strength is low, and if the zirconia content is 30% by weight or more, the sinterability deteriorates and a large amount of monoclinic zirconia is generated. On the other hand, it is pointed out that the strength decreases, and therefore, zirconia cannot be added in an amount of 30% by weight or more, and as a result, it is difficult to obtain a sufficient strength. In Patent Document 5, the proportion of tetragonal ZrO 2 in the ZrO 2 has a 75 vol% or more, but thereby has the aim of improving the strength mainly has a high strength by HIP treatment, also the adjustment of volume resistivity In addition, since the annealing process is performed after the HIP process, the cost is increased, and it is difficult to balance the non-magnetization and blackness.
Further, Patent Documents 4 and 5 are presumed to be more resistant to the low temperature aging problem than zirconia alone because of the high content of alumina, but basically ZrO 2 is tetragonal ZrO 2. In a system that is a main component and that is added with a conductivity imparting agent, tetragonal ZrO 2 tends to be unstable, and thus it cannot be said that a countermeasure for low-temperature aging is necessarily sufficient.
本発明は、半導体デバイスや電子部品等の製造工程において使用される吸着ノズル等治工具の作製を主目的として、帯電防止可能な電気導電性を有するとともに、機械的特性に優れ、かつ低温領域における熱劣化のない黒色ジルコニア強化アルミナセラミックス(BZTA)を提供することを目的としている。 The present invention is mainly intended for the production of jigs and tools such as suction nozzles used in the manufacturing process of semiconductor devices and electronic components, etc., and has electrical conductivity that can be prevented from being charged, has excellent mechanical properties, and is used in a low temperature region. The object is to provide black zirconia reinforced alumina ceramics (BZTA) free from thermal degradation.
本発明は、以下の(1)〜(13)の黒色焼結組成物を要旨とする。
(1)原料粉末として、アルミナ25〜70重量%、ジルコニア25〜70重量%、チタニア3〜15重量%の3成分を基本組成とし、これに焼結助剤とを含み、アルミナの平均結晶粒子径が2μm以下、ジルコニアの平均結晶粒子径が1μm以下の組織とするとともに、チタンをジルコニア粒子内に選択的に固溶させ、ジルコニアの結晶構造として、立方晶が20〜70体積%、単斜晶が30体積%以下、正方晶20体積%以上の割合になるように混在させるものである黒色焼結組成物。
(2)原料粉末の基本組成が、アルミナ40〜70重量%、ジルコニア25〜50重量%、チタニア5〜10重量%である、上記(1)記載の黒色焼結組成物。
(3)アルミナの平均結晶粒子径が1.5μm以下、ジルコニアの平均結晶粒子径を0.8μm以下の組織とするとともに、チタンをジルコニア粒子内に選択的に固溶させ、ジルコニアの結晶構造として、立方晶が40〜70体積%、単斜晶が30体積%以下の割合になるように混在させ、ジルコニア分の主成分が微粒立方晶である上記(1)または(2)記載の黒色焼結組成物。
(4)焼結助剤がマグネシアである、上記(1)、(2)または(3)記載の黒色焼結組成物。
(5)102〜109Ω・cmの範囲の体積固有抵抗を有する、上記(1)ないし(4)のいずれかに記載の黒色焼結組成物。
(6)104〜107Ω・cmの範囲の体積固有抵抗を有する、上記(1)ないし(4)のいずれかに記載の黒色焼結組成物。
(7)曲げ強さは700MPa以上、ヤング率が280GPa以上、ビッカース硬さが1100(HV1)以上である上記(1)ないし(6)のいずれかに記載の黒色焼結組成物。
(8)曲げ強さ900MPa以上であり、ヤング率300GPa以上、ビッカース硬さ1300(HV1)以上である、上記(1)ないし(6)のいずれかに記載の黒色焼結組成物。
(9)30℃の降温時における相対湿度60%RH以上とし、昇温時の温度250℃として、それを10サイクル繰り返した試験後の残留膨張率が最大0.1%以下である耐低温エージング性を有する、上記(1)ないし(8)のいずれかに記載の黒色焼結組成物。
(10)30℃の降温時における相対湿度60%RH以上とし、昇温時の温度250℃として、それを10サイクル繰り返した試験後の残留膨張率が最大0.05%以下である耐低温エージング性を有する、上記(1)ないし(9)のいずれかに記載の黒色焼結組成物。
(11)黒色度を表す色評価L*値は40以下である、上記(1)ないし(10)のいずれかに記載の黒色焼結組成物。
(12)治工具用セラミック部材である上記(1)ないし(11)のいずれかに記載の黒色焼結組成物。
(13)真空吸着ノズル用セラミック部材である上記(1)ないし(11)のいずれかに記載の黒色焼結組成物。
The gist of the present invention is the following black sintered compositions (1) to (13).
(1) As a raw material powder, the basic composition is composed of three components of 25 to 70% by weight of alumina, 25 to 70% by weight of zirconia, and 3 to 15% by weight of titania. In addition to a structure having a diameter of 2 μm or less and an average crystal particle diameter of zirconia of 1 μm or less, titanium is selectively solid-solved in the zirconia particles, and the crystal structure of zirconia is 20 to 70% by volume of cubic crystals, monoclinic A black sintered composition which is mixed so that the crystal is 30 volume% or less and the tetragonal crystal is 20 volume% or more.
(2) The black sintered composition according to the above (1), wherein the basic composition of the raw material powder is 40 to 70% by weight of alumina, 25 to 50% by weight of zirconia, and 5 to 10% by weight of titania.
(3) A structure in which the average crystal particle diameter of alumina is 1.5 μm or less and the average crystal particle diameter of zirconia is 0.8 μm or less, and titanium is selectively solid-solved in the zirconia particles to obtain a crystal structure of zirconia. The black firing according to the above (1) or (2), wherein the cubic crystals are mixed so as to be 40 to 70% by volume and the monoclinic crystals are 30% by volume or less, and the main component of zirconia is fine cubic crystals. Composition.
(4) The black sintered composition according to the above (1), (2) or (3), wherein the sintering aid is magnesia.
(5) The black sintered composition according to any one of (1) to (4), having a volume resistivity in the range of 10 2 to 10 9 Ω · cm.
(6) The black sintered composition according to any one of (1) to (4) above, having a volume resistivity in the range of 10 4 to 10 7 Ω · cm.
(7) The black sintered composition according to any one of (1) to (6), wherein the bending strength is 700 MPa or more, the Young's modulus is 280 GPa or more, and the Vickers hardness is 1100 (HV1) or more.
(8) The black sintered composition according to any one of (1) to (6), which has a bending strength of 900 MPa or more, a Young's modulus of 300 GPa or more, and a Vickers hardness of 1300 (HV1) or more.
(9) Low temperature aging resistance with a residual expansion rate of 0.1% or less at the maximum after a test in which the relative humidity is 60% RH or higher when the temperature is lowered at 30 ° C. The black sintered composition according to any one of the above (1) to (8), which has properties.
(10) Low-temperature aging resistance with a residual expansion rate of 0.05% or less at the maximum after 10 cycles of a relative humidity of 60% RH or more at a temperature drop of 30 ° C. and a temperature of 250 ° C. at a temperature rise. The black sintered composition according to any one of (1) to (9), which has a property.
(11) The black sintered composition according to any one of (1) to (10), wherein the color evaluation L * value representing blackness is 40 or less.
(12) The black sintered composition according to any one of (1) to (11), which is a ceramic member for a jig.
(13) The black sintered composition according to any one of (1) to (11), which is a ceramic member for a vacuum suction nozzle.
