JP2013047607A - Heat conductive plate formed of expanded graphite and production method therefor - Google Patents
Heat conductive plate formed of expanded graphite and production method therefor Download PDFInfo
- Publication number
- JP2013047607A JP2013047607A JP2012263662A JP2012263662A JP2013047607A JP 2013047607 A JP2013047607 A JP 2013047607A JP 2012263662 A JP2012263662 A JP 2012263662A JP 2012263662 A JP2012263662 A JP 2012263662A JP 2013047607 A JP2013047607 A JP 2013047607A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- heat
- sheet
- heating
- plate according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 239000010439 graphite Substances 0.000 title claims abstract description 57
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000011230 binding agent Substances 0.000 claims abstract description 8
- 238000012546 transfer Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 33
- 239000002131 composite material Substances 0.000 claims description 24
- 239000010410 layer Substances 0.000 claims description 21
- 239000004566 building material Substances 0.000 claims description 20
- 238000007906 compression Methods 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 14
- 230000006835 compression Effects 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 8
- 239000004567 concrete Substances 0.000 claims description 8
- 239000010959 steel Substances 0.000 claims description 8
- 238000005470 impregnation Methods 0.000 claims description 7
- 239000011449 brick Substances 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- 239000010440 gypsum Substances 0.000 claims description 6
- 229910052602 gypsum Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000011111 cardboard Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 239000011505 plaster Substances 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 239000000853 adhesive Substances 0.000 claims description 4
- 230000001070 adhesive effect Effects 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims description 4
- 239000004570 mortar (masonry) Substances 0.000 claims description 4
- 230000035515 penetration Effects 0.000 claims description 4
- 239000002985 plastic film Substances 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 239000002023 wood Substances 0.000 claims description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 3
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 3
- 239000011324 bead Substances 0.000 claims description 3
- 238000004049 embossing Methods 0.000 claims description 3
- 239000004571 lime Substances 0.000 claims description 3
- 239000011490 mineral wool Substances 0.000 claims description 3
- 239000003973 paint Substances 0.000 claims description 3
- 239000000123 paper Substances 0.000 claims description 3
- 229920006255 plastic film Polymers 0.000 claims description 3
- 239000011120 plywood Substances 0.000 claims description 3
- 239000008262 pumice Substances 0.000 claims description 3
- 239000004575 stone Substances 0.000 claims description 3
- 238000004378 air conditioning Methods 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000004794 expanded polystyrene Substances 0.000 claims description 2
- 239000011491 glass wool Substances 0.000 claims description 2
- 230000017525 heat dissipation Effects 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000010924 continuous production Methods 0.000 claims 2
- 239000011810 insulating material Substances 0.000 claims 1
- 230000013011 mating Effects 0.000 claims 1
- 238000011437 continuous method Methods 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- -1 graphite nitride Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002966 varnish Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011094 fiberboard Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000003863 physical function Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000012720 thermal barrier coating Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Images
Landscapes
- Laminated Bodies (AREA)
- Building Environments (AREA)
Abstract
Description
本発明は、膨張黒鉛から成り板面に対し平行方向に優れた熱伝導率を有する、結合剤なしの熱伝導板とその製造方法に関する。本発明に基づく熱伝導板は、特に床や壁や天井等に平面的に配置された暖房装置や空調器において熱を伝達するために適用される。本発明に基づく熱伝導板は、建築工業分野以外にも、自動車、機械設備および、例えば食料品貯蔵用の温度調節タンクにおいて、熱伝達および放熱のために適用できる。 The present invention relates to a thermal conductive plate without a binder, which is made of expanded graphite and has an excellent thermal conductivity in a direction parallel to the plate surface, and a method for producing the same. The heat conductive plate based on this invention is applied in order to transmit heat in the heating apparatus and air conditioner which were especially arrange | positioned planarly on a floor, a wall, a ceiling, etc. The heat conducting plate according to the present invention can be applied for heat transfer and heat dissipation in automobiles, machinery and equipment, for example, temperature control tanks for storing foodstuffs, in addition to the construction industry field.
床暖房、壁暖房および天井暖房に関連して、快適な室内温度を得るために、特別な熱伝導加熱層が利用されている。熱伝導性を改善すべく、黒鉛から成る添加物を含む熱伝導性の上塗り材や漆喰等の加熱層が、特許文献1〜5で知られている。
In connection with floor heating, wall heating and ceiling heating, special heat conduction heating layers are used to obtain a comfortable room temperature. In order to improve thermal conductivity, heating layers such as thermal conductive top coat materials and plaster containing additives made of graphite are known in
特許文献6〜8は、床暖房等の暖房設備の構造と消音装置および電磁遮蔽への膨張黒鉛から成る成形体の利用を提案している。該成形体は以下の方法で製造される。即ち
・ 膨張性黒鉛が、流動床において或いは既に最終成形型内で、適切な熱の供給のもとで不完全膨張され、続いて、成形型内において、高温にされて膨張が終わらされる。
・ 適切な熱の供給のもとで不完全に膨張された膨張性黒鉛が、成形型内で半製品の形に圧縮され、続いて、成形型内において、高温にされて膨張が終わらされる。
・ 成形形内における膨張性黒鉛の湿り処理が、熱の供給下において黒鉛を膨張させる。
Patent Documents 6 to 8 propose the use of a molded body made of expanded graphite for the structure of a heating facility such as floor heating, a silencer, and electromagnetic shielding. The molded body is produced by the following method. That is, the expandable graphite is incompletely expanded in the fluidized bed or already in the final mold under the supply of appropriate heat, and then the temperature is raised in the mold to terminate the expansion.
• Expandable graphite that has been incompletely expanded under the appropriate supply of heat is compressed into a semi-finished product in the mold and subsequently heated to terminate expansion in the mold .
-Wet treatment of expandable graphite in the mold will cause the graphite to expand under the supply of heat.
