[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012511650A - Temperature-sensitive fluid flow interrupting device - Google Patents

Temperature-sensitive fluid flow interrupting device Download PDF

Info

Publication number
JP2012511650A
JP2012511650A JP2011540604A JP2011540604A JP2012511650A JP 2012511650 A JP2012511650 A JP 2012511650A JP 2011540604 A JP2011540604 A JP 2011540604A JP 2011540604 A JP2011540604 A JP 2011540604A JP 2012511650 A JP2012511650 A JP 2012511650A
Authority
JP
Japan
Prior art keywords
fluid
temperature
sensitive
valve
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011540604A
Other languages
Japanese (ja)
Other versions
JP5714500B2 (en
Inventor
ジュン、ジェユン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sudo Premium Engineering Co Ltd
Original Assignee
Sudo Premium Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080125055A external-priority patent/KR100901269B1/en
Priority claimed from KR1020090008875A external-priority patent/KR101041100B1/en
Priority claimed from KR1020090111530A external-priority patent/KR101142059B1/en
Application filed by Sudo Premium Engineering Co Ltd filed Critical Sudo Premium Engineering Co Ltd
Publication of JP2012511650A publication Critical patent/JP2012511650A/en
Application granted granted Critical
Publication of JP5714500B2 publication Critical patent/JP5714500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • G05D23/021Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste
    • G05D23/022Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste the sensing element being placed within a regulating fluid flow
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/09Component parts or accessories
    • E03B7/10Devices preventing bursting of pipes by freezing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/12Control of temperature without auxiliary power with sensing element responsive to pressure or volume changes in a confined fluid
    • G05D23/125Control of temperature without auxiliary power with sensing element responsive to pressure or volume changes in a confined fluid the sensing element being placed outside a regulating fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/1189Freeze condition responsive safety systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/1189Freeze condition responsive safety systems
    • Y10T137/1353Low temperature responsive drains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7737Thermal responsive

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Temperature-Responsive Valves (AREA)
  • Domestic Plumbing Installations (AREA)

Abstract

温度感応型流体流れ断続装置は、内部に流れ流体が流れる流体流れ管の流入部と排出部との間に設けられるハウジングと、前記ハウジング内に流れ流体を流入し、内部圧力の変化に応じて前記流れ流体の一部を前記ハウジングの外部に排出するように前記ハウジング内に設けられる弁ブロック、及び内部に充填された温度感応流体の温度変化に応じて前記弁ブロック内に圧力差を発生させる温度感応器を含む。外部の気温が低くなり、温度感応流体の温度が設定温度に到達すれば、ハウジング内の流れ流体の一部を外部に排出させることによって、流体流れ管の凍破を防止する。
【選択図】図1
The temperature-sensitive fluid flow interrupting device includes a housing provided between an inflow portion and a discharge portion of a fluid flow pipe in which a flow fluid flows inside, and the flow fluid flows into the housing in response to a change in internal pressure. A pressure difference is generated in the valve block in accordance with a temperature change of a valve block provided in the housing so as to discharge a part of the flow fluid to the outside of the housing and a temperature-sensitive fluid filled therein. Includes a temperature sensor. If the temperature of the external temperature becomes low and the temperature of the temperature-sensitive fluid reaches the set temperature, a part of the flow fluid in the housing is discharged to the outside to prevent the fluid flow pipe from being frozen.
[Selection] Figure 1

Description

本発明は温度感応型流体流れ断続装置に関し、更に詳しくは、温度感応部内の温度感応流体の温度が設定温度に到達すれば、流体流れ管内部の流れ流体の少量を排出させて流体流れ管の凍破を防止できる温度感応型流体流れ断続装置に関する。   The present invention relates to a temperature-sensitive fluid flow interrupting device, and more specifically, when the temperature of the temperature-sensitive fluid in the temperature-sensitive portion reaches a set temperature, a small amount of the flow fluid inside the fluid flow tube is discharged and the fluid flow tube is The present invention relates to a temperature-sensitive fluid flow interrupting device that can prevent freezing.

一般に、代表的な流体流れ管である水道配管内部の水は冬期のように外部の気温が非常に低くなれと凍るようになり、このように配管内で水が凍ると体積が増加し、水道配管に亀裂が生じてしまう。そのため、これを防止するための多様な装置及び方法が用いられてきた。   In general, water inside water pipes, which are typical fluid flow pipes, freezes when the outside temperature becomes very low as in winter, and the volume increases when water freezes in the pipes in this way. The pipe will crack. Therefore, various apparatuses and methods for preventing this have been used.

流体流れ管の凍破防止のための多くの装置及び方法は、流体流れ管内部の温度を感知して、その温度が所定温度以下である場合、外部から動力、例えば電源を流体流れ管に設置したヒータに供給して流体流れ管が凍らないように加熱する。しかし、このような装置及び方法は、その構成が複雑であり、電力消耗が激しいため、メンテナンス費用が多くかかるという問題がある。   Many devices and methods for preventing freezing of a fluid flow pipe sense the temperature inside the fluid flow pipe, and when the temperature is below a predetermined temperature, external power, for example, a power supply is installed in the fluid flow pipe. The fluid flow pipe is heated so that it does not freeze. However, such an apparatus and method have a problem that the configuration is complicated and the power consumption is severe, so that the maintenance cost is high.

そこで、本発明の目的は、流体流れ管に配置された温度感応部内の温度感応流体の温度が設定温度に到達すれば、外部からの動力供給なしに少量の流れ流体を流体流れ管の外部に排出することによって、流体流れ管の凍破を防止する温度感応型流体流れ断続装置を提供することにある。   Accordingly, an object of the present invention is to provide a small amount of flow fluid to the outside of the fluid flow pipe without supplying power from the outside if the temperature of the temperature sensitive fluid in the temperature sensitive portion arranged in the fluid flow pipe reaches the set temperature. It is an object of the present invention to provide a temperature sensitive fluid flow interrupting device that prevents the fluid flow pipe from being frozen by discharging.

前述した目的を達成するための本発明の態様による温度感応型流体流れ断続装置は、内部に流れ流体が流れる流体流れ管の流入部と排出部との間に設けられるハウジングと、前記ハウジング内に流れ流体を流入し、内部圧力の変化に応じて前記流れ流体の一部を前記ハウジングの外部に排出するように前記ハウジング内に設けられる弁ブロックと、内部に充填された温度感応流体の温度変化に応じて前記弁ブロック内に圧力差を発生させる温度感応器とを含むことを特徴とする。   A temperature-sensitive fluid flow interrupting device according to an aspect of the present invention for achieving the above-described object includes a housing provided between an inlet portion and an outlet portion of a fluid flow pipe through which a fluid flows, and the housing. A valve block provided in the housing so as to flow in a flow fluid and discharge a part of the flow fluid to the outside in response to a change in internal pressure, and a temperature change of the temperature-sensitive fluid filled in the interior And a temperature sensor that generates a pressure difference in the valve block.

本発明によれば、外部の気温が低くなり、温度感応部の内部に充填された温度感応流体の温度が設定温度に到達すると、ハウジング内の少量の流れ流体を外部に排出させることによって、流体流れ管の凍破を防止できる。   According to the present invention, when the temperature of the external temperature becomes low and the temperature of the temperature-sensitive fluid filled in the temperature-sensitive part reaches the set temperature, a small amount of flowing fluid in the housing is discharged to the outside. Can prevent freezing of the flow tube.

本発明の第1実施形態による温度感応型流体流れ断続装置の構成を示す概略図である。It is the schematic which shows the structure of the temperature sensitive type fluid flow interruption apparatus by 1st Embodiment of this invention. 図1の温度感応型流体流れ断続装置で温度感応流体の温度が設定温度に到達する場合、温度感応器が膨張する状態を示す図である。It is a figure which shows the state which a temperature sensitive device expand | swells when the temperature of a temperature sensitive fluid reaches | attains preset temperature with the temperature sensitive type fluid flow interruption apparatus of FIG. 本発明の第2実施形態による温度感応型流体流れ断続装置の構成を示す概略図である。It is the schematic which shows the structure of the temperature sensitive type fluid flow interruption apparatus by 2nd Embodiment of this invention. 図3の温度感応型流体流れ断続装置で温度感応流体の温度が設定温度に到達する場合、温度感応器が膨張する状態を示す図である。FIG. 4 is a diagram illustrating a state in which a temperature sensitive device expands when the temperature of the temperature sensitive fluid reaches a set temperature in the temperature sensitive fluid flow interrupting device of FIG. 3. 図3の温度感応型流体流れ断続装置の上部の排出管と流体貯蔵室との間の第2流路にが設けられた緩衝室の詳細図である。FIG. 4 is a detailed view of a buffer chamber provided in a second flow path between the upper discharge pipe and the fluid storage chamber of the temperature-sensitive fluid flow interrupting device of FIG. 3. 本発明の第3実施形態による温度感応型流体流れ断続装置の構成を示す概略図である。It is the schematic which shows the structure of the temperature sensitive type fluid flow interruption apparatus by 3rd Embodiment of this invention. 図6の温度感応型流体流れ断続装置で温度感応流体の温度が設定温度に到達する場合、温度感応器が膨張する状態を示す図である。FIG. 7 is a diagram illustrating a state in which the temperature sensitive device expands when the temperature of the temperature sensitive fluid reaches the set temperature in the temperature sensitive fluid flow interrupting device of FIG. 6. 温度感応流体の設定温度を可変するホルダの詳細図である。It is detail drawing of the holder which varies the preset temperature of a temperature sensitive fluid. 本発明の第4実施形態による温度感応型流体流れ断続装置の構成を示す概略図である。It is the schematic which shows the structure of the temperature sensitive type fluid flow interruption apparatus by 4th Embodiment of this invention. 図9の温度感応型流体流れ断続装置内の温度感応部の変形実施形態を示す概略図である。FIG. 10 is a schematic diagram illustrating a modified embodiment of a temperature sensitive portion in the temperature sensitive fluid flow interrupting device of FIG. 9. 図9の上部流入通路に配置された一方向弁を示す図である。It is a figure which shows the one-way valve arrange | positioned at the upper inflow path of FIG. 流体排出口が流体流れ管に連通することを示す図である。It is a figure which shows that a fluid discharge port is connected to a fluid flow pipe. 図9の温度感応型流体流れ断続装置に追加された設定温度可変装置の構成を示す概略図である。It is the schematic which shows the structure of the preset temperature variable apparatus added to the temperature sensitive type fluid flow interruption apparatus of FIG. 図9の温度感応型流体流れ断続装置でハウジング内の流れ流体の温度が設定温度に到達する場合、ベローズが収縮する状態を示す図である。FIG. 10 is a diagram illustrating a state in which the bellows contracts when the temperature of the flowing fluid in the housing reaches a set temperature in the temperature-sensitive fluid flow interrupting device of FIG. 9. 図14のベローズの収縮作動に続いて、圧力解除室内の流体が流体貯蔵タンクに移送される状態を示す図である。FIG. 15 is a diagram illustrating a state in which the fluid in the pressure release chamber is transferred to the fluid storage tank following the contraction operation of the bellows in FIG. 14. 図15の圧力解除室内の流体の流体貯蔵タンクへの移送作動に次いで、弁室内の流体が圧力解除室に移送される状態を示す図である。FIG. 16 is a diagram illustrating a state in which the fluid in the valve chamber is transferred to the pressure release chamber following the operation of transferring the fluid in the pressure release chamber to the fluid storage tank in FIG. 15. 図16の弁室内流体の圧力解除室への移送作動に次いで、流体貯蔵タンク内の流れ流体が流体排出口を通じて排出される状態を示す図である。It is a figure which shows the state from which the flow fluid in a fluid storage tank is discharged | emitted through a fluid discharge port following the transfer operation | movement to the pressure release chamber of the valve chamber fluid of FIG.

以下、本発明の好適な実施形態を添付する図面を参照して本発明の技術分野における通常の知識を有する者が容易に実施できるように、更に詳細に説明するが、これは例示に過ぎないものであり、本発明がこれに制限されるものではない。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings so as to be easily implemented by those having ordinary skill in the art of the present invention. However, the present invention is not limited to this.

図1は、本発明の第1実施形態による温度感応型流体流れ断続装置の構成を示し、図2は、図1の温度感応型流体流れ断続装置で温度感応流体の温度が設定温度に到達する場合、温度感応器が膨張する動作を示している。   FIG. 1 shows the configuration of a temperature-sensitive fluid flow interrupting device according to a first embodiment of the present invention, and FIG. 2 shows the temperature-sensitive fluid flow interrupting device of FIG. 1 where the temperature of the temperature-sensitive fluid reaches a set temperature. In the case, the operation of the temperature sensitive device is shown.

図1に示すように、本発明の第1実施形態による温度感応型流体流れ断続装置は、一部が外部に露出される開放部220が形成され、内部に流体(以下、「流れ流体」という)が流れる流体流れ管120、140の流入部と排出部との間に設けられるハウジング200と、ハウジング200内の流れ流体を流入し、内部圧力の変化に応じて少量の流れ流体を流体排出室240を通じてハウジング200の開放部220と連通するように、ハウジング200内に設けられる弁ブロック300と、温度感応流体471の温度変化に応じて弁ブロック300内に圧力差を発生させる温度感応器を含む。本発明の実施形態において、ハウジング200内の流れ流体が温度感応流体471の温度が外部に排出される設定温度に到達すると、弁ブロック300内に圧力差が発生して弁ブロック300内の流れ流体をハウジング200の開放部220と連通する流体排出室240を通じて外部に排出する。ここで、設定温度とは、ハウジング200内の流れ流体が凍る前の温度を意味する。本発明では外部の気温が低くなり、温度感応流体の温度が設定温度になる度に流体流れ管内の流れ流体の少量を外部に排出することによって、流体流れ管の凍破を防止する。   As shown in FIG. 1, the temperature-sensitive fluid flow interrupting device according to the first embodiment of the present invention has an open portion 220 that is partially exposed to the outside, and a fluid (hereinafter referred to as “flow fluid”) inside. ) Through which the fluid flows in the fluid flow pipes 120 and 140, the housing 200, the fluid flowing in the housing 200 flows in, and a small amount of fluid flows in the fluid discharge chamber in accordance with the change in internal pressure. 240 includes a valve block 300 provided in the housing 200 so as to communicate with the open portion 220 of the housing 200 and a temperature sensor that generates a pressure difference in the valve block 300 according to a temperature change of the temperature-sensitive fluid 471. . In the embodiment of the present invention, when the flow fluid in the housing 200 reaches a set temperature at which the temperature of the temperature sensitive fluid 471 is discharged to the outside, a pressure difference is generated in the valve block 300 and the flow fluid in the valve block 300 is generated. Is discharged to the outside through a fluid discharge chamber 240 communicating with the opening 220 of the housing 200. Here, the set temperature means a temperature before the flowing fluid in the housing 200 is frozen. In the present invention, every time the temperature of the temperature-sensitive fluid becomes lower than the set temperature, the fluid flow pipe is prevented from freezing by discharging a small amount of the flow fluid in the fluid flow pipe to the outside.