また、本発明は、以下の(14)の黒色焼結組成物の製造方法を要旨とする。
(14)アルミナ25〜70重量%、ジルコニア25〜70重量%、チタニア3〜15重量%の3成分を基本組成とし、これに焼結助剤とを含み、いずれの粉末も平均粒子径0.3μm以下の微細粉末を用いて、各粉末を均一に分散させ、次いで、これを成形して形状付与し、アルゴン雰囲気等の不活性雰囲気・還元雰囲気で焼成することによりアルミナの平均結晶粒子径が2μm以下、ジルコニアの平均結晶粒子径が1μm以下の組織とするとともに、チタンをジルコニア粒子内に選択的に固溶させ、ジルコニアの結晶構造として、立方晶が20〜70体積%、単斜晶が30体積%以下、正方晶20体積%以上の割合になるように混在させるものである黒色焼結組成物とすることを特徴とする黒色焼結組成物の製造方法。
Moreover, this invention makes the summary the manufacturing method of the black sintered composition of the following (14).
(14) Three components of 25 to 70% by weight of alumina, 25 to 70% by weight of zirconia, and 3 to 15% by weight of titania are used as a basic composition, and this includes a sintering aid. Each powder is uniformly dispersed using a fine powder of 3 μm or less, then shaped and shaped, and fired in an inert atmosphere / reducing atmosphere such as an argon atmosphere, whereby the average crystal particle diameter of alumina is increased. The structure is 2 μm or less, the average crystal particle diameter of zirconia is 1 μm or less, and titanium is selectively solid-solved in the zirconia particles. As a crystal structure of zirconia, cubic crystal is 20 to 70% by volume, monoclinic crystal is A method for producing a black sintered composition, wherein the black sintered composition is mixed so as to have a proportion of 30% by volume or less and a tetragonal crystal of 20% by volume or more.
本発明により帯電防止可能な電気導電性を有するとともに、機械的特性に優れ、かつ低温領域における熱劣化のない黒色ジルコニア強化アルミナセラミックス(BZTA)を提供することができる。本発明の黒色ジルコニア強化アルミナセラミックス(BZTA)を用いて、半導体デバイスや電子部品等の製造工程において使用される吸着ノズル等治工具を作製することができる。 According to the present invention, it is possible to provide black zirconia reinforced alumina ceramics (BZTA) that has electrical conductivity that can be prevented from being charged, has excellent mechanical properties, and does not cause thermal deterioration in a low temperature region. Using the black zirconia reinforced alumina ceramic (BZTA) of the present invention, a jig such as a suction nozzle used in a manufacturing process of a semiconductor device or an electronic component can be manufactured.
本発明により、アルミナ25〜70重量%、ジルコニア25〜70重量%、チタニア3〜15重量%の3成分を基本組成とし、これに焼結助剤とを含み、いずれの粉末も平均粒子径0.3μm以下の微細粉末を用いて、各粉末を均一に分散させ、次いで、これを成形して形状付与し、アルゴン雰囲気等の不活性雰囲気・還元雰囲気で焼成することによりアルミナの平均結晶粒子径が2μm以下、ジルコニアの平均結晶粒子径が1μm以下の組織とするとともに、チタンをジルコニア粒子内に選択的に固溶させ、ジルコニアの結晶構造として、立方晶が20〜70体積%、単斜晶が30体積%以下、正方晶20体積%以上の割合になるように混在させ、焼結体の物性として、曲げ強さ700MPa以上、ヤング率280GPa以上、ビッカース硬さ1100(HV1)以上、体積固有抵抗102〜109Ω・cm、黒色度を表す色評価L*値40以下、30℃の降温時における相対湿度60%RH以上とし、昇温時の温度250℃として、それを10サイクル繰り返した試験後の残留膨張率が最大0.1%以下の耐低温エージング性のすべてを同時に具備する黒色焼結組成物を提供することができる。 According to the present invention, the basic composition is composed of three components of 25 to 70% by weight of alumina, 25 to 70% by weight of zirconia, and 3 to 15% by weight of titania, and this includes a sintering aid. Each powder is uniformly dispersed using fine powders of 3 μm or less, then shaped and shaped, and fired in an inert atmosphere or reducing atmosphere such as an argon atmosphere, whereby the average crystal particle diameter of alumina Is a structure in which the average crystal particle diameter of zirconia is 1 μm or less, and titanium is selectively solid-solved in the zirconia particles so that the crystal structure of zirconia is 20 to 70% by volume of cubic crystals, monoclinic crystals Of 30% by volume or less and tetragonal crystals by 20% by volume or more are mixed, and as physical properties of the sintered body, bending strength is 700 MPa or more, Young's modulus is 280 GPa or more, Vickers hardness 1100 (HV1) or more, volume resistivity 10 2 to 10 9 Ω · cm, color evaluation L * value representing blackness is 40 or less, relative humidity is 60% RH or more when temperature is lowered at 30 ° C., temperature is 250 when temperature is raised It is possible to provide a black sintered composition having all the low temperature aging resistance at the same time at 10 ° C. and having a residual expansion rate of 0.1% or less at maximum.
原料粉末としては、アルミナ25〜70重量%、ジルコニア25〜70重量%、チタニア3〜15重量%、望ましくは、アルミナ40〜70重量%、ジルコニア25〜50重量%、チタニア5〜10重量%、の3成分を基本組成とし、これに焼結助剤であるマグネシア等を使用する。 As raw material powder, alumina 25-70 wt%, zirconia 25-70 wt%, titania 3-15 wt%, desirably 40-70 wt% alumina, zirconia 25-50 wt%, titania 5-10 wt%, These three components are used as a basic composition, and magnesia or the like as a sintering aid is used for this.
本発明では、機械的特性に優れ、かつ低温領域における熱劣化のない黒色ジルコニア強化アルミナセラミックス(BZTA)を提供するために、焼結体の微細構造を制御することを特徴としている。微細構造制御は、微細化かつ組成制御された均一複合化焼結体とすることである。この微細化かつ組成制御された均一複合化焼結体の製造方法は、微細化工程と拡散化工程とからなり、微細化工程では、焼結体の作製プロセスの一つであるコロイドプロセスを用い、粉末を液体中に分散し、スリップキャストなどにより固化形成することで、粉末を微細に分散し、かつ粒子の表面電位の違いを利用することで導電性付与剤である酸化チタン粒子をジルコニア粒子に選択的に付着あるいは近傍に存在せしめ、高密度に成形し、アルミナの平均結晶粒子径が2μm以下、ジルコニアの平均結晶粒子径が1μm以下の組織としている。いずれの粉末も平均粒子径0.3μm以下、望ましくは0.2μm以下の微細粉末を用いて、水系コロイドプロセスあるいは有機溶媒系コロイドプロセスにより粉末表面のゼータポテンシャルの絶対値が十分に高い条件にて、いずれの粉末も良分散状態あるいはヘテロ凝集させた後良分散状態としたスラリーを調製し、各粉末を均一に分散させる。次いで、これをスリップキャスティングあるいは乾燥後プレス成形や射出成形等により形状付与し、アルゴン雰囲気等の不活性雰囲気・還元雰囲気で焼成することにより黒色ジルコニア強化アルミナセラミックス(BZTA)を作製する。また、拡散化工程では、チタンをジルコニア粒子内に選択的に固溶させ、ジルコニアの結晶構造として、立方晶が20〜70体積%、単斜晶が30体積%以下、正方晶20体積%以上の割合になるように混在させている。望ましくは、ジルコニアの結晶構造として、立方晶が最も多く、次いで正方晶、単斜晶の順に存在させている。その際の拡散速度および拡散量(固溶量)は焼成温度に影響されるが、焼結体の緻密化と拡散化のバランスを考えると1400℃〜1450℃が望ましい。それ以下の温度では、緻密化が不足し、それ以上の温度では、粒成長が起こってしまい、微細組織が崩れてしまうこととなる。 The present invention is characterized in that the microstructure of the sintered body is controlled in order to provide black zirconia reinforced alumina ceramics (BZTA) having excellent mechanical properties and no thermal deterioration in a low temperature region. The fine structure control is to obtain a uniform composite sintered body that is refined and compositionally controlled. This method for producing a uniform composite sintered body with a refined and controlled composition comprises a refinement process and a diffusion process, and in the refinement process, a colloid process, which is one of the processes for producing a sintered body, is used. Disperse the powder in a liquid and solidify it by slip casting, etc. to finely disperse the powder and use the difference in the surface potential of the particles to convert the titanium oxide particles that are the conductivity-imparting agent into zirconia particles It is made to adhere selectively or in the vicinity and is molded at a high density, and has a structure in which the average crystal particle diameter of alumina is 2 μm or less and the average crystal particle diameter of zirconia is 1 μm or less. Each powder is a fine powder having an average particle size of 0.3 μm or less, preferably 0.2 μm or less, and under a condition that the absolute value of the zeta potential on the powder surface is sufficiently high by an aqueous colloid process or an organic solvent colloid process. Then, a slurry in which each powder is well dispersed or hetero-aggregated and then made into a well dispersed state is prepared, and each powder is uniformly dispersed. Next, this is shaped by slip casting or drying, followed by press molding, injection molding, or the like, and fired in an inert atmosphere / reducing atmosphere such as an argon atmosphere to produce black zirconia reinforced alumina ceramics (BZTA). In the diffusion step, titanium is selectively solid-solved in the zirconia particles, and the crystal structure of zirconia is 20 to 70% by volume of cubic crystals, 30% by volume or less of monoclinic crystals, and 20% by volume or more of tetragonal crystals. Are mixed so that Desirably, the crystal structure of zirconia is the most cubic, followed by tetragonal and monoclinic crystals. The diffusion rate and diffusion amount (solid solution amount) at that time are influenced by the firing temperature, but 1400 ° C. to 1450 ° C. is desirable in view of the balance between densification and diffusion of the sintered body. If the temperature is lower than that, densification is insufficient, and if the temperature is higher than that, grain growth occurs and the fine structure is destroyed.