即ち、いずれの場合にも、膨張の最終段階は、最終成形型内で行われ、膨張完了後、圧縮は行なわれない。その成形型は、一方では、材料が所望形状となるようにするために、成形型が十分に閉じられ、他方では、空気が抜けるように、設計されねばならない。この方法で得られる成形体は、形状が安定し、均質な密度を有していなければならない。上述の方法の有利な形態において、膨張性黒鉛に、種々の追加材および補助材、特に結合剤が添加される。上述した製造方法では、成形型内に一様に分布された膨張性黒鉛の膨張が、全空間方向に向かって生ずるので、成形体における黒鉛の層平面は、際立った優先方向を有していない。従って、この成形体の熱伝導率は方向に無関係である。しかし、例えば壁暖房、天井暖房或いは床暖房のような平面的に配置された暖房装置要素と関係して利用するために、平面にわたる迅速且つ一様な熱分配を達成するために、平面内における優れた熱伝導が望まれる。上述した従来技術における別の欠点は、製造方法が不連続的であり、空気抜き可能な成形型の製造費が非常に高いことにある。 That is, in any case, the final stage of expansion is performed in the final mold, and compression is not performed after completion of expansion. The mold must on the one hand be designed so that the mold is sufficiently closed and, on the other hand, air can escape, so that the material has the desired shape. The molded body obtained by this method must be stable in shape and have a uniform density. In an advantageous form of the method described above, various additional materials and auxiliary materials, in particular binders, are added to the expandable graphite. In the above-described manufacturing method, the expansion of the expandable graphite uniformly distributed in the mold occurs in the entire space direction, so the graphite layer plane in the molded body does not have a distinct priority direction. . Therefore, the thermal conductivity of this compact is independent of direction. However, in order to achieve rapid and uniform heat distribution over a plane for use in connection with planarly arranged heating elements such as wall heating, ceiling heating or floor heating, for example, Excellent heat conduction is desired. Another drawback of the prior art described above is that the manufacturing method is discontinuous and the cost of manufacturing a mold that can be evacuated is very high.
本発明の課題は、上述の欠点が除去され、安価に連続的に製造できる膨張黒鉛から成る熱伝導板とその製造方法を提供することにある。 An object of the present invention is to provide a heat conductive plate made of expanded graphite which can eliminate the above-mentioned drawbacks and can be continuously manufactured at low cost, and a method for manufacturing the same.
この熱伝導板についての課題は、請求項1に記載の特徴によって解決され、その製造方法についての課題は、請求項23に記載の特徴によって解決される。本発明の有利な実施態様はそれぞれの従属請求項に記載されている。
The problem with the heat conducting plate is solved by the features of
本発明によれば、圧縮された黒鉛膨張体(Graphitexpandat)を含み、熱伝導が特に板表面に沿って行われる熱伝導板が得られる。この本発明に基づく熱伝導板は、結合剤および追加材の添加なしに、形状が安定している。本発明は更に、膨張黒鉛から成るそのような熱伝導板を連続して製造する方法を提供する。 According to the present invention, a heat conducting plate is obtained which contains a compressed graphite expansion body (Graphitexpandat) and in which heat conduction takes place in particular along the plate surface. The heat conductive plate according to the present invention is stable in shape without the addition of a binder and additional material. The present invention further provides a method for continuously producing such a heat conducting plate made of expanded graphite.
膨張黒鉛(黒鉛膨張体)の製造は、特に特許文献8(米国特許第3404061号明細書)で知られている。膨張黒鉛の製造のために、黒鉛填入化合物から黒鉛塩例えば硫化水素黒鉛或いは窒化黒鉛が、衝撃的に加熱される。その際、黒鉛粒子の体積は200〜400倍膨張し、総密度(ばら積材密度)が2〜20g/lに低下する。そのようにして得られたいわゆる黒鉛膨張体は、芋虫状或いはアコーデオン状凝集体から成っている。 The production of expanded graphite (graphite expanded body) is particularly known from US Pat. No. 3,404,061. For the production of expanded graphite, a graphite salt such as hydrogen sulfide graphite or graphite nitride is shockedly heated from the graphite filling compound. At that time, the volume of the graphite particles expands 200 to 400 times, and the total density (bulk material density) decreases to 2 to 20 g / l. The so-called graphite expanded body thus obtained consists of worm-like or accordion-like aggregates.
完全膨張された黒鉛が方向を整えた圧力作用下で圧縮されると、黒鉛の層表面は、圧力の作用方向に対して垂直に優先して配列し、その際、個々の凝集体は相互に引っ掛かり合う。これによって、結合剤の添加なしに、自己支持形の平面形状物、例えばシート板或いは板が製造される。本発明に基づく熱伝導板の製造および機能は、この作用効果に基づいている。なおその作用効果は、平形パッキン製造用の半製品として用いる厚さ0.15〜3mmの黒鉛フィルムの製造で知られている。本発明による熱伝導板は、黒鉛膨張体の圧縮中の、方向を整えた圧力作用に基づき、組織的に異方性を有し、そのため、本発明に基づく熱伝導板は、所定の特性の有利な異方性を伴っている。本発明に基づく熱伝導板において、板平面に対し平行な黒鉛層平面の優先方向づけのため、平面に対し平行な(即ち横方向における)熱伝導は、板平面に対し垂直な熱伝導に比べ優れている。従って、本発明に基づく熱伝導板は、黒鉛フィルムで公知の熱伝導率の異方性と、例えば軽量、高い温度安定性、電磁遮蔽性、火炎遮断作用、耐食性および隣接表面への良好な適合性のような膨張黒鉛の所定の用途にとって有利な他の特性とを兼ね備えている。 When fully expanded graphite is compressed under a directional pressure action, the graphite layer surface is preferentially aligned perpendicular to the pressure action direction, with the individual agglomerates being mutually Get caught. This produces a self-supporting planar shape, such as a sheet or plate, without the addition of a binder. The manufacture and function of the heat conducting plate according to the present invention is based on this effect. In addition, the effect is known by manufacture of the 0.15-3mm-thick graphite film used as a semi-finished product for flat packing manufacture. The heat conductive plate according to the present invention is systematically anisotropic based on the pressure action in which the direction of the expanded graphite body is compressed. Therefore, the heat conductive plate according to the present invention has a predetermined characteristic. With an advantageous anisotropy. In the heat conduction plate according to the present invention, the heat conduction parallel to the plane (that is, in the transverse direction) is superior to the heat conduction perpendicular to the plate plane because of the preferential orientation of the graphite layer plane parallel to the plate plane. ing. Therefore, the heat conducting plate according to the present invention has a known thermal conductivity anisotropy with a graphite film and a good fit to, for example, light weight, high temperature stability, electromagnetic shielding, flame shielding, corrosion resistance and adjacent surfaces. Combined with other properties advantageous for certain applications of expanded graphite.