温度感応器は、弁ブロック300とキャップ形状の温度感応部420を含む。弁ブロック300は、その内部に互いに連通する弁室340と反応室320とを含む。温度感応部420は、その内部に温度感応流体471が充填されてホルダ402により、弁ブロック300の上部に設けられる。反応室320は温度感応部420と連通し、温度感応部420内には温度感応流体471の凝縮と膨張によって膨張したり、収縮する皺部440が設けられ、温度感応部420内に充填される温度感応流体417の温度はハウジング200内の流れ流体の温度よりも常に低い状態であることが好ましい。皺部440の内部には皺部440の膨張と収縮によって昇降するピストン部材460が設けられ、ピストン部材460にはバネ480が外部面に嵌合されてピストン部材460を下方へ加圧するようになっている。   The temperature sensor includes a valve block 300 and a cap-shaped temperature sensor 420. The valve block 300 includes a valve chamber 340 and a reaction chamber 320 that communicate with each other. The temperature sensitive portion 420 is filled with a temperature sensitive fluid 471 and is provided on the upper portion of the valve block 300 by the holder 402. The reaction chamber 320 communicates with the temperature sensitive part 420, and the temperature sensitive part 420 is provided with a flange part 440 that expands or contracts due to condensation and expansion of the temperature sensitive fluid 471, and is filled in the temperature sensitive part 420. The temperature of the temperature sensitive fluid 417 is preferably always lower than the temperature of the flowing fluid in the housing 200. A piston member 460 that moves up and down by expansion and contraction of the flange portion 440 is provided inside the flange portion 440, and a spring 480 is fitted to the outer surface of the piston member 460 to pressurize the piston member 460 downward. ing.

弁ブロック300の反応室320では温度感応部420のピストン部材460が昇降する。反応室320は、第1流路310を通じて弁室340と連通し、弁室340は排出管360を通じて流体排出室240と連通し、反応室320と排出管360との間には第2流路314が連結されている。   In the reaction chamber 320 of the valve block 300, the piston member 460 of the temperature sensitive part 420 moves up and down. The reaction chamber 320 communicates with the valve chamber 340 through the first flow path 310, the valve chamber 340 communicates with the fluid discharge chamber 240 through the discharge pipe 360, and the second flow path between the reaction chamber 320 and the discharge pipe 360. 314 is connected.

弁室340にはピストン弁328が介在されてハウジング200内の流れ流体を流入する上部流入通路322と、排出管360を覆うように設けられたゴムパッド弁324と、ゴムパッド弁324の開放時に排出管360と連通するように設けられた下部流入通路326が提供される。図面において、ゴムパッド弁324下部の説明を省略した符号316はシーリングである。ピストン弁328は、バネ342により常に下方へ加圧されることが好ましい。ピストン弁328は、所定の規定圧力、例えば、1〜3kgf/mの圧力でゴムパッド弁324を加圧しなければならない。若し、この圧力以下、例えば0.5kgf/mの圧力でゴムパッド弁324を押すと、ピストン弁328が持ち上げられて流れ流体が漏れる現象が発生するので、これを防止するためである。 A piston valve 328 is interposed in the valve chamber 340, an upper inflow passage 322 for flowing a fluid in the housing 200, a rubber pad valve 324 provided so as to cover the discharge pipe 360, and a discharge pipe when the rubber pad valve 324 is opened. A lower inflow passage 326 provided to communicate with 360 is provided. In the drawing, reference numeral 316 which omits the description of the lower part of the rubber pad valve 324 is a sealing. The piston valve 328 is preferably always pressed downward by the spring 342. The piston valve 328 must pressurize the rubber pad valve 324 with a predetermined specified pressure, for example, a pressure of 1 to 3 kgf / m 2 . If the rubber pad valve 324 is pushed at a pressure lower than this pressure, for example, 0.5 kgf / m 2 , the piston valve 328 is lifted up and a phenomenon of fluid leakage occurs. This is to prevent this.

また、反応室320にはピストン部材460の昇降によって昇降することにより、第1流路310を開閉するように設けられた第1弁体380が介在されている。第1弁体380は中空部材382と、この中空部材382の下部に挿入された弾性のゴム部材384と、中空部材382の上部に順次挿入されたバネ386と接触部材388とを含む。接触部材388はピストン部材460の下端部と弾性的に当接している。ゴム部材384は、第1流路310の気密性を高めるためのものである。   In addition, a first valve body 380 is provided in the reaction chamber 320 so as to open and close the first flow path 310 by moving up and down by moving the piston member 460 up and down. The first valve body 380 includes a hollow member 382, an elastic rubber member 384 inserted into the lower portion of the hollow member 382, a spring 386 and a contact member 388 sequentially inserted into the upper portion of the hollow member 382. The contact member 388 is in elastic contact with the lower end of the piston member 460. The rubber member 384 is for increasing the airtightness of the first flow path 310.

一方、温度感応部420内の温度感応流体471が膨張しすぎると、この膨張した圧力によりピストン部材460が下降し、第1弁体380下部のゴム部材384を過度に押す現象が発生し、ゴム部材384の破損による気密性の低下と押された程度だけの流れ流体の排出時点が変わるようになる。本発明は、温度感応流体471の過度な膨張により、ピストン部材460が第1弁体380を必要以上の圧力で押しても、バネ386が必要以上の圧力を吸収して、ゴム部材384と第1弁体380の損傷を防止することになる。   On the other hand, if the temperature-sensitive fluid 471 in the temperature-sensitive part 420 expands too much, the piston member 460 descends due to the expanded pressure, and a phenomenon that excessively presses the rubber member 384 below the first valve body 380 occurs. The deterioration of the airtightness due to the breakage of the member 384 and the discharge point of the flowing fluid to the extent pushed are changed. In the present invention, even if the piston member 460 pushes the first valve body 380 with an excessive pressure due to excessive expansion of the temperature-sensitive fluid 471, the spring 386 absorbs an excessive pressure, and the rubber member 384 and the first Damage to the valve body 380 will be prevented.

一方、流体排出室240には排出管360を開閉するように設けられた第2弁体260が提供され、第2弁体260は中空部材262と、この中空部材262の下部に一端が挿入され、ハウジング200の開放部220に他端が付着されて上方へ加圧するように付着されたバネ264と、中空部材262の上部に挿入された弾性のゴム部材266を含む。ゴム部材266も排出管360の気密性を高めるためのものである。   On the other hand, the fluid discharge chamber 240 is provided with a second valve body 260 provided to open and close the discharge pipe 360. The second valve body 260 has a hollow member 262 and one end inserted into the lower portion of the hollow member 262. The spring 264 is attached so that the other end is attached to the open portion 220 of the housing 200 and pressurizes upward, and an elastic rubber member 266 inserted into the upper portion of the hollow member 262. The rubber member 266 is also for improving the airtightness of the discharge pipe 360.

温度感応部420には温度感応流体471としてガスが充填されている。このようなガスは、一般に冷却器で用いられるフレオン系、非フレオン系冷媒ガスを含んでもよい。外部の温度が低くなってガスが凝縮すると、温度感応部420内に空間が生じることにより、ピストン部材460に嵌合されていたバネ480によりピストン部材460が上昇する。その結果、皺部440も膨張するようになる。しかし、これとは反対に、温度が高くなってガスが膨張すると、ピストン部材460が下降して皺部440も収縮する。このように、温度が高くなると膨張し、温度が低くなると収縮する性質を有するならば、前述したガス以外の他の温度感応流体、例えば、アセトン(acetone)、アルコール(alcohol)、エタノール(ethanol)、メタノール(methanol)などが温度感応部420内に充填され得るのはもちろんである。このように構成された本発明の温度感応型流体流れ断続装置は、温度感応部420に充填された温度感応流体471の温度が設定温度に到達して凝縮すると、図2に示すように、バネ480の弾性によりピストン部材460が上昇することによって、皺部440が伸ばされると同時に、第1流路310を閉鎖していた第1弁体380が反応室320内で上昇して第1流路310が開放されて、弁室340の上部流入通路322を通じて流入し、弁室340と第1流路310とに充填されていた流れ流体が反応室320に流入し始める。   The temperature sensitive part 420 is filled with gas as the temperature sensitive fluid 471. Such gas may include Freon-based and non-Freon-based refrigerant gas generally used in a cooler. When the external temperature decreases and the gas condenses, a space is generated in the temperature sensitive portion 420, and the piston member 460 is raised by the spring 480 fitted to the piston member 460. As a result, the collar part 440 also expands. However, on the contrary, when the temperature rises and the gas expands, the piston member 460 descends and the flange 440 contracts. As described above, other temperature-sensitive fluids other than the above-described gases, such as acetone, alcohol, ethanol, etc., can be used as long as the temperature expands and contracts when the temperature decreases. Of course, methanol may be filled in the temperature sensitive part 420. When the temperature of the temperature-sensitive fluid 471 filled in the temperature-sensitive part 420 reaches the set temperature and condenses, the temperature-sensitive fluid flow interrupting device of the present invention configured as described above, as shown in FIG. As the piston member 460 rises due to the elasticity of 480, the flange 440 is extended, and at the same time, the first valve body 380 that has closed the first flow path 310 rises in the reaction chamber 320, and the first flow path 310 is opened and flows in through the upper inflow passage 322 of the valve chamber 340, and the flow fluid filled in the valve chamber 340 and the first flow path 310 starts to flow into the reaction chamber 320.

ところが、上部流入通路322にはピストン弁328が介在されているため、弁室340から第1流路310を通じて反応室320に流入する流れ流体の量よりも上部流入通路322を通じて弁室340に流入する量が遥かに少ない。これにより、弁室340の水圧、即ち、ゴムパッド弁324上部の水圧は低くなる。反面、ゴムパッド弁324の下部はゴムパッド弁324の下部に形成された下部流入通路326を通じて流入していた流れ流体により圧力がかかっているため、ゴムパッド弁324を中心にその上下部の間で圧力差が発生する。その結果、ゴムパッド弁324が、図2に示すように上昇し、下部の流入通路326と排出管360とが互いに連通するようになる。これにより、ハウジング200内の流れ流体が排出管360に流入して流体排出口240の第2弁体260を下降させて、排出管360を開放させることによって開放部220を通じて流れ流体を排出する。その結果、流体流れ管120、140内の流れ流体の温度を常に設定温度以上に維持することになり、流体流れ管120、140の凍破を防止するのである。   However, since the piston valve 328 is interposed in the upper inflow passage 322, it flows into the valve chamber 340 through the upper inflow passage 322 rather than the amount of fluid flowing into the reaction chamber 320 from the valve chamber 340 through the first flow path 310. Much less to do. Thereby, the water pressure in the valve chamber 340, that is, the water pressure in the upper part of the rubber pad valve 324 is lowered. On the other hand, since the lower part of the rubber pad valve 324 is pressurized by the fluid flowing in through the lower inflow passage 326 formed in the lower part of the rubber pad valve 324, the pressure difference between the upper and lower parts around the rubber pad valve 324 is the center. Occurs. As a result, the rubber pad valve 324 rises as shown in FIG. 2, and the lower inflow passage 326 and the discharge pipe 360 communicate with each other. As a result, the flow fluid in the housing 200 flows into the discharge pipe 360, lowers the second valve body 260 of the fluid discharge port 240, and opens the discharge pipe 360, thereby discharging the flow fluid through the opening 220. As a result, the temperature of the flow fluid in the fluid flow pipes 120 and 140 is always maintained at a set temperature or higher, and the fluid flow pipes 120 and 140 are prevented from freezing.

一方、ゴムパッド弁324が上昇することによって、上部流入通路322に介在されているピストン弁328を押し上げて、上部流入通路322を閉鎖する。そして、第1弁体380が次第に上昇して第2流路314を開放すると、弁室340から反応室320に流入する流れ流体は第2流路314を通じて排出管360に流入する。   On the other hand, when the rubber pad valve 324 rises, the piston valve 328 interposed in the upper inflow passage 322 is pushed up, and the upper inflow passage 322 is closed. When the first valve body 380 gradually rises to open the second flow path 314, the flow fluid flowing from the valve chamber 340 into the reaction chamber 320 flows into the discharge pipe 360 through the second flow path 314.

代表的に流体流れ管を水道管とすれば、通常、水道管の水圧は2〜3kgf/cm程度の値であるため、流れ流体、即ち、水が外部に排出される時の流速は非常に速い。従って、ベルヌーイの原理により流れ流体の排出時に第2流路314を通じて排出管360に流入する流れ流体も全て排出されるため、上部流入通路322が閉鎖された弁室340と、貯蔵室320及び第2流路314の内部は常に流れ流体がない空いている状態に維持される。 Typically, if the fluid flow pipe is a water pipe, the water pressure of the water pipe is usually a value of about 2 to 3 kgf / cm 2 , so the flow velocity when the flow fluid, that is, water is discharged to the outside is very high. Very fast. Accordingly, since all the flow fluid flowing into the discharge pipe 360 through the second flow path 314 is discharged when the flow fluid is discharged according to the Bernoulli principle, the valve chamber 340 in which the upper inflow passage 322 is closed, the storage chamber 320, The inside of the two flow paths 314 is always maintained in a vacant state with no flow fluid.

ところが、温度感応部420内の温度感応流体471が設定温度以下になると、ハウジング200の開放部220を通じて流体流れ管120、140内の流れ流体が一定時間少量排出される。しかし、排出初期に規定された排出量の100%が排出されなくなった場合、排出される流れ流体が凍結して開放部220を閉鎖することもあり得る。従って、これを防止する時点と、排出される時点と排出を止める時点との間隙を減らすこと、即ち、排出を円滑に開始し停止させることが排出水の消耗を最小化できるという点が好ましい。これは、本発明の第1実施形態において、反応室320内でピストン部材460に押されていた第1弁体380と、流体排出室240の第2弁体260により達成される。即ち、第1弁体380の接触部材388がバネ386に弾止された状態でピストン部材460により押されているため、ピストン部材460を迅速に上昇させることで、排出の開始を円滑にできる。また、第2弁体260もバネ264により上方へ加圧されることによって、排出管360を迅速に閉鎖して流れ流体の排出の止めを円滑に行える。   However, when the temperature-sensitive fluid 471 in the temperature-sensitive portion 420 falls below the set temperature, a small amount of the flowing fluid in the fluid flow pipes 120 and 140 is discharged through the open portion 220 of the housing 200 for a certain period of time. However, if 100% of the discharge amount defined in the initial discharge is not discharged, the discharged flow fluid may freeze and close the opening 220. Therefore, it is preferable that reducing the gap between the time point at which this is prevented and the time point at which the discharge is stopped and the time point at which the discharge is stopped, that is, starting and stopping the discharge smoothly can minimize the drainage of the discharged water. This is achieved by the first valve body 380 pushed by the piston member 460 in the reaction chamber 320 and the second valve body 260 of the fluid discharge chamber 240 in the first embodiment of the present invention. That is, since the contact member 388 of the first valve body 380 is pushed by the piston member 460 in a state where the contact member 388 is retained by the spring 386, the discharge can be started smoothly by raising the piston member 460 quickly. Further, the second valve body 260 is also pressurized upward by the spring 264, so that the discharge pipe 360 can be quickly closed to smoothly stop the discharge of the flowing fluid.

図3は、本発明の第2実施形態による温度感応型流体流れ断続装置の構成を示しており、図4は、図3の流体流れ断続装置で温度感応流体の温度が設定温度に到達する場合、温度感応器が膨張する動作を示している。   FIG. 3 shows a configuration of a temperature-sensitive fluid flow interrupting device according to a second embodiment of the present invention. FIG. 4 shows a case where the temperature of the temperature-sensitive fluid reaches a set temperature in the fluid flow interrupting device of FIG. The operation of the temperature sensitive device is shown.

図3及び図4に示す本発明の第2実施形態による温度感応型流体流れ断続装置は初期に流れ流体を排出する時、その排出流量を調節できるように、図1及び図2に示す第1実施形態の流体排出室の代りに、排出流量調節器の構成が追加されたものであるので、図1及び図2の実施形態と同一の構成には同じ図面符号を付し、それに関する詳細な説明は省略した。   The temperature-sensitive fluid flow interrupting device according to the second embodiment of the present invention shown in FIGS. 3 and 4 can adjust the discharge flow rate when the flow fluid is discharged at the initial stage. Since the configuration of the discharge flow rate regulator is added instead of the fluid discharge chamber of the embodiment, the same components as those of the embodiment of FIGS. The explanation was omitted.

第2実施形態において、図1及び図2に示す第2流路314に排出流量調節器が設けられる。排出流量調節器は、流体貯蔵室520とこの流体貯蔵室520と連通する第2弁室540とからなる。本実施形態において、排出管360は中央がオリフィス管のように構成され、その上部は第2弁室540と連通しており、その下部は流体貯蔵室520と連通している。   In the second embodiment, an exhaust flow rate regulator is provided in the second flow path 314 shown in FIGS. The discharge flow rate regulator includes a fluid storage chamber 520 and a second valve chamber 540 communicating with the fluid storage chamber 520. In the present embodiment, the discharge pipe 360 is configured such that the center thereof is an orifice pipe, the upper part thereof communicates with the second valve chamber 540, and the lower part thereof communicates with the fluid storage chamber 520.

流体貯蔵室520は第2流路314を開閉するように設けられた弁部材522とこの弁部材522を下方へ加圧するように設けられたバネ524とを含み、弁部材522が上昇すると、反応室320内の流れ流体が第2流路314を通じて流入する。   The fluid storage chamber 520 includes a valve member 522 provided to open and close the second flow path 314 and a spring 524 provided so as to pressurize the valve member 522 downward. The fluid flowing in the chamber 320 flows through the second flow path 314.

また、流体貯蔵室520には所定の高さに下部の排出管360と連通する第3流路362が提供され、弁部材522が所定の高さ以上上昇すると、第3流路362を通じて流入した流れ流体が下部の排出管360を通じて排出される。   The fluid storage chamber 520 is provided with a third flow path 362 communicating with the lower discharge pipe 360 at a predetermined height. When the valve member 522 rises above a predetermined height, it flows through the third flow path 362. The flowing fluid is discharged through the lower discharge pipe 360.

一方、第2弁室540は弁室340と類似する構成を有する。第2弁室540は、流体貯蔵室520に流入した流れ流体を流入するように、流体貯蔵室520との連通路542に介在されてピストン弁544と、第2流路314を覆うように設けられたゴムパッド弁346とを含む。ところが、ゴムパッド弁346が開放されと、排出管360を通じて排出される流れ流体の流速により第2弁室540に負圧が生じ、流れ流体の一部が第2流路314を通じて吸い込まれる。その後、バネ524によりピストン弁544が下降しながら、ゴムパッド弁346が閉じられる。   On the other hand, the second valve chamber 540 has a configuration similar to that of the valve chamber 340. The second valve chamber 540 is provided so as to cover the piston valve 544 and the second flow path 314 by being interposed in the communication path 542 with the fluid storage chamber 520 so as to flow in the fluid flowing into the fluid storage chamber 520. Rubber pad valve 346. However, when the rubber pad valve 346 is opened, a negative pressure is generated in the second valve chamber 540 due to the flow velocity of the flowing fluid discharged through the discharge pipe 360, and a part of the flowing fluid is sucked through the second flow path 314. Thereafter, the rubber pad valve 346 is closed while the piston valve 544 is lowered by the spring 524.

この過程で、流体の速度が速ければ、下部流入通路326を通じて排出管360に流入する流れ流体が十分でないため、ハウジング200内部の流れ流体の温度が次第に低くなり、凍結が発生する。これを防止するための方法として、図5に示すように、流れ流体の排出を遅延させるために、上部排出管360と第2弁室540との間の第2流路314には抵抗用シャフト620が作動する緩衝室600が形成されることが好ましい。   In this process, if the speed of the fluid is high, the flow fluid flowing into the discharge pipe 360 through the lower inflow passage 326 is not sufficient, so the temperature of the flow fluid inside the housing 200 gradually decreases and freezing occurs. As a method for preventing this, as shown in FIG. 5, a resistance shaft is provided in the second flow path 314 between the upper discharge pipe 360 and the second valve chamber 540 in order to delay the discharge of the flow fluid. A buffer chamber 600 in which 620 operates is preferably formed.

本発明の実施形態による温度感応型流体流れ断続装置は、以上のような動作の繰り返しにより流体流れ管で常に流体が流れるようにすることで、外部の気温が低くなっても外部の動力供給なしに流体流れ管内部の流体が凍らないことにより、流体流れ管の凍破を防止する。   The temperature-sensitive fluid flow interrupting device according to the embodiment of the present invention is configured such that the fluid always flows through the fluid flow pipe by repeating the above-described operation, so that there is no external power supply even when the external air temperature decreases. In addition, the fluid inside the fluid flow pipe is prevented from freezing, thereby preventing the fluid flow pipe from being frozen.

図6は、本発明の第3実施形態による温度感応型流体流れ断続装置の構成を示す。   FIG. 6 shows a configuration of a temperature-sensitive fluid flow interrupting device according to a third embodiment of the present invention.

図6に示すように、本発明の第3実施形態による温度感応型流体流れ断続装置は、一部が外部に露出される開放部722が形成され、内部に流れ流体が流れる流体流れ管712、714の流入部712と排出部714との間に設けられるハウジング720と、ハウジング720内の流れ流体を流入し、内部圧力の変化に応じて少量の流れ流体を流体排出口724を通じてハウジング720の開放部722と連通するように、ハウジング720内に設けられる弁ブロック730と、温度感応流体771の温度変化に応じて前記弁ブロック730内に圧力差を発生させる温度感応器とを含む。   As shown in FIG. 6, the temperature-sensitive fluid flow interrupting device according to the third embodiment of the present invention includes a fluid flow pipe 712 in which an open part 722 that is partially exposed to the outside is formed and a fluid flows inside. The housing 720 provided between the inflow portion 712 and the discharge portion 714 of the 714, the flow fluid in the housing 720 flows in, and a small amount of flow fluid is opened through the fluid discharge port 724 in response to a change in internal pressure. A valve block 730 provided in the housing 720 so as to communicate with the portion 722, and a temperature sensor that generates a pressure difference in the valve block 730 according to a temperature change of the temperature-sensitive fluid 771.

本発明の第3実施形態による温度感応型流体流れ断続装置は、温度感応流体771の温度が設定温度に到達すると、温度感応部774により弁ブロック730内に圧力差が発生して弁ブロック730内の流れ流体をハウジング720の開放部722と連通する流体排出口724を通じて外部に排出するように構成されている。ここで、設定温度とは、ハウジング720内の流れ流体が凍る前の温度を意味し、本発明では外部の気温が低くなり、温度感応流体771の温度が設定温度と同一になる度に少量の流れ流体を外部に排出することで、流体流れ管712、714内の流れ流体の温度を常に設定温度以上に維持するようになって、流体流れ管712、714の凍破を防止する。   In the temperature-sensitive fluid flow interrupting device according to the third embodiment of the present invention, when the temperature of the temperature-sensitive fluid 771 reaches a set temperature, a pressure difference is generated in the valve block 730 by the temperature-sensitive portion 774 and the temperature in the valve block 730 The fluid is discharged to the outside through a fluid discharge port 724 communicating with the opening 722 of the housing 720. Here, the set temperature means a temperature before the fluid flowing in the housing 720 is frozen, and in the present invention, the outside air temperature becomes low, and a small amount of time each time the temperature of the temperature sensitive fluid 771 becomes the same as the set temperature. By discharging the flow fluid to the outside, the temperature of the flow fluid in the fluid flow pipes 712 and 714 is always maintained at a set temperature or higher, thereby preventing the fluid flow pipes 712 and 714 from being frozen.

弁ブロック730には温度感応室740と、圧力解除室750及び弁室760が提供される。温度感応室740はハウジング720の開放部722に設けられ、上部に皺部772が形成された温度感応部774と、温度感応部774の皺部772を中心に上下に区画するホルダ776と、温度感応室740の上部及び下部のそれぞれを流体排出口724と連通するように設けられた上部及び下部連通管777、779とを含んで、温度感応器として作用する。温度感応部774の内部には温度感応流体771が充填され、温度感応流体771の温度はハウジング720内の流れ流体の温度よりも常に低い状態であることが好ましい。   The valve block 730 is provided with a temperature sensitive chamber 740, a pressure release chamber 750, and a valve chamber 760. The temperature sensitive chamber 740 is provided in the open portion 722 of the housing 720, a temperature sensitive portion 774 having a flange portion 772 formed on the upper portion, a holder 776 that is vertically divided around the flange portion 772 of the temperature sensitive portion 774, a temperature The upper and lower communication pipes 777 and 779 provided so as to communicate the upper and lower portions of the sensitive chamber 740 with the fluid discharge port 724 function as a temperature sensitive device. The temperature sensitive portion 774 is filled with a temperature sensitive fluid 771, and the temperature of the temperature sensitive fluid 771 is preferably always lower than the temperature of the flowing fluid in the housing 720.

ハウジング720内に流入した流れ流体により圧力が加えられる圧力解除室750には温度感応室740と連通する連通路752を開閉するように第1ピストン弁754が設けられる。一方、弁室760には第2ピストン弁762が介在されてハウジング720内に流れ流体を流入する上部流入通路764と、圧力解除室750と連結される連結管766と、流体排出口724を覆うように上部流入通路764と連結管766の下部に設けられたゴムパッド弁768と、ゴムパッド弁768の開放時に流体排出口724と連通するように設けられた下部流入通路769とが形成される。   A first piston valve 754 is provided in the pressure release chamber 750 to which pressure is applied by the fluid flowing into the housing 720 so as to open and close the communication passage 752 communicating with the temperature sensitive chamber 740. On the other hand, the second piston valve 762 is interposed in the valve chamber 760 to cover the upper inflow passage 764 that flows into the housing 720 and flows in fluid, the connection pipe 766 that is connected to the pressure release chamber 750, and the fluid discharge port 724. Thus, an upper inflow passage 764 and a rubber pad valve 768 provided below the connecting pipe 766 and a lower inflow passage 769 provided so as to communicate with the fluid discharge port 724 when the rubber pad valve 768 is opened are formed.

温度感応部774の皺部772の上部と第1ピストン弁754との間には一定の間隔が形成されており、温度感応部774内には温度感応流体771として流れ流体、例えば、水が充填されている。本実施形態の温度感応流体771は外部の温度が低くなると膨張し、温度が高くなると収縮する特性を有する。従って、外部の温度が低くなって温度感応流体771が膨張すると、皺部772が膨張して第1ピストン弁754を上昇させ、温度が高くなると、温度感応流体771が再び収縮して第1ピストン弁754が下降する。このように、温度が低くなると膨張し、温度が高くなると収縮する性質を有するならば、前述した流体以外の他の温度感応流体が温度感応部774内に充填され得るのはもちろんである。また、温度感応流体771の熱容量が流体流れ管内の熱容量よりも小さくなければ、同一の熱エネルギーが抜け出る場合に温度感応部774内の温度感応流体の温度が流体流れ管内部の流れ流体の温度よりも常に低い状態とならないため、温度感応部774の大きさは流体流れ管712、714の大きさよりも小さいことが好ましい。   A constant gap is formed between the upper portion of the flange portion 772 of the temperature sensitive portion 774 and the first piston valve 754, and the temperature sensitive portion 774 is filled with a fluid such as water that flows as the temperature sensitive fluid 771. Has been. The temperature-sensitive fluid 771 of this embodiment has a characteristic of expanding when the external temperature is low and contracting when the temperature is high. Accordingly, when the temperature of the external fluid decreases and the temperature sensitive fluid 771 expands, the flange 772 expands to raise the first piston valve 754, and when the temperature increases, the temperature sensitive fluid 771 contracts again and the first piston. Valve 754 is lowered. As described above, the temperature sensitive portion 774 can of course be filled with a temperature sensitive fluid other than the aforementioned fluid if it has a property of expanding when the temperature is low and contracting when the temperature is high. If the heat capacity of the temperature sensitive fluid 771 is not smaller than the heat capacity in the fluid flow pipe, the temperature of the temperature sensitive fluid in the temperature sensitive portion 774 is higher than the temperature of the flow fluid in the fluid flow pipe when the same heat energy is lost. Therefore, it is preferable that the temperature sensitive portion 774 is smaller than the fluid flow pipes 712 and 714.

一方、第1ピストン弁754が上昇して圧力解除室750の圧力が解除されると、連結管766を通じて圧力解除室750と連結された弁室760には上部流入通路764を通じてハウジング720内の流れ流体が流入する。しかし、上部流入通路764で微細な間隙をおいて第2ピストン弁762が介在されているため、上部流入通路764を通じて弁室760に流入する流れ流体の量は微量である。その結果、弁室760では連結管766を通じて圧力解除室750に移動する量よりも遥かに少ない量が流入する。これにより、弁室760の水圧、即ち、ゴムパッド弁768上部の水圧は低くなる反面、ゴムパッド弁768の下部はゴムパッド弁768の下部に形成された下部流入通路769を通じて流入していた流れ流体により水圧がかかっているため、ゴムパッド弁768を中心にその上下の水圧差が発生する。このように水圧差が発生すると、ゴムパッド弁768は、図7に示すように、上方へ膨張するようになって下部流入通路769と流体排出口724がと互いに連通し、これにより、ハウジング720内の流れ流体は流体排出口724に流入し、次いで流体排出口724に連結された下部流入通路769を通じてハウジング720の開放部722に形成された温度感応室740の下部に排出される。   On the other hand, when the first piston valve 754 rises and the pressure in the pressure release chamber 750 is released, the valve chamber 760 connected to the pressure release chamber 750 through the connection pipe 766 flows into the housing 720 through the upper inflow passage 764. Fluid flows in. However, since the second piston valve 762 is interposed with a fine gap in the upper inflow passage 764, the amount of flow fluid flowing into the valve chamber 760 through the upper inflow passage 764 is very small. As a result, a much smaller amount flows in the valve chamber 760 than the amount that moves to the pressure release chamber 750 through the connecting pipe 766. As a result, the water pressure in the valve chamber 760, that is, the water pressure in the upper part of the rubber pad valve 768 is lowered, while the lower part of the rubber pad valve 768 is water pressure by the flowing fluid flowing in through the lower inflow passage 769 formed in the lower part of the rubber pad valve 768. Therefore, a difference in water pressure between the upper and lower sides of the rubber pad valve 768 is generated. When the water pressure difference is generated in this way, the rubber pad valve 768 expands upward as shown in FIG. 7 so that the lower inflow passage 769 and the fluid discharge port 724 communicate with each other. The flow fluid flows into the fluid discharge port 724 and then is discharged to the lower portion of the temperature sensitive chamber 740 formed in the opening 722 of the housing 720 through the lower inflow passage 769 connected to the fluid discharge port 724.

このようなゴムパッド弁768の開閉と連動して第2ピストン弁762が上部流入通路764に沿って昇降する。従って、上部流入通路764の壁面と第2ピストン弁762との間に蓄積され得る異物が除去されることが可能となるため、本発明の流れ流体断続装置の寿命及び作動の信頼性を向上させる。図面において、説明を省略した符号751と761はそれぞれ圧力解除室750の第1ピストン弁754と、弁室760の第2ピストン弁762が開閉される部分に気密を提供するために備えられるゴムリングを示す。   The second piston valve 762 moves up and down along the upper inflow passage 764 in conjunction with the opening and closing of the rubber pad valve 768. Accordingly, foreign matter that can be accumulated between the wall surface of the upper inflow passage 764 and the second piston valve 762 can be removed, thereby improving the life and operation reliability of the flow fluid interrupting device of the present invention. . In the drawings, reference numerals 751 and 761 that are not described are rubber rings provided to provide airtightness to the first piston valve 754 of the pressure release chamber 750 and the portion of the valve chamber 760 where the second piston valve 762 is opened and closed. Indicates.

本発明の第3実施形態において、具体的に図示してはいないが、弁室760の上部流入通路764には一方向弁を設置して、上部流入通路764を通じて流入する流れ流体が逆流して排出されるのを防止し、装置の信頼性を向上させることができるのはもちろんである。   In the third embodiment of the present invention, although not specifically illustrated, a one-way valve is installed in the upper inflow passage 764 of the valve chamber 760 so that the flow fluid flowing in through the upper inflow passage 764 flows backward. Of course, it is possible to prevent discharge and improve the reliability of the apparatus.

また、本発明の第3実施形態は設定温度を可変できるように、設定温度可変装置を更に含んで第1ピストン弁776の開閉時期を調節できる。設定温度可変装置780は、図8に示すように、温度感応室740の内壁にネジ調節可能に形成されたホルダ776と、ホルダ776の外側面に形成されたネジ部が温度感応室58の内壁に形成されたネジ部に結合された構成とを含み、ネジ調節により圧力解除室750内の流れ流体が温度感応室740に流入する時期を調節できる。即ち、ネジ調節により皺部772上部と第1ピストン弁754との間の間隔を図8に実線で示すように縮小すれば、温度感応部774内に充填された温度感応流体771が少しだけ膨張しても、流れ流体の圧力により連通路752を閉鎖していた第1ピストン弁754が上昇する。その結果、圧力解除室750に流入した流れ流体が温度感応室740に流入する時期が早くなる。これとは反対に、間隔を図8に点線で示すように、広く調節すれば、温度感応部774内に充填された温度感応流体771がより多く膨張しなければ、連通路752を閉鎖していた第1ピストン弁754が上昇しない。そのため、圧力解除室750の流れ流体が温度感応室740に流入する時期が遅れる。   Further, the third embodiment of the present invention can further include a set temperature variable device to adjust the opening / closing timing of the first piston valve 776 so that the set temperature can be varied. As shown in FIG. 8, the set temperature variable device 780 includes a holder 776 formed on the inner wall of the temperature sensitive chamber 740 so that the screw can be adjusted, and a screw portion formed on the outer surface of the holder 776 with the inner wall of the temperature sensitive chamber 58. The timing of the flow fluid in the pressure release chamber 750 flowing into the temperature sensitive chamber 740 can be adjusted by adjusting the screw. That is, if the space between the upper portion of the flange portion 772 and the first piston valve 754 is reduced as shown by the solid line in FIG. 8 by adjusting the screw, the temperature sensitive fluid 771 filled in the temperature sensitive portion 774 is slightly expanded. Even so, the first piston valve 754 that has closed the communication passage 752 by the pressure of the flowing fluid rises. As a result, the timing at which the fluid flowing into the pressure release chamber 750 flows into the temperature sensitive chamber 740 is advanced. On the other hand, if the distance is adjusted widely as indicated by the dotted line in FIG. 8, the communication passage 752 is closed if the temperature sensitive fluid 771 filled in the temperature sensitive portion 774 does not expand more. The first piston valve 754 does not rise. Therefore, the time when the fluid flowing in the pressure release chamber 750 flows into the temperature sensitive chamber 740 is delayed.

代表的に、流体流れ管を水道管とすれば、通常、水道管の水圧は2〜3kgf/cm程度の値であるため、流体が外部に排出される時の流速は非常に速い。従って、ベルヌーイの原理により流体排出後の流体排出口724には負圧が発生し、このとき、流体排出口724と温度感応室740の上部とは上部連通管777により連通しているため、流体排出口724と温度感応室740上部との間の圧力差により温度感応室740の上部にあった流れ流体も上部連通管777を通じて流体排出口724に移動して流体排出口724を通じて排出される。このように、温度感応室740内の流体が流体排出口724を通じて全て排出されるため、上部連通管777は常に清潔な状態に維持される。 Typically, if the fluid flow pipe is a water pipe, the water pressure of the water pipe is usually about 2 to 3 kgf / cm 2, so the flow rate when the fluid is discharged to the outside is very fast. Therefore, a negative pressure is generated at the fluid outlet 724 after the fluid is discharged due to Bernoulli's principle. At this time, the fluid outlet 724 and the upper part of the temperature sensing chamber 740 communicate with each other through the upper communication pipe 777. Due to the pressure difference between the discharge port 724 and the temperature sensitive chamber 740, the fluid flowing in the upper part of the temperature sensitive chamber 740 also moves to the fluid discharge port 724 through the upper communication pipe 777 and is discharged through the fluid discharge port 724. As described above, since all the fluid in the temperature sensitive chamber 740 is discharged through the fluid discharge port 724, the upper communication pipe 777 is always kept clean.

以下、前述したように構成された本発明の第3実施形態による温度感応型流体流れ断続装置の作動を説明すれば、以下の通りである。   Hereinafter, the operation of the temperature-sensitive fluid flow interrupting device according to the third embodiment of the present invention configured as described above will be described as follows.

外部の温度が設定温度以上の場合には、図6に示すように、流体流れ管の流入部712を通じてハウジング720の内部に流入した流れ流体は、水圧により弁室760と圧力解除室750に充填され、温度感応部774内に充填された温度感応流体771は一定の体積を有し、第1ピストン弁754は温度感応部774上部の皺部772と一定の間隙を維持しており、圧力解除室750に充填された流れ流体によりゴムリングと密着して連通路752を閉鎖している。この状態で、外部の気温が低くなり、温度感応部774内に充填された温度感応流体771の温度がハウジング720内の流れ流体、即ち水が凍る前に排出されるようにする設定温度に到達すると、これを温度感応部774が感知する。即ち、温度感応部774の大きさが流体流れ管の大きさよりも小さくなっているため、温度感応部774内の温度感応流体771の温度が流体流れ管内の流れ流体の温度よりも低い状態で、外部の温度が低くなって流れ流体が凍る温度(0℃)になれば、温度感応部774内の温度感応流体771が流れ流体よりも先に凍り始める。ところが、凍った温度感応流体771の密度が流れ流体の密度よりも約10%低いので(同じ質量で氷の体積が水の体積よりも約10%大きいので)、凍りが生成されるだけ温度感応流体の体積が増加して皺部772を膨張させる。このように、皺部772の所定の間隙以上の膨張により、第1ピストン弁754を押し上げることで、第1ピストン弁754が上昇して連通路752を開放するようになる。すると、圧力解除室750内の流れ流体は連通路752を通じて温度感応室740内に流入し、次いで上部連通管777を通じて流体排出口724に排出される。このとき、圧力解除室750は弁室760と連結管766により連通しているため、弁室760内に充填されていた流れ流体は連結管766を通じて圧力解除室750に移動する。   When the external temperature is equal to or higher than the set temperature, the flow fluid flowing into the housing 720 through the inflow portion 712 of the fluid flow pipe is filled into the valve chamber 760 and the pressure release chamber 750 by water pressure, as shown in FIG. The temperature sensitive fluid 771 filled in the temperature sensitive portion 774 has a constant volume, and the first piston valve 754 maintains a constant gap with the flange portion 772 above the temperature sensitive portion 774 to release the pressure. The flow fluid filled in the chamber 750 is in close contact with the rubber ring to close the communication passage 752. In this state, the temperature of the outside becomes low, and the temperature of the temperature-sensitive fluid 771 filled in the temperature-sensitive portion 774 reaches a set temperature that allows the flowing fluid in the housing 720, that is, water to be discharged before freezing. Then, the temperature sensitive unit 774 senses this. That is, since the size of the temperature sensitive portion 774 is smaller than the size of the fluid flow tube, the temperature of the temperature sensitive fluid 771 in the temperature sensitive portion 774 is lower than the temperature of the flow fluid in the fluid flow tube. When the external temperature becomes low and the temperature of the flowing fluid freezes (0 ° C.), the temperature sensitive fluid 771 in the temperature sensitive portion 774 begins to freeze before the flowing fluid. However, the density of the frozen temperature sensitive fluid 771 is about 10% lower than the density of the flowing fluid (since the ice mass is about 10% larger than the volume of water at the same mass), the temperature sensitive enough to generate frost. The volume of the fluid increases and the collar 772 expands. As described above, the first piston valve 754 is pushed up by the expansion of the flange portion 772 beyond a predetermined gap, so that the first piston valve 754 rises to open the communication path 752. Then, the fluid flowing in the pressure release chamber 750 flows into the temperature sensitive chamber 740 through the communication passage 752, and then is discharged to the fluid discharge port 724 through the upper communication pipe 777. At this time, since the pressure release chamber 750 communicates with the valve chamber 760 through the connection pipe 766, the fluid flowing in the valve chamber 760 moves to the pressure release chamber 750 through the connection pipe 766.

一方、上部流入通路764を通じて弁室760に流入する流れ流体量は、第2ピトン弁762が上部流入通路764に介在されているため、上部流入通路764を通じて流入する流体は第2ピストン弁26との間隙を通じて流入する。従って、弁室760では連結管766を通じて圧力解除室750に移動する量よりも遥かに少ない量が流入する。これにより、弁室760の水圧、即ち、ゴムパッド弁768上部の水圧は低くなる。しかし、ゴムパッド弁768の下部はゴムパッド弁768の下部に形成された下部流入通路769に流入していた流体により水圧がかかっているので、ゴムパッド弁768を中心にその上下の水圧差が発生する。これにより、ゴムパッド弁768は、図7に示すように、上方へ膨張するようになって下部流入通路769と流体排出口724が互いに連通する。これにより、ハウジング720内の流れ流体は下部流入通路769に流入して流体排出口724に排出されて下部連通管79を通じて温度感応室740の下部に排出される。   On the other hand, the amount of fluid flowing into the valve chamber 760 through the upper inflow passage 764 is that the second piston valve 762 is interposed in the upper inflow passage 764. Flows in through the gap. Accordingly, the valve chamber 760 flows in an amount much smaller than the amount moving to the pressure release chamber 750 through the connecting pipe 766. Thereby, the water pressure in the valve chamber 760, that is, the water pressure in the upper part of the rubber pad valve 768 is lowered. However, since the water pressure is applied to the lower part of the rubber pad valve 768 by the fluid flowing into the lower inflow passage 769 formed at the lower part of the rubber pad valve 768, a difference in water pressure between the upper and lower parts occurs around the rubber pad valve 768. As a result, the rubber pad valve 768 expands upward as shown in FIG. 7 so that the lower inflow passage 769 and the fluid discharge port 724 communicate with each other. As a result, the fluid flowing in the housing 720 flows into the lower inflow passage 769, is discharged to the fluid discharge port 724, and is discharged to the lower portion of the temperature sensitive chamber 740 through the lower communication pipe 79.

このとき、通常、水道管と言える流体流れ管の水圧は2〜3kgf/cm程度であるため、流体が外部に排出される時の流速は非常に速い。従って、ベルヌーイの原理により流体排出後の流体排出口724には負圧が発生する。このとき、流体排出口724と温度感応室740の上部とは上部連通管777により連通しているため、流体排出口724と温度感応室740上部との間の圧力差により温度感応室740の上部にあった流体も上部連通管777を通じて流体排出口724に移動して下部連通管79を通じて温度感応室740の下部に排出される。 At this time, since the water pressure of the fluid flow pipe, which can be said to be a water pipe, is usually about 2 to 3 kgf / cm 2 , the flow rate when the fluid is discharged to the outside is very fast. Therefore, a negative pressure is generated at the fluid outlet 724 after the fluid is discharged according to the Bernoulli principle. At this time, since the fluid discharge port 724 and the upper part of the temperature sensitive chamber 740 are communicated with each other by the upper communication pipe 777, the upper part of the temperature sensitive chamber 740 is caused by the pressure difference between the fluid discharge port 724 and the upper part of the temperature sensitive chamber 740. Also, the fluid that has been moved to the fluid discharge port 724 through the upper communication pipe 777 and discharged to the lower part of the temperature sensitive chamber 740 through the lower communication pipe 79.

このように、温度感応室740上部の流れ流体とハウジング720内の流れ流体が流体排出口724に排出されて、下部連通管779を通じて温度感応室740の下部に排出される流れ流体は温度感応部774の下部に当接する。排出される流れ流体の温度は、温度感応部774内の温度感応流体771の温度よりも高いため、このような排出された流れ流体の温度感応部774下部との接触により、温度感応部774内に凍っていた氷が溶ける。これにより、温度感応部774内部の流れ流体の体積が減少して皺部772も収縮するようになり、その結果、これ以上第1ピストン弁754を押し上げなくなる。従って、第1ピストン弁754は連通路752を再び閉鎖する。また、弁室760の水圧も次第に増加し、ゴムパッド弁768上下の水圧差がなくなると、ゴムパッド弁768は元の状態に戻り、流体排出口724を閉鎖するようになって流れ流体の排出を中断する。   As described above, the flow fluid in the upper part of the temperature sensitive chamber 740 and the fluid in the housing 720 are discharged to the fluid discharge port 724 and discharged to the lower part of the temperature sensitive chamber 740 through the lower communication pipe 779. It contacts the lower part of 774. Since the temperature of the discharged flow fluid is higher than the temperature of the temperature sensitive fluid 771 in the temperature sensitive portion 774, contact with the lower portion of the temperature sensitive portion 774 of the discharged flow fluid causes the inside of the temperature sensitive portion 774. The frozen ice melts. As a result, the volume of the flowing fluid inside the temperature sensitive portion 774 decreases and the collar portion 772 also contracts, and as a result, the first piston valve 754 is no longer pushed up. Accordingly, the first piston valve 754 closes the communication passage 752 again. Further, the water pressure in the valve chamber 760 gradually increases, and when the water pressure difference between the upper and lower sides of the rubber pad valve 768 disappears, the rubber pad valve 768 returns to the original state and the fluid discharge port 724 is closed to interrupt the flow fluid discharge. To do.

本発明の温度感応型流体流れ断続装置は、以上のような動作の繰り返しにより流体流れ管で常に流体が流れるようにすることで、外部の気温が低くなっても外部の動力供給なしに流体流れ管内部の流体が凍らないようにすることにより、流体流れ管の凍破を防止する。   The temperature-sensitive fluid flow interrupting device of the present invention allows fluid to always flow through the fluid flow pipe by repeating the above-described operation, so that the fluid flow can be performed without external power supply even when the external air temperature decreases. By preventing the fluid inside the pipe from freezing, the fluid flow pipe is prevented from being frozen.

図9は、本発明の第4実施形態による温度感応型流体流れ断続装置の構成を示し、図10は、図9の温度感応器の変形実施形態であって、温度変化に応じてシャフトが昇降するようにシャフトに付着された変形部材を示し、図11は、図9の上部流入通路に取り付けられた一方向弁を示す図であり、図12は、流体排出口に水道蛇口が取り付けられたことを示す図であり、図13は、図9の構成に追加され得る設定温度可変装置の構成を示しいる。   FIG. 9 shows a configuration of a temperature-sensitive fluid flow interrupting device according to a fourth embodiment of the present invention, and FIG. 10 is a modified embodiment of the temperature-sensitive device of FIG. FIG. 11 shows a one-way valve attached to the upper inflow passage of FIG. 9, and FIG. 12 shows a water faucet attached to the fluid discharge port. FIG. 13 shows the configuration of a set temperature variable device that can be added to the configuration of FIG.

図9に示すように、本発明の第4実施形態による温度感応型流体流れ断続装置は、内部に流れ流体が流れる流体流れ管812、814の流入部812と排出部814との間に設けられるハウジング820と、ハウジング820内の流れ流体を流入し、内部圧力の変化に応じて少量の流れ流体を流体排出口822を通じてハウジング820の外部に排出するように連通管882が形成されてハウジング820内に設けられる弁ブロック880と、ハウジング820内の流れ流体の温度変化に応じて弁ブロック880内の圧力を増減するように、弁ブロック880の連通管882に設けられる温度感応器890とを含む。   As shown in FIG. 9, the temperature-sensitive fluid flow interrupting device according to the fourth embodiment of the present invention is provided between the inlet portion 812 and the outlet portion 814 of the fluid flow pipes 812 and 814 through which the fluid flows. A communication pipe 882 is formed so that a flow fluid in the housing 820 and a flow fluid in the housing 820 flow in and a small amount of the flow fluid is discharged to the outside of the housing 820 through the fluid discharge port 822 in accordance with a change in internal pressure. And a temperature sensor 890 provided in the communication pipe 882 of the valve block 880 so as to increase or decrease the pressure in the valve block 880 in accordance with the temperature change of the flowing fluid in the housing 820.

本発明の第4実施形態による温度感応型流体流れ断続装置は、ハウジング820内の流れ流体の温度が設定温度に到達すれば、温度感応器890の収縮により弁ブロック880内の圧力を増加させて弁ブロック880内の流れ流体を流体排出口822を通じてハウジング820の外部に排出するように構成されている。ここで、設定温度とは、ハウジング200内の流れ流体が凍る前の温度を意味する。本発明では外部の気温が低くなり、ハウジング820内の流れ流体の温度が設定温度と同一になる度に少量の流れ流体を外部に排出することで、流体流れ管812、814内の流体の温度を常に設定温度以上に維持するようになって、流体流れ管812、814の凍破を防止する。   The temperature sensitive fluid flow interrupting device according to the fourth embodiment of the present invention increases the pressure in the valve block 880 due to the contraction of the temperature sensitive device 890 when the temperature of the fluid flowing in the housing 820 reaches a set temperature. The flow fluid in the valve block 880 is configured to be discharged to the outside of the housing 820 through the fluid discharge port 822. Here, the set temperature means a temperature before the flowing fluid in the housing 200 is frozen. In the present invention, the temperature of the fluid in the fluid flow pipes 812 and 814 is discharged by discharging a small amount of the fluid to the outside whenever the temperature of the outside fluid becomes low and the temperature of the fluid in the housing 820 becomes equal to the set temperature. Is always maintained above the set temperature to prevent the fluid flow pipes 812, 814 from freezing.

弁ブロック880は連通管882と連通する流体貯蔵タンク830と、この流体貯蔵タンク830と連通部832を通じて連通する圧力解除室840と、連通部832にヒンジ固定されたシーソー部材850と、圧力解除室840と連結管836を通じて連結された弁室870とを含む。ハウジング820内の流れ流体は弁室870の一側に形成された上部流入通路872を通じて流入して弁室870、連結管836及び圧力解除室840に充填されている。   The valve block 880 includes a fluid storage tank 830 that communicates with the communication pipe 882, a pressure release chamber 840 that communicates with the fluid storage tank 830 through the communication portion 832, a seesaw member 850 that is hinged to the communication portion 832, and a pressure release chamber. 840 and a valve chamber 870 connected through a connecting pipe 836. The fluid flowing in the housing 820 flows through the upper inflow passage 872 formed on one side of the valve chamber 870 and fills the valve chamber 870, the connecting pipe 836 and the pressure release chamber 840.

圧力解除室840には連通部832を開閉するように第1ピストン弁842が備えられており、シーソー部材850は連通部832を開閉するように、その一端852は温度感応部890の収縮及び膨張と連動し、他端854は圧力解除室840の第1ピストン弁842の開閉に連動する。   The pressure release chamber 840 is provided with a first piston valve 842 so as to open and close the communicating portion 832, and the seesaw member 850 has one end 852 that contracts and expands the temperature sensitive portion 890 so as to open and close the communicating portion 832. The other end 854 is interlocked with the opening and closing of the first piston valve 842 of the pressure release chamber 840.

温度感応器890は、弁ブロック880の連通管882を通じて昇降するように設けられたシャフト892と、シャフト892を一方向に加圧する圧力補償バネ894と、温度変化に応じて収縮及び膨張する温度感応流体871としてガスが貯蔵されるガス貯蔵室896と、温度感応流体871の収縮及び膨張によりシャフト892が昇降するようにシャフトに付着されたベローズ898とを含む。ベローズ898は、ガス貯蔵室896内に貯蔵されたガスが連通管882を通らないように封止されるように設けられることが好ましい。   The temperature sensor 890 includes a shaft 892 provided so as to move up and down through the communication pipe 882 of the valve block 880, a pressure compensation spring 894 that pressurizes the shaft 892 in one direction, and a temperature sensitive that contracts and expands according to a temperature change. A gas storage chamber 896 in which gas is stored as the fluid 871 and a bellows 898 attached to the shaft so that the shaft 892 moves up and down by contraction and expansion of the temperature sensitive fluid 871 are included. The bellows 898 is preferably provided so that the gas stored in the gas storage chamber 896 is sealed so as not to pass through the communication pipe 882.

本実施形態ではハウジング820内の流れ流体の温度に感応するものと説明したが、これとは異なり、外部遠隔地の温度に感応して流体の流れを断続することもできる。この場合には、ガス貯蔵室896に貯蔵されるガス871は遠隔地に位置する温度感応ガス源910からガス連結管895を通じて供給される。本実施形態において、ガス貯蔵室896内に貯蔵されるガスは、原理的には温度に応じて圧力が変わるあらゆるガスが使用でき、使用温度範囲で飽和状態(液体と気体が共に存在する状態)にあるガスが好ましい。このようなガスとしては一般的に冷却器で用いられるフレオン系、非フレオン系冷媒ガスが使用できる。   In the present embodiment, it has been described that it is sensitive to the temperature of the fluid flowing in the housing 820. However, unlike this, the fluid flow can be interrupted in response to the temperature of an external remote location. In this case, the gas 871 stored in the gas storage chamber 896 is supplied from the temperature-sensitive gas source 910 located at a remote place through the gas connection pipe 895. In this embodiment, as the gas stored in the gas storage chamber 896, in principle, any gas whose pressure changes according to the temperature can be used, and is saturated in a use temperature range (a state where both liquid and gas exist). The gas at is preferred. As such a gas, Freon type and non-Freon type refrigerant gas generally used in a cooler can be used.

流体流れ管812、814の外部の気温が低くなり、ハウジング820内の流れ流体の温度が設定温度になると、ガス貯蔵室896内部に充填された温度感応流体871が凝縮する。それにより、圧力補償バネ894とベローズ898が伸張してベローズ898の皺が伸ばされることにより、シャフト892とシーソー部材850の一端852がヒンジ軸851を中心に上方へ上昇する。反面、シーソー部材850の他端854はヒンジ軸851を中心に下方へ下降し、流れ流体の流入圧力により連通部832を閉鎖していた状態の第1ピストン弁842を押す。それにより、連通部832を開放することで、圧力解除室840内に充填されていた流れ流体が連通部832を通じて流体貯蔵タンク830に流入して貯蔵される。   When the temperature outside the fluid flow pipes 812 and 814 becomes low and the temperature of the flow fluid in the housing 820 reaches the set temperature, the temperature sensitive fluid 871 filled in the gas storage chamber 896 is condensed. As a result, the pressure compensation spring 894 and the bellows 898 are extended and the collar of the bellows 898 is extended, so that the shaft 892 and one end 852 of the seesaw member 850 are raised upward about the hinge shaft 851. On the other hand, the other end 854 of the seesaw member 850 descends downward about the hinge shaft 851 and pushes the first piston valve 842 in a state where the communication portion 832 is closed by the inflow pressure of the flowing fluid. Accordingly, by opening the communication portion 832, the flow fluid filled in the pressure release chamber 840 flows into the fluid storage tank 830 through the communication portion 832 and is stored.

これとは反対に、流体流れ管812、814の外部の気温が高くなってハウジング820内の流れ流体の温度が設定温度よりも高くなると、ガス貯蔵室896内部に充填された温度感応流体871が膨張する。それにより、圧力補償バネ894とベローズ898が再び圧縮されてベローズ898に皺が生じることによって、シャフト892とシーソー部材850の一端852がヒンジ軸851を中心に再び下降するのに対して、シーソー部材850の他端854はヒンジ軸851を中心に上方へ上昇する。これにより、開放されていた第1ピストン弁842は流れ流体の流入圧力により上昇して連通部832を閉鎖することで、圧力解除室840内に充填されていた流れ流体が連通部832を通じて流体貯蔵タンク830に流入するのが阻止される。   On the other hand, when the temperature outside the fluid flow pipes 812 and 814 becomes high and the temperature of the flow fluid in the housing 820 becomes higher than the set temperature, the temperature sensitive fluid 871 filled in the gas storage chamber 896 is changed. Inflate. As a result, the pressure compensation spring 894 and the bellows 898 are compressed again, and the bellows 898 is wrinkled, so that the shaft 892 and the one end 852 of the seesaw member 850 are lowered again around the hinge shaft 851. The other end 854 of 850 rises upward about the hinge shaft 851. Accordingly, the opened first piston valve 842 is raised by the inflow pressure of the flow fluid and closes the communication portion 832, so that the flow fluid filled in the pressure release chamber 840 is stored in the fluid through the communication portion 832. Inflow into the tank 830 is blocked.

図10は、ガスを温度感応流体として用いる温度感応器の変形実施形態を示す。図10に示すように、変形実施形態の温度感応器890は、温度変化に応じて変形される変形部材900をシャフト892及び支持部材902に付着してシャフト892を昇降するようにしても前述の実施の様態と同様に作動するので、その詳細な説明は省略する。変形部材900としては、例えばバイメタル、形状記憶合金、又は熱膨張係数が大きい材料が使用できる。   FIG. 10 shows an alternative embodiment of a temperature sensitive device that uses gas as the temperature sensitive fluid. As shown in FIG. 10, the temperature sensor 890 according to the modified embodiment may be configured so that the deformable member 900 deformed according to the temperature change is attached to the shaft 892 and the support member 902 and the shaft 892 is moved up and down. Since it operates in the same manner as the embodiment, its detailed description is omitted. As the deformable member 900, for example, a bimetal, a shape memory alloy, or a material having a large thermal expansion coefficient can be used.

また、図10において、シャフト892と第1ピストン弁842はシーソー部材850により連動するものとして構成されている。しかし、本変形実施形態の場合には直接的に図示してはいないが、変形部材900の収縮及び膨張時にその動きの方向を上下に変えることができるため、シーソー部材850の構成なしにシャフト892と第1ピストン弁842が連動するようにすることができるのはもちろんである。   In FIG. 10, the shaft 892 and the first piston valve 842 are configured to be interlocked by a seesaw member 850. However, although not shown directly in the case of this modified embodiment, the direction of movement can be changed up and down when the deforming member 900 contracts and expands, so that the shaft 892 can be formed without the configuration of the seesaw member 850. Of course, the first piston valve 842 can be interlocked.

更に、図9を参照すれば、弁室870には第2ピストン弁876が介在されている上部流入通路872が形成され、この上部流入通路872は、圧力解除室840と連結管836を通じて連結されている。このような上部流入通路872と連結管836の下部には流体排出口822を開閉するように、ゴムパッド弁860が設けられ、このゴムパッド弁860の開放時に流体排出口822と連通するように下部流入通路858が形成されている。上部流入通路872を通じてハウジング820内の流れ流体が弁室870に流入するが、上部流入通路872で微細な間隙をおいて第2ピストン弁876が介在されているため、上部流入通路872を通じて弁室870に流入する流れ流体の量は微量である。このとき、ゴムパッド弁860の開閉と連動して第2ピストン弁876が上部流入通路872に沿って昇降することが好ましい。このようなゴムパッド弁860の開閉と連動する第2ピストン弁876の上部流入通路872の昇降により上部流入通路872の壁面と第2ピストン弁876との間に蓄積され得る異物も除去されることが可能となるため、本発明の流体流れ断続装置の寿命及び作動の信頼性を向上させることになる。図面において、説明を省略した符号744と778はそれぞれ圧力解除室840の第1ピストン弁842と弁室870の第2ピストン弁876が開閉される部分に気密を提供するために備えられるゴムリングとを示している。   Further, referring to FIG. 9, the valve chamber 870 includes an upper inflow passage 872 in which the second piston valve 876 is interposed. The upper inflow passage 872 is connected to the pressure release chamber 840 through a connection pipe 836. ing. A rubber pad valve 860 is provided at the lower portion of the upper inflow passage 872 and the connecting pipe 836 so as to open and close the fluid discharge port 822. When the rubber pad valve 860 is opened, the lower inflow is communicated with the fluid discharge port 822. A passage 858 is formed. The fluid in the housing 820 flows into the valve chamber 870 through the upper inflow passage 872, but since the second piston valve 876 is interposed with a fine gap in the upper inflow passage 872, the valve chamber is passed through the upper inflow passage 872. The amount of flow fluid entering 870 is negligible. At this time, it is preferable that the second piston valve 876 is moved up and down along the upper inflow passage 872 in conjunction with the opening and closing of the rubber pad valve 860. The foreign matter that can be accumulated between the wall surface of the upper inflow passage 872 and the second piston valve 876 can be removed by raising and lowering the upper inflow passage 872 of the second piston valve 876 in conjunction with opening and closing of the rubber pad valve 860. This will improve the life and operational reliability of the fluid flow interrupter of the present invention. In the drawings, reference numerals 744 and 778, which are not described, are rubber rings provided to provide airtightness to the first piston valve 842 of the pressure release chamber 840 and the second piston valve 876 of the valve chamber 870, respectively. Is shown.

弁室870の上部流入通路872には、図11に示すように、一方向弁862が提供されて上部流入通路872を通じて流入する流れ流体が逆流するのを防止する。このような一方向弁862は弁とこれを支持するバネで構成され、この時に用いられるバネは弾性係数が低いものを用いることによって、ハウジング820内の流れ流体が上部流入通路872を通じて流入はするものの、弁室870内の流れ流体はハウジング820に逆流するのを防止することで、装置の信頼性を向上させる。   As shown in FIG. 11, a one-way valve 862 is provided in the upper inflow passage 872 of the valve chamber 870 to prevent the flowing fluid flowing through the upper inflow passage 872 from flowing backward. Such a one-way valve 862 includes a valve and a spring that supports the valve, and the spring used at this time has a low elastic coefficient, so that the flow fluid in the housing 820 flows in through the upper inflow passage 872. However, the flow fluid in the valve chamber 870 is prevented from flowing back to the housing 820, thereby improving the reliability of the apparatus.

図12のように、流体排出口822がハウジング820の外部に通じず、流体流れ管の流入部812又は排出部814に提供された水道蛇口810に連結され得る。   As shown in FIG. 12, the fluid outlet 822 does not lead to the exterior of the housing 820 and may be connected to a water tap 810 provided to the inlet 812 or outlet 814 of the fluid flow tube.

一方、本発明の実施形態による温度感応型流体流れ断続装置は、ハウジング820内の流れ流体が排出される設定温度が可変できる。最も簡単な方法として互いに異なる弾性係数値を有する圧力補償バネ894を用いることが挙げられる。しかし、所定の弾性係数値を有する圧力補償バネ894が既に設けられた場合、本発明の実施形態による温度感応型流体流れ断続装置は、設定温度が可変できる設定温度可変装置を更に含むこともできる。   Meanwhile, the temperature-sensitive fluid flow interrupting device according to the embodiment of the present invention can vary the set temperature at which the fluid flowing in the housing 820 is discharged. The simplest method is to use pressure compensating springs 894 having different elastic coefficient values. However, when the pressure compensation spring 894 having a predetermined elastic modulus value is already provided, the temperature-sensitive fluid flow interrupting device according to the embodiment of the present invention may further include a set temperature variable device that can change the set temperature. .

設定温度可変装置920は、図13に示すように、温度感応器890のシャフト892の下端部に結合された弁ブロック880のシーソー部材850の勾配を調整するように、シャフト892の下部側面に形成されたガイド孔884にシーソー部材850の一端852が挿入され、シャフト892の下端に形成されたネジ溝886にネジで組み立てられた調節スクリュー922で構成されてもよい。 The temperature setting device 920 is formed on the lower side surface of the shaft 892 so as to adjust the gradient of the seesaw member 850 of the valve block 880 coupled to the lower end of the shaft 892 of the temperature sensor 890, as shown in FIG. One end 852 of the seesaw member 850 may be inserted into the formed guide hole 884, and the adjustment screw 922 assembled with a screw groove 886 formed at the lower end of the shaft 892 may be used.

調節スクリュー922をネジ調節することによって、シャフト892の孔884に挿入されたシーソー部材850の一端はガイド孔884内でガイドされて昇降することによって、シーソー部材850はそのヒンジ軸851を中心に勾配が調節される。このような構成によって、シーソー部材850の一端852がヒンジ軸851を中心に更に傾いてその一端851が上方へ更に上昇するように調節スクリュー922を調節すると、その他端854は下方へ更に下降する。それにより、流体流れ管812、814の外部が若干寒くなってハウジング820内の流れ流体の温度が少しだけ下がってもシャフト892の上昇時点が早くなる。従って、流れ流体の圧力により連通部832を閉鎖していた状態の第1ピストン弁842の開放時点が早くなる。反対に、シーソー部材850の勾配が低くなるように、調節スクリュー922を調節すると、第1ピストン弁842の開放時点が遅れる。   By adjusting the adjustment screw 922, one end of the seesaw member 850 inserted into the hole 884 of the shaft 892 is guided in the guide hole 884 and moved up and down, so that the seesaw member 850 is inclined around its hinge shaft 851. Is adjusted. With such a configuration, when the adjustment screw 922 is adjusted such that one end 852 of the seesaw member 850 is further tilted about the hinge shaft 851 and the one end 851 is further raised upward, the other end 854 is further lowered downward. Thereby, even when the outside of the fluid flow pipes 812 and 814 is slightly cold and the temperature of the fluid flowing in the housing 820 is slightly lowered, the rising point of the shaft 892 is advanced. Therefore, the opening time of the first piston valve 842 in a state where the communication portion 832 is closed by the pressure of the flowing fluid is advanced. On the contrary, when the adjustment screw 922 is adjusted so that the gradient of the seesaw member 850 is lowered, the opening time of the first piston valve 842 is delayed.

流体貯蔵タンク830は、外部空気と連通する空気通路834を通じて外部空気と連通し、排出通路838を通じて流体排出口822と連通して流体排出口822で負圧が発生すれば、流体貯蔵タンク830内部の流れ流体は排出通路838を通じて流体排出口822に流入して排出される。流体貯蔵タンク830内部の流れ流体の排出が完了すると、空気通路834を通じて流入する外部空気は、排出通路838を通じて流体排出口822に流れるようになる。従って、排出通路838に残留する流れ流体まで全て排出するため、排出通路838は常に清潔な状態に維持される。   The fluid storage tank 830 communicates with external air through an air passage 834 that communicates with external air, communicates with the fluid discharge port 822 through the discharge passage 838, and generates a negative pressure at the fluid discharge port 822. The flowing fluid flows into the fluid discharge port 822 through the discharge passage 838 and is discharged. When the discharge of the fluid flowing in the fluid storage tank 830 is completed, the external air flowing in through the air passage 834 flows to the fluid discharge port 822 through the discharge passage 838. Accordingly, since all the flow fluid remaining in the discharge passage 838 is discharged, the discharge passage 838 is always kept clean.

以下、前述したように構成された本発明の第4実施形態による温度感応型流体流れ断続装置の作動を図14〜図17を参照して説明すれば、以下の通りである。   Hereinafter, the operation of the temperature-sensitive fluid flow interrupting device according to the fourth embodiment of the present invention configured as described above will be described with reference to FIGS.

ハウジング820内部の流れ流体は、水圧により弁室870と圧力解除室840に充填されている。この状態で図示された図9の装置で外部の気温が低くなり、ハウジング820内の流れ流体の温度が設定温度に到達すると、これを温度感応器890が感知する。即ち、ガス貯蔵室896内のガス871が凝縮して圧力補償バネ894とベローズ898は、図14に示すように伸張し、これと同時に、シャフト892とシーソー部材850の一端852とは、図15に示すように、上方へ上昇するようになる。反面、シーソー部材850の他端854は、ヒンジ軸851を中心に下降して圧力解除室840に流入する流れ流体の圧力により連通部832を閉鎖していた第1ピストン弁842を押すようになって、第1ピストン弁842は、図16に示すように、下降して連通部832を開放する。すると、第1ピストン弁842の下降によって圧力解除室840は連通部832を通じて流体貯蔵タンク830と通じるようになるため、圧力解除室840内の流体が流体貯蔵タンク830に移送される。これと同時に、弁室870内の流れ流体も連結管836を通じて圧力解除室840に移動するようになる。   The fluid flowing inside the housing 820 fills the valve chamber 870 and the pressure release chamber 840 with water pressure. In the state of the apparatus shown in FIG. 9 in this state, when the outside air temperature becomes low and the temperature of the flowing fluid in the housing 820 reaches the set temperature, the temperature sensor 890 senses this. That is, the gas 871 in the gas storage chamber 896 condenses and the pressure compensation spring 894 and the bellows 898 expand as shown in FIG. 14, and at the same time, the shaft 892 and one end 852 of the seesaw member 850 As shown in FIG. On the other hand, the other end 854 of the seesaw member 850 pushes the first piston valve 842 that has closed the communication portion 832 by the pressure of the flowing fluid that descends about the hinge shaft 851 and flows into the pressure release chamber 840. Then, the first piston valve 842 descends to open the communication portion 832 as shown in FIG. Then, the pressure release chamber 840 communicates with the fluid storage tank 830 through the communication portion 832 due to the lowering of the first piston valve 842, so that the fluid in the pressure release chamber 840 is transferred to the fluid storage tank 830. At the same time, the fluid flowing in the valve chamber 870 also moves to the pressure release chamber 840 through the connecting pipe 836.

一方、第2ピストン弁876が上部流入通路872に介在されているため、上部流入通路872を通じて弁室870に流入する流れ流体は、上部流入通路872を通じて、また、第2ピストン弁876との間隙を通じて流入する。従って、弁室870では連結管836を通じて圧力解除室830に移動する量よりも遥かに少ない量が流入する。これにより、弁室870の水圧、即ち、ゴムパッド弁860上部の水圧は低くなる。しかし、ゴムパッド弁860の下部はゴムパッド弁860の下部に形成された下部流入通路874に流入していた流れ流体により水圧がかかっているため、ゴムパッド弁860を中心にその上下の水圧差が発生する。これにより、ゴムパッド弁860は、図17に示すように、上方へ膨張するようになって下部流入通路874と流体排出口822が互いに連通し、これにより、ハウジング820内の流れ流体は下部流入通路874に流入して流体排出口822を通じて外部への流体排出が起こる。   On the other hand, since the second piston valve 876 is interposed in the upper inflow passage 872, the flow fluid flowing into the valve chamber 870 through the upper inflow passage 872 passes through the upper inflow passage 872 and the gap with the second piston valve 876. Flows in through. Accordingly, the valve chamber 870 flows in an amount much smaller than the amount that moves to the pressure release chamber 830 through the connecting pipe 836. Thereby, the water pressure in the valve chamber 870, that is, the water pressure in the upper part of the rubber pad valve 860 is lowered. However, since the water pressure is applied to the lower part of the rubber pad valve 860 by the flowing fluid flowing into the lower inflow passage 874 formed at the lower part of the rubber pad valve 860, a difference in water pressure between the upper and lower parts occurs around the rubber pad valve 860. . As a result, the rubber pad valve 860 expands upward as shown in FIG. 17 so that the lower inflow passage 874 and the fluid discharge port 822 communicate with each other, so that the fluid in the housing 820 flows into the lower inflow passage. The fluid is discharged to the outside through the fluid discharge port 822 by flowing into 874.

代表的に、流体流れ管を水道管とすれば、通常、水道管の水圧は2〜3kgf/cm程度の値であるため、流体が外部に排出される時の流速は非常に速い。従って、ベルヌーイの原理により流体排出後の流体排出口822には負圧が発生する。このとき、流体排出口822と流体貯蔵タンク830は、排出通路838を通じて連通しているため、流体排出口822と流体貯蔵タンク830との間の圧力差により流体貯蔵タンク830にあった流体も排出通路838を通じて流体排出口822に移動して流体排出口822を通じて排出される。このように流体貯蔵タンク830内の流体が流体排出口822を通じて全て排出されると、流体貯蔵タンク830は排出通路838により外部空気と連通しているため、外部空気が空気通路834を通じて流体排出口822に通じるようになる。このような空気の流れによって、排出通路838に残留する流体を全て掃除するため、排出通路838は常に清潔な状態に維持される。 Typically, if the fluid flow pipe is a water pipe, the water pressure of the water pipe is usually about 2 to 3 kgf / cm 2, so the flow rate when the fluid is discharged to the outside is very fast. Therefore, a negative pressure is generated at the fluid outlet 822 after the fluid is discharged according to the Bernoulli principle. At this time, since the fluid discharge port 822 and the fluid storage tank 830 communicate with each other through the discharge passage 838, the fluid in the fluid storage tank 830 is also discharged due to the pressure difference between the fluid discharge port 822 and the fluid storage tank 830. It moves to the fluid discharge port 822 through the passage 838 and is discharged through the fluid discharge port 822. When all the fluid in the fluid storage tank 830 is discharged through the fluid discharge port 822 in this way, the fluid storage tank 830 communicates with the external air through the discharge passage 838, so that the external air flows through the air passage 834. 822. Since all the fluid remaining in the discharge passage 838 is cleaned by the air flow, the discharge passage 838 is always kept clean.

外部の気温が上昇するか、圧力解除室840に十分に流れ流体が流入するか、またベローズ898内の圧力補償バネ894の弾性により伸ばされていたベローズ898が収縮すると、第1ピストン弁842は連通管832を次第に閉鎖する。これにより、弁室870の水圧も次第に上昇し、ゴムパッド弁860下端の水圧と同一になって水圧差がなくなると、ゴムパッド弁860が収縮することによって、下部流入通路874と流体排出口822との連通を遮断するため、流体の排出が中断される。   When the outside air temperature rises, the fluid sufficiently flows into the pressure release chamber 840, or the bellows 898 extended by the elasticity of the pressure compensation spring 894 in the bellows 898 contracts, the first piston valve 842 is The communication pipe 832 is gradually closed. As a result, the water pressure in the valve chamber 870 gradually increases and becomes equal to the water pressure at the lower end of the rubber pad valve 860, and when the water pressure difference disappears, the rubber pad valve 860 contracts, so that the lower inflow passage 874 and the fluid discharge port 822 The fluid discharge is interrupted to cut off the communication.

本発明の温度感応型流体流れ断続装置は、以上のような動作の繰り返しにより流体流れ管で常に流体が流れるようにすることで、外部の気温が低くなっても外部の動力供給なしに流体流れ管内部の流体が凍らないようにすることにより、流体流れ管の凍破を防止する。   The temperature-sensitive fluid flow interrupting device of the present invention allows fluid to always flow through the fluid flow pipe by repeating the above-described operation, so that the fluid flow can be performed without external power supply even when the external air temperature decreases. By preventing the fluid inside the pipe from freezing, the fluid flow pipe is prevented from being frozen.

以上、本発明による温度感応型流体流れ断続装置の具体的な実施形態として説明したが、これは例示に過ぎないものであって、本発明はこれに限定されず、本明細書に開示された基礎思想による最広の範囲を有するものと解釈されるべきであり、当業者であれば各構成要素の材質、大きさなどを適用分野によって容易に変更できる。   The temperature-sensitive fluid flow interrupting device according to the present invention has been described above as a specific embodiment. However, this is merely an example, and the present invention is not limited thereto, and is disclosed in the present specification. It should be construed as having the widest range according to the basic idea, and those skilled in the art can easily change the material, size, etc. of each component depending on the application field.

また、開示された実施形態を組み合わせ/置換して適示されていない構造を採択できるが、これも本発明の範囲から逸脱しないものである。これ以外にも当業者は本明細書に基づいて開示された実施形態を容易に変更又は変形でき、このような変更又は変形も本発明の権利範囲に属することは明白である。   In addition, the disclosed embodiments can be combined / replaced to adopt a structure that is not properly shown, but this does not depart from the scope of the present invention. In addition, those skilled in the art can easily change or modify the embodiments disclosed based on the present specification, and it is obvious that such changes or modifications are also within the scope of the present invention.

Claims (24)

温度感応型流体流れ断続装置であって、
内部に流れ流体が流れる流体流れ管の流入部と排出部との間に設けられるハウジングと、
前記ハウジング内に流れ流体を流入し、内部圧力の変化に応じて前記流れ流体の一部を前記ハウジングの外部に排出するように前記ハウジング内に設けられる弁ブロックと、
内部に充填された温度感応流体の温度変化に応じて前記弁ブロック内に圧力差を発生させる温度感応器と、
を含む温度感応型流体流れ断続装置。
A temperature sensitive fluid flow interrupting device,
A housing provided between an inflow portion and a discharge portion of a fluid flow pipe in which a fluid flows inside;
A valve block provided in the housing so as to flow fluid into the housing and discharge a part of the fluid to the outside of the housing according to a change in internal pressure;
A temperature sensor for generating a pressure difference in the valve block in accordance with a temperature change of the temperature-sensitive fluid filled therein;
Temperature-sensitive fluid flow interrupting device including:
前記温度感応器は、
前記温度感応流体が充填されて前記弁ブロックの上部に設けられた温度感応部と、前記温度感応部と連通するように前記弁ブロックの内部に設けられた反応室と、前記ハウジングに前記流れ流体を流入するように前記弁ブロックの内部に設けられた弁室と、前記ハウジングと連通する弁管と、前記反応室と前記弁室とを連通する第1流路と、前記反応室と前記排出管とを連通する第2流路とを含み、
前記温度感応流体が設定温度に到達すると、前記弁室に流入した流れ流体を前記温度感応部の作動により前記反応室に流入して、前記弁室で発生した圧力差により前記弁室に流入する前記ハウジング内の流れ流体を前記排出管に排出することを特徴とする請求項1に記載の温度感応型流体流れ断続装置。
The temperature sensor is
A temperature sensitive portion filled with the temperature sensitive fluid and provided at an upper portion of the valve block; a reaction chamber provided in the valve block to communicate with the temperature sensitive portion; and the flow fluid in the housing. A valve chamber provided inside the valve block so as to flow in, a valve pipe communicating with the housing, a first flow path communicating between the reaction chamber and the valve chamber, the reaction chamber, and the discharge A second flow path communicating with the tube,
When the temperature sensitive fluid reaches a set temperature, the flow fluid that has flowed into the valve chamber flows into the reaction chamber by the operation of the temperature sensitive portion, and flows into the valve chamber due to a pressure difference generated in the valve chamber. The temperature-sensitive fluid flow interrupting device according to claim 1, wherein the flow fluid in the housing is discharged to the discharge pipe.
前記温度感応部は、
前記温度感応流体の凝縮と膨張によって膨張及び収縮するように設けられた皺部と、
前記皺部の内部に前記皺部の膨張と収縮によって昇降するように設けられたピストン部材と、
前記ピストン部材の外部面に嵌合されて前記ピストン部材を加圧するバネと、
を含むことを特徴とする請求項2に記載の温度感応型流体流れ断続装置。
The temperature sensitive part is
A collar provided to expand and contract by condensation and expansion of the temperature sensitive fluid;
A piston member provided so as to be moved up and down by expansion and contraction of the hook part inside the hook part;
A spring fitted to the outer surface of the piston member to pressurize the piston member;
The temperature-sensitive fluid flow interrupting device according to claim 2, comprising:
前記反応室は、
中空部材と、前記中空部材の下部に挿入された弾性のゴム部材と、前記中空部材の上部に順次挿入されたバネ及び接触部材で構成されて、前記ピストン部材の昇降によって昇降して前記第1流路を開閉するように設けられた第1弁体を含み、
前記接触部材は前記ピストン部材の下端部と弾性的に当接し、前記第2流路は前記第1弁体の昇降によって開閉されることを特徴とする請求項3に記載の温度感応型流体流れ断続装置。
The reaction chamber is
The first member is composed of a hollow member, an elastic rubber member inserted into a lower portion of the hollow member, and a spring and a contact member sequentially inserted into the upper portion of the hollow member, and is lifted and lowered by raising and lowering the piston member. Including a first valve body provided to open and close the flow path;
4. The temperature-sensitive fluid flow according to claim 3, wherein the contact member elastically contacts with a lower end portion of the piston member, and the second flow path is opened and closed by raising and lowering the first valve body. Intermittent device.
前記弁室は、
ピストン弁が介在されて前記ハウジング内に前記流れ流体を流入する上部流入通路と、
前記排出管を開閉するように設けられたゴムパッド弁と、
前記ゴムパッド弁の開放時に前記排出管と連通するように設けられた下部流入通路で構成されることを特徴とする請求項2に記載の温度感応型流体流れ断続装置。
The valve chamber is
An upper inflow passage through which a fluid flows into the housing through a piston valve;
A rubber pad valve provided to open and close the discharge pipe;
The temperature-sensitive fluid flow interrupting device according to claim 2, comprising a lower inflow passage provided to communicate with the discharge pipe when the rubber pad valve is opened.
前記温度感応流体は温度が低くなると収縮し、温度が高くなると膨張する流体を含むことを特徴とする請求項2に記載の温度感応型流体流れ断続装置。   The temperature-sensitive fluid flow interrupting device according to claim 2, wherein the temperature-sensitive fluid includes a fluid that contracts when the temperature decreases and expands when the temperature increases. 前記排出管は前記排出管を開閉するように設けられた第2弁体を有する流体排出管を含み、
前記第2弁体は、中空部材と、前記中空部材の下部に一端が挿入され、前記ハウジングの開放部に他端が付着されて上方へ加圧するように付着されたバネと、前記中空部材の上部に挿入された弾性のゴム部材で構成されることを特徴とする請求項2に記載の温度感応型流体流れ断続装置。
The discharge pipe includes a fluid discharge pipe having a second valve body provided to open and close the discharge pipe;
The second valve body includes a hollow member, a spring having one end inserted into the lower portion of the hollow member, and the other end attached to the open portion of the housing and attached to pressurize upward, and the hollow member 3. The temperature-sensitive fluid flow interrupting device according to claim 2, wherein the temperature-sensitive fluid flow interrupting device is constituted by an elastic rubber member inserted in an upper part.
前記第2流路は、流体貯蔵室と、前記流体貯蔵室と連通する第2弁室からなる排出流量調節器とを含み、
前記排出管は中央がオリフィス管のように構成され、その上部が前記第2弁室と連通しており、その下部は前記流体貯蔵室と連通することを特徴とする請求項2に記載の温度感応型流体流れ断続装置。
The second flow path includes a fluid storage chamber, and an exhaust flow rate regulator composed of a second valve chamber communicating with the fluid storage chamber,
3. The temperature according to claim 2, wherein the discharge pipe has a central portion configured as an orifice pipe, an upper portion thereof communicates with the second valve chamber, and a lower portion thereof communicates with the fluid storage chamber. Sensitive fluid flow interrupting device.
前記流体貯蔵室には、
前記第2流路を開閉するように設けられた弁部材と、前記弁部材を下方へ加圧するように設けられたバネと、前記排出管の下部と連通する第3流路が提供され、
前記反応室内の流れ流体に一定の圧力が生じて前記弁部材の上昇時に、前記反応室内の流れ流体が前記第2流路を通じて流入したり、前記第3流路を通じて前記下部の排出管を通じて排出されることを特徴とする請求項8に記載の温度感応型流体流れ断続装置。
In the fluid storage chamber,
A valve member provided to open and close the second flow path, a spring provided to pressurize the valve member downward, and a third flow path communicating with a lower portion of the discharge pipe are provided,
When a certain pressure is generated in the flow fluid in the reaction chamber and the valve member is raised, the flow fluid in the reaction chamber flows in through the second flow path or is discharged through the lower discharge pipe through the third flow path. The temperature-sensitive fluid flow interrupting device according to claim 8.
前記第2弁室は、前記流体貯蔵室との連通路に介在されたピストン弁と、前記第2流路を開閉するように設けられたゴムパッド弁とを含むことを特徴とする請求項8に記載の温度感応型流体流れ断続装置。   9. The second valve chamber includes a piston valve interposed in a communication path with the fluid storage chamber and a rubber pad valve provided to open and close the second flow path. The temperature-sensitive fluid flow interrupting device as described. 前記温度感応器は、前記温度感応流体が充填され、前記温度感応流体の温度が前記ハウジング内の流れ流体の温度よりも低いように皺部が形成されて、前記充填された温度感応流体の温度変化に応じて前記弁ブロック内に圧力差を発生させる温度感応部を含むことを特徴とする請求項1に記載の温度感応型流体流れ断続装置。   The temperature sensitive fluid is filled with the temperature sensitive fluid, and a flange is formed so that the temperature of the temperature sensitive fluid is lower than the temperature of the flowing fluid in the housing, and the temperature of the filled temperature sensitive fluid The temperature-sensitive fluid flow interrupting device according to claim 1, further comprising a temperature-sensitive unit that generates a pressure difference in the valve block in response to a change. 前記弁ブロックは、
前記温度感応部が設けられ、前記温度感応部の皺部を中心に上下に区画されるように前記温度感応部を支持するホルダ、及び前記流体排出口と上部及び下部のそれぞれが連通するように設けられた上部及び下部連通管を含む温度感応室と、
前記温度感応室と連通する連通路を開閉するように設けられた第1ピストン弁を備えて、前記ハウジング内に流入した流れ流体により圧力がかかるように構成された圧力解除室と、
第2ピストン弁が介在されて前記ハウジング内に流れ流体を流入する上部流入通路と、前記圧力解除室と連結される連結管と、前記流体排出口を覆うように前記上部流入通路と前記連結管の下部に設けられたゴムパッド弁及び前記ゴムパッド弁の開放時に前記流体排出口と連通するように設けられた下部流入通路が形成された弁室
とを含むことを特徴とする請求項11に記載の温度感応型流れ流体断続装置。
The valve block is
The temperature-sensitive part is provided, and a holder that supports the temperature-sensitive part so as to be partitioned vertically with a flange part of the temperature-sensitive part as a center, and the fluid outlet and the upper and lower parts communicate with each other. A temperature sensitive chamber including upper and lower communicating pipes provided;
A pressure release chamber comprising a first piston valve provided to open and close a communication passage communicating with the temperature sensitive chamber, and configured to be pressurized by a flowing fluid flowing into the housing;
An upper inflow passage through which a fluid flows into the housing through the second piston valve, a connection pipe connected to the pressure release chamber, and the upper inflow passage and the connection pipe so as to cover the fluid discharge port And a valve chamber in which a lower inflow passage is provided so as to communicate with the fluid discharge port when the rubber pad valve is opened. Temperature sensitive flow fluid interrupting device.
前記温度感応部の大きさは前記流れ流体の温度よりも前記温度感応流体の温度が低く維持されるように前記流れ流体管の大きさよりも小さく形成することを特徴とする請求項11に記載の温度感応型流れ流体断続装置。   The size of the temperature sensitive part is smaller than the size of the flow fluid pipe so that the temperature of the temperature sensitive fluid is maintained lower than the temperature of the flow fluid. Temperature sensitive flow fluid interrupting device. 設定温度を可変できるように設定温度可変装置を更に含むことを特徴とする請求項12に記載の温度感応型流れ流体断続装置。   The temperature-sensitive flow fluid interrupting device according to claim 12, further comprising a set temperature varying device so that the set temperature can be varied. 前記設定温度可変装置は、前記温度感応室の内壁にネジ調節可能なように形成された前記ホルダであることを特徴とする請求項14に記載の温度感応型流れ流体断続装置。   15. The temperature-sensitive flow fluid interrupting device according to claim 14, wherein the set temperature variable device is the holder formed on the inner wall of the temperature-sensitive chamber so that the screw can be adjusted. 前記温度感応流体は温度が低くなると膨張し、温度が高くなると収縮する流体を含むことを特徴とする請求項11に記載の温度感応型流体流れ断続装置。   The temperature-sensitive fluid flow interrupting device according to claim 11, wherein the temperature-sensitive fluid includes a fluid that expands when the temperature decreases and contracts when the temperature increases. 前記弁ブロックは、
前記ハウジングの外部に前記流れ流体を排出するように形成された連通管と、
前記連通管に連通し、前記ハウジング内に流入した流れ流体を貯蔵する流体貯蔵タンクと、
前記ハウジング内に流入した流れ流体が充填されて、前記流体貯蔵タンクと連通する前記連通部を開閉するように設けられた第1ピストン弁を備える圧力解除室と、
一端が前記温度感応部の収縮膨張と連動し、他端が前記圧力解除室の第1ピストン弁の開閉に連動するように前記連通部内にヒンジ固定されたシーソー部材と、
第2ピストン弁が介在されて前記ハウジング内の流れ流体を流入する上部流入通路と、前記圧力解除室と連結される連結管と、前記流体排出口を覆うように前記上部流入通路と前記連結管の下部に設けられたゴムパッド弁と、前記ゴムパッド弁の開放時に前記流体排出口と連通するように形成された下部流入通路を有する弁室と、
を含むことを特徴とする請求項1に記載の温度感応型流体流れ断続装置。
The valve block is
A communication pipe formed to discharge the flow fluid to the outside of the housing;
A fluid storage tank that communicates with the communication pipe and stores a flow fluid flowing into the housing;
A pressure release chamber comprising a first piston valve that is filled with a flowing fluid flowing into the housing and is provided to open and close the communicating portion communicating with the fluid storage tank;
A seesaw member hinged in the communication portion so that one end is interlocked with contraction and expansion of the temperature sensitive portion and the other end is interlocked with opening and closing of the first piston valve of the pressure release chamber;
An upper inflow passage through which a fluid flows in the housing through the second piston valve, a connection pipe connected to the pressure release chamber, and the upper inflow passage and the connection pipe so as to cover the fluid discharge port A rubber pad valve provided at a lower portion of the valve chamber, and a valve chamber having a lower inflow passage formed to communicate with the fluid discharge port when the rubber pad valve is opened,
The temperature-sensitive fluid flow interrupting device according to claim 1, comprising:
前記温度感応器は、
前記連通管に設けられ、前記連通管を通じて昇降するように設けられたシャフトと、
前記シャフトを一方向に加圧する圧力補償バネと、
温度変化に応じて収縮及び膨張するガスが貯蔵されるガス貯蔵室と、前記ガスの収縮及び膨張によって前記シャフトが昇降するように前記シャフトに付着されたベローズと
を含むことを特徴とする請求項17に記載の温度感応型流体流れ断続装置。
The temperature sensor is
A shaft provided in the communication pipe and provided so as to move up and down through the communication pipe;
A pressure compensating spring that pressurizes the shaft in one direction;
The gas storage chamber for storing a gas that contracts and expands in response to a temperature change, and a bellows attached to the shaft so that the shaft moves up and down by the contraction and expansion of the gas. The temperature-sensitive fluid flow interrupting device according to claim 17.
前記温度感応器は前記連通管に設けられ、前記連通管を通じて昇降するように設けられたシャフトと、温度変化に応じて前記シャフトが昇降するように前記シャフトに付着された変形部材とを含むことを特徴とする請求項17に記載の温度感応型流体流れ断続装置。   The temperature sensor is provided in the communication pipe, and includes a shaft provided so as to move up and down through the communication pipe, and a deformable member attached to the shaft so that the shaft moves up and down according to a temperature change. The temperature-sensitive fluid flow interrupting device according to claim 17. 前記変形部材はバイメタル、形状記憶合金、又は大きい熱膨張係数を有する物質のいずれか1つであることを特徴とする請求項19に記載の温度感応型流体流れ断続装置。   The temperature-sensitive fluid flow interrupting device according to claim 19, wherein the deformable member is one of a bimetal, a shape memory alloy, and a material having a large thermal expansion coefficient. 前記温度感応流体は温度が低くなると収縮し、温度が高くなると膨張する流体を含むことを特徴とする請求項17に記載の温度感応型流体流れ断続装置。   The temperature-sensitive fluid flow interrupting device according to claim 17, wherein the temperature-sensitive fluid includes a fluid that contracts when the temperature decreases and expands when the temperature increases. 前記設定温度を可変できるように設定温度可変装置を更に含むことを特徴とする請求項18に記載の温度感応型流体流れ断続装置。   The temperature-sensitive fluid flow interrupting device according to claim 18, further comprising a set temperature changing device so that the set temperature can be changed. 前記設定温度可変装置は、前記温度感応部の前記シャフトの下端部に結合され、前記弁ブロックのシーソー部材の勾配を調整する調節スクリューを含むことを特徴とする請求項22に記載の温度感応型流体流れ断続装置。   23. The temperature sensitive type according to claim 22, wherein the set temperature variable device includes an adjusting screw that is coupled to a lower end portion of the shaft of the temperature sensitive portion and adjusts a gradient of a seesaw member of the valve block. Fluid flow interrupting device. 前記流体貯蔵タンクには外部空気と連通する空気通路と、前記流体排出口と連通する排出通路が提供され、前記流体貯蔵タンクの内部に貯蔵した流れ流体は前記流体排出口で発生する負圧により前記排出通路を通じて前記流体排出口に流入して排出されることを特徴とする請求項17に記載の温度感応型流体流れ断続装置。   The fluid storage tank is provided with an air passage communicating with external air and a discharge passage communicating with the fluid discharge port, and the flow fluid stored in the fluid storage tank is generated by a negative pressure generated at the fluid discharge port. The temperature-sensitive fluid flow interrupting device according to claim 17, wherein the fluid is discharged into the fluid discharge port through the discharge passage.
JP2011540604A 2008-12-10 2009-12-09 Temperature-sensitive fluid flow interrupting device Active JP5714500B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR1020080125055A KR100901269B1 (en) 2008-12-10 2008-12-10 Thermostatic fluid flow intermitting apparatus
KR10-2008-0125055 2008-12-10
KR10-2009-0008875 2009-02-04
KR1020090008875A KR101041100B1 (en) 2009-02-04 2009-02-04 Thermostatic fluid flow intermitting apparatus
KR10-2009-0111530 2009-11-18
KR1020090111530A KR101142059B1 (en) 2009-11-18 2009-11-18 Thermostatic fluid flow intermitting apparatus
PCT/KR2009/007351 WO2010068031A2 (en) 2008-12-10 2009-12-09 Temperature-responsive fluid flow control apparatus

Publications (2)

Publication Number Publication Date
JP2012511650A true JP2012511650A (en) 2012-05-24
JP5714500B2 JP5714500B2 (en) 2015-05-07

Family

ID=42243212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011540604A Active JP5714500B2 (en) 2008-12-10 2009-12-09 Temperature-sensitive fluid flow interrupting device

Country Status (7)

Country Link
US (1) US8561914B2 (en)
EP (1) EP2369210B1 (en)
JP (1) JP5714500B2 (en)
CN (1) CN102245949B (en)
HK (1) HK1164415A1 (en)
RU (1) RU2481522C2 (en)
WO (1) WO2010068031A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236821B1 (en) 2011-03-15 2013-03-11 (주)수도프리미엄엔지니어링 Apparatus of freeze prevention

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657856B2 (en) * 2013-05-16 2017-05-23 O2I Ltd Regulating apparatus for a pressure activated one-way valve
CN103556681A (en) * 2013-11-15 2014-02-05 卢云飞 Water supply pipeline network section pressure intelligent compensation system
CN104676091B (en) * 2015-03-13 2017-03-29 佛山市顺德区美的洗涤电器制造有限公司 For the switch module and water intaking valve of water intaking valve
CN104879544B (en) * 2015-05-27 2019-01-04 中国科学院等离子体物理研究所 Large-scale low-temperature system repid cut-off valve door
CN104989868B (en) * 2015-06-21 2017-10-31 门立山 A kind of temperature control telescoping tube
CN107728430B (en) * 2016-08-11 2022-10-21 东京毅力科创株式会社 High purity dispensing unit
US11521757B2 (en) * 2018-05-25 2022-12-06 Curtiss-Wright Flow Control Corporation Inadvertent actuation block valve for a small modular nuclear reactor
CN110081210B (en) * 2019-04-30 2023-12-08 浙江师范大学 Negative pressure magnetic force pneumatic control composite valve for gas-liquid mixed transportation and control method thereof
FR3105337B1 (en) * 2019-12-18 2022-03-25 Vernet Device for controlling the flow of a fluid
CN115978263A (en) * 2022-04-27 2023-04-18 宁波方太厨具有限公司 Prevent frostbite and split valve body and contain its gas heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055226U (en) * 1973-09-17 1975-05-26
JPS5243725U (en) * 1975-09-25 1977-03-28
JPH0828732A (en) * 1994-07-22 1996-02-02 M I C:Kk Freeze preventing device

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397711A (en) * 1965-09-20 1968-08-20 Charles H. Strange Device for releasing water to prevent freezing
US3642015A (en) * 1969-06-27 1972-02-15 William R Walters Temperature controlling liquid valve
DE2544556C3 (en) 1975-10-04 1978-09-21 Demag Ag, 4100 Duisburg Support roller frame for steel slab caster, especially for curved slab caster
US4320872A (en) * 1979-11-05 1982-03-23 The Garrett Corporation Anti-ice control system
US4286613A (en) * 1980-01-16 1981-09-01 Marvin Lacoste Apparatus for and method of freeze protecting plumbing
JPS57179481A (en) * 1981-04-27 1982-11-05 Saginomiya Seisakusho Inc Freeze proofing valve
US4557252A (en) * 1983-04-15 1985-12-10 Pulstar Corporation Freeze protection valve and system
SU1252439A1 (en) * 1984-03-28 1986-08-23 Orenbojm Boris D Apparatus for protecting a pipeline against breakdown at water freeze
US4763682A (en) * 1988-01-12 1988-08-16 Drain Brain, Inc. Thermally responsive valve activating assembly
US4815491A (en) * 1988-05-16 1989-03-28 Prikle Fred L Freeze protection device
FR2632704B1 (en) * 1988-06-09 1990-09-28 Debeaux Michel THERMOSTATIC APPARATUS FOR INCORPORATION IN A LIQUID PIPING
RU1770529C (en) * 1989-12-20 1992-10-23 Хабаровский Институт Инжененров Железнодорожного Транспорта Device for protection of pipeline from freering
DE19529463A1 (en) * 1995-08-10 1996-09-19 Sbs Sondermaschinen Gmbh Solar hot-water installation with temperature-controlled relief valve
KR980010218A (en) 1996-07-23 1998-04-30 이영서 Freeze prevention device and method of water tube of gas boiler
FR2754282B1 (en) * 1996-10-03 2000-06-09 Fournier Andre MANEUVERING DEVICE OPERATING THANKS TO THE VOLUME VARIATION OF A LIQUID DURING ITS CHANGE OF STATE
KR100422811B1 (en) 1996-10-05 2004-06-16 주식회사 하이닉스반도체 Method for forming pattern using electron beam apparatus
US5692535A (en) * 1996-12-03 1997-12-02 Walters; William R. Icing preventer with temperature adjustment washer
KR19980060074U (en) 1997-03-04 1998-11-05 김진천 Analog valve drive
JPH10281320A (en) 1997-04-08 1998-10-23 Paloma Ind Ltd Freeze destruction preventing device for faucet
JPH11148576A (en) 1997-11-17 1999-06-02 Denso Corp Pressure control valve
RU9236U1 (en) * 1998-06-25 1999-02-16 Климовицкий Михаил Давидович AUTOMATIC ELECTRIC INDEPENDENT DEVICE FOR PROTECTION AGAINST FREEZING OF HEATING AND OTHER WATER SYSTEMS
US6374848B1 (en) * 1999-04-15 2002-04-23 Mcghee John D. Automatic mechanism for cut-off and drainage of under low-freezing ambient temperature conditions
JP2002004348A (en) 2000-06-15 2002-01-09 Suganuma Ryosuke Antifreezing method for water service pipe and bellows valve used therefor
KR20010100106A (en) 2001-09-29 2001-11-14 김철빈 Frozen to burst prevention device for water pipe
KR100499258B1 (en) 2002-01-15 2005-07-01 주식회사 동남 anti-freezing device
JP4400909B2 (en) * 2003-04-04 2010-01-20 日本サーモスタット株式会社 Thermostat device
US6805154B1 (en) * 2003-12-05 2004-10-19 Wcm Industries, Inc. Freeze protection device for wall hydrants/faucets
KR100716544B1 (en) 2006-03-14 2007-05-10 (주)수도프리미엄엔지니어링 Anti-freezing burst device
RU2326290C2 (en) * 2006-07-17 2008-06-10 Кирилл Сергеевич Дивщепольский Device preventing freezing of building heating system
US20080196773A1 (en) * 2007-02-16 2008-08-21 Honeywell International, Inc. Ventline control valve assembly
KR100849915B1 (en) * 2007-03-30 2008-08-04 강흥묵 Device for prevented a bursting by freezing
US7845575B2 (en) * 2007-07-16 2010-12-07 Honeywell International Inc. Temperature-actuated valve assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055226U (en) * 1973-09-17 1975-05-26
JPS5243725U (en) * 1975-09-25 1977-03-28
JPH0828732A (en) * 1994-07-22 1996-02-02 M I C:Kk Freeze preventing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236821B1 (en) 2011-03-15 2013-03-11 (주)수도프리미엄엔지니어링 Apparatus of freeze prevention

Also Published As

Publication number Publication date
JP5714500B2 (en) 2015-05-07
RU2011128407A (en) 2013-01-20
US20110240144A1 (en) 2011-10-06
CN102245949A (en) 2011-11-16
EP2369210B1 (en) 2018-03-28
EP2369210A2 (en) 2011-09-28
HK1164415A1 (en) 2012-09-21
EP2369210A4 (en) 2014-07-02
CN102245949B (en) 2013-11-06
WO2010068031A4 (en) 2010-09-23
US8561914B2 (en) 2013-10-22
WO2010068031A2 (en) 2010-06-17
WO2010068031A3 (en) 2010-08-05
RU2481522C2 (en) 2013-05-10

Similar Documents

Publication Publication Date Title
JP5714500B2 (en) Temperature-sensitive fluid flow interrupting device
KR100901269B1 (en) Thermostatic fluid flow intermitting apparatus
CN113474585B (en) Freeze-proof valve capable of controlling discharge flow according to temperature
CN113819390B (en) Discharge capacity automatic adjustment type anti-blocking drain valve
KR101041100B1 (en) Thermostatic fluid flow intermitting apparatus
JP4879817B2 (en) Float type steam trap
JP7368826B2 (en) valve device
KR101142059B1 (en) Thermostatic fluid flow intermitting apparatus
KR101452910B1 (en) Thermostatic fluid flow intermitting apparatus
CN206874932U (en) Hot gas bypass valve
JPS60263790A (en) Temperature-sensitive operation valve
JP7368825B2 (en) valve device
CN216975229U (en) Scroll compressor refrigerant sprays structure, scroll compressor and thermoregulation device
JP4334690B2 (en) Float type drain trap
CN117515237B (en) Balancing valve, refrigerating device and control method
JP7357904B2 (en) valve device
JPS6141807Y2 (en)
JP2023137188A (en) automatic valve
KR101236821B1 (en) Apparatus of freeze prevention
JP2021025621A (en) Valve device
TW201525381A (en) Buffering box of heating apparatus
JP2003207098A (en) Thermally-actuated steam trap
CA2596313A1 (en) Pressure valve
JP2010223414A (en) Valve unit
JP2001082693A (en) Float type drain trap

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150311

R150 Certificate of patent or registration of utility model

Ref document number: 5714500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250