この際、焼結体の微細構造および結晶構造を制御することが極めて重要であり、以下に示すこれら構造を制御することで、従来にない帯電防止可能な電気導電性を有するとともに、機械的特性に優れ、かつ低温領域における熱劣化のない黒色セラミックスとなる。
すなわち、コロイドプロセスにより微細構造をアルミナとジルコニアが極めて均一に分散したものであり、アルミナの平均結晶粒子径が2μm以下望ましくは1μm以下、ジルコニアの平均結晶粒子径を1.5μm以下望ましくは1μm以下の組織とするとともに、チタンをジルコニア粒子内に選択的に固溶させ、ジルコニアの結晶構造として、立方晶が20〜70体積%、単斜晶が30体積%以下、望ましくは、立方晶が40〜70体積%、単斜晶が30体積%以下の割合になるように混在させるものである。
At this time, it is extremely important to control the microstructure and crystal structure of the sintered body, and by controlling these structures shown below, it has electrical conductivity that can be prevented from being charged and has mechanical characteristics. And a black ceramic with no thermal deterioration in a low temperature region.
That is, the fine structure of alumina and zirconia is dispersed very uniformly by a colloid process, and the average crystal particle diameter of alumina is 2 μm or less, preferably 1 μm or less, and the average crystal particle diameter of zirconia is 1.5 μm or less, preferably 1 μm or less. Titanium is selectively solid-solved in the zirconia particles, and the crystal structure of zirconia is 20 to 70% by volume of cubic crystals, 30% by volume or less of monoclinic crystals, and preferably 40% of cubic crystals. ˜70% by volume and monoclinic crystals are mixed so as to have a ratio of 30% by volume or less.
チタン安定化微粒立方晶ジルコニアを析出させ、これをジルコニア成分の主成分とすることで、焼結体の熱安定性が向上するとともに、適度に残存する正方晶がマルテンサイト転移により単斜晶に転移することで強靭化を発現することができる。
従来、立方晶ジルコニアを析出させると強度低下を招くとされていたが、結晶粒子径を0.8μm以下のチタン安定化微粒立方晶ジルコニアとし、極めて均一にこれを分散させることで、強度低下がなく、立方晶形特有の熱的安定性を両立させることができる。
また、チタンはジルコニア結晶粒子内部にほぼ均一に固溶した状態であるが、ジルコニアへの固溶限界を超える場合は、ジルコニア結晶粒界あるいは一部微粒の酸化チタン粒子として存在する場合もある。ただし、チタンがアルミナと反応してチタン酸アルミナを生じることは極めて少ない状態である。なお、ジルコニアへのチタンの固溶限界は1400℃焼成において、概ね20mol%であるとされている。
By precipitating titanium-stabilized fine cubic zirconia and using this as the main component of the zirconia component, the thermal stability of the sintered body is improved and the moderately retained tetragonal crystals become monoclinic due to martensite transition. Toughening can be manifested by metastasis.
Conventionally, precipitation of cubic zirconia was said to cause a decrease in strength, but the titanium stabilized fine cubic zirconia with a crystal particle size of 0.8 μm or less was dispersed, and the strength was reduced by dispersing it very uniformly. In addition, the thermal stability peculiar to the cubic crystal can be achieved.
Titanium is in a substantially uniform solid solution state inside the zirconia crystal particles, but may exceed the solid solution limit in zirconia, and may exist as zirconia crystal grain boundaries or partially fine titanium oxide particles. However, it is extremely rare that titanium reacts with alumina to produce alumina titanate. Note that the solid solubility limit of titanium in zirconia is approximately 20 mol% in 1400 ° C. firing.
原料に使用するジルコニア粉末は、イットリウム等安定化剤添加による部分安定化ジルコニアあるいは安定化剤無添加のジルコニアが良く、安定化剤はイットリウム以外に、マグネシウム、カルシウム、セリウム、スカンジウム等でも良いが、本発明におけるコロイドプロセスにおいて、ジルコニア粒子表面に吸着させたチタンのジルコニア粒子への固溶を妨げることのない添加量、すなわち、モル数にして、5モル以下が望ましい。 The zirconia powder used for the raw material is preferably partially stabilized zirconia by addition of a stabilizer such as yttrium or zirconia without addition of a stabilizer, and the stabilizer may be magnesium, calcium, cerium, scandium, etc. in addition to yttrium, In the colloid process in the present invention, the addition amount that does not prevent solid solution of titanium adsorbed on the surface of the zirconia particles to the zirconia particles, that is, 5 mol or less is desirable.
また、アルミナには焼結助剤であるマグネシアを選択的に吸着させることで、異常粒成長を抑制するとともに、チタンとの反応を防ぐことも可能である。 Moreover, by selectively adsorbing magnesia, which is a sintering aid, to alumina, it is possible to suppress abnormal grain growth and to prevent reaction with titanium.
本発明の黒色焼結組成物における曲げ強さは700MPa以上、望ましくは900MPa以上であり、ヤング率が280GPa以上、望ましくは300GPa以上であり、ビッカース硬さが1100(HV1)以上、望ましくは1300(HV1)以上である。 The bending strength in the black sintered composition of the present invention is 700 MPa or more, desirably 900 MPa or more, Young's modulus is 280 GPa or more, desirably 300 GPa or more, and Vickers hardness is 1100 (HV1) or more, desirably 1300 ( HV1) or more.