本発明の他の詳細、特徴および利点を、以下、図および実施例を参照して説明する。 Other details, features and advantages of the invention will now be described with reference to the figures and examples.
本発明に従う熱伝導板は、代表的に8〜50mmの厚さを持つ。該板は、特に好適には20〜40mmの厚さを有する。建築工業に採用される壁、床および天井要素の代表的な寸法は、100×60cm〜300×100cmである。しかし本発明に基づく熱伝導板はそれら寸法に限定されない。その長さと幅は、その製造方法が狭い制限をつけない故、意図する用途の目的に応じ選択できる。本発明による熱伝導板での膨張黒鉛の密度は、0.01〜0.5g/cm3、好適には0.01〜0.4g/cm3、特に0.05〜0.25g/cm3である。従って本発明に基づく熱伝導板は、建築工業での用途に対し、軽量構造板における要件に合っている(総密度<400kg/m3)。 The heat conducting plate according to the present invention typically has a thickness of 8 to 50 mm. The plate particularly preferably has a thickness of 20 to 40 mm. Typical dimensions for wall, floor and ceiling elements employed in the building industry are between 100x60 cm and 300x100 cm. However, the heat conducting plate according to the present invention is not limited to these dimensions. The length and width can be selected according to the purpose of the intended use because the manufacturing method does not impose a narrow limit. The density of the expanded graphite in the heat conducting plate according to the invention is 0.01-0.5 g / cm 3 , preferably 0.01-0.4 g / cm 3 , in particular 0.05-0.25 g / cm 3. It is. Thus, the heat conducting plate according to the present invention meets the requirements for a lightweight structural plate for use in the building industry (total density <400 kg / m 3 ).
本発明に基づく熱伝導板の熱伝導率は、板平面に対し平行方向において少なくとも5.5W/m・Kであり、板平面に対して垂直方向において3.6W/m・Kである。即ち平面に対し平行な熱伝導率は、平面に対し垂直な熱伝導率より少なくとも50%大きい。板平面に対し平行な熱伝導率と、垂直な熱伝導率との比率は、膨張黒鉛の圧縮が強ければ強い程、即ち熱伝導板の密度が大きければ大きい程、大きくなる。本発明に基づく熱伝導板は、例えば流体熱媒体を利用する暖房装置や電気式暖房装置に採用される。流体熱媒体、例えば水を搬送すべく、例えば銅等の金属、プラスチック、例えばポリプロピレンや網状結合ポリウレタンから成る管が利用される。金属管は熱伝達性が良いので有利である。管2は熱伝導板1に、例えば管2が板表面と面一になるように埋設され(図1a参照)、又は部分的に埋設される。即ち管2の外周面の一部が熱伝導板1の表面から浮き彫り状に突出するよう埋設される(図1b参照)。板表面から突出した管の周囲空間3は、適当な材料で充填され、例えばセメントフロア上に、上塗り材や粉砕黒鉛が塗られる。また、電気式暖房装置の電熱線が、板表面上に敷かれるか、板表面に圧入される。
The thermal conductivity of the heat conducting plate according to the invention is at least 5.5 W / m · K in the direction parallel to the plate plane and 3.6 W / m · K in the direction perpendicular to the plate plane. That is, the thermal conductivity parallel to the plane is at least 50% greater than the thermal conductivity perpendicular to the plane. The ratio between the thermal conductivity parallel to the plate plane and the vertical thermal conductivity increases as the compression of the expanded graphite becomes stronger, that is, as the density of the heat conduction plate increases. The heat conductive plate based on this invention is employ | adopted for the heating apparatus and electric heating apparatus which utilize a fluid thermal medium, for example. In order to carry a fluid heating medium, for example water, a tube made of a metal such as copper, a plastic such as polypropylene or a net-bonded polyurethane is used. A metal tube is advantageous because of its good heat transfer. The
管2又は加熱要素を2枚の熱伝導板1、1′間に置き、両熱伝導板1、1′を互いに押し合わせてもよい(図1c参照)。膨張黒鉛から成る2枚の熱伝導板を互いに押し合わせて構成したこの複合板は、非常に形状が安定し、板の境界面で再び緩むことはない。この形態で、埋設管の直径をほんの僅かしか超過しない厚さの複合板を得るべく、薄い板を利用するとよい。本発明による熱伝導板では、板平面に対し垂直な熱伝導率が、平行な熱伝導率より小さい故、板表面と板内に埋設された加熱要素や加熱管との大きな間隔は不利である。管や電熱線は、板表面にわたり熱を一様に分布させるべく、例えば蛇行状又はスパイラル状に配置される。電気式暖房装置の電熱線は、同じ理由から、格子状や蛇行状に配置するとよい。しかし、本発明に基づく熱伝導板の高い熱伝導率のため、加熱管や電熱線は一様な熱分布を得べく、被加熱面上に、従来通常の壁暖房装置や天井暖房装置や床暖房装置において必要な、密な網目模様を形成するように配置する必要がない。即ち格子の目、蛇行のループ又はスパイラルのターン(巻回)を密集させる必要がなく、単位面積毎の少ない格子目、蛇行ループ或いはスパイラルターンで済ませ得る。この結果、管や電熱線の長さを短縮できる。かくして本発明の熱伝導板によれば、管材料や電熱線の必要量は、熱伝導板なしの壁暖房、天井暖房又は床暖房に比べ50%迄減少する。本発明による熱伝導板への管や電熱線の埋設は、建築現場で直接行うか、又は本発明による熱伝導板と電熱線や加熱管とで予め製作した建材要素を採用する。
A
最も単純な実施態様では、本発明に基づく熱伝導板は、全部が膨張黒鉛から成る。本発明による熱伝導板の機能と形状安定のために、追加材および補助材、特に結合剤は不要である。しかし、母材である黒鉛膨張体に金属繊維および/又は炭素繊維を加えることで、本発明に基づく板の熱伝導率と機械強度が高まる。好適には、それらの繊維の長さは0.2〜5mmである。それらの繊維の質量按分量は、好適には5〜40%である。 In the simplest embodiment, the heat conducting plate according to the invention consists entirely of expanded graphite. For the function and shape stabilization of the heat conducting plate according to the present invention, no additional materials and auxiliary materials, especially binders, are required. However, by adding metal fibers and / or carbon fibers to the graphite expanded body as a base material, the thermal conductivity and mechanical strength of the plate according to the present invention are increased. Preferably, the length of the fibers is 0.2-5 mm. The mass apportionment amount of these fibers is preferably 5 to 40%.
本発明に基づく熱伝導板の他の実施態様では、熱伝導板を、機械的作用および別の環境的作用に対する強度並びに気密性を高めるべく、全面的或いは部分的に、プラスチック、例えば樹脂、即ち熱可塑性樹脂で含浸する。その代わりに、或いはそれに加えて、熱伝導板の1つ又は複数の表面に、部分的に或いは全面的に、特に熱伝導板の見栄えの改善と取扱いの容易化、防火、水蒸気バリヤとしての作用、断熱性と消音性の改善、衝撃感度の低下等の所定の機能を満足する塗料、被膜或いは被覆を設け得る。 In another embodiment of the heat-conducting plate according to the invention, the heat-conducting plate is wholly or partly made of plastic, for example a resin, i.e. in order to increase the strength and hermeticity against mechanical and other environmental effects. Impregnated with thermoplastic resin. Instead, or in addition, it can act on one or more surfaces of the heat transfer plate, either partially or completely, in particular to improve the appearance and ease of handling of the heat transfer plate, to act as a fire barrier or water vapor barrier. Further, a paint, film or coating satisfying predetermined functions such as improvement of heat insulation and sound deadening and reduction of impact sensitivity can be provided.
熱伝導板上の被膜、例えばワニスやプラスチック層は、見栄えおよび取扱い性を改善するだけでなく、建築物の物理機能をも引き受けるか支援する。例えば金属含有ワニス層により電磁遮蔽性を改善できる。反射ワニス層は、隣接空間への熱放射を改善する。この機能は金属、例えばアルミ箔の被覆でも満される。断熱被膜は、例えば膨張ポリスチロール、ポリウレタン、ガラスウール又はミネラルウールから成る。これらは、熱損失を防止すべく、熱伝導板の被暖房室と反対側の表面に設けるとよい。 Coatings on the heat-conducting plates, such as varnishes and plastic layers, not only improve the appearance and handling, but also take on or support the physical functions of the building. For example, electromagnetic shielding properties can be improved by a metal-containing varnish layer. The reflective varnish layer improves the heat radiation to the adjacent space. This function is also fulfilled with a coating of metal, for example aluminum foil. The thermal barrier coating is made of, for example, expanded polystyrene, polyurethane, glass wool or mineral wool. These may be provided on the surface of the heat conducting plate opposite to the heated room in order to prevent heat loss.
本発明による熱伝導板を他の機能を持つ層で被覆するのに適した材料は、フリース、紙、ベニヤ板、平面繊維材料(織物、カーペット、ニット、編物等)、孔開き鋼板およびプラスチックフィルムや金属箔である。これら層状複合体は、熱伝導の他に補助的に建築物の物理機能を満し(上述参照)、且つ熱伝導板の機械的安定性を強化する故、特に有利である。熱伝導板の端面は、例えば見栄えを改善し衝撃感度を減少するのに適した材料、例えばベニヤ板、プラスチックシート板或いは金属シート板で被覆するとよい。本発明による熱伝導板の他の建築工業用途に対し、少なくとも1つの表面に、部分的又は全面的に、他の建築材料への結合を可能にする被覆を設けるとよい。それに適した被覆材料は、パテ、漆喰、上塗り材、モルタルおよびコンクリートである。 Suitable materials for coating the heat conducting plate according to the present invention with layers having other functions include fleece, paper, plywood, flat fiber materials (woven fabric, carpet, knit, knitted fabric, etc.), perforated steel plates and plastic films, Metal foil. These layered composites are particularly advantageous because they supplement the physical function of the building in addition to heat conduction (see above) and enhance the mechanical stability of the heat conducting plate. The end face of the heat conducting plate may be coated with a material suitable for improving the appearance and reducing the impact sensitivity, for example, a veneer plate, a plastic sheet plate or a metal sheet plate. For other building industry applications of the heat-conducting plate according to the invention, at least one surface may be provided with a coating that allows partial or complete bonding to other building materials. Suitable coating materials are putty, plaster, topcoat, mortar and concrete.
本発明に基づく膨張黒鉛製の熱伝導板は、単純な平面板形状に限定されない。本発明による熱伝導板は、窪み、溝或いはビード、刻み目、よりひも(Kordel)或いは粗面、継目および貫通部および別の特別な成形部を有し得る。更に、本発明に基づく熱伝導板に、ピン、山形材、ドリフトピン、フック、アンカ或いは他の接続要素を差し込める。これら要素は、板表面或いは板端面から突出し、隣接する熱伝導板或いは他の建材要素とのかみ合い結合および/又は摩擦結合を生ずる。 The heat conductive plate made of expanded graphite according to the present invention is not limited to a simple flat plate shape. The heat-conducting plate according to the invention can have indentations, grooves or beads, notches, Kordel or rough surfaces, seams and penetrations and other special shaped parts. Furthermore, pins, chevrons, drift pins, hooks, anchors or other connecting elements can be inserted into the heat conducting plate according to the invention. These elements protrude from the plate surface or plate end face and produce an intermeshing and / or frictional connection with adjacent heat conducting plates or other building material elements.
本発明の熱伝導板を通常の建築材料と組み合わせて、完全な建材要素、例えば軽量建材要素を作れる。該要素は、本発明に基づく少なくとも1つの熱伝導板と、少なくとももう1つの建材要素、例えば木板、石膏厚紙板、レンガ、軽石、耐火レンガ、石灰砂岩、タイル、多孔性のコンクリートブロック、コンクリート板又はクリンカータイルからなる。 The heat conducting plate of the present invention can be combined with ordinary building materials to make a complete building material element, for example a lightweight building material element. The element comprises at least one heat-conducting plate according to the invention and at least another building material element such as wood board, gypsum cardboard, brick, pumice, refractory brick, lime sandstone, tile, porous concrete block, concrete board Or it consists of clinker tiles.
膨張黒鉛製の熱伝導板と、上述の層状物質或いは建築材料とから成る上述の複合体を製造するために、熱伝導板および/又は複合体の別の構成部品を、各々他方の材料と接続すべき表面に、接着剤或いは複合相手の粘着を生じさせる媒体、例えばパテ、漆喰、モルタル或いは別の結合剤を着ける。しかし、個々の複合部品間を、例えばキー継手或いは例えば弾性フックのようなスナップ継手でかみ合い結合してもよい。 In order to produce the above-mentioned composite comprising a heat conductive plate made of expanded graphite and the above-mentioned layered substance or building material, each of the other components of the heat conductive plate and / or composite is connected to the other material. On the surface to be applied, an adhesive or a medium that causes a composite partner to stick is put on, for example putty, plaster, mortar or another binder. However, the individual composite parts may be engaged with each other by, for example, a key joint or a snap joint such as an elastic hook.
本発明に基づく熱伝導板の製造は、次の(i)、(ii)の基本工程を含む連続法で行える。即ち、工程(i)において、黒鉛膨張体を、選択的な追加圧縮を伴って、所望の密度と厚さを持つシート板の形に圧縮する。場合によっては、次に工程(ii)で、被覆、形状形成および材料複合体を製造すべく、追加加工する。その加工は、シート板に対し連続的に行うのがよい。但し、シート板からの板の切り出しは、必然的に不連続的に行う。 The production of the heat conducting plate according to the present invention can be performed by a continuous method including the following basic steps (i) and (ii). That is, in step (i), the expanded graphite is compressed into a sheet plate having a desired density and thickness with selective additional compression. In some cases, step (ii) is then further processed to produce a coating, shape formation and material composite. Its working is better to intends continuously line relative to the seat plate. However, the cutting of the plate from the sheet plate is necessarily performed discontinuously.
公知の黒鉛フィルム製造方法の場合、膨張した黒鉛粒子を、圧縮機およびロール対、通常は2組のロール対を経て導き、その際黒鉛膨張体を圧縮機に連続して供給する。ロール対間に、材料を加熱する加熱領域を配置する。この領域の温度は約600℃であり、緻密化時に材料から空気を排除するために用いる。圧縮機並びにロール対で、黒鉛膨張体に方向を整えて圧力を加え、その圧力で黒鉛粒子に層平面の平行な方向づけを生じさせる。この方法で、非常に薄い(厚さ0.15〜3mmの)フィルムが得られる。本発明に基づく熱伝導板に対し、そのような薄さは不要である。総密度が2.5〜5g/リットルの範囲にある黒鉛膨張体から、織物ベルト間の圧縮により既に、即ちロール対での更なる圧縮なしに、黒鉛を際立って方向づけしたシート板が得られることが明らかとなっている。 In the case of a known graphite film production method, expanded graphite particles are guided through a compressor and a roll pair, usually two pairs of rolls, and the graphite expanded body is continuously supplied to the compressor. A heating region for heating the material is disposed between the pair of rolls. The temperature in this region is about 600 ° C. and is used to exclude air from the material during densification. With a compressor and a roll pair, the graphite expanded body is oriented and pressure is applied, and the pressure causes the graphite particles to be oriented parallel to the layer plane. In this way very thin films (thickness 0.15-3 mm) are obtained. Such a thinness is not necessary for the heat conducting plate according to the present invention. From a graphite expanded body with a total density in the range of 2.5 to 5 g / l, sheet sheets are obtained in which the graphite is markedly oriented by compression between the woven belts, ie without further compression in roll pairs. Is clear.
圧縮機から出た直後に、シート板に別の処理、例えば含浸処理を施し、或いは他の材料で被覆する。場合によっては、母材として使用する黒鉛膨張体を圧縮機に入れる前に、炭素繊維や金属繊維を添加する。しかし、僅か10〜15mmの板厚さおよび/又は高い材料密度(0.5g/cm3)が必要な際、圧縮機から連続して到来する黒鉛シート板を、1組および/又は2組のロール対を通して導くことが重要であり、その際、ロール対間において加熱することもできる。この圧縮工程は、目的に適って、例えばフリースおよび紙、平面繊維材料(織物、カーペット、ニット、編物等)、プラスチックフィルム並びに金属箔のような他の平面材料から成る覆い層の設置と組み合わされる。 Immediately after leaving the compressor, the sheet plate is subjected to another treatment, for example an impregnation treatment, or coated with another material. In some cases, carbon fiber or metal fiber is added before the graphite expanded body used as a base material is put into the compressor. However, when a plate thickness of only 10-15 mm and / or a high material density (0.5 g / cm 3 ) is required, one and / or two sets of graphite sheet plates coming continuously from the compressor It is important to guide through the roll pairs, in which case heating can also take place between the roll pairs. This compression process is suitable for the purpose and combined with the installation of a covering layer made of other flat materials such as fleece and paper, flat fiber materials (woven fabrics, carpets, knits, knitted fabrics, etc.), plastic films and metal foils. .
それに連続的に或いは不連続的に続く次の工程で、選択的な追加圧縮を伴う連続圧縮過程で得た黒鉛シート板又は該シート板から切り出すか打抜いた板を、所望の使用形状にする。以下で全般的に追加加工と呼ぶこの工程は、含浸、被覆、冷間プレス法での板/シート板の部分変形および/又は圧縮、角形形成、例えばシート板/板の機械加工による形状成形、加熱管或いは電熱線の埋設、並びに本発明に基づく熱伝導板と通常の建材要素とから成る複合建材要素の製造のような多種多様の加工過程を含む。 In the next step, which continues continuously or discontinuously, the graphite sheet plate obtained in the continuous compression process with selective additional compression or the plate cut or punched from the sheet plate is made into a desired shape. . This process, generally referred to as additional processing below, includes impregnation, coating, partial deformation and / or compression of the plate / sheet plate in the cold pressing method, forming a square, eg shaping the sheet plate / plate by machining, It includes a wide variety of processing processes, such as the embedment of heating tubes or heating wires, and the manufacture of composite building material elements consisting of heat conducting plates and ordinary building material elements according to the present invention.
含浸および表面被覆処理に対し、従来からの多種多様な方法が利用できる。含浸処理は例えば浸漬法、吹付け法或いは加圧法、真空法又は真空法と加圧法との組合せ並びに流動床でも行える。ここで被覆とは、本発明に基づく板の表面を他の材料から成る層で覆うあらゆる処理を意味する。その材料は、液体に溶解或いは分散され、又は粉末状並びに平面層材料として存在する。かかる被覆は、例えば塗装法、ワニス塗り法、吹付け法、積層法或いは巻付け法で形成され、これら方法では、含浸法と異なり、本発明に基づく板の内部の完全浸透は生じない。本発明の特別な実施態様では、建材部品を溶融樹脂で被覆する。これは例えば温度調整流動床で行うか、押出し法で行うか或いは板の大きさから許されるなら、射出成形法で行える。本発明による熱伝導板と、シート板紙、フィルム、鋼板、ベニヤ板、フリース又は平面状繊維織物、或いはポリスチロール板やポリウレタン板等の建材半製品、ガラス繊維板、ミネラルウール板、木板、石膏厚紙板、耐火レンガ、レンガ、石灰砂岩、軽石、タイル、多孔性のコンクリートブロック或いはコンクリート板、リアポール石のような別の層材料との複合が、互いに接続すべき片側面又は両側面における接着剤、結合剤、パテ、モルタルおよび漆喰の利用、或いは材料間のかみ合い結合継手、例えばキー継手や弾性フック等のスナップ継手の形成によって行える。 A wide variety of conventional methods are available for impregnation and surface coating treatments. The impregnation treatment can be performed by, for example, an immersion method, a spraying method or a pressure method, a vacuum method or a combination of a vacuum method and a pressure method, and a fluidized bed. Covering here means any treatment in which the surface of the plate according to the invention is covered with a layer made of another material. The material is dissolved or dispersed in a liquid, or exists as a powder as well as a planar layer material. Such a coating is formed, for example, by a painting method, a varnishing method, a spraying method, a laminating method or a winding method, and in these methods, unlike the impregnation method, complete penetration of the inside of the plate according to the present invention does not occur. In a special embodiment of the invention, the building material part is coated with molten resin. This can be done, for example, in a temperature controlled fluidized bed, by extrusion, or by injection molding if allowed by the size of the plate. Heat conductive plate according to the present invention, sheet paperboard, film, steel plate, plywood board, fleece or flat fiber fabric, or semi-finished building materials such as polystyrene board and polyurethane board, glass fiber board, mineral wool board, wood board, gypsum cardboard board Adhesives, bonds on one or both sides to be connected to each other, composites with refractory bricks, bricks, lime sandstone, pumice, tiles, porous concrete blocks or concrete plates, rear pole stones, etc. It is possible to use agents, putty, mortar, and plaster, or to form interlock joints between materials, for example, snap joints such as key joints and elastic hooks.
黒鉛シート板をもう一度、冷間圧縮法で、ロール対で又はプレスにより不連続的に、全面的又は部分的に変形させ、圧縮する。圧縮と同時に、例えば溝やビード、刻み目、かがり溝又は粗面を形成すべく、エンボス加工ロールで形状成形を行う。これは、覆い層の設置前と設置後に行える。溝、接合部又は貫通部を製造するのに適した方法は、例えば切削加工、打抜き加工、エンボス加工、フライス加工、旋盤加工および形削り加工である。その機械加工の特に優れた方式は、噴射水切削法である。或いはその加工のため、摩耗粒子ビーム(サンドブラスト、凍結CO2小球)又はレーザビームが利用できる。 The graphite sheet plate is once again deformed and compressed, either in a cold compression manner, discontinuously, in pairs with a roll or with a press, either completely or partially. Simultaneously with the compression, the shape is formed with an embossing roll so as to form, for example, a groove, a bead, a notch, a grooved groove or a rough surface. This can be done before and after the covering layer is installed. Suitable methods for producing grooves, joints or penetrations are, for example, cutting, stamping, embossing, milling, turning and shaping. A particularly excellent method of machining is a spray water cutting method. Alternatively, a wear particle beam (sand blast, frozen CO 2 globules) or a laser beam can be used for the processing.
追加加工の段階で、場合によっては、熱媒体分配用管や電熱線のような機能構成要素の設置も行う。或いは、これを建築現場で直接行ってもよい。その追加加工は、特にロール製品として利用できず、例えば鋼板或いはボール紙、石膏および木材から成る板製品としてしか利用できない材料から被膜や複合体を製造する際、不連続的に行う。圧縮直後に得られたシート板にはまだ存在せず、シート板を板の形に切り出した際に初めて生ずる板端面のような面を被覆し、或いは他の方法で加工せねばならない際にも、不連続方法が必要である。更に、不連続的な追加加工は、作業工程の空間的、時間的分離を可能とする。 In the stage of additional processing, in some cases, functional components such as heat medium distribution pipes and heating wires are also installed. Alternatively, this may be done directly at the construction site. The additional processing is not performed as a roll product in particular, but is performed discontinuously when a film or a composite is manufactured from a material that can only be used as a plate product made of, for example, a steel plate or cardboard, gypsum and wood. Even when the sheet plate obtained immediately after compression does not exist yet, it must be processed by other methods such as coating the end face of the plate that occurs only when the sheet plate is cut into a plate shape. A discontinuous method is needed. Furthermore, the discontinuous additional processing enables spatial and temporal separation of work processes.
[実施例1]
2枚の織物ベルト間で粉末状黒鉛膨張体を連続して圧縮することで、厚さ25mmのシート板を製造した。この板から、長さ30cm、幅30cmのサンプルを切り出し、その密度を測定した。その結果、0.027g/cm3の値を得た。更に、x、yおよびz方向における比熱伝導率と比電気抵抗を測定した。その結果を、次の表1にまとめて示す。
[Example 1]
A sheet-like plate having a thickness of 25 mm was produced by continuously compressing a powdery graphite expanded body between two woven belts. A sample having a length of 30 cm and a width of 30 cm was cut out from the plate, and the density was measured. As a result, a value of 0.027 g / cm 3 was obtained. Furthermore, the specific heat conductivity and specific resistance in the x, y and z directions were measured. The results are summarized in Table 1 below.
電気伝導率並びに熱伝導率は際立った異方性を示す。熱および電流の伝達は、板表面に対し平行に、即ち、黒鉛層平面に沿って生ずる。 Electrical conductivity and thermal conductivity show significant anisotropy. Heat and current transfer occurs parallel to the plate surface, ie along the graphite layer plane.
[実施例2]
30×70cmの面積を持つ層複合建材部品を製造した。それを図2に示す。この複合体は、厚さ18mmの硬質繊維板4と、圧縮された黒鉛膨張体から成る厚さ9mmの熱伝導板1と、厚さ1mmの孔開き鋼板5とから成る。熱伝導板の背面の硬質繊維板4は断熱のため、正面の孔開き鋼板5は見栄えの改善のために用いる。硬質繊維板と熱伝導板は互いに貼着してある。孔開き鋼板は、層複合体をその長手側面で取り囲み、硬質繊維板4に存在する長手溝6、6′に固定保持されている。この層複合体は、例えば空調天井を構成するのに適する。熱伝導板1の硬質繊維板4と反対側の表面に、アルキメデス状スパイラル7の形に巻回した直径6mmのプラスチック管(以下で加熱スパイラルと呼ぶ)を、これが板表面と面一になるように埋設した。スパイラルの最外側ターンの直径は21cmとした。スパイラル7を板1のほぼ中央に配置した。即ち、スパイラル7の最外側ターンと板右側縁との距離を、板左側縁との距離とほぼ同じにし、最外側ターンと板上縁との距離を、板下縁との距離とほぼ同じにした。
[Example 2]
A layer composite building material part having an area of 30 × 70 cm was produced. This is shown in FIG. This composite is composed of a hard fiber plate 4 having a thickness of 18 mm, a heat
図3は、加熱スパイラル7を埋設した熱伝導板1を平面図で示す。比較対照のため、同じ寸法の層複合体を製造した。該層複合体は、本発明に基づく熱伝導板の代わりに、黒鉛板に埋設した加熱スパイラルと同じ大きさの3つの加熱スパイラルを互いに並べて埋設した石膏厚紙板を含む。これら両被試験体の加熱スパイラルに50℃の温水を貫流させた。両板の表面の、温水の貫流時間に応じた温度分布の変化を、赤外線サーモグラフィで追跡して検出した。試験の開始時、両側表面は25℃の温度を有し、表面にわたる温度勾配は認められなかった。板のスパイラルで包囲された領域とその周辺の温度の時間的経過を、表2に示す。
FIG. 3 is a plan view showing the heat
本発明による熱伝導板を備えた被試験体では、膨張黒鉛の高い横方向熱伝導率のため、通常の石膏板と3つの加熱スパイラルを備える被試験体に比べて、唯一の加熱スパイラルで、極めて急速な加熱および一様な温度分布が得られた。 In the test object provided with the heat conductive plate according to the present invention, due to the high lateral thermal conductivity of the expanded graphite, it is the only heating spiral compared to the test sample provided with a normal gypsum plate and three heating spirals. Very rapid heating and uniform temperature distribution was obtained.
1、1′ 熱伝導板、 2 流体熱媒体媒体貫流用の管、 3 塗料又は破砕黒鉛材で充填された空間、 4 硬質繊維板、 5 孔開き鋼板、 6、6′ 長手溝、 7 加熱スパイラル 1, 1 'heat conduction plate, 2 pipe for fluid heat medium flow, 3 space filled with paint or crushed graphite material, 4 hard fiber plate, 5 perforated steel plate, 6, 6' longitudinal groove, 7 heating spiral
Claims (32)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012263662A JP6099375B2 (en) | 2012-11-30 | 2012-11-30 | How to use expanded graphite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012263662A JP6099375B2 (en) | 2012-11-30 | 2012-11-30 | How to use expanded graphite |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004247719A Division JP2006064296A (en) | 2004-08-27 | 2004-08-27 | Heat conductive plate formed of expanded graphite and production method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013047607A true JP2013047607A (en) | 2013-03-07 |
JP6099375B2 JP6099375B2 (en) | 2017-03-22 |
Family
ID=48010677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012263662A Expired - Lifetime JP6099375B2 (en) | 2012-11-30 | 2012-11-30 | How to use expanded graphite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6099375B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6197171A (en) * | 1984-10-15 | 1986-05-15 | 新日本製鐵株式会社 | Expansion absorbing joint material for expandable graphite sheet-form brick |
JPS62275009A (en) * | 1986-02-20 | 1987-11-30 | Sugiro Otani | Impermeable carbon material and its production |
JPH0267127A (en) * | 1988-08-31 | 1990-03-07 | Ig Tech Res Inc | Fireproof panel |
JPH02231135A (en) * | 1989-03-03 | 1990-09-13 | Lignyte Co Ltd | Fire resistant composite material |
JPH0365505A (en) * | 1989-08-03 | 1991-03-20 | Hitachi Chem Co Ltd | Low density swollen graphite molded product and preparation thereof |
JPH06503412A (en) * | 1991-10-10 | 1994-04-14 | ソシエテ・ナシオナル・エルフ・アキテーヌ | Improved method for transferring heat and matter towards and/or through walls |
JP2000169125A (en) * | 1998-12-04 | 2000-06-20 | Matsushita Electric Ind Co Ltd | Graphite material and its production |
JP2002093554A (en) * | 2000-09-20 | 2002-03-29 | Toyo Tanso Kk | Heater body |
JP2006517156A (en) * | 2003-01-08 | 2006-07-20 | カルボヌ ロレーヌ コンポザン | Thermal insulation structures consisting of layers of expanded graphite particles compressed to different densities, thermal insulation elements made from these structures |
-
2012
- 2012-11-30 JP JP2012263662A patent/JP6099375B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6197171A (en) * | 1984-10-15 | 1986-05-15 | 新日本製鐵株式会社 | Expansion absorbing joint material for expandable graphite sheet-form brick |
JPS62275009A (en) * | 1986-02-20 | 1987-11-30 | Sugiro Otani | Impermeable carbon material and its production |
JPH0267127A (en) * | 1988-08-31 | 1990-03-07 | Ig Tech Res Inc | Fireproof panel |
JPH02231135A (en) * | 1989-03-03 | 1990-09-13 | Lignyte Co Ltd | Fire resistant composite material |
JPH0365505A (en) * | 1989-08-03 | 1991-03-20 | Hitachi Chem Co Ltd | Low density swollen graphite molded product and preparation thereof |
JPH06503412A (en) * | 1991-10-10 | 1994-04-14 | ソシエテ・ナシオナル・エルフ・アキテーヌ | Improved method for transferring heat and matter towards and/or through walls |
JP2000169125A (en) * | 1998-12-04 | 2000-06-20 | Matsushita Electric Ind Co Ltd | Graphite material and its production |
JP2002093554A (en) * | 2000-09-20 | 2002-03-29 | Toyo Tanso Kk | Heater body |
JP2006517156A (en) * | 2003-01-08 | 2006-07-20 | カルボヌ ロレーヌ コンポザン | Thermal insulation structures consisting of layers of expanded graphite particles compressed to different densities, thermal insulation elements made from these structures |
Also Published As
Publication number | Publication date |
---|---|
JP6099375B2 (en) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7132629B2 (en) | Heat-conducting plate of expanded graphite, composite and method for production | |
CA2866607C (en) | Thermally conductive composite element based on expanded graphite | |
US11192332B2 (en) | Backing layer of a thermal insulation panel for building having increased adhesion properties to an insulating layer | |
JP5399588B2 (en) | Insulator having a layered structure | |
WO2012000585A1 (en) | Insulating construction element, use of an insulating construction element and method for manufacturing an insulating construction element | |
CA2786180A1 (en) | Graphite-containing plate and method for producing a graphite-containing plate | |
EP3228449A1 (en) | Support layer of an insulation panel for construction | |
JP2005306731A (en) | Method for manufacturing shaped article from expanded graphite | |
JP2006064296A (en) | Heat conductive plate formed of expanded graphite and production method therefor | |
JP6099375B2 (en) | How to use expanded graphite | |
KR102172941B1 (en) | Hybrid Inorganic insulation board including hard part and soft part | |
JP2011190570A (en) | Laminated tabular body for wooden fire door, frame forming long body formed by cutting the same, and wooden fire door using the same | |
KR20140094899A (en) | Eco friendly lightweight block with porous, on-dol system and construction method thereof | |
KR100472088B1 (en) | Prefabricated heating panel and fabricating method thereof | |
CN101586377A (en) | Fire-proof adiabatic concrete sandwich wallboard and mounting method thereof | |
CN211735845U (en) | Homogeneous modified fireproof insulation board | |
JP2013067949A (en) | Inorganic plate | |
JPH0957880A (en) | Refractory laminated panel | |
RU65920U1 (en) | SANDWICH PANEL | |
CN105275168B (en) | A kind of fire-proof plate and preparation method thereof | |
JP7336284B2 (en) | Laminate and covering structure | |
JP6066401B2 (en) | Coating method | |
KR20140000807A (en) | Flame retardant piping material and manufacturing method thereof | |
JP2001279843A (en) | Fire resistant pannel | |
CN107938987A (en) | Heat accumulating type dry method floor heating fast spreading structure and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121227 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140421 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140722 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140725 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140922 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150116 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150123 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20150213 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160812 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6099375 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |