[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013053914A - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP2013053914A
JP2013053914A JP2011191938A JP2011191938A JP2013053914A JP 2013053914 A JP2013053914 A JP 2013053914A JP 2011191938 A JP2011191938 A JP 2011191938A JP 2011191938 A JP2011191938 A JP 2011191938A JP 2013053914 A JP2013053914 A JP 2013053914A
Authority
JP
Japan
Prior art keywords
current
input
output
measured
primary conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011191938A
Other languages
Japanese (ja)
Inventor
Yuki Machida
裕貴 町田
Masahiro Kawase
正博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2011191938A priority Critical patent/JP2013053914A/en
Publication of JP2013053914A publication Critical patent/JP2013053914A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current measuring device that detects a magnetic field by a current to measure the current and make current detection sensitivity variable.SOLUTION: When a current I to be measured is made to flow through a primary conductor 1 in which an open hole 2 is provided, the current flows in a Y-axis direction, which is a principal direction, in a location having no influence of the open hole 2 and a generated flux is directed in an X-axis direction orthogonal to the direction of the current. Since a bypass current Ia is tilted to the Y-axis direction in the vicinity of the open hole 2, a magnetic field vector component Hy in the Y-axis direction and a vector component Hx in the X-axis direction are generated at the same time. The vector component Hy of the magnetic flux in the Y-axis direction is measured by magnetic detection elements 3a and 3b. As an input-output position, input ends A to C and output ends A' to C' are provided. The input-output positions of the current I to be measured are selected by combining these ends A to C'. When the ends A-A' are selected, since the magnetic field vector component Hy directed to the Y-axis direction of the bypass current Ia becomes larger than that of when ends B-B' are selected, detection sensitivity of current measurement becomes higher.

Description

本発明は、被測定電流が流れる一次導体の被導電領域の近傍において磁界を検知することにより被測定電流の電流量を求め、一次導体への被測定電流の入出力端を変えることで、電流検知感度を可変する電流測定装置に関するものである。   The present invention obtains the current amount of the current to be measured by detecting the magnetic field in the vicinity of the conductive region of the primary conductor through which the current to be measured flows, and changes the input / output terminal of the current to be measured to the primary conductor. The present invention relates to a current measuring device that varies the detection sensitivity.

電流の測定では、被測定電流を囲んだ磁気コアのギャップ部に磁界を発生させ、磁界を磁気検出素子を介して電圧値として検出し、電圧値を校正して換算することで、被測定電流量を計算する電流測定装置が従来から使用されている。   In the current measurement, a magnetic field is generated in the gap portion of the magnetic core that surrounds the current to be measured, the magnetic field is detected as a voltage value through the magnetic detection element, and the voltage value is calibrated and converted, thereby converting the current to be measured. Current measuring devices for calculating quantities are conventionally used.

その一例として、特許文献1のように、磁気検出素子としてフラックスゲート素子を使用した電流測定装置がある。この特許文献1においては、一次導体は励磁コイルとして機能するため、一次導体のターン数を変えて磁気コア内で発生する磁界の強さを調整することができる。   As an example, there is a current measuring device using a fluxgate element as a magnetic detection element as in Patent Document 1. In Patent Document 1, since the primary conductor functions as an exciting coil, the strength of the magnetic field generated in the magnetic core can be adjusted by changing the number of turns of the primary conductor.

そのため、トランスのように一次導体の結線方法を変えて磁気コアへのターン数を変え、磁気コア内で発生する磁束の調整ができ、電流測定装置の感度を可変できる。   Therefore, the number of turns to the magnetic core can be changed by changing the primary conductor connection method like a transformer, the magnetic flux generated in the magnetic core can be adjusted, and the sensitivity of the current measuring device can be varied.

一方、小型化に適し、特許文献2に示すようなコアを必要としないコアレスの電流測定装置が提案されている。   On the other hand, a coreless current measuring device that is suitable for miniaturization and does not require a core as shown in Patent Document 2 has been proposed.

US2010/0301852A1号公報US2010 / 0301852A1 特開2009−276359号公報JP 2009-276359 A

しかし、特許文献1のような一次側導体を励磁コイルとして機能させる電流測定装置においては、一次側導体のターン数を変えて、磁気コア内で発生する磁束を選択することができるが、コアを必要とするため小型化には適さない。   However, in the current measuring device that causes the primary side conductor to function as an exciting coil as in Patent Document 1, the number of turns of the primary side conductor can be changed to select the magnetic flux generated in the magnetic core. It is not suitable for miniaturization because it requires it.

また、特許文献2のようなコアレスの電流測定装置では、一次側導体が発する周回磁界を磁気検出素子で直接検知するため、特許文献1のように一次側導線のターン数を増やすような方法を採ることは難しい。   In addition, in a coreless current measuring apparatus such as Patent Document 2, a circulating magnetic field generated by a primary conductor is directly detected by a magnetic detection element. Therefore, as in Patent Document 1, a method of increasing the number of turns of a primary conductor is used. It is difficult to take.

本発明の目的は、上述の問題点を解消し、一次導体の非導電領域に対する迂回電流の主方向を向く磁界成分の検知を行って被測定電流を測定し、一次導体内の電流分布を変化させることにより、電流検知感度を可変できる電流測定装置を提供することにある。   The object of the present invention is to eliminate the above-mentioned problems, measure the current to be measured by detecting the magnetic field component facing the main direction of the bypass current with respect to the non-conductive region of the primary conductor, and change the current distribution in the primary conductor. It is an object of the present invention to provide a current measuring device that can vary the current detection sensitivity.

上記目的を達成するための本発明に係る電流測定装置は、被測定電流が流れる一次導体に非導電領域を設けて、磁気検出素子により前記非導電領域を迂回する前記被測定電流の主方向を向く磁界成分の検知を行うことによって電流を測定する電流測定装置において、前記一次導体への被測定電流の入出力位置を変えることにより、前記迂回電流の前記一次導体を流れる分布を変えて前記被測定電流の検知感度を可変するようにしたことを特徴とする。   In order to achieve the above object, a current measuring apparatus according to the present invention provides a non-conductive region in a primary conductor through which a current to be measured flows, and sets a main direction of the measured current to bypass the non-conductive region by a magnetic detection element. In a current measuring apparatus for measuring current by detecting a magnetic field component facing, the distribution of the bypass current flowing through the primary conductor is changed by changing the input / output position of the current to be measured to the primary conductor. The detection sensitivity of the measurement current is variable.

本発明に係る電流測定装置によれば、一次導体を流れる被測定電流の測定を行うと共に、一次導体の入出力位置を選択することで、被測定電流の検知感度を可変する。   According to the current measurement device of the present invention, the current to be measured flowing through the primary conductor is measured, and the input / output position of the primary conductor is selected to vary the detection sensitivity of the current to be measured.

実施例の電流測定装置の基本的な斜視図である。It is a basic perspective view of the current measuring device of an example. 一次導体内の電流と磁場の説明図である。It is explanatory drawing of the electric current and magnetic field in a primary conductor. 一次導体内の電流経路の説明図である。It is explanatory drawing of the current pathway in a primary conductor. 検出回路の構成図である。It is a block diagram of a detection circuit. 検知電流と出力電圧のグラフ図である。It is a graph of a detection current and an output voltage. 具体的実施例の斜視図である。It is a perspective view of a specific Example. 第1変形例の斜視図である。It is a perspective view of the 1st modification. 第2変形例の斜視図である。It is a perspective view of the 2nd modification. 第3変形例の構成図である。It is a block diagram of the 3rd modification. 第4変形例の構成図である。It is a block diagram of the 4th modification.

本発明を図示の実施例に基づいて詳細に説明する。
図1は被測定電流に対する電流測定を行う電流測定装置の基本的な斜視図である。一次導体1は例えばプリント基板上の銅箔パターン或いは銅板で形成されたバスバー等の形態とされ、この一次導体1に検知対象の被測定電流Iが流れるようになっている。
The present invention will be described in detail based on the embodiments shown in the drawings.
FIG. 1 is a basic perspective view of a current measuring device that performs current measurement on a current to be measured. The primary conductor 1 is in the form of a bus bar or the like formed of a copper foil pattern or a copper plate on a printed circuit board, for example, and the current I to be detected flows through the primary conductor 1.

一次導体1のほぼ中央には、部分的に電流の遮断を行うために、非導電領域である円形の貫通孔2が設けられており、このため被測定電流Iの一部は図2に示すように、この貫通孔2の両側において外側を対称的に回り込む迂回電流Iaとなる。なお、非導電領域は必ずしも貫通孔2ではなく、電流を遮断する非導電物質を埋め込むようにしてもよい。   A circular through hole 2 which is a non-conductive region is provided in the approximate center of the primary conductor 1 in order to partially interrupt the current. For this reason, a part of the current I to be measured is shown in FIG. As described above, the detour current Ia sympathizes outward on both sides of the through hole 2. Note that the non-conductive region is not necessarily the through-hole 2 but may be embedded with a non-conductive substance that blocks current.

なお、説明の便宜のために、一次導体1に座標軸を設定し、貫通孔2の中心を原点Oとして、被測定電流Iが流れる主方向をY軸、その直交軸である幅方向をX軸、厚み方向をZ軸として説明する。   For convenience of explanation, a coordinate axis is set for the primary conductor 1, the center of the through hole 2 is the origin O, the main direction in which the current I to be measured flows is the Y axis, and the width direction that is the orthogonal axis is the X axis. The thickness direction will be described as the Z axis.

一次導体1上には、2つの磁気検出素子3a、3bが貫通孔2から側方のX軸方向に離隔し、Y軸方向に向けて直列的に、かつX軸に対して対称的に配置され、出力同士を差動的に検知するようになっている。磁気検出素子3a、3b上の検知部4a、4bはY軸方向が磁界検知方向となるように配置されている。そして、検知部4a、4bそれぞれの中心位置は、原点OよりもX軸方向に距離dx、Y軸方向にはX軸を挟んで距離dy、Z軸方向には一次導体1の表面から距離dzずらした個所に設けられている。   On the primary conductor 1, two magnetic detection elements 3a and 3b are spaced apart from the through hole 2 in the lateral X-axis direction, arranged in series in the Y-axis direction and symmetrically with respect to the X-axis. Thus, the outputs are detected differentially. The detection units 4a and 4b on the magnetic detection elements 3a and 3b are arranged so that the Y-axis direction is the magnetic field detection direction. The center positions of the detection units 4a and 4b are the distance dx in the X-axis direction from the origin O, the distance dy across the X-axis in the Y-axis direction, and the distance dz from the surface of the primary conductor 1 in the Z-axis direction. It is provided at a shifted location.

図2に示すように、一次導体1に被測定電流Iを流すと、貫通孔2の影響がない個所では、被測定電流Iは主方向であるY軸方向に流れる。電流により発生する磁束は電流方向と直交する方向を向くので、一次導体1の入力側の幅w内では、磁界ベクトル成分Hc0のように、X軸方向のベクトル成分Hxしか持たない磁場となる。   As shown in FIG. 2, when the current I to be measured flows through the primary conductor 1, the current I to be measured flows in the Y-axis direction, which is the main direction, at a place where there is no influence of the through hole 2. Since the magnetic flux generated by the current is directed in a direction perpendicular to the current direction, a magnetic field having only a vector component Hx in the X-axis direction is provided within the width w on the input side of the primary conductor 1 as in the magnetic field vector component Hc0.

しかし、貫通孔2の近傍では迂回電流IaはY軸方向に対し傾くことから、この迂回電流Iaにより貫通孔2の両側で磁場が歪んだ磁界ベクトル成分Hc1が発生する。つまり、迂回電流Iaの傾き部分においては、Y軸方向のベクトル成分Hy及びX軸方向のベクトル成分Hxが共に発生する。ベクトル成分Hyとベクトル成分Hxのベクトル和は被測定電流Iの大きさに比例し、貫通孔2のY軸の正負両側では電流方向が対称形のため、ベクトル成分HyはX軸を挟んで対称となり、極性は逆になる。   However, since the bypass current Ia is inclined with respect to the Y-axis direction in the vicinity of the through hole 2, a magnetic field vector component Hc1 in which the magnetic field is distorted on both sides of the through hole 2 is generated by the bypass current Ia. That is, both the vector component Hy in the Y-axis direction and the vector component Hx in the X-axis direction are generated in the slope portion of the bypass current Ia. The vector sum of the vector component Hy and the vector component Hx is proportional to the magnitude of the current I to be measured, and since the current direction is symmetrical on both the positive and negative sides of the Y-axis of the through-hole 2, the vector component Hy is symmetrical across the X-axis. And the polarity is reversed.

電流測定に際しては、Y軸方向である一方向の磁界ベクトル成分Hyのみを検知するために、使用する磁気検出素子3a、3bは指向性の高い磁気インピーダンス素子や直交フラックスゲート素子が好適であり、実施例では磁気インピーダンス素子を用いている。検知部4a、4bとして、磁性薄膜から成り磁界検知方向のY軸方向につづら折りに並列されたパターンが形成されている。両端の電極5にMHz帯の高周波パルスを印加し、磁界の変化による検知部4a、4bの両端から、Y軸方向の磁界ベクトル成分Hyのみの電圧振幅変化をセンサ信号として得て、電流値に換算することにより測定が可能となる。   In the current measurement, in order to detect only the magnetic field vector component Hy in one direction that is the Y-axis direction, the magnetic detection elements 3a and 3b to be used are preferably highly directional magnetic impedance elements and orthogonal flux gate elements, In the embodiment, a magneto-impedance element is used. As the detection units 4a and 4b, a pattern made of a magnetic thin film and arranged in parallel in a Y-axis direction in the magnetic field detection direction is formed. A high-frequency pulse in the MHz band is applied to the electrodes 5 at both ends, and a change in voltage amplitude of only the magnetic field vector component Hy in the Y-axis direction is obtained as a sensor signal from both ends of the detection units 4a and 4b due to a change in magnetic field. Measurement can be performed by conversion.

一次導体1には、被測定電流Iの複数個所の入出力位置として、入力側の左端、中央、右端に入力端部A、B、C、出力側にこれらの入力端部A、B、Cに対向して出力端部A’、B’、C’が設けられている。そして、これらの入出力端部A〜C’を組み合わせて被測定電流Iの入出力位置を選択することができる。例えば、図2では中央の入出力端部B−B’を電流の入出力位置として選択した場合の電流経路を表したものであり、電流経路はY軸に対して対称な分布となる。   The primary conductor 1 has a plurality of input / output positions of the current I to be measured as input ends A, B, C on the left end, center, and right end on the input side, and these input ends A, B, C on the output side. Output end portions A ′, B ′, and C ′ are provided so as to face each other. The input / output position of the current I to be measured can be selected by combining these input / output end portions A to C ′. For example, FIG. 2 shows a current path when the central input / output end B-B ′ is selected as the current input / output position, and the current path has a symmetrical distribution with respect to the Y axis.

図3は一次導体1への被測定電流Iの入出力位置として端部A−A’を選択した場合の電流経路を示し、端部B−B’を選択した場合に比べて、貫通孔2の近傍における被測定電流Iの主方向を向く磁界成分が大きくなるため、電流測定の検知感度が高くなる。この原理から、一次導体1の被測定電流Iの入出力位置を変えることで、所望の電流検知感度を選択することが可能となる。   FIG. 3 shows a current path when the end AA ′ is selected as the input / output position of the current I to be measured with respect to the primary conductor 1, and the through hole 2 is compared with the case where the end BB ′ is selected. Since the magnetic field component facing the main direction of the current I to be measured in the vicinity of is increased, the detection sensitivity of current measurement is increased. From this principle, it is possible to select a desired current detection sensitivity by changing the input / output position of the measured current I of the primary conductor 1.

図4は検出回路の構成図を示し、CRパルス発振回路に対しブリッジを構成する抵抗Rに、磁気検出素子3a、3bの検知部4a、4bが接続されている。検知部4a、4bの両端電圧からの振幅変化を振幅検波回路により取り出した後に、差動増幅回路で検知部4a、4bの出力に対し差動増幅が行われて、電流測定装置としての出力を得る。   FIG. 4 shows a configuration diagram of the detection circuit. The detection units 4a and 4b of the magnetic detection elements 3a and 3b are connected to a resistor R that forms a bridge with respect to the CR pulse oscillation circuit. After the amplitude change from the voltage across the detection units 4a and 4b is taken out by the amplitude detection circuit, the differential amplification circuit performs differential amplification on the outputs of the detection units 4a and 4b, and outputs the current measurement device as an output. obtain.

この場合に、検知部4a、4bの出力は、感度が同じでX軸を挟んで対称な位置にあれば絶対値は同じになり、極性が異なるため差動的に検出すると、出力は検知部4a又は4bの絶対値の2倍となる。また、外来の磁界ノイズは狭い範囲にある検知部4a、4bでは同相となり、検知部4a、4bの出力を差動的に捉えることにより、磁界ノイズは相殺されて、出力に重畳されることはなく、迂回電流Iaのベクトル成分Hyのみが測定されることになる。   In this case, the outputs of the detection units 4a and 4b have the same sensitivity and the same absolute value if they are in symmetrical positions with the X axis in between. This is twice the absolute value of 4a or 4b. In addition, extraneous magnetic field noise is in phase in the detection units 4a and 4b in a narrow range, and by detecting the outputs of the detection units 4a and 4b differentially, the magnetic field noise is canceled and superimposed on the output. Instead, only the vector component Hy of the detour current Ia is measured.

ここで、被測定電流Iの入出力端部の3端部の全てを接続する場合、つまり端部(A+B+C)−(A’+B’+C’)の結線方法、或いは端部A−A’、 B−B’、C−C’のように1個所同士を結線する場合とで、出力電圧の比較を行った。   Here, when all three input / output ends of the current I to be measured are connected, that is, the end (A + B + C) − (A ′ + B ′ + C ′) connection method, or the end AA ′, The output voltage was compared with the case where one part was connected like BB 'and CC'.

例えば、電流3A(アンペア)を一次導体1に通電した場合には、端部(A+B+C)−(A’+B’+C’)の結線では、電圧振幅変化によるセンサ信号は116.1mVの出力値となった。これに対し、端部A−A’のみを接続した場合は253mVであり、同様に端部B−B’においては151.1mV、端部C−C’においては50.7mVとなっている。この結果から、被測定電流Iの一次導体1への被測定電流Iの入出力位置を選択することで、電流測定装置の感度を可変できることが分かる。   For example, when the primary conductor 1 is energized with the current 3A (ampere), the sensor signal due to the voltage amplitude change is 116.1 mV at the end (A + B + C) − (A ′ + B ′ + C ′) connection. became. On the other hand, when only the end A-A 'is connected, the voltage is 253 mV, similarly, the end B-B' is 151.1 mV, and the end C-C 'is 50.7 mV. From this result, it is understood that the sensitivity of the current measuring device can be varied by selecting the input / output position of the measured current I to the primary conductor 1 of the measured current I.

また、対向する2個所同士の結線、例えば端部(A+B)−(A’+B’)のような結線によっても、電流測定感度を変えることができることは勿論である。なお、対向する端部同士以外の結線、例えば端部Aと端部B’とを結線することもできるが、電流分布が検知部4aと4bとで対称とならないので、差動的出力の処理が稍々複雑となる問題はある。   It is needless to say that the current measurement sensitivity can be changed also by the connection between two opposing locations, for example, a connection such as the end (A + B) − (A ′ + B ′). Note that connections other than the opposing ends, for example, end A and end B ′ can be connected, but the current distribution is not symmetric between the detectors 4a and 4b, so that differential output processing is possible. There are often complicated issues.

図5は電流測定装置において、一次導体1にAC電流(60Hz)を1〜10Armsまで可変して通電し、被測定電流Iを測定したグラフ図を示している。この結果から、1〜10Aの範囲において直線性が保たれていることが分かる。   FIG. 5 shows a graph in which the current I to be measured is measured by changing the AC current (60 Hz) from 1 to 10 Arms and supplying the primary conductor 1 with current in the current measuring device. From this result, it can be seen that the linearity is maintained in the range of 1 to 10A.

図6は電流測定装置の具体的な実施例であり、一次導体1に複数の入出力端子を設けた構成となっており、一次導体1の入力端部A、B、Cに入力端子6a、6b、6c、出力端部A’、B’、C’に出力端子6d、6e、6fが接続されている。これらの入出力端子6a、6b、6c、6d、6e、6fにより、前述したように入力端部と出力端部で1組ずつ、或いは複数組ずつを選択することにより、電流検出感度を可変できる。   FIG. 6 shows a specific example of the current measuring apparatus, which is configured by providing a plurality of input / output terminals on the primary conductor 1, and the input terminals 6a, Output terminals 6d, 6e, 6f are connected to 6b, 6c and output ends A ′, B ′, C ′. By using these input / output terminals 6a, 6b, 6c, 6d, 6e, and 6f, the current detection sensitivity can be varied by selecting one set or a plurality of sets at the input end and the output end as described above. .

図7は第1変形例の斜視図であり、一次導体1の被測定電流Iの入力出力端部A〜C’に相当する位置に、電線7をハンダ付けにより入出力位置を選択して検知感度を変えている。これにより、図6に示すように一次導体1に入出力端部A〜C’を設ける必要がなくなる。   FIG. 7 is a perspective view of the first modified example, in which an input / output position is selected by soldering the electric wire 7 at a position corresponding to the input / output ends A to C ′ of the current I to be measured of the primary conductor 1 and detected. Sensitivity is changed. This eliminates the need to provide the input / output ends A to C ′ in the primary conductor 1 as shown in FIG.

なお、図7では電線7の固定方法としてハンダ付けを採用しているが、ハンダ付けでなくとも、例えばクランプねじを使用して固定する方法等も考えられる。   In FIG. 7, soldering is adopted as a method of fixing the electric wire 7, but a method of fixing by using a clamp screw, for example, is also conceivable instead of soldering.

図8は第2変形例の斜視図を示し、一次導体1の端部A〜C’に相当する位置にねじ孔から成る複数個の取付孔8を形成し、この取付孔8を選択して電線のねじ止め個所とすることによって、被測定電流Iの入出力位置を選択している。これにより、一次導体1にねじで機械的に固定する場合でも、取付孔8を選択することで被測定電流Iの測定感度を可変できる。   FIG. 8 shows a perspective view of the second modified example, in which a plurality of mounting holes 8 made of screw holes are formed at positions corresponding to the end portions A to C ′ of the primary conductor 1, and the mounting holes 8 are selected. The input / output position of the current I to be measured is selected by using the screwing portion of the electric wire. Thereby, even when it fixes to the primary conductor 1 with a screw mechanically, the measurement sensitivity of the to-be-measured current I can be varied by selecting the attachment hole 8.

図9は第3変形例の構成図であり、入力端部、出力端部においてバー状の接触子9を摺動させて接触可能とし、例えばねじで接触子9を固定することにより、連続的に一次導体1と接触子9との接触個所を変えるようにしている。   FIG. 9 is a configuration diagram of the third modification example, in which a bar-shaped contact 9 is made slidable at an input end and an output end, and the contact 9 is fixed by, for example, a screw. The contact point between the primary conductor 1 and the contact 9 is changed.

この場合は入出力端部A〜C’は特定されず、一次導体1の両端部の任意個所に接触させればよい。なお、貫通孔2に対する迂回電流IaがX軸を中心に対称となるように接触子9を接触させることが好ましい。これにより、連続的に電流検知感度を調整することができる。   In this case, the input / output end portions A to C ′ are not specified, and may be brought into contact with arbitrary portions of both end portions of the primary conductor 1. In addition, it is preferable to make the contactor 9 contact so that the detour current Ia with respect to the through hole 2 is symmetric about the X axis. Thereby, the current detection sensitivity can be continuously adjusted.

図10は第4変形例の構成図であり、スイッチを使用して電流検知感度を調整する例を示している。一次導体1に設けられた入力端部A〜C、出力端部A’〜C’にそれぞれにスイッチ10を配置し、電流検知感度に合わせて入出力端子A〜C’を組み合わせるスイッチ制御を行う。   FIG. 10 is a configuration diagram of the fourth modified example, and shows an example in which the current detection sensitivity is adjusted using a switch. A switch 10 is arranged at each of the input end portions A to C and the output end portions A ′ to C ′ provided in the primary conductor 1, and switch control is performed by combining the input / output terminals A to C ′ according to the current detection sensitivity. .

これにより、入出力端部A〜C’に端子等を機械的に付け変えることなく、遠隔的なスイッチ制御で電流検知感度を変えることができる。   As a result, the current detection sensitivity can be changed by remote switch control without mechanically changing terminals or the like to the input / output ends A to C ′.

1 一次導体
2 貫通孔
3a、3b 磁気検出素子
4a、4b 検知部
5 電極
6a〜6c、6d〜6f 入出力端子
7 電線
8 取付孔
9 接触子
10 スイッチ
A、B、C、A’、B’、C’ 入出力端部
DESCRIPTION OF SYMBOLS 1 Primary conductor 2 Through-hole 3a, 3b Magnetic detection element 4a, 4b Detection part 5 Electrode 6a-6c, 6d-6f Input / output terminal 7 Electric wire 8 Mounting hole 9 Contact 10 Switch A, B, C, A ', B' , C 'Input / output end

Claims (9)

被測定電流が流れる一次導体に非導電領域を設けて、磁気検出素子により前記非導電領域を迂回する前記被測定電流の主方向を向く磁界成分の検知を行うことによって電流を測定する電流測定装置において、前記一次導体への被測定電流の入出力位置を変えることにより、前記迂回電流の前記一次導体を流れる分布を変えて前記被測定電流の検知感度を可変するようにしたことを特徴とする電流測定装置。   A current measuring device that measures a current by providing a non-conductive region in a primary conductor through which a current to be measured flows, and detecting a magnetic field component facing the main direction of the current to be measured that bypasses the non-conductive region by a magnetic detection element The detection current detection sensitivity can be varied by changing the distribution of the bypass current flowing through the primary conductor by changing the input / output position of the current to be measured to the primary conductor. Current measuring device. 前記磁気検出素子は一方向の磁界成分を検知可能とし、該磁界検知方向を前記被測定電流の主方向となるように前記磁気検出素子を前記非導電領域の側方に離隔して配置したことを特徴とする請求項1に記載の電流測定装置。   The magnetic detection element is capable of detecting a magnetic field component in one direction, and the magnetic detection element is arranged at a side of the non-conductive region so that the magnetic field detection direction is a main direction of the current to be measured. The current measuring device according to claim 1. 前記一次導体への前記被測定電流の入出力位置を前記一次導体の入力側、出力側の複数個所にそれぞれ設けたことを特徴とする請求項1又は2に記載の電流測定装置。   The current measuring apparatus according to claim 1, wherein input / output positions of the current to be measured to the primary conductor are provided at a plurality of locations on the input side and the output side of the primary conductor, respectively. 前記入出力位置は前記一次導体の入力側、出力側に対向して配置したことを特徴とする請求項1又は2又は3に記載の電流測定装置。   The current measuring apparatus according to claim 1, wherein the input / output position is disposed opposite to an input side and an output side of the primary conductor. 前記入力側、出力側の入出力位置を選択して端子を接続したことを特徴とする請求項3又は4に記載の電流測定装置。   5. The current measuring apparatus according to claim 3, wherein terminals are connected by selecting input / output positions on the input side and output side. 前記入力側、出力側の入出力位置を選択して電線をハンダ付けしたことを特徴とする請求項3又は4に記載の電流測定装置。   The current measuring device according to claim 3 or 4, wherein the input / output positions on the input side and the output side are selected and the electric wire is soldered. 前記入力側、出力側の入出力位置に取付孔を設け、これらの取付孔を選択して電線を接続したことを特徴とする請求項3又は4に記載の電流測定装置。   5. The current measuring device according to claim 3, wherein attachment holes are provided at input / output positions on the input side and the output side, and electric wires are connected by selecting these attachment holes. 前記入力側、出力側の入出力位置を選択して接触個所を連続的に変える接触子を設けたことを特徴とする請求項3又は4に記載の電流測定装置。   5. The current measuring device according to claim 3, further comprising a contactor that selects input / output positions on the input side and the output side to continuously change the contact location. 前記入力側、出力側の入出力位置をスイッチによって接続個所を選択することを特徴とする請求項3又は4に記載の電流測定装置。   The current measuring device according to claim 3 or 4, wherein a connection location is selected by a switch for input / output positions on the input side and output side.
JP2011191938A 2011-09-02 2011-09-02 Current measuring device Withdrawn JP2013053914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191938A JP2013053914A (en) 2011-09-02 2011-09-02 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191938A JP2013053914A (en) 2011-09-02 2011-09-02 Current measuring device

Publications (1)

Publication Number Publication Date
JP2013053914A true JP2013053914A (en) 2013-03-21

Family

ID=48131037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191938A Withdrawn JP2013053914A (en) 2011-09-02 2011-09-02 Current measuring device

Country Status (1)

Country Link
JP (1) JP2013053914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141634A (en) * 2017-02-24 2018-09-13 旭化成エレクトロニクス株式会社 Current sensor
KR20200034483A (en) * 2018-09-21 2020-03-31 엘지디스플레이 주식회사 Display device
WO2022181063A1 (en) * 2021-02-24 2022-09-01 サンコール株式会社 Current sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141634A (en) * 2017-02-24 2018-09-13 旭化成エレクトロニクス株式会社 Current sensor
KR20200034483A (en) * 2018-09-21 2020-03-31 엘지디스플레이 주식회사 Display device
KR102503423B1 (en) 2018-09-21 2023-02-24 엘지디스플레이 주식회사 Display device
WO2022181063A1 (en) * 2021-02-24 2022-09-01 サンコール株式会社 Current sensor

Similar Documents

Publication Publication Date Title
JP5616431B2 (en) Method for estimating the amount of current by detecting the magnetic field generated from the current
JP5489145B1 (en) Current sensor
JP6303527B2 (en) Current sensor
US10274523B2 (en) Current sensor including a first current sensor and a second current sensor unit
WO2005033717A1 (en) Magnetic flux concentrator current sensing topology
KR100846078B1 (en) Defense
WO2016194240A1 (en) Electric current sensor
JP2008216230A (en) Current sensor
JP2009210406A (en) Current sensor and watthour meter
JP6270323B2 (en) Measurement module, electronic device, power strip and power unit, and built-in measurement module
JP2010101871A (en) Current sensor
EP2860537B1 (en) Electrical leakage detection device
JP2009020085A (en) Multiphase current detector
JP2013152208A (en) Magnetic sensor device and current sensor circuit
JPWO2014203862A1 (en) Current sensor
JP2013053914A (en) Current measuring device
JP2013200253A (en) Power measurement device
JP2022167857A (en) current sensor
US11035911B2 (en) Magneto-impedance sensor
JP2019152558A (en) Current sensor and voltmeter
CN109374941B (en) Current measuring method and device for copper bar type lead
JP5691653B2 (en) Electric conductivity meter
JP2022189812A (en) Current sensor comprising magnetic field sensor in v-shaped arrangement
JP2012088096A (en) Current detection circuit
JP4873348B2 (en) Current sensor and current detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104