本発明の黒色焼結組成物において、耐低温エージング性は極めて良好であり、昇温降温状態を繰り返し試験、すなわち、30℃の降温時における相対湿度60%RH以上とし、昇温時の温度250℃として、それを10サイクル繰り返した試験後の残留膨張率が最大0.1%以下、望ましくは0.05%以下、更に望ましくは0%である。 In the black sintered composition of the present invention, the low temperature aging resistance is very good, and the temperature rising / falling state is repeatedly tested, that is, the relative humidity is 60% RH or more when the temperature is lowered at 30 ° C., and the temperature when the temperature is raised is 250. The residual expansion rate after a test in which the temperature is repeated for 10 cycles is 0.1% or less, desirably 0.05% or less, and more desirably 0%.
本発明の黒色焼結組成物において、体積固有抵抗は102〜109Ω・cm、望ましは104〜107Ω・cmである。 In the black sintered composition of the present invention, the volume resistivity is 10 2 to 10 9 Ω · cm, preferably 10 4 to 10 7 Ω · cm.
本発明の黒色焼結組成物において、黒色度を表す色評価L*値は40以下である。 In the black sintered composition of the present invention, the color evaluation L * value representing the blackness is 40 or less.
この際、焼結体の微細構造および結晶構造を制御することが極めて重要であり、以下に示すこれら構造を制御することで、従来にない帯電防止可能な電気導電性を有するとともに、機械的特性に優れ、かつ低温領域における熱劣化のない黒色セラミックスとなる。
すなわち、コロイドプロセスにより微細構造をアルミナとジルコニアが極めて均一に分散したものであり、アルミナの平均結晶粒子径が2μm以下望ましくは1μm以下、ジルコニアの平均結晶粒子径を1.5μm以下望ましくは1μm以下の組織とするとともに、チタンをジルコニア粒子内に選択的に固溶させ、ジルコニアの結晶構造として、立方晶が20〜70体積%、単斜晶が30体積%以下、正方晶20体積%以上、望ましくは、立方晶が40〜70体積%、単斜晶が30体積%以下の割合になるように混在させるものである。
At this time, it is extremely important to control the microstructure and crystal structure of the sintered body, and by controlling these structures shown below, it has electrical conductivity that can be prevented from being charged and has mechanical characteristics. And a black ceramic with no thermal deterioration in a low temperature region.
That is, the fine structure of alumina and zirconia is dispersed very uniformly by a colloid process, and the average crystal particle diameter of alumina is 2 μm or less, preferably 1 μm or less, and the average crystal particle diameter of zirconia is 1.5 μm or less, preferably 1 μm or less. Titanium is selectively dissolved in the zirconia particles, and the crystal structure of zirconia is 20 to 70% by volume of cubic, 30% by volume or less of monoclinic crystal, 20% by volume or more of tetragonal crystal, Desirably, they are mixed so that the proportion of cubic crystals is 40 to 70% by volume and that of monoclinic crystals is 30% by volume or less.
チタン安定化微粒立方晶ジルコニアを析出させ、これをジルコニア成分の主成分とすることで、焼結体の熱安定性が向上するとともに、適度に残存する正方晶がマルテンサイト転移により単斜晶に転移することで強靭化を発現することができる。
[色評価方法]
本発明の黒色焼結組成物は、黒色度が高いことによっても特徴付けられる。焼結組成物の黒色度は、JIS K5101―1991に準拠して測定される。色差計を用いて測定された焼結体のL*値は40以下となる。またa*値は±1以下、b*値は±3以下という低い値になる。
By precipitating titanium-stabilized fine cubic zirconia and using this as the main component of the zirconia component, the thermal stability of the sintered body is improved and the moderately retained tetragonal crystals become monoclinic due to martensite transition. Toughening can be manifested by metastasis.
[Color evaluation method]
The black sintered composition of the present invention is also characterized by high blackness. The blackness of the sintered composition is measured according to JIS K5101-1991. The L * value of the sintered body measured using a color difference meter is 40 or less. The a * value is as low as ± 1 or less, and the b * value is as low as ± 3 or less.
本発明の黒色焼結組成物は、アルミナを基材として焼結体中に分散させることで、熱的安定性を更に向上させるとともに、アルミナ特有の高硬度、耐摩耗性、軽量性、低熱膨張性、高熱伝導性といった特性を同時にかつ高次元で具現化することが可能であり、半導体デバイスや電子部品等の製造工程において使用される吸着ノズル等治工具向けとして極めて有望な材料である。 The black sintered composition of the present invention is further improved in thermal stability by dispersing it in a sintered body using alumina as a base material, and also has high hardness, wear resistance, light weight, low thermal expansion characteristic of alumina. It is a very promising material for jigs and tools such as suction nozzles used in the manufacturing process of semiconductor devices and electronic components.
以上説明したとおり、本発明の黒色焼結組成物の最も好ましい態様は、アルミナ25〜70重量%、ジルコニア25〜70重量%、チタニア3〜15重量%の3成分を基本組成とし、これに焼結助剤とを含み、いずれの粉末も平均粒子径0.3μm以下の微細粉末を用いて、各粉末を均一に分散させ、次いで、これを成形して形状付与し、アルゴン雰囲気等の不活性雰囲気・還元雰囲気で焼成することによりアルミナの平均結晶粒子径が2μm以下、ジルコニアの平均結晶粒子径が1μm以下の組織とするとともに、チタンをジルコニア粒子内に選択的に固溶させ、ジルコニアの結晶構造として、立方晶が20〜70体積%、単斜晶が30体積%以下、正方晶20体積%以上の割合になるように混在させ、焼結体の物性として、曲げ強さ700MPa以上、ヤング率280GPa以上、ビッカース硬さ1100(HV1)以上、体積固有抵抗102〜109Ω・cm、黒色度を表す色評価L*値40以下、30℃の降温時における相対湿度60%RH以上とし、昇温時の温度250℃として、それを10サイクル繰り返した試験後の残留膨張率が最大0.1%以下の耐低温エージング性のすべてを同時に具備する黒色焼結組成物である。 As described above, the most preferable embodiment of the black sintered composition of the present invention has a basic composition of three components of 25 to 70% by weight of alumina, 25 to 70% by weight of zirconia, and 3 to 15% by weight of titania. Each powder contains fine particles with an average particle size of 0.3 μm or less, and each powder is uniformly dispersed, then shaped to give a shape, and an inert atmosphere such as an argon atmosphere. By firing in an atmosphere / reducing atmosphere, the average crystal particle diameter of alumina is 2 μm or less and the average crystal particle diameter of zirconia is 1 μm or less. Titanium is selectively dissolved in the zirconia particles to form zirconia crystals. The structure is mixed so that the cubic crystal is 20 to 70% by volume, the monoclinic crystal is 30% by volume or less, and the tetragonal crystal is 20% by volume or more. As the physical properties of the sintered body, the bending strength is 700M. Pa or higher, Young's modulus of 280 GPa or higher, Vickers hardness of 1100 (HV1) or higher, volume resistivity of 10 2 to 10 9 Ω · cm, color evaluation L * value representing blackness of 40 or less, relative humidity at 30 ° C. temperature drop of 60 A black sintered composition having all of the low temperature aging resistance at the same time with a residual expansion coefficient of 0.1% or less at the maximum after a test of 10 cycles repeated at a temperature of 250 ° C. at a temperature rise of at least% RH. is there.
上記最も好ましい態様における数量的範囲の技術的意義について説明する。
(1)本発明の基本組成が、アルミナ25〜70重量%、ジルコニア25〜70重量%、チタニア3〜15重量%である理由について、アルミナが25重量%未満であると、ジルコニア量が多くなり、熱劣化しやすい正方晶ジルコニアが多く発生する。一方、アルミナが70重量%よりも多くなると、ジルコニア量が少なく、強度不足となる。チタニア量が、3重量%よりも少ないと、静電気除去に必要な導電性が得られなくなるとともに十分な黒色が得られなくなり、15重量%よりも多いと、ジルコニアに対して固溶限界量を超えて、酸化チタン結晶粒子が多くなり、強度低下を招く。
(2)アルミナの平均結晶粒子径が2μm以下、ジルコニアの平均結晶粒子径が1μm以下の組織とする理由について、アルミナおよびジルコニアともにその粒子径より大きくなると、焼結体の強度が著しく低下する。ジルコニアの結晶構造は立方晶が主であるため、粒子径が大きくなると、強度低下が顕著となる。なお、焼結体中のアルミナおよびジルコニアの平均結晶粒子径は、電子顕微鏡の反射電子像より微構造観察し、インターセプト法を用いて算出することが可能である。
(3)チタンをジルコニア粒子内に選択的に固溶させ、ジルコニアの結晶構造として、立方晶が20〜70体積%、単斜晶が30体積%以下、正方晶20体積%以上の割合になるように混在させる理由について、立方晶が20%体積以下であると、正方晶が多くなり、熱エージング効果により不安定な材料となる。立方晶が70体積%以上であると、正方晶がマルテンサイト転移により単斜晶に転移することで強靭化を発現する効果が少なくなり、強度が低下する。一方、単斜晶が30体積%以上存在すると、単斜晶に起因したマイクロクラック多くなりこれが欠陥となり、強度低下を招く。望ましくは、立方晶が40〜70体積%かつ単斜晶が30体積%以下とすることで、熱的安定性と強度のバランスに優れるものとなる。なお、ジルコニアの結晶構造の同定は、X線回折装置を用いて、回折ピーク強度の比率から簡便に解析する方法、あるいはリートベルト解析法により求めることが可能である。
(4)また、立方晶を20〜70体積%と多く析出させても、アルミナの平均結晶粒子径が2μm以下、ジルコニアの平均結晶粒子径が1μm以下、望ましくは、アルミナの平均結晶粒子径が1.5μm以下、ジルコニアの平均結晶粒子径を0.8μm以下の組織することで、従来強度不足になるとされていた立方晶系ジルコニアでも高強度とすることができる。
焼結助剤として、マグネシアを使用する理由について、アルミナの異常粒成長を抑制し、アルミナの平均結晶粒子径が2μm以下とするのに有効であるとともに、酸化チタン粒子とアルミナ粒子とが直接反応してチタン酸アルミニウムを生成することを抑制する効果があると考えられる。
(5)焼結体の体積固有抵抗が102〜109Ω・cm望ましくは104〜107Ω・cmである理由について、最近では、マウンティングの高速化により、静電気を帯びやすくなり、帯電防止可能な電気導電性を高めることが市場で求められているため、従来と比較して体積固有抵抗が低い焼結体が望まれているが、静電気を適度に逃がすことと焼結体の機械的特性のバランスを考慮すると、この範囲が適切である。
(6)焼結体の機械的特性として、曲げ強さ700MPa以上、ヤング率280GPa以上、ビッカース硬さ1100(HV1)以上である点については、マウンティングする際に、焼結体の破壊、欠け、摩耗への対策を考慮すると、これらの値以上の焼結体である必要があり、これ以下であると、信頼性に欠けるものとなる。従来のESD対策黒色ジルコニアセラミックスと比較して、ビッカース硬さが大きいため、摩耗性にも優れ、長寿命の治工具となる。
(7)30℃の降温時における相対湿度60%RH以上とし、昇温時の温度250℃として、それを10サイクル繰り返した試験後の残留膨張率が最大0.1%以下である耐低温エージング性を有することの必要性について説明する。ジルコニアの低温エージングによる熱劣化は、一般的に200〜250℃に曝されることにより顕著に認められる。これは、ジルコニアの結晶構造が正方晶から単斜晶に転移することにより、膨張や亀裂が生じるものである。この転移は、エージング温度とともに表面のジルコニア粒子が空気中の水分と反応することが原因のひとつとされており、したがって、試験環境を30℃の降温時における相対湿度60%RH以上とすることで、大気中水分と接触することから、次いで、これを昇温時の温度250℃として、それを10サイクル繰り返すことは、一般的な熱エージング試験である200〜250℃保持する方法より過酷な試験であるといえる。この試験により、残留膨張率が最大0.1%以下であることは、ジルコニアの結晶構造が正方晶から単斜晶に転移することが極めて少なく、亀裂や膨張による寸法変化もないことであり、半導体デバイスや電子部品等の製造工程において使用される吸着ノズル等治工具として適するものである。残留膨張率が最大0.1%以上、特に0.2%以上になると、ジルコニアの結晶構造が単斜晶に転移し、亀裂や強度低下の恐れが生じる。
(8)黒色度を表す色評価L*値は40以下である理由について、表面実装機の多くは、電子部品の吸着検査を画像認識システムで処理しており、吸着ノズルの特性として、光を反射しない黒色性が要求されるものであり、L*値は40より大きくなると、黒色度が低下し、画像認識システムによる吸着検査に支障をきたす恐れがある。
The technical significance of the numerical range in the most preferred embodiment will be described.
(1) Regarding the reason why the basic composition of the present invention is 25 to 70% by weight of alumina, 25 to 70% by weight of zirconia, and 3 to 15% by weight of titania, the amount of zirconia increases when the alumina is less than 25% by weight. A large amount of tetragonal zirconia, which is susceptible to thermal degradation, is generated. On the other hand, when the amount of alumina exceeds 70% by weight, the amount of zirconia is small and the strength is insufficient. If the amount of titania is less than 3% by weight, the conductivity necessary for removing static electricity cannot be obtained and sufficient black color cannot be obtained. If the amount is more than 15% by weight, the solid solution limit amount is exceeded with respect to zirconia. As a result, the number of titanium oxide crystal particles increases, causing a decrease in strength.
(2) Regarding the reason why the average crystal particle diameter of alumina is 2 μm or less and the average crystal particle diameter of zirconia is 1 μm or less, if both alumina and zirconia are larger than the particle diameter, the strength of the sintered body is significantly reduced. Since the crystal structure of zirconia is mainly cubic, as the particle diameter increases, the strength decreases significantly. The average crystal particle diameters of alumina and zirconia in the sintered body can be calculated using an intercept method by observing the microstructure from a reflected electron image of an electron microscope.
(3) Titanium is selectively solid-solved in the zirconia particles, and the crystal structure of zirconia is 20 to 70% by volume of cubic crystals, 30% by volume or less of monoclinic crystals, and 20% by volume or more of tetragonal crystals. When the cubic crystal is 20% or less by volume, tetragonal crystals increase and the material becomes unstable due to the thermal aging effect. When the cubic crystal is 70 volume% or more, the tetragonal crystal is transformed into a monoclinic crystal by martensite transition, thereby reducing the effect of developing toughness and lowering the strength. On the other hand, when monoclinic crystals are present in an amount of 30% by volume or more, microcracks resulting from monoclinic crystals increase and become defects, leading to a decrease in strength. Desirably, the cubic crystal is 40 to 70% by volume and the monoclinic crystal is 30% by volume or less, so that the balance between thermal stability and strength is excellent. The identification of the crystal structure of zirconia can be obtained by a method of simply analyzing from the ratio of diffraction peak intensities using an X-ray diffractometer or a Rietveld analysis method.
(4) Further, even when a large amount of cubic crystals are precipitated as 20 to 70% by volume, the average crystal particle diameter of alumina is 2 μm or less, the average crystal particle diameter of zirconia is 1 μm or less, and preferably the average crystal particle diameter of alumina is By forming a structure of 1.5 μm or less and an average crystal particle diameter of zirconia of 0.8 μm or less, even cubic zirconia that has been considered to have insufficient strength can be made to have high strength.
The reason why magnesia is used as a sintering aid is effective in suppressing abnormal grain growth of alumina and making the average crystal particle diameter of alumina 2 μm or less, and titanium oxide particles and alumina particles react directly. Thus, it is considered that there is an effect of suppressing generation of aluminum titanate.
(5) Regarding the reason why the volume resistivity of the sintered body is 10 2 to 10 9 Ω · cm, preferably 10 4 to 10 7 Ω · cm, recently, due to the increased mounting speed, it becomes easier to be charged with static electricity. Since there is a demand in the market to increase the electrical conductivity that can be prevented, a sintered body having a lower volume specific resistance than conventional ones is desired. This range is appropriate considering the balance of physical characteristics.
(6) Regarding the mechanical properties of the sintered body, the bending strength is 700 MPa or more, the Young's modulus is 280 GPa or more, and the Vickers hardness is 1100 (HV1) or more. Considering countermeasures against wear, the sintered body must have a value equal to or higher than these values, and if it is less than this value, reliability is lacking. Compared to conventional ESD-preventive black zirconia ceramics, it has a high Vickers hardness, so it has excellent wear and long life.
(7) Low temperature aging resistance with a residual expansion rate of 0.1% or less at maximum after a test in which the relative humidity at the time of temperature drop of 30 ° C. is 60% RH or more and the temperature at the time of temperature rise is 250 ° C. The necessity of having the property will be described. Thermal degradation due to low-temperature aging of zirconia is generally recognized when exposed to 200 to 250 ° C. This is because the crystal structure of zirconia transitions from tetragonal to monoclinic, resulting in expansion and cracking. This transition is attributed to the fact that the surface zirconia particles react with moisture in the air together with the aging temperature. Therefore, the relative humidity of 60% RH or higher when the test environment is lowered to 30 ° C. Then, since it is in contact with moisture in the atmosphere, it is set to a temperature of 250 ° C. at the time of temperature increase, and it is repeated for 10 cycles. You can say that. According to this test, the maximum residual expansion rate of 0.1% or less is that the crystal structure of zirconia is very rarely transferred from tetragonal to monoclinic, and there is no dimensional change due to cracks or expansion. It is suitable as a jig and tool such as a suction nozzle used in the manufacturing process of semiconductor devices and electronic components. When the residual expansion coefficient is at most 0.1% or more, particularly 0.2% or more, the crystal structure of zirconia is transformed into monoclinic crystals, and there is a risk of cracking or strength reduction.
(8) For the reason why the color evaluation L * value representing the blackness is 40 or less, many surface mounters process the electronic component suction inspection with an image recognition system. Blackness that does not reflect is required, and if the L * value is larger than 40, the blackness is lowered, and there is a risk of hindering the suction inspection by the image recognition system.
以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, this invention is not restrict | limited to the following example.
[実施例1〜8]
原料粉末として、アルミナ粉末(純度99.99%、平均粒子径0.2μm)、3molイットリウム添加ジルコニア粉末(平均粒子径0.2μm)、酸化チタン粉末(純度99.9%、平均粒子径0.13μm)および、添加剤として酸化マグネシウム(純度99.9%、平均粒子径0.05μm)を用いて表1の配合比になるように秤量した。スラリーは、水を溶媒として、固形分濃度27vol%とし、分散剤としてポリアクリル酸を使用し、ゼータポテンシャルの絶対値が十分に高い条件になるようにpH調整(pH7〜8)して、各粉末を分散させた。この際、添加剤の酸化マグネシウムを溶解し、ポリアクリル酸に吸着させた後にアルミナ粉末に選択的に吸着させた。一方、ジルコニアと酸化チタンをヘテロ凝集させてから転動ボールミルを用いてアルミナ粉末とともに十分に分散させた。
成形は多孔質アルミナ型(気孔率30%)を用いた排泥鋳込み成形法により行った。成形体を乾燥後、1000℃の大気雰囲気で脱脂し、アルゴン雰囲気にて表1に示す所定の温度にて、焼成時間2hにて焼成を行った。
[Examples 1 to 8]
As raw material powders, alumina powder (purity 99.99%, average particle size 0.2 μm), 3 mol yttrium-added zirconia powder (average particle size 0.2 μm), titanium oxide powder (purity 99.9%, average particle size 0. 13 μm) and magnesium oxide (purity 99.9%, average particle size 0.05 μm) as an additive were weighed so as to have the mixing ratio shown in Table 1. The slurry was prepared by using water as a solvent, a solid content concentration of 27 vol%, using polyacrylic acid as a dispersant, and adjusting the pH (pH 7-8) so that the absolute value of the zeta potential was sufficiently high. The powder was dispersed. At this time, magnesium oxide as an additive was dissolved, adsorbed on polyacrylic acid, and then selectively adsorbed on alumina powder. On the other hand, zirconia and titanium oxide were heteroaggregated and then sufficiently dispersed together with the alumina powder using a rolling ball mill.
Molding was performed by a waste mud casting method using a porous alumina mold (porosity 30%). The molded body was dried, degreased in an air atmosphere at 1000 ° C., and fired at a predetermined temperature shown in Table 1 in an argon atmosphere for a firing time of 2 hours.
焼結体の結晶相、粒子径、チタン酸アルミニウムの有無を表1に示す。原料粉末として、アルミナ25〜70重量%、ジルコニア25〜70重量%、チタニア3〜15重量%の組成範囲とし、上記に示す分散操作を施した作製した焼結体は、ジルコニアの結晶相がいずれも立方晶が20〜70体積%、単斜晶が30体積%以下、正方晶20体積%以上を示し、アルミナの結晶粒子径が1.5μm以下、ジルコニアの結晶粒子径が0.8μm以下となった。X線回折による結晶相の評価と、電子顕微鏡とX線マイクロアナライザーによるジルコニア粒子の観察をしたところ、チタンはジルコニア粒子に固溶した微粒立方晶ジルコニアとなっていることが明らかとなった。また、チタン酸アルミニウムは発生しなかった。 Table 1 shows the crystal phase, particle diameter, and presence or absence of aluminum titanate of the sintered body. As the raw material powder, the sintered body produced with a composition range of 25 to 70% by weight of alumina, 25 to 70% by weight of zirconia and 3 to 15% by weight of titania and subjected to the dispersing operation described above has any zirconia crystal phase. Further, cubic crystal is 20 to 70% by volume, monoclinic crystal is 30% by volume or less, tetragonal crystal is 20% by volume or more, the crystal grain size of alumina is 1.5 μm or less, and the crystal grain size of zirconia is 0.8 μm or less. became. When the crystal phase was evaluated by X-ray diffraction and the zirconia particles were observed by an electron microscope and an X-ray microanalyzer, it was revealed that titanium was in the form of fine cubic zirconia dissolved in zirconia particles. Moreover, aluminum titanate was not generated.
表2に、実施例1〜8の密度、曲げ強さ、ヤング率、体積固有抵抗、250℃熱サイクル試験(10サイクル、30℃における相対湿度60%以上)後の熱膨張率、黒色度、ビッカース硬さの物性を示す。いずれの焼結体も、曲げ強さ700MPa以上、ヤング率280GPa以上、ビッカース硬さ1300(HV1)以上の機械的特性に優れる焼結体であるとともに、体積固有抵抗が104Ω・cm〜108Ω・cmでESD対策が十分な電気抵抗を有している。また、黒色度L*が40以下であり、十分な黒色性を有している。さらに耐低温エージング性は極めて良好であり、昇温降温状態を繰り返し試験、すなわち、30℃の降温時における相対湿度60%RH以上とし、昇温時の温度250℃として、それを10サイクル繰り返した試験後の残留膨張率が最大0.05%以下であった。
以上のように、実施例1〜8は、半導体デバイスや電子部品等の製造工程において使用される吸着ノズル等治工具として、極めて有望な素材である。
In Table 2, density, bending strength, Young's modulus, volume resistivity, thermal expansion coefficient after 250 ° C. thermal cycle test (10 cycles, relative humidity 60% or higher at 30 ° C.), blackness, Shows physical properties of Vickers hardness. Each of the sintered bodies is a sintered body having excellent mechanical properties such as a bending strength of 700 MPa or more, a Young's modulus of 280 GPa or more, and a Vickers hardness of 1300 (HV1) or more, and a volume resistivity of 10 4 Ω · cm to 10 −10. 8 Ω · cm has sufficient electrical resistance for ESD countermeasures. Moreover, the blackness L * is 40 or less, and it has sufficient blackness. Furthermore, the low temperature aging resistance is very good, and the temperature rising / falling state was repeatedly tested, that is, the relative humidity was 60% RH or more when the temperature was lowered at 30 ° C., and the temperature was raised to 250 ° C. for 10 cycles. The maximum residual expansion after the test was 0.05% or less.
As described above, Examples 1 to 8 are extremely promising materials as jigs and tools such as suction nozzles used in manufacturing processes of semiconductor devices and electronic components.
[比較例1〜8]
原料粉末として、アルミナ粉末(純度99.99%、平均粒子径0.2μm)、3molイットリウム添加ジルコニア粉末(平均粒子径0.2μm)(比較例6は12mol
Ceジルコニア粉末)、酸化チタン粉末(純度99.9%、平均粒子径0.13μm)および、添加剤として酸化マグネシウム(純度99.9%、平均粒子径0.05μm)を用いて表1の配合比になるように秤量した。スラリーは、水を溶媒として、固形分濃度27vol%とし、分散剤としてポリアクリル酸を使用した。比較例1、2は実施例と同様な方法で、それ以外は、粉末の表面処理や吸着操作は行わずに通常に混合してスラリーを作製した。
成形は多孔質アルミナ型(気孔率30%)を用いた排泥鋳込み成形法により行った。成形体を乾燥後、1000℃の大気雰囲気で脱脂し、アルゴン雰囲気にて表1に示す所定の温度にて、焼成時間2hにて焼成を行った。
[Comparative Examples 1-8]
As raw material powder, alumina powder (purity 99.99%, average particle size 0.2 μm), 3 mol yttrium-added zirconia powder (average particle size 0.2 μm) (Comparative Example 6 has 12 mol)
Ce zirconia powder), titanium oxide powder (purity 99.9%, average particle size 0.13 μm), and magnesium oxide (purity 99.9%, average particle size 0.05 μm) as additives are listed in Table 1. Weighed to a ratio. The slurry used water as a solvent, solid content concentration of 27 vol%, and polyacrylic acid as a dispersant. Comparative Examples 1 and 2 were the same methods as in the Examples. Otherwise, slurry was prepared by mixing normally without performing powder surface treatment or adsorption operation.
Molding was performed by a waste mud casting method using a porous alumina mold (porosity 30%). The molded body was dried, degreased in an air atmosphere at 1000 ° C., and fired at a predetermined temperature shown in Table 1 in an argon atmosphere for a firing time of 2 hours.
比較例1〜2については、アルミナの含有量が70重量%以上と多く、ジルコニア含有量が少ないため、ジルコニアの結晶相は立方晶が70%以上と多くなった。また、比較例1のアルミナ結晶粒子径は1.79μmと比較的大きくなった。比較例3は、酸化チタンの添加量が3%と少ないため、ジルコニアの結晶相が正方晶100体積%となった。比較例4、5、7は分散が十分でないため、チタンのジルコニアへの固溶が十分でなく、比較例4,7は正方晶、比較例5は単斜晶が多い組成となった。比較例6は12mol Ceジルコニア粉末を使用しており、チタンのジルコニアへの固溶が不十分であるため、比較例5と同様に、単斜晶が多い組成となった。比較例8はジルコニア主成分の配合であり、ジルコニア結晶相は正方晶が主体の組成となった。 About Comparative Examples 1-2, since the content of alumina was as high as 70% by weight or more and the content of zirconia was small, the crystal phase of zirconia was as large as 70% or more of cubic crystals. Moreover, the alumina crystal particle diameter of Comparative Example 1 was relatively large at 1.79 μm. In Comparative Example 3, since the amount of titanium oxide added was as small as 3%, the crystal phase of zirconia was 100% by volume of tetragonal crystals. Since Comparative Examples 4, 5, and 7 were not sufficiently dispersed, the solid solution of titanium in zirconia was not sufficient, and Comparative Examples 4 and 7 had a tetragonal crystal composition and Comparative Example 5 had a monoclinic crystal composition. In Comparative Example 6, 12 mol Ce zirconia powder was used, and since the solid solution of titanium in zirconia was insufficient, the composition was rich in monoclinic crystals as in Comparative Example 5. Comparative Example 8 was a blend of zirconia main components, and the zirconia crystal phase was composed mainly of tetragonal crystals.
表2に、比較例1〜8の密度、曲げ強さ、ヤング率、体積固有抵抗、250℃熱サイクル試験(10サイクル、30℃における相対湿度60%以上)後の熱膨張率、黒色度、ビッカース硬さの物性を示す。比較例4、8以外は曲げ強さが700MPa以下と強度が低い焼結体となった。比較例6、7は強度に悪影響を及ぼすチタン酸アルミニウムが発生した。比較例3は、体積固有抵抗が108Ω・cmと高く、十分な静電気除去効果が期待できない。また、黒色度もL*が40以上であり、十分な黒色性があるとはいえない。一方、比較例4と8は、昇温降温状態を繰り返す試験、すなわち、30℃の降温時における相対湿度60%RH以上とし、昇温時の温度250℃として、それを10サイクル繰り返した試験後の残留膨張率が0.1%以上であり、十分な耐熱エージング効果があるとはいえない。
以上のように、比較例1〜8は、半導体デバイスや電子部品等の製造工程において使用される吸着ノズル等治工具に適する素材ではない。
In Table 2, density, bending strength, Young's modulus, volume resistivity, thermal expansion coefficient after 250 ° C. thermal cycle test (10 cycles, relative humidity 60% or higher at 30 ° C.), blackness, Shows physical properties of Vickers hardness. Except for Comparative Examples 4 and 8, a sintered body having a bending strength of 700 MPa or less and a low strength was obtained. In Comparative Examples 6 and 7, aluminum titanate having an adverse effect on strength was generated. In Comparative Example 3, the volume resistivity is as high as 10 8 Ω · cm, and a sufficient static electricity removal effect cannot be expected. Also, the blackness L * is 40 or more, and it cannot be said that there is sufficient blackness. On the other hand, Comparative Examples 4 and 8 are tests in which the temperature rising / falling state is repeated, that is, after a test in which the relative humidity is 60% RH or more at the temperature drop of 30 ° C. and the temperature at the temperature rise is 250 ° C., which is repeated 10 cycles. The residual expansion ratio is 0.1% or more, and it cannot be said that there is a sufficient heat aging effect.
As described above, Comparative Examples 1 to 8 are not materials suitable for jigs and tools such as suction nozzles used in the manufacturing process of semiconductor devices and electronic components.
本発明の帯電防止可能な電気導電性を有するとともに、機械的特性に優れ、かつ低温領域における熱劣化のない黒色ジルコニア強化アルミナセラミックス(BZTA)は、吸着ノズル等治工具用への使用が期待される。
The black zirconia reinforced alumina ceramics (BZTA), which has antistatic electric conductivity and excellent mechanical properties and no thermal deterioration in a low temperature region, is expected to be used for jigs and other tools. The
Claims (14)
Three components of alumina 25-70% by weight, zirconia 25-70% by weight and titania 3-15% by weight are used as a basic composition, and this includes a sintering aid, and each powder has an average particle size of 0.3 μm or less. Using fine powder, each powder is uniformly dispersed, then shaped and shaped, and fired in an inert atmosphere / reducing atmosphere such as an argon atmosphere, whereby the average crystal particle diameter of alumina is 2 μm or less, Zirconia has an average crystal grain size of 1 μm or less, and titanium is selectively solid-solved in the zirconia particles. As a crystal structure of zirconia, cubic crystals are 20 to 70% by volume, monoclinic crystals are 30% by volume. Hereinafter, it is set as the black sintered composition mixed so that it may become a ratio of tetragonal crystal 20 volume% or more, The manufacturing method of the black sintered composition characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011196917A JP5593529B2 (en) | 2011-09-09 | 2011-09-09 | Black zirconia reinforced alumina ceramic and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011196917A JP5593529B2 (en) | 2011-09-09 | 2011-09-09 | Black zirconia reinforced alumina ceramic and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013056809A true JP2013056809A (en) | 2013-03-28 |
JP5593529B2 JP5593529B2 (en) | 2014-09-24 |
Family
ID=48133034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011196917A Active JP5593529B2 (en) | 2011-09-09 | 2011-09-09 | Black zirconia reinforced alumina ceramic and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5593529B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104341150A (en) * | 2014-09-12 | 2015-02-11 | 李正国 | Anti-static zirconia ceramic and preparation process thereof |
JP2016021542A (en) * | 2014-07-11 | 2016-02-04 | 株式会社長峰製作所 | Black ceramic nozzle |
JP2016177120A (en) * | 2015-03-20 | 2016-10-06 | 日本特殊陶業株式会社 | Pellicle frame and manufacturing method of pellicle frame |
US10099386B2 (en) | 2015-01-28 | 2018-10-16 | Kyocera Corporation | Suction nozzle |
CN109704758A (en) * | 2019-02-26 | 2019-05-03 | 九江嘉远科技有限公司 | A kind of anti-static ceramic formula, anti-static ceramic suction nozzle and its manufacture craft |
JP2021120335A (en) * | 2020-01-30 | 2021-08-19 | 香川県 | Resistance-adjusted low-conductivity alumina-zirconia composite ceramic and manufacturing method therefor |
CN116354708A (en) * | 2021-12-28 | 2023-06-30 | 财团法人工业技术研究院 | Ceramic material and ceramic article made of same |
WO2023189687A1 (en) * | 2022-03-28 | 2023-10-05 | 京セラ株式会社 | Heat-resistant member |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58120571A (en) * | 1982-01-09 | 1983-07-18 | 日本特殊陶業株式会社 | High-tenacity ceramic sintered body |
JPS63162570A (en) * | 1986-12-25 | 1988-07-06 | 第一稀元素化学工業株式会社 | Thermal degradation-resistant high strength zirconia-alumina ceramics and manufacture |
JP2003171177A (en) * | 2001-12-04 | 2003-06-17 | National Institute Of Advanced Industrial & Technology | Conductive zirconium oxide |
JP2005097077A (en) * | 2003-08-28 | 2005-04-14 | Kyocera Corp | Alumina/zirconia ceramic and method for producing the same |
JP2006508011A (en) * | 2002-11-22 | 2006-03-09 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Zirconia reinforced alumina ESD protective ceramic composition, component and method for forming the same |
JP2008266069A (en) * | 2007-04-19 | 2008-11-06 | Nitsukatoo:Kk | Conductive alumina sintered compact |
-
2011
- 2011-09-09 JP JP2011196917A patent/JP5593529B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58120571A (en) * | 1982-01-09 | 1983-07-18 | 日本特殊陶業株式会社 | High-tenacity ceramic sintered body |
JPS63162570A (en) * | 1986-12-25 | 1988-07-06 | 第一稀元素化学工業株式会社 | Thermal degradation-resistant high strength zirconia-alumina ceramics and manufacture |
JP2003171177A (en) * | 2001-12-04 | 2003-06-17 | National Institute Of Advanced Industrial & Technology | Conductive zirconium oxide |
JP2006508011A (en) * | 2002-11-22 | 2006-03-09 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Zirconia reinforced alumina ESD protective ceramic composition, component and method for forming the same |
JP2005097077A (en) * | 2003-08-28 | 2005-04-14 | Kyocera Corp | Alumina/zirconia ceramic and method for producing the same |
JP2008266069A (en) * | 2007-04-19 | 2008-11-06 | Nitsukatoo:Kk | Conductive alumina sintered compact |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016021542A (en) * | 2014-07-11 | 2016-02-04 | 株式会社長峰製作所 | Black ceramic nozzle |
CN104341150A (en) * | 2014-09-12 | 2015-02-11 | 李正国 | Anti-static zirconia ceramic and preparation process thereof |
US10099386B2 (en) | 2015-01-28 | 2018-10-16 | Kyocera Corporation | Suction nozzle |
JP2016177120A (en) * | 2015-03-20 | 2016-10-06 | 日本特殊陶業株式会社 | Pellicle frame and manufacturing method of pellicle frame |
CN109704758A (en) * | 2019-02-26 | 2019-05-03 | 九江嘉远科技有限公司 | A kind of anti-static ceramic formula, anti-static ceramic suction nozzle and its manufacture craft |
JP2021120335A (en) * | 2020-01-30 | 2021-08-19 | 香川県 | Resistance-adjusted low-conductivity alumina-zirconia composite ceramic and manufacturing method therefor |
CN116354708A (en) * | 2021-12-28 | 2023-06-30 | 财团法人工业技术研究院 | Ceramic material and ceramic article made of same |
WO2023189687A1 (en) * | 2022-03-28 | 2023-10-05 | 京セラ株式会社 | Heat-resistant member |
Also Published As
Publication number | Publication date |
---|---|
JP5593529B2 (en) | 2014-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5593529B2 (en) | Black zirconia reinforced alumina ceramic and method for producing the same | |
TWI433825B (en) | Yttrium oxide-containing material, component of semiconductor manufacturing equipment, and method of producing yttrium oxide-containing material | |
JP2020528861A (en) | Slurry composition for tape casting for manufacturing silicon nitride sintered body | |
JP7062229B2 (en) | Plate-shaped silicon nitride sintered body and its manufacturing method | |
JP7062230B2 (en) | Plate-shaped silicon nitride sintered body and its manufacturing method | |
JP4951753B2 (en) | Method for producing sintered silicon carbide | |
JP4987238B2 (en) | Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method | |
JP5303345B2 (en) | Conductive zirconia sintered body | |
KR101692219B1 (en) | Composite for vacuum-chuck and manufacturing method of the same | |
JPWO2008018302A1 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2005314215A (en) | Dense cordierite sintered body and method of manufacturing the same | |
JP2008019144A (en) | Manufacturing method of ceramic composite material containing zirconia | |
JP6052976B2 (en) | Electrostatic chuck dielectric layer and electrostatic chuck | |
JP2003112963A (en) | Alumina sintered compact, and production method therefor | |
JP4429742B2 (en) | Sintered body and manufacturing method thereof | |
KR20190023485A (en) | Aluminum nitride sintered body and method for manufacturing the same | |
JP4798693B2 (en) | Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same | |
JP2003137671A (en) | Mullite-based porous body and method of producing the same | |
JP4615873B2 (en) | Aluminum nitride sintered body and manufacturing method thereof | |
WO2019059641A2 (en) | Tape casting slurry composition for preparation of silicon nitride sintered body | |
JP2005206421A (en) | High strength conductive zirconia sintered body and its manufacturing method | |
WO2013100071A1 (en) | Tin-oxide refractory | |
JP2018070436A (en) | Production method of silicon nitride sintered body | |
JP3106160B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2002173373A (en) | Aluminum nitride sintered compact, method of producing the same and electronic component using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140714 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5593529 